1
|
Kato A, Suzuki M, Karasawa Y, Sugimoto T, Doi K. Histopathological Study of Time Course Changes in PTHrP-Induced Incisor Lesions of Rats. Toxicol Pathol 2016; 33:230-8. [PMID: 15902966 DOI: 10.1080/01926230590906530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Parathyroid hormone related peptide (PTHrP) was discovered as a causative factor of humoral hypercalcemia of malignancy (HHM). In the present study using HHM model rats, the time course of odontoblastic response to PTHrP and its relation to incisal fracture were elicited. Nude rats were implanted with PTHrP-expressing tumor (LC-6) cells, mandibular incisors were collected at several time points. Microscopically 3 distinctive types of odontoblastic/dentin lesions were observed. Hypercalcfied dentin, which was reported as hypercalcemia-induced lesion in previous reports, observed in all areas of the dentin from week 5–10 samplings. Dentin niche, observed solely in week-10 sampling point, exhibited a nature identical to that of reparative odontoblast reported in the literatures of various cytotoxic agents. Since cytotoxicites were neither observed prior to the lesions nor reported as a role of PTHrP, the reparative response may have derived from highly sustained levels of PTHrP. Loss of columnar odontoblasts height was initially observed at week-5 time point in the middle section of the incisor. This primary loss of cell height prior to incisor fracture was considered to be the earliest response to the increased PTHrP levels of this model.
Collapse
Affiliation(s)
- Atsuhiko Kato
- Toxicology Laboratory, Chugai Pharmaceutical Co., Ltd., Gotemba-shi, Shizuoka 412-8513, Japan.
| | | | | | | | | |
Collapse
|
2
|
Jiang M, Chen G, Lu N, Zhang Y, Jin S, Karaplis A, Goltzman D, Miao D. Deficiency of the parathyroid hormone-related peptide nuclear localization and carboxyl terminal sequences leads to premature skin ageing partially mediated by the upregulation of p27. Exp Dermatol 2015; 24:847-52. [PMID: 26121068 DOI: 10.1111/exd.12789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2015] [Indexed: 12/17/2022]
Abstract
We previously reported that deficiency of the PTHrP nuclear localization sequence (NLS) and C-terminus in PTHrP knockin (PTHrP KI) mice resulted in premature ageing of skin. P27, a cyclin-dependent kinase inhibitor, was upregulated in PTHrP KI mice and acted as a downstream target of the PTHrP NLS to regulate the proliferation of vascular smooth muscle cells. To determine the effects of p27 deficiency on premature skin ageing of PTHrP KI mice, we compared the skin phenotypes of PTHrP KI mice to those of p27 knockout (p27(-/-) ) mice and to those of double homozygous p27-deficient and PTHrP KI (p27(-/-) PTHrP KI) mice at 2 weeks age. Compared with wild-type littermates, PTHrP KI mice displayed thinner skin and decreased subcutaneous fat and collagen fibres, decreased skin cell proliferation and increased apoptosis, higher expression of p27, p19 and p53 and lower expression of cyclin E and CDK2, and increased reactive oxygen species levels and decreased antioxidant capacity. Deficiency of p27 in the PTHrP KI mice at least in part corrected the skin premature ageing phenotype resulting in thicker skin and increased subcutaneous fat and collagen. These alternations were associated with higher expression of CDK2 and cyclin E, lower expression of p19 and p53, and enhanced antioxidant capacity with increased skin cell proliferation and inhibition of apoptosis. Our results indicate that the NLS and C-terminus of PTHrP play a critical role in preventing skin from premature ageing that is partially mediated by p27.
Collapse
Affiliation(s)
- Minyue Jiang
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangpei Chen
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Na Lu
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongjie Zhang
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shulei Jin
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Andrew Karaplis
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill University, Montreal, QC, Canada
| | - Dengshun Miao
- Department of Anatomy, Histology and Embryology, State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Abstract
Aspirin is arguably the synthesized drug that has been used most commonly in human history. Aspirin was originally developed and marketed for the treatment of inflammatory disorders at the end of the 19th century, but its mechanism of action remained unknown until the second half of the 20th century. Since the latter part of the 20th century aspirin also has been used for the primary and secondary prevention of cardiovascular diseases given its anti-thrombotic properties. An association between intake of aspirin and decreased cancer risk was identified in the past decades. Whether aspirin can be used as an anticancer agent in patients with a diagnosis of cancer was unknown until recently. Recent studies suggest that aspirin might provide therapeutic benefit in the adjuvant treatment of certain forms of cancer. This review provides a critical update on this topic, which has potential implications for oncologists and their patients.
