1
|
Radziszewski M, Galus R, Łuszczyński K, Winiarski S, Wąsowski D, Malejczyk J, Włodarski P, Ścieżyńska A. The RAGE Pathway in Skin Pathology Development: A Comprehensive Review of Its Role and Therapeutic Potential. Int J Mol Sci 2024; 25:13570. [PMID: 39769332 PMCID: PMC11676465 DOI: 10.3390/ijms252413570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The receptor for advanced glycation end-products (RAGE), a member of the immunoglobulin superfamily, is expressed in various cell types and mediates cellular responses to a wide range of ligands. The activation of RAGE triggers complex signaling pathways that drive inflammatory, oxidative, and proliferative responses, which are increasingly implicated in the pathogenesis of skin diseases. Despite its well-established roles in conditions such as diabetes, cancer, and chronic inflammation, the contribution of RAGE to skin pathologies remains underexplored. This review synthesizes current findings on RAGE's involvement in the pathophysiology of skin diseases, including conditions such as psoriasis, atopic dermatitis, and lichen planus, focusing on its roles in inflammatory signaling, tissue remodeling, and skin cancer progression. Additionally, it examines RAGE-modulating treatments investigated in dermatological contexts, highlighting their potential as therapeutic options. Given RAGE's significance in a variety of skin conditions, further research into its mediated pathways may uncover new opportunities for targeted interventions in skin-specific RAGE signaling.
Collapse
Affiliation(s)
- Marcin Radziszewski
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Ryszard Galus
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Krzysztof Łuszczyński
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 04-141 Warsaw, Poland
| | - Sebastian Winiarski
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Dariusz Wąsowski
- Department of Thoracic Surgery, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Jacek Malejczyk
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Institute of Health Sciences, Faculty of Medical and Health Sciences, University of Siedlce, 08-110 Siedlce, Poland
| | - Paweł Włodarski
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Aneta Ścieżyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute, 04-141 Warsaw, Poland
| |
Collapse
|
2
|
Lan J, Huang X, Li H, Lin S, Huang J, Yang W, Ouyang M, Fang J, Xu Q. YTHDF2 Regulates Advanced Glycation End Products-Induced Melanogenesis through Inhibiting A20 Expression in Human Dermal Fibroblasts. Inflammation 2024:10.1007/s10753-024-02097-0. [PMID: 39009810 DOI: 10.1007/s10753-024-02097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/06/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
Fibroblast A20 suppresses advanced glycation end products (AGEs)-induced melanogenesis by inhibiting NLRP3 inflammasome activation. AGEs repress A20 expression and significantly m6A-methylate A20 mRNA in fibroblasts. YTHDF2 is the most studied m6A reader protein and can accelerate degradation of m6A-modified mRNA. Whether YTHDF2 regulates AGEs-induced A20 expression and pigmentation is unknown. In this study, we confirmed that YTHDF2 inversely regulated AGEs-BSA-inhibited A20 expression but facilitated AGEs-BSA-activated NF-κB signaling and NLRP3 inflammasome in fibroblasts via YTHDF2 knockdown and overexpression experiments. Mechanistically, YTHDF2 bound to m6A-modified A20 mRNA induced by AGEs-BSA and increased its degradation. Moreover, fibroblast YTHDF2 robustly promoted AGEs-BSA-induced IL-18 level in coculture supernatants and melanin content, tyrosinase activity, and expression of microphthalmia-associated transcription factor and tyrosinase in melanocytes, which were significantly blocked by IL-18 binding protein. Further, fibroblast YTHDF2 markedly increased AGEs-BSA-induced epidermal melanin level in cocultured ex vivo skin and MAPKs activation in melanocytes. Importantly, upregulated dermal YTHDF2 expression was negatively correlated with dermal A20 level and positively associated with both epidermal melanin and dermal AGEs content in sun-exposed skin and lesions of melasma and solar lentigo. These findings suggest that fibroblast YTHDF2 positively regulates AGEs-induced melanogenesis mainly via A20/ NF-κB /NLRP3 inflammasome/ IL-18 /MAPKs axis in an m6A-dependent manner and functions in photoaging-induced hyperpigmentation skin disorders.