Collapse
Affiliation(s)
- Boris Pasche
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University, Medical Center Blvd, Winston Salem, NC.
| | - Minghui Wang
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University, Medical Center Blvd, Winston Salem, NC
| | - Michael Pennison
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University, Medical Center Blvd, Winston Salem, NC
| | - Hugo Jimenez
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University, Medical Center Blvd, Winston Salem, NC
| |
Collapse
|
4
|
Sorrell JM, Caplan AI. Fibroblasts-a diverse population at the center of it all. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:161-214. [PMID: 19584013 DOI: 10.1016/s1937-6448(09)76004-6] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The capacity of fibroblasts to produce and organize the extracellular matrix and to communicate with other cells makes them a central component of tissue biology. Even so, fibroblasts remain a somewhat enigmatic population. Our inability to fully comprehend these cells is in large part due to the paucity of unique cellular markers and to their pervasive diversity. Much of our understanding of fibroblast diversity has evolved from studies where subpopulations of these cells have been produced without resorting to cell surface markers. In this regard, cloning and mechanical separation of tissues prior to establishing cultures has provided multiple subpopulations. Nonetheless, in isolated situations, the expression or lack of expression of Thy-1/CD90 has been used to separate fibroblast subsets. The role of fibroblasts in intercellular communication is emerging through the implementation of organotypic studies in which three-dimensional fibroblast culture are combined with other populations of cells. Such studies have revealed critical paracrine loops that are essential for organ development and for wound repair. These studies also provide a backdrop for the emerging field of tissue engineering. The participation of fibroblasts in the regulation of tissue homeostasis and their contribution to the aging process are emerging issues that require better understanding. In short, fibroblasts represent a multifaceted, complex group of cells.
Collapse
Affiliation(s)
- J Michael Sorrell
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
5
|
Duan WR, Patyna S, Kuhlmann MA, Li S, Blomme EAG. A Multitargeted Receptor Tyrosine Kinase Inhibitor, SU6668, Does Not Affect the Healing of Cutaneous Full-Thickness Incisional Wounds in SKH-1 Mice. J INVEST SURG 2009; 19:245-54. [PMID: 16835139 DOI: 10.1080/08941930600778248] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Disturbances of angiogenesis have been suggested to result in the impaired healing of skin wounds. Using a murine incisional wound model, we evaluated the effects of SU6668, an inhibitor of the receptors for vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and fibroblast growth factor (FGF), on the healing of skin wounds. Mice were administered vehicle, SU6668 (100 or 400 mg/kg/day, b.i.d.), or dexamethasone (1 mg/kg/day, b.i.d.), and wound healing was monitored histologically and using a tensiometer. SU6668 at a fully efficacious dose of 100 mg/kg/day had no significant effect on the healing process, while at a supratherapeutic dose of 400 mg/kg/day, there were subtle transient histologic changes and slight decreases in tensile strength, suggesting a slight delay in the wound healing process. In conclusion, these data indicate that inhibition of the receptors for VEGF, PDGF, and FGF at levels necessary to inhibit tumor growth in mouse xenograft models does not affect the healing of incisional wounds in mice. Redundant pathways likely compensate for inhibition of VEGF, PDGF, and FGF signaling pathways in the skin healing process.
Collapse
|
6
|
Burrell HE, Simpson AWM, Mehat S, McCreavy DT, Durham B, Fraser WD, Sharpe GR, Gallagher JA. Potentiation of ATP- and bradykinin-induced [Ca2+]c responses by PTHrP peptides in the HaCaT cell line. J Invest Dermatol 2007; 128:1107-15. [PMID: 18007586 DOI: 10.1038/sj.jid.5701159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the epidermis, local and systemic factors including extracellular nucleotides and parathyroid hormone-related protein (PTHrP) regulate keratinocyte proliferation and differentiation. Extracellular nucleotides increase proliferation via activation of P2 receptors and induction of calcium transients, while endoproteases cleave PTHrP, resulting in fragments with different cellular functions. We investigated the effects of adenosine 5'-triphosphate (ATP) alone and in combination with synthetic PTHrP peptides on calcium transients in HaCaT cells. ATP induced calcium transients, while PTHrP peptides did not. C-terminal and mid-molecule PTHrP peptides (1-100 pM) potentiated ATP-induced calcium transients independently of calcium influx. 3-Isobutyl-1-methylxanthine potentiated ATP-induced calcium transients, suggesting that a cyclic monophosphate is responsible. Cyclic AMP is not involved, but cyclic GMP is a likely candidate since the protein kinase G inhibitor, KT5823, inhibited potentiation. Co-stimulation with ATP and either PTHrP (43-52) or PTHrP (70-77) increased proliferation, suggesting that this is important in the regulation of cell turnover and wound healing and may be a mechanism for hyperproliferation in skin disorders such as psoriasis. Finally, PTHrP fragments potentiated bradykinin-induced calcium transients, suggesting a role in inflammation in the skin. Since PTHrP is found in many normal and malignant cells, potentiation is likely to have a wider role in modulating signal transduction events.
Collapse
Affiliation(s)
- Helen E Burrell
- Department of Human Anatomy and Cell Biology, University of Liverpool, Liverpool, UK.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Fitsialos G, Chassot AA, Turchi L, Dayem MA, LeBrigand K, Moreilhon C, Meneguzzi G, Buscà R, Mari B, Barbry P, Ponzio G. Transcriptional signature of epidermal keratinocytes subjected to in vitro scratch wounding reveals selective roles for ERK1/2, p38, and phosphatidylinositol 3-kinase signaling pathways. J Biol Chem 2007; 282:15090-102. [PMID: 17363378 DOI: 10.1074/jbc.m606094200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Covering denuded dermal surfaces after injury requires migration, proliferation, and differentiation of skin keratinocytes. To clarify the major traits controlling these intermingled biological events, we surveyed the genomic modifications occurring during the course of a scratch wound closure of cultured human keratinocytes. Using a DNA microarray approach, we report the identification of 161 new markers of epidermal repair. Expression data, combined with functional analysis performed with specific inhibitors of ERK, p38(MAPK) and phosphatidylinositol 3-kinase (PI3K), demonstrate that kinase pathways exert very selective functions by precisely controlling the expression of specific genes. Inhibition of the ERK pathway totally blocks the wound closure and inactivates many early transcription factors and EGF-type growth factors. p38(MAPK) inhibition only delays "healing," probably in line with the control of genes involved in the propagation of injury-initiated signaling. In contrast, PI3K inhibition accelerates the scratch closure and potentiates the scratch-dependent stimulation of three genes related to epithelial cell transformation, namely HAS3, HBEGF, and ETS1. Our results define in vitro human keratinocyte wound closure as a repair process resulting from a fine balance between positive signals controlled by ERK and p38(MAPK) and negative ones triggered by PI3K. The perturbation of any of these pathways might lead to dysfunction in the healing process, similar to those observed in pathological wounding phenotypes, such as hypertrophic scars or keloids.