Collapse
Affiliation(s)
- Jingjing Lan
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Xianyin Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Hongpeng Li
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Shen Lin
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Jingqian Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Weixin Yang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Mengting Ouyang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China
| | - Jiaqi Fang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China.
| | - Qingfang Xu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China.
| |
Collapse
|
3
|
Thabet RH, Alessa REM, Al-Smadi ZKK, Alshatnawi BSG, Amayreh BMI, Al-Dwaaghreh RBA, Salah SKA. Folic acid: friend or foe in cancer therapy. J Int Med Res 2024; 52:3000605231223064. [PMID: 38229460 PMCID: PMC10935767 DOI: 10.1177/03000605231223064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024] Open
Abstract
Folic acid plays a crucial role in diverse biological processes, notably cell maturation and proliferation. Here, we performed a literature review using articles listed in electronic databases, such as PubMed, Scopus, MEDLINE, and Google Scholar. In this review article, we describe contradictory data regarding the role of folic acid in cancer development and progression. While some studies have confirmed its beneficial effects in diminishing the risk of various cancers, others have reported a potential carcinogenic effect. The current narrative review elucidates these conflicting data by highlighting the possible molecular mechanisms explaining each point of view. Further multicenter molecular and genetic studies, in addition to human randomized clinical trials, are necessary to provide a more comprehensive understanding of the relationship between folic acid and cancer.
Collapse
Affiliation(s)
- Romany H. Thabet
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Basic Medical Sciences, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, Jordan
| | | | | | | | | | | | | |
Collapse
|
4
|
Qu Y, Wang M, Lan J, Huang X, Huang J, Li H, Zheng Y, Xu Q. CircRNA-406918 enhances the degradation of advanced glycation end products in photoaged human dermal fibroblasts via targeting cathepsin D. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2023; 39:487-497. [PMID: 37253092 DOI: 10.1111/phpp.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Lysosomal cathepsin D (CTSD) can degrade internalized advanced glycation end products (AGEs) in dermal fibroblasts. CTSD expression is decreased in photoaged fibroblasts, which contributes to intracellular AGEs deposition and further plays a role in AGEs accumulation of photoaged skin. The mechanism under downregulated CTSD expression is unclear. OBJECTIVE To explore possible mechanism of regulating CTSD expression in photoaged fibroblasts. METHODS Dermal fibroblasts were induced into photoaging with repetitive ultraviolet A (UVA) irradiation. The competing endogenous RNA (ceRNA) networks were constructed to predict candidate circRNAs or miRNAs related with CTSD expression. AGEs-BSA degradation by fibroblasts was studied with flow cytometry, ELISA, and confocal microscopy. Effects of overexpressing circRNA-406918 via lentiviral transduction on CTSD expression, autophagy, AGE-BSA degradation were analyzed in photoaged fibroblasts. The correlation between circRNA-406918 and CTSD expression or AGEs accumulation in sun-exposed and sun-protected skin was studied. RESULTS CTSD expression, autophagy, and AGEs-BSA degradation were significantly decreased in photoaged fibroblasts. CircRNA-406918 was identified to regulate CTSD expression, autophagy, and senescence in photoaged fibroblasts. Overexpressing circRNA-406918 potently decreased senescence and increased CTSD expression, autophagic flux, and AGEs-BSA degradation in photoaged fibroblasts. Moreover, circRNA-406918 level was positively correlated with CTSD mRNA expression and negatively associated with AGEs accumulation in photodamaged skin. Further, circRNA-406918 was predicted to mediate CTSD expression through sponging eight miRNAs. CONCLUSION These findings suggest that circRNA-406918 regulates CTSD expression and AGEs degradation in UVA-induced photoaged fibroblasts and might exert a role in AGEs accumulation in photoaged skin.
Collapse
Affiliation(s)
- Yingying Qu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mengyao Wang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingjing Lan
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xianyin Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingxi Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongpeng Li
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yue Zheng
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingfang Xu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Tian Z, Chen S, Shi Y, Wang P, Wu Y, Li G. Dietary advanced glycation end products (dAGEs): An insight between modern diet and health. Food Chem 2023; 415:135735. [PMID: 36863235 DOI: 10.1016/j.foodchem.2023.135735] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023]
Abstract
Advanced glycation end products (AGEs) are formed by a series of chemical reactions of amino acids, peptides, proteins, and ketones at normal temperature or heated non-enzymatic conditions. A large amount of AGEs derived from Maillard Reaction (MR) during the process of food heat-processing. After oral intake, dietary AGEs are converted into biological AGEs through digestion and absorption, and accumulated in almost all organs. The safety and health risk of dietary AGEs have attracted wide attention. Increasing evidence have shown that uptake of dietary AGEs is closely related to the occurrence of many chronic diseases, such as diabetes, chronic kidney disease, osteoporosis, and Alzheimer's disease. This review summarized the most updated information of production, bio-transport in vivo, detection technologies, and physiological toxicity of dietary AGEs, and also discussed approaches to inhibit dietary AGEs generation. Impressively, the future opportunities and challenges on the detection, toxicity, and inhibition of dietary AGEs are raised.
Collapse
Affiliation(s)
- Zhaoqing Tian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shasha Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yiheng Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Panpan Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
6
|
de Faria Lopes L, Jandova J, Justiniano R, Perer J, Baptista MS, Wondrak GT. The Glycolysis-derived α-Dicarbonyl Metabolite Methylglyoxal is a UVA-photosensitizer Causing the Photooxidative Elimination of HaCaT Keratinocytes with Induction of Oxidative and Proteotoxic Stress Response Gene Expression †. Photochem Photobiol 2023; 99:826-834. [PMID: 36109156 PMCID: PMC10321145 DOI: 10.1111/php.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/28/2022] [Indexed: 12/01/2022]
Abstract
Cellular oxidative stress contributes to solar ultraviolet (UV) radiation-induced skin photoaging and photocarcinogenesis. Light-driven electron and energy transfer reactions involving non-DNA chromophores are a major source of reactive oxygen species (ROS) in skin, and the molecular identity of numerous endogenous chromophores acting as UV-photosensitizers has been explored. Methylglyoxal (MG), a glycolytic byproduct bearing a UV-active α-dicarbonyl-chromophore, is generated under metabolic conditions of increased glycolytic flux, associated with posttranslational protein adduction in human tissue. Here, we undertook a photophysical and photochemical characterization of MG substantiating its fluorescence properties (Stokes shift), phosphorescence lifetime, and quantum yield of singlet oxygen (1 O2 ) formation. Strikingly, upon UV-excitation (290 nm), a clear emission (around 490 nm) was observed (phosphorescence-lifetime: 224.2 milliseconds). At micromolar concentrations, MG acts as a UVA-photosensitizer targeting human HaCaT-keratinocytes inducing photooxidative stress and caspase-dependent cell death substantiated by zVADfmk-rescue and Alexa-488 caspase-3 flow cytometry. Transcriptomic analysis indicated that MG (photoexcited by noncytotoxic doses of UVA) elicits expression changes not observable upon isolated MG- or UVA-treatment, with upregulation of the proteotoxic (CRYAB, HSPA6) and oxidative (HMOX1) stress response. Given the metabolic origin of MG and its role in human pathology, future investigations should address the potential involvement of MG-photosensitizer activity in human skin photodamage.
Collapse
Affiliation(s)
- Lohanna de Faria Lopes
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jana Jandova
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| | - Rebecca Justiniano
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| | - Jessica Perer
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| | - Maurício S. Baptista
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, RK Coit College of Pharmacy, and UA Cancer Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
7
|
Fang J, Ouyang M, Qu Y, Wang M, Huang X, Lan J, Lai W, Xu Q. Advanced Glycation End Products Promote Melanogenesis by Activating NLRP3 Inflammasome in Human Dermal Fibroblasts. J Invest Dermatol 2022; 142:2591-2602.e8. [PMID: 35421403 DOI: 10.1016/j.jid.2022.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
Abstract
Advanced glycation end product (AGE) accumulation is significantly increased in the dermis of photoaged skin and plays crucial roles in photoaging. Although AGEs have been found to contribute to the yellowish discoloration of photoaged skin, their roles in photoaging-associated hyperpigmentation disorders have not been extensively studied. In this study, we observed that AGEs, NLRP3, and IL-18 were increased in the dermis of sun-exposed skin and lesions of melasma and solar lentigo and that dermal deposition of AGE was positively correlated with epidermal melanin levels. In addition, we found that AGE-BSA potently activated NLRP3 inflammasome and promoted IL-18 production and secretion in cultured fibroblasts, which was mediated by receptor for AGE/NF-κB pathway. Moreover, AGE-BSA significantly promoted melanogenesis by increasing tyrosinase activity and expression of microphthalmia-associated transcription factor and tyrosinase, which was dependent on NLRP3 inflammasome activation and IL-18 secretion in fibroblasts. Notably, AGE-collagen could activate NLRP3 inflammasome in fibroblasts and enhance melanogenesis. Furthermore, we found that IL-18 enhanced melanogenesis by binding to its receptor and activating p38 MAPK and extracellular signal‒regulated kinase 1/2 signaling pathways in melanocytes. Importantly, the promelanogenesis of AGE-BSA was verified in ex vivo cultured skin and mouse models. These findings suggest that dermal AGEs stimulate melanogenesis and contribute to the development of photoaging-associated hyperpigmentation disorders.