Collapse
|
8
|
Sorrell JM, Baber MA, Caplan AI. Clonal characterization of fibroblasts in the superficial layer of the adult human dermis. Cell Tissue Res 2006; 327:499-510. [PMID: 17093925 DOI: 10.1007/s00441-006-0317-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 07/31/2006] [Indexed: 01/19/2023]
Abstract
The dermis of adult human skin contains a physiologically heterogeneous population of fibroblasts that interact to produce its unique architecture and that participate in inflammatory and wound repair functions in vivo. This heterogeneity has been well documented for fibroblasts located in the superficial papillary dermis and the deep reticular dermis. However, the existence of diverse fibroblast subpopulations within a given region of the dermis has not been explored. In this study, fibroblast cultures have been established from the superficial dermis following enzymatic dissociation of the tissue. These fibroblasts have been cloned by limiting dilution and initially selected on the basis of morphology and proliferation kinetics. Fibroblasts in some of the clones selected for study express alpha-smooth muscle actin, a myofibroblast characteristic. Significant differences for fibroblast clones obtained from the same piece of skin have been observed with regard to their rate of collagen lattice contraction, their ability to organize a fibronectin matrix, their release of specific growth factors/cytokines into culture medium, and their response to interleukin-1alpha. These differences in both morphological and physiological characteristics indicate that the superficial papillary dermis contains a heterogeneous population of fibroblasts. This heterogeneity might indicate that diverse subpopulations of fibroblasts are required to interact in both homeostatic and pathological situations in skin.
Collapse
Affiliation(s)
- J Michael Sorrell
- Skeletal Research Center, Biology Department, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
9
|
Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M. Neuronal Control of Skin Function: The Skin as a Neuroimmunoendocrine Organ. Physiol Rev 2006; 86:1309-79. [PMID: 17015491 DOI: 10.1152/physrev.00026.2005] [Citation(s) in RCA: 431] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review focuses on the role of the peripheral nervous system in cutaneous biology and disease. During the last few years, a modern concept of an interactive network between cutaneous nerves, the neuroendocrine axis, and the immune system has been established. We learned that neurocutaneous interactions influence a variety of physiological and pathophysiological functions, including cell growth, immunity, inflammation, pruritus, and wound healing. This interaction is mediated by primary afferent as well as autonomic nerves, which release neuromediators and activate specific receptors on many target cells in the skin. A dense network of sensory nerves releases neuropeptides, thereby modulating inflammation, cell growth, and the immune responses in the skin. Neurotrophic factors, in addition to regulating nerve growth, participate in many properties of skin function. The skin expresses a variety of neurohormone receptors coupled to heterotrimeric G proteins that are tightly involved in skin homeostasis and inflammation. This neurohormone-receptor interaction is modulated by endopeptidases, which are able to terminate neuropeptide-induced inflammatory or immune responses. Neuronal proteinase-activated receptors or transient receptor potential ion channels are recently described receptors that may have been important in regulating neurogenic inflammation, pain, and pruritus. Together, a close multidirectional interaction between neuromediators, high-affinity receptors, and regulatory proteases is critically involved to maintain tissue integrity and regulate inflammatory responses in the skin. A deeper understanding of cutaneous neuroimmunoendocrinology may help to develop new strategies for the treatment of several skin diseases.
Collapse
|
10
|
Kato A, Suzuki M, Karasawa Y, Sugimoto T, Doi K. PTHrP and PTH/PTHrP receptor 1 expression in odontogenic cells of normal and HHM model rat incisors. Toxicol Pathol 2005; 33:456-64. [PMID: 16036863 DOI: 10.1080/01926230590959604] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Parathyroid hormone related peptide (PTHrP) was discovered as a causative factor of humoral hypercalcemia of malignancy (HHM). We examined PTHrP and its receptor (PTHR1) expression patterns in odontogenic cells in normal and HHM model rat incisors. Nontreated nude rats serving as the normal control and HHM model rats produced by implantation of PTHrP-expressing tumor (LC-6) cells were prepared. HHM rats fractured its incisor, and histopathologically, restrict population of odontoblasts showed findings classified as "shortening of high columnar odontoblasts" and "dentin niche." The incisors were immunostained against PTHrP and PTHR1. In normal rats, PTHrP and PTHR1 colocalized in ameloblasts, cementoblasts, and odontoblastic cells from mesenchymal cells to columnar odontoblasts. In high columnar odontoblasts, PTHrP solely expressed. In the HHM animals, although the expression patterns were identical to those of the normal rats in normal area, the shortened high columnar odontoblasts maintained PTHR1 expression and dentin niche comprising odontoblastic cells expressed both proteins. In the HHM model, the protein expression patterns changed in the odontoblastic cells with histological anomalies, and thus direct relations between the anomalies and PTHrP/PTHR1 axis are suggested.
Collapse
Affiliation(s)
- Atsuhiko Kato
- Safety Assessment Department, Chugai Pharmaceutical Co. Ltd., 1-135 Komakado, Gotemba-shi, Shizuoka 412-8513, Japan.
| | | | | | | | | |
Collapse
|
11
|
Godler DE, Stein AN, Bakharevski O, Lindsay MML, Ryan PFJ. Parathyroid hormone-related peptide expression in rat collagen-induced arthritis. Rheumatology (Oxford) 2005; 44:1122-31. [DOI: 10.1093/rheumatology/keh690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Kato A, Suzuki M, Karasawa Y, Sugimoto T, Doi K. Immunohistochemical Detection of PTHrP and PTH/PTHrP Receptor 1 on the Odontoblastic Reparative Process after Actinomycin D Treatment in Rats. J Toxicol Pathol 2005. [DOI: 10.1293/tox.18.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Atsuhiko Kato
- Safety Assessment Department, Chugai Pharmaceutical Co., Ltd
| | - Masami Suzuki
- Safety Assessment Department, Chugai Pharmaceutical Co., Ltd
| | - Yayoi Karasawa
- Safety Assessment Department, Chugai Pharmaceutical Co., Ltd
| | | | - Kunio Doi
- Department of Veterinary Pathology, Faculty of Agriculture, University of Tokyo
| |
Collapse
|
13
|
Kageshita T, Ishihara T, Tokuo H, Funasaka Y, Ichihashi M, Dong J, Nakajima M, Ono T. Widespread expression of parathyroid hormone-related peptide in melanocytic cells. Br J Dermatol 2003; 148:533-8. [PMID: 12653746 DOI: 10.1046/j.1365-2133.2003.05171.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Parathyroid hormone-related peptide (PTH-rP) was associated with the syndrome of hypercalcaemia of malignancy. An increased serum level of PTH-rP could occur in patients with advanced melanoma. OBJECTIVES We examined PTH-rP expression in cultured melanocytic cell lines and in lesions of melanocytic origin for associations with clinicopathological variables of disease progression. We measured the supernatant and cell lysate level of PTH-rP in cultured melanoma cells to clarify whether melanoma cells secrete PTH-rP. METHODS PTH-rP expression was examined by reverse transcriptase-polymerase chain reaction (RT-PCR) in cultured melanocytic cell lines and by immunoperoxidase staining in 18 melanocytic naevi, 40 primary melanoma and 19 metastatic melanoma lesions. The supernatant level of PTH-rP was measured with an immunoradiometric assay. RESULTS RT-PCR products of PTH-rP mRNA were detected in six of eight melanoma cell lines; however, neither naevus cells nor melanocytes showed positive products. On the other hand, immunohistochemical analysis showed that PTH-rP was widely expressed both in benign and malignant melanocytic lesions. In addition, PTH-rP expression was not associated with any clinicopathological variables. Cell lysate but not the supernatant of melanoma cells showed high PTH-rP levels. CONCLUSIONS These results suggest that PTH-rP was widely expressed in melanocytic cells; however, the cells did not secrete PTH-rP.