Collapse
Affiliation(s)
- Jiaqi Fang
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mengting Ouyang
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingying Qu
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mengyao Wang
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xianyin Huang
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingjing Lan
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Lai
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qingfang Xu
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
8
|
Yang N, Zhang K, Guan QW, Wang ZJ, Chen KN, Mao XY. D-Penicillamine Reveals the Amelioration of Seizure-Induced Neuronal Injury via Inhibiting Aqp11-Dependent Ferroptosis. Antioxidants (Basel) 2022; 11:1602. [PMID: 36009321 PMCID: PMC9405105 DOI: 10.3390/antiox11081602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Repetitive seizures, a common phenomenon in diverse neurologic conditions such as epilepsy, can undoubtedly cause neuronal injury and our prior work reveals that ferroptosis is a contributing factor of neuronal damage post seizure. However, there is no drug available in clinical practice for ameliorating seizure-induced neuronal impairment via targeting ferroptosis. Our present work aimed to explore whether D-penicillamine (DPA), an originally approved drug for treating Wilson's disease, inhibited neuronal ferroptosis and alleviated seizure-associated brain damage. Our findings revealed that DPA remarkably improved neuronal survival in kainic acid (KA)-treated mouse model. Furthermore, ferroptosis-associated indices including acyl-coA synthetase long chain family member 4 (ACSL4), prostaglandin-endoperoxide synthase 2 (Ptgs2) gene and lipid peroxide (LPO) level were significantly decreased in KA mouse model after DPA treatment. In a ferroptotic cell death model induced by glutamate or erastin, DPA was also validated to evidently suppress neuronal ferroptosis. The results from RNA-seq analysis indicated that Aqp11, a gene coding previously reported channel protein responsible for transporting water and small solutes, was identified as a molecular target by which DPA exerted anti-ferroptotic potential in neurons. The experimental results from in vivo Aqp11 siRNA transfer into the brain also confirmed that knockdown of Aqp11 abrogated the inhibitory effect of seizure-induced ferroptosis after DPA treatment, suggesting that the effects of DPA on ferroptosis process are dependent upon Aqp11. In conclusion, DPA can be repurposed to cure seizure disorders such as epilepsy.
Collapse
Affiliation(s)
- Nan Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Kai Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Qi-Wen Guan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Zhao-Jun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
| | - Kang-Ni Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| |
Collapse
|
9
|
Ouyang M, Fang J, Wang M, Huang X, Lan J, Qu Y, Lai W, Xu Q. Advanced glycation end products alter the m 6A-modified RNA profiles in human dermal fibroblasts. Epigenomics 2022; 14:431-449. [PMID: 35285253 DOI: 10.2217/epi-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: To explore advanced glycation end products (AGEs)-induced m6A modification in fibroblasts and its potential role in photoaging. Methods: We studied m6A modification in AGEs-bovine serum albumin-treated fibroblasts with m6A-mRNA & lncRNA epitranscriptomic microarray and bioinformatics analysis. The m6A modification level was also investigated in skin samples. Results: m6A methylation microarray analysis revealed m6A modification profiles in AGEs-treated fibroblasts. Gene ontology, Kyoto Encyclopedia of Genes and Genomes, protein-protein interaction and competing endogenous RNA network analysis indicated that the genes of differentially methylated mRNAs and lncRNAs were mainly related to inflammation processes. We also found that AGEs-bovine serum albumin dose-dependently increased the m6A level and METTL14 expression in both fibroblasts and sun-exposed skin. Conclusion: Our study provided novel information regarding alterations of m6A modifications in AGEs-induced dermal fibroblasts and potential targets for treatment of photoaging.
Collapse
Affiliation(s)
- Mengting Ouyang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jiaqi Fang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Mengyao Wang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xianyin Huang
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jingjing Lan
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yingying Qu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wei Lai
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qingfang Xu
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
10
|
Combined Treatment of Monopolar and Bipolar Radiofrequency Increases Skin Elasticity by Decreasing the Accumulation of Advanced Glycated End Products in Aged Animal Skin. Int J Mol Sci 2022; 23:ijms23062993. [PMID: 35328415 PMCID: PMC8950306 DOI: 10.3390/ijms23062993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
It is well known that skin aging is related to the destruction of collagen and elastin fibers by metalloproteinases (MMPs). Aged fibroblasts have a decreased ability to synthesize collagen and elastin. Nuclear factor erythroid 2-related factor 2 (NRF2) involves glyoxalase (GLO) activation, which inhibits the production of advanced glycated end products (AGE) and the expression of its receptor (RAGE). RAGE increases nuclear transcription factor-kappa B (NF-κB), which upregulates MMPs and decreases skin elasticity. NRF2 also decreases M1 macrophages, which secrete tumor necrosis factor-alpha (TNF-α), thereby decreasing AGE production. It is well known that radiofrequency (RF) decreases skin elasticity by increasing collagen synthesis. We evaluated whether RF increases skin elasticity via NRF2/GLO and whether they decrease AGE and RAGE expression in aged animal skin. We also compared the effects of RF based on the modes (monopolar or bipolar) or the combination used. In aged skin, NRF2, GLO-1, and M2 macrophage expression was decreased, and their expression increased when RF was applied. M1 and TNF-α demonstrated increased expression in the aged skin and decreased expression after RF application. AGE accumulation and RAGE, NF-κB, and MMP2/3/9 expression were increased in the aged skin, and they were decreased by RF. The papillary and reticular fibroblast markers showed decreased expression in young skin and increased expression in aged skin. The densities of collagen and elastin fiber in the aged skin were low, and they were increased by RF. In conclusion, RF leads to increased collagen and elastin fibers by increasing NRF2/GLO-1 and modulating M1/M2 polarization, which leads to decreased AGE and RAGE and, consequently, decreased NF-κB, which eventually slows collagen and elastin destruction. RF also leads to increased collagen and elastin fiber synthesis by increasing papillary and reticular fibroblast expression.
Collapse
|
11
|
Mehdi MM, Solanki P, Singh P. Oxidative stress, antioxidants, hormesis and calorie restriction: The current perspective in the biology of aging. Arch Gerontol Geriatr 2021; 95:104413. [PMID: 33845417 DOI: 10.1016/j.archger.2021.104413] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
Aging, in a large measure, has long been defined as the resultant of oxidative stress acting on the cells. The cellular machinery eventually malfunctions at the basic level by the damage from the processes of oxidation and the system starts slowing down because of intrinsic eroding. To understand the initial destruction at the cellular level spreading outward to affect tissues, organs and the organism, the relationship between molecular damage and oxidative stress is required to understand. Retarding the aging process is a matter of cumulatively decreasing the rate of oxidative damage to the cellular machinery. Along with the genetic reasons, the decrease of oxidative stress is somehow a matter of lifestyle and importantly of diet. In the current review, the theories of aging and the understanding of various levels of molecular damage by oxidative stress have been emphasized. A broader understanding of mechanisms of aging have been elaborated in terms of effects of oxidative at molecular, mitochondrial, cellular and organ levels. The antioxidants supplementation, hormesis and calorie restriction as the prominent anti-aging strategies have also been discussed. The relevance and the efficacy of the antiaging strategies at system level have also been presented.
Collapse
Affiliation(s)
- Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bio-engineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Preeti Solanki
- Multidisciplinary Research Unit, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, 124001, Haryana, India
| | - Prabhakar Singh
- Department of Biochemistry, Veer Bahadur Singh Purvanchal University, Jaunpur, 222003, Uttar Pradesh, India
| |
Collapse
|
12
|
Justiniano R, de Faria Lopes L, Perer J, Hua A, Park SL, Jandova J, Baptista MS, Wondrak GT. The Endogenous Tryptophan-derived Photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) is a Nanomolar Photosensitizer that Can be Harnessed for the Photodynamic Elimination of Skin Cancer Cells in Vitro and in Vivo. Photochem Photobiol 2020; 97:180-191. [PMID: 32767762 DOI: 10.1111/php.13321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/03/2020] [Indexed: 01/10/2023]
Abstract
UV-chromophores contained in human skin may act as endogenous sensitizers of photooxidative stress and can be employed therapeutically for the photodynamic elimination of malignant cells. Here, we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan-derived photoproduct and endogenous aryl hydrocarbon receptor agonist, displays activity as a nanomolar sensitizer of photooxidative stress, causing the photodynamic elimination of human melanoma and nonmelanoma skin cancer cells in vitro and in vivo. FICZ is an efficient UVA/Visible photosensitizer having absorbance maximum at 390 nm (ε = 9180 L mol-1 cm-1 ), and fluorescence and singlet oxygen quantum yields of 0.15 and 0.5, respectively, in methanol. In a panel of cultured human squamous cell carcinoma and melanoma skin cancer cells (SCC-25, HaCaT-ras II-4, A375, G361, LOX), photodynamic induction of cell death was elicited by the combined action of solar simulated UVA (6.6 J cm-2 ) and FICZ (≥10 nm), preceded by the induction of oxidative stress as substantiated by MitoSOX Red fluorescence microscopy, comet detection of Fpg-sensitive oxidative genomic lesions and upregulated stress response gene expression (HMOX1, HSPA1A, HSPA6). In SKH1 "high-risk" mouse skin, an experimental FICZ/UVA photodynamic treatment regimen blocked the progression of UV-induced tumorigenesis suggesting feasibility of harnessing FICZ for the photooxidative elimination of malignant cells in vivo.