Collapse
Affiliation(s)
- T Kageshita
- Department of Dermatology, Kumamoto University School of Medicine, 1-1 Honjo, Kumamoto 860-0811, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Blomme EAG, Chinn KS, Hardy MM, Casler JJ, Kim SH, Opsahl AC, Hall WA, Trajkovic D, Khan KN, Tripp CS. Selective cyclooxygenase-2 inhibition does not affect the healing of cutaneous full-thickness incisional wounds in SKH-1 mice. Br J Dermatol 2003; 148:211-23. [PMID: 12588370 DOI: 10.1046/j.1365-2133.2003.05065.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The inducible cyclooxygenase-2 (COX-2) enzyme is upregulated in inflammatory diseases, as well as in epithelial cancers, and has an established role in angiogenesis and tissue repair. OBJECTIVE Because of these physiological effects and the widespread use of the selective COX-2 inhibitor, celecoxib, we wanted to determine if inhibition of COX-2 would affect incisional skin wound healing. METHODS Using a cutaneous full-thickness, sutured, incisional wound model in hairless SKH-1 mice, we evaluated the role of COX-2 in the wound healing process by comparing the effects of a nonselective COX inhibitor, diclofenac, with a selective COX-2 inhibitor, SC-791. Healing was monitored for up to 28 days postincision histologically and for recovery of wound strength. RESULTS COX-2 expression was observed over the first week of healing, peaking at day 3 and was not affected by treatment with the selective COX-2 or nonselective COX inhibitors. Infiltrating macrophages, as well as keratinocytes and dermal fibroblasts at the wound site, expressed COX-2. Neither selective COX-2, nor nonselective COX inhibition had a significant effect on the macroscopic or microscopic morphology of the wounds, whereas dexamethasone treatment resulted in epidermal and granulation tissue atrophy. In addition, neither selective COX-2, nor nonselective COX inhibition altered keratinocyte proliferation and differentiation, dermal angiogenesis or the recovery of wound tensile strength, whereas dexamethasone reduced the tensile strength of the wounds by 30-38% throughout the healing period. CONCLUSIONS These data indicate that selective COX-2 inhibition does not affect the healing of surgical skin wounds.
Collapse
Affiliation(s)
- E A G Blomme
- Department of Global Toxicology, Pharmacia Corporation, 4901 Searle Parkway, Skokie, IL 60077, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Stern JB, Bernard O, Paugam C, Silve C, Mantz J, Aubier M, Crestani B. Parathyroid hormone-related protein in epithelial lining fluid in humans negatively correlates with the severity of lung injury. Chest 2002; 121:852-7. [PMID: 11888972 DOI: 10.1378/chest.121.3.852] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVE To determine the concentration of parathyroid hormone-related protein (PTHrP; an autocrine/paracrine regulator of type-2 alveolar epithelial cells proliferation and apoptosis) in the epithelial lining fluid (ELF) from patients without pulmonary disease and from patients with acute lung injury (ALI), and to evaluate whether PTHrP concentrations correlated with the intensity of lung injury. DESIGN Prospective study. SETTING An adult trauma/surgical ICU in an urban teaching hospital. PATIENTS A total of 20 patients with ALI receiving mechanical ventilation (patients), and 10 patients without pulmonary disease not receiving mechanical ventilation (control subjects). INTERVENTIONS None. MEASUREMENTS AND RESULTS PTHrP was detected in all BAL fluids, and ELF PTHrP concentrations (median; 25% to 75% percentiles) tended to be higher in patients (52.2 nmol/mL; 20.8 to 65.6 nmol/mL) than in control subjects (25.4 nmol/mL; 20.5 to 35.4 nmol/mL; p = 0.18). In patients, ELF PTHrP concentration correlated positively with the PaO(2)/fraction of inspired oxygen ratio (r = 0.53; p = 0.005), and negatively with lung injury score (r = - 0.44; p = 0.02), radiologic score (r = - 0.40; p = 0.04), and BAL albumin concentration (r = - 0.42; p = 0.02). CONCLUSION PTHrP is present in biologically significant concentrations in the alveolar milieu in humans. In patients with ALI, the PTHrP concentration correlates negatively with the degree of lung injury.
Collapse
Affiliation(s)
- Jean-Baptiste Stern
- INSERM U408, Hôpital Lariboisière (Assistance Publique - Hôpitaux de Paris), Paris, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Lisowski AR, English ML, Opsahl AC, Bunch RT, Blomme EA. Effect of the storage period of paraffin sections on the detection of mRNAs by in situ hybridization. J Histochem Cytochem 2001; 49:927-8. [PMID: 11410620 DOI: 10.1177/002215540104900716] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study we evaluated whether storing non-deparaffinized sections can affect the detection of specific mRNAs by radioactive in situ hybridization (ISH). Using a standard ISH protocol, we hybridized serial sections of paraffin blocks stored for different periods of time with (33)P-labeled riboprobes specific for rat Type III collagen and matrix metalloproteinase-2 (MMP-2). Signal intensities were evaluated using a phosphorimager and by blinded microscopic examination. For slides hybridized with the Type III collagen riboprobe, signal intensities measured with the phosphorimager or evaluated by microscopic examination were negatively correlated with the storage period of the sections. For slides hybridized with the MMP-2 riboprobe, differences in signal intensity could be detected, albeit inconsistently, with the phosphorimager, although microscopic examination consistently indicated stronger signals in freshly sectioned slides compared to slides stored for 2 weeks or more. We concluded that it was preferable to use recently prepared sections for trying to locate mRNAs in paraffin-embedded tissues by ISH. In addition, our results suggest that quantifying signal intensity using a phosphorimager is feasible for abundant mRNAs or when large differences in expression are anticipated.(J Histochem Cytochem 49:927-928, 2001)
Collapse
Affiliation(s)
- A R Lisowski
- Pharmacia Corporation, Global Toxicology, Skokie, Illinois 60077, USA.