Collapse
Affiliation(s)
- Rebecca Justiniano
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Lohanna de Faria Lopes
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jessica Perer
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Anh Hua
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Sophia L Park
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Jana Jandova
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Maurício S Baptista
- Biochemistry Department, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Perer J, Jandova J, Fimbres J, Jennings EQ, Galligan JJ, Hua A, Wondrak GT. The sunless tanning agent dihydroxyacetone induces stress response gene expression and signaling in cultured human keratinocytes and reconstructed epidermis. Redox Biol 2020; 36:101594. [PMID: 32506039 PMCID: PMC7276426 DOI: 10.1016/j.redox.2020.101594] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/22/2020] [Indexed: 01/25/2023] Open
Abstract
Sunless (chemical) tanning is widely regarded as a safe alternative to solar UV-induced skin tanning known to be associated with epidermal genotoxic stress, but the cutaneous biology impacted by chemical tanning remains largely unexplored. Chemical tanning is based on the formation of melanin-mimetic cutaneous pigments ('melanoidins') from spontaneous amino-carbonyl ('glycation') reactions between epidermal amino acid/protein components and reactive sugars including the glycolytic ketose dihydroxyacetone (DHA). Here, we have examined the cutaneous effects of acute DHA-exposure on cultured human HaCaT keratinocytes and epidermal reconstructs, profiled by gene expression array analysis and immunodetection. In keratinocytes, DHA-exposure performed at low millimolar concentrations did not impair viability while causing a pronounced cellular stress response as obvious from rapid activation of phospho-protein signal transduction [p-p38, p-Hsp27(S15/S78), p-eIF2α] and gene expression changes (HSPA6, HMOX1, CRYAB, CCL3), not observable upon exposure to the non-ketose, tanning-inactive DHA-control glycerol. Formation of advanced glycation end products (AGEs) from posttranslational protein-adduction was confirmed by quantitative mass spectrometric detection of N-ε-(carboxyethyl)-l-lysine (CEL) and N7-carboxyethyl-l-arginine, and skin cells with CRISPR-Cas9-based elimination of the carbonyl stress response gene GLO1 (encoding glyoxalase 1) displayed hypersensitivity to DHA-cytotoxicity. In human epidermal reconstructs a topical use-relevant DHA-dose regimen elicited a comparable stress response as revealed by gene expression array (HSPA1A, HSPA6, HSPD1, IL6, DDIT3, EGR1) and immunohistochemical analysis (CEL, HO-1, p-Hsp27-S78). In DHA-treated SKH-1 hairless mouse skin IHC-detection revealed epidermal occurrence of CEL- and p-Hsp27-epitopes. For comparison, stress response gene expression array analysis was performed in epidermis exposed to a supra-erythemal dose of solar simulated UV (2 MEDs), identifying genes equally or differentially sensitive to either one of these cutaneous stimuli [DHA ('sunless tanning') versus solar UV ('sun-induced tanning')]. Given the worldwide use of chemical tanners in consumer products, these prototype data documenting a DHA-induced specific cutaneous stress response deserve further molecular exploration in living human skin.
Collapse
Affiliation(s)
- Jessica Perer
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Jana Jandova
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Jocelyn Fimbres
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Erin Q Jennings
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Anh Hua
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and UA Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
14
|
Hemmler D, Gonsior M, Powers LC, Marshall JW, Rychlik M, Taylor AJ, Schmitt‐Kopplin P. Simulated Sunlight Selectively Modifies Maillard Reaction Products in a Wide Array of Chemical Reactions. Chemistry 2019; 25:13208-13217. [PMID: 31314140 PMCID: PMC6856810 DOI: 10.1002/chem.201902804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 11/30/2022]
Abstract
The photochemical transformation of Maillard reaction products (MRPs) under simulated sunlight into mostly unexplored photoproducts is reported herein. Non-enzymatic glycation of amino acids leads to a heterogeneous class of intermediates with extreme chemical diversity, which is of particular relevance in processed and stored food products as well as in diabetic and age-related protein damage. Here, three amino acids (lysine, arginine, and histidine) were reacted with ribose at 100 °C in water for ten hours. Exposing these model systems to simulated sunlight led to a fast decay of MRPs. The photodegradation of MRPs and the formation of new compounds have been studied by fluorescence spectroscopy and nontargeted (ultra)high-resolution mass spectrometry. Photoreactions showed strong selectivity towards the degradation of electron-rich aromatic heterocycles, such as pyrroles and pyrimidines. The data show that oxidative cleavage mechanisms dominate the formation of photoproducts. The photochemical transformations differed fundamentally from "traditional" thermal Maillard reactions and indicated a high amino acid specificity.