| | | | | | | | | |
Collapse
|
17
|
Abstract
The classical observations of the skin as a target for melanotropins have been complemented by the discovery of their actual production at the local level. In fact, all of the elements controlling the activity of the hypothalamus-pituitary-adrenal axis are expressed in the skin including CRH, urocortin, and POMC, with its products ACTH, alpha-MSH, and beta-endorphin. Demonstration of the corresponding receptors in the same cells suggests para- or autocrine mechanisms of action. These findings, together with the demonstration of cutaneous production of numerous other hormones including vitamin D3, PTH-related protein (PTHrP), catecholamines, and acetylcholine that share regulation by environmental stressors such as UV light, underlie a role for these agents in the skin response to stress. The endocrine mediators with their receptors are organized into dermal and epidermal units that allow precise control of their activity in a field-restricted manner. The skin neuroendocrine system communicates with itself and with the systemic level through humoral and neural pathways to induce vascular, immune, or pigmentary changes, to directly buffer noxious agents or neutralize the elicited local reactions. Therefore, we suggest that the skin neuroendocrine system acts by preserving and maintaining the skin structural and functional integrity and, by inference, systemic homeostasis.
Collapse
Affiliation(s)
- A Slominski
- Department of Pathology ,University of Tennessee, Memphis 38163, USA.
| | | |
Collapse
|
18
|
Blomme EA, Sugimoto Y, Lin YC, Capen CC, Rosol TJ. Parathyroid hormone-related protein is a positive regulator of keratinocyte growth factor expression by normal dermal fibroblasts. Mol Cell Endocrinol 1999; 152:189-97. [PMID: 10432236 DOI: 10.1016/s0303-7207(98)00252-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Parathyroid hormone-related protein (PTHrP), an important factor in the pathogenesis of humoral hypercalcemia of malignancy, is produced by many normal tissues, including the skin, where it regulates keratinocyte growth and differentiation and dermal fibroblast function. Keratinocyte growth factor (KGF), a member of the fibroblast growth factor (FGF) family, is a secretory product of stromal cells and functions as a mediator of epithelial cell growth and differentiation. Phenotypes of the skin in several transgenic mouse models, in which the KGF and PTHrP genes have been overexpressed or disrupted, suggest that these two factors interact in vivo to regulate homeostasis of the skin. In this study, we investigated the effects of KGF on PTHrP secretion and expression by normal human foreskin keratinocytes (NHFK) and the effects of PTHrP on KGF secretion and expression by normal human dermal fibroblasts (NHDF) in vitro. N-terminal PTHrP(1-36) increased KGF secretion, protein expression and mRNA expression by NHDF in a dose-dependent manner, however, KGF did not regulate PTHrP expression and secretion by NHFK. By flow cytometry, PTHrP also increased the percentage of NHDF producing KGF. Our results indicate that PTHrP produced by keratinocytes is a potential paracrine regulator of KGF expression by dermal fibroblasts in vivo. This paracrine regulation may explain, in part, the epidermal atrophy seen in the PTHrP null mice and epidermal hyperplasia seen in transgenic mice overexpressing PTHrP in their basal keratinocytes. Our results also suggest that PTHrP is an important mediator for the healing of skin wounds and growth of neoplasms of squamous origin.
Collapse
Affiliation(s)
- E A Blomme
- Department of Veterinary Biosciences, The Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|