Collapse
Affiliation(s)
- Daniel Hemmler
- Comprehensive Foodomics Platform, Analytical Food ChemistryTechnical University MunichMaximus-von-Imhof-Forum 285354FreisingGermany
- Research Unit Analytical BioGeoChemistry (BGC)Helmholtz Zentrum MünchenIngolstädter Landstrasse 185764NeuherbergGermany
| | - Michael Gonsior
- University of Maryland Center for Environmental ScienceChesapeake Biological LaboratorySolomonsUSA
| | - Leanne C. Powers
- University of Maryland Center for Environmental ScienceChesapeake Biological LaboratorySolomonsUSA
| | - James W. Marshall
- The Waltham Centre for Pet NutritionMars Petcare (UK)Waltham-on-the-WoldsLeicestershireLE14 4RTUK
| | - Michael Rychlik
- Comprehensive Foodomics Platform, Analytical Food ChemistryTechnical University MunichMaximus-von-Imhof-Forum 285354FreisingGermany
| | - Andrew J. Taylor
- The Waltham Centre for Pet NutritionMars Petcare (UK)Waltham-on-the-WoldsLeicestershireLE14 4RTUK
| | - Philippe Schmitt‐Kopplin
- Comprehensive Foodomics Platform, Analytical Food ChemistryTechnical University MunichMaximus-von-Imhof-Forum 285354FreisingGermany
- Research Unit Analytical BioGeoChemistry (BGC)Helmholtz Zentrum MünchenIngolstädter Landstrasse 185764NeuherbergGermany
- University of Maryland Center for Environmental ScienceChesapeake Biological LaboratorySolomonsUSA
| |
Collapse
|
15
|
Xu X, Zheng Y, Huang Y, Chen J, Gong Z, Li Y, Lu C, Lai W, Xu Q. Cathepsin D contributes to the accumulation of advanced glycation end products during photoaging. J Dermatol Sci 2018; 90:263-275. [PMID: 29501392 DOI: 10.1016/j.jdermsci.2018.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 01/01/2018] [Accepted: 02/14/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The deposition of advanced glycation end products (AGEs) is accelerated in photoaged skin, but the underlying mechanisms remain elusive. Intracellular degradation has been recently considered to play an important role in AGEs removal. Although lysosomal cathepsin D (CatD), B (CatB), L(CatL) and proteasomes are found to degrade internalized AGEs, it remains unknown which protease degrades internalized AGEs in human dermal fibroblasts (HDFs), and whether a decrease in intracellular degradation contributes to enhanced AGEs deposition in photoaged skin. OBJECTIVE This study aims to investigate the specific proteases that contribute to intracellular AGEs degradation in HDFs and regulate AGEs accumulation in photoaged skin. METHODS Repetitive UVA irradiation was used to induce primary HDF photoaging in vitro. Uptake and degradation of AGE-BSA were verified and compared between photoaged and non-photoaged fibroblasts with flow cytometry, ELISA and confocal microscopy. Proteasomal and lysosomal activity, expression of CatD, CatB and CatL were also investigated between photoaged and non-photoaged fibroblasts. Further, the effect of protease inhibitors and CatD overexpression via lentiviral transduction on AGE-BSA degradation was analyzed. Finally, the correlation between CatD expression and AGEs accumulation in sun-exposed and sun-protected skin of people from different age was studied with immunohistochemistry. RESULTS Fibroblasts underwent photoaging in vitro after repetitive UVA irradiation. AGE-BSA was taken up by both photoaged and non-photoaged fibroblasts, but its degradation was significantly decreased in photoaged cells than that of non-photoaged cells. Although the activity of proteasome, CatB, Cat L and Cat D was significantly reduced in photoaged fibroblasts compared to that of non-photoaged cells, and the expression of CatB, CatL and CatD was profoundly attenuated in photoaged fibroblasts, inhibiting proteasome, CatB and CatL did not affect AGE-BSA degradation in HDFs. In contrast, inhibiting CatD activity dose-dependently decreased AGE-BSA degradation; whereas CatD overexpression significantly increased AGE-BSA degradation. Importantly, AGEs accumulation in photo-damaged skin in vivo was inversely correlated with CatD expression. CONCLUSION CatD plays a major role in intracellular AGEs degradation. Decreased CatD expression and activity impairs intracellular AGEs degradation in photoaged fibroblasts, which may contribute to accelerated AGEs deposition in photoaged skin. The present study provides a potentially novel molecular basis for antiphotoaging therapy.
Collapse
Affiliation(s)
- Xinya Xu
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Yue Zheng
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Yunfen Huang
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Jian Chen
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Zijian Gong
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Yuying Li
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Chun Lu
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China
| | - Wei Lai
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China.
| | - Qingfang Xu
- Department of Dermato-Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, PR China.
| |
Collapse
|
16
|
Bird RP. The Emerging Role of Vitamin B6 in Inflammation and Carcinogenesis. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 83:151-194. [PMID: 29477221 DOI: 10.1016/bs.afnr.2017.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Vitamin B6 serves as a coenzyme catalyzing more than 150 enzymes regulating metabolism and synthesis of proteins, carbohydrates, lipids, heme, and important bioactive metabolites. For several years vitamin B6 and its vitamers (B6) were recognized as antioxidant and antiinflammatory and in modulating immunity and gene expression. During the last 10 years, there were growing reports implicating B6 in inflammation and inflammation-related chronic illnesses including cancer. It is unclear if the deficiency of B6 or additional intake of B6, above the current requirement, should be the focus. Whether the current recommended daily intake for B6 is adequate should be revisited, since B6 is important to human health beyond its role as a coenzyme and its status is affected by many factors including but not limited to age, obesity, and inflammation associated with chronic illnesses. A link between inflammation B6 status and carcinogenesis is not yet completely understood. B6-mediated synthesis of H2S, a gasotransmitter, and taurine in health and disease, especially in maintaining mitochondrial integrity and biogenesis and inflammation, remains an important area to be explored. Recent developments in the molecular role of B6 and its direct interaction with inflammasomes, and nuclear receptor corepressor and coactivator, receptor-interacting protein 140, provide a strong impetus to further explore the multifaceted role of B6 in carcinogenesis and human health.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| |
Collapse
|
17
|
Ahmed T, Nash A, Clark KE, Ghibaudo M, de Leeuw NH, Potter A, Stratton R, Birch HL, Enea Casse R, Bozec L. Combining nano-physical and computational investigations to understand the nature of "aging" in dermal collagen. Int J Nanomedicine 2017; 12:3303-3314. [PMID: 28461747 PMCID: PMC5407446 DOI: 10.2147/ijn.s121400] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The extracellular matrix of the dermis is a complex, dynamic system with the various dermal components undergoing individual physiologic changes as we age. Age-related changes in the physical properties of collagen were investigated in particular by measuring the effect of aging, most likely due to the accumulation of advanced glycation end product (AGE) cross-links, on the nanomechanical properties of the collagen fibril using atomic force microscope nano-indentation. An age-related decrease in the Young’s modulus of the transverse fibril was observed (from 8.11 to 4.19 GPa in young to old volunteers, respectively, P<0.001). It is proposed that this is due to a change in the fibril density caused by age-related differences in water retention within the fibrils. The new collagen–water interaction mechanism was verified by electronic structure calculations, showing it to be energetically feasible.
Collapse
Affiliation(s)
- Tarek Ahmed
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London
| | - Anthony Nash
- Department of Chemistry, University College London
| | - Kristina En Clark
- Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, University College London, London, UK
| | | | | | - Anne Potter
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Richard Stratton
- Centre for Rheumatology and Connective Tissue Diseases, Division of Medicine, University College London, London, UK
| | - Helen L Birch
- Division of Surgery and Interventional Science, UCL Institute of Orthopaedics and Musculoskeletal Science, University College London, London, UK
| | | | - Laurent Bozec
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London
| |
Collapse
|
18
|
Abstract
Epithelial senescence is a complex process depending on intrinsic as well as extrinsic factors (e.g., UV or IR light, tobacco smoke) and must be seen in the context of the aging process especially of the corium and the subcutis. Morphological alterations become apparent in the form of epithelial atrophy, structural changes within the basal membrane, and a decrease in cell count of melanocytes and Langerhans cells. Signs of cellular senescence are reduced proliferation of keratinocytes, cumulation of dysplastic keratinocytes, various mutations (e.g., c-Fos/c-Jun, STAT3, FoxO1), as well as multiple lipid or amino acid metabolic aberrations (e.g., production of advanced glycation endproducts). This causes functional changes within the physical (lipid deficiency, water distribution dysfunction, lack of hygroscopic substances), chemical (pH conditions, oxygen radicals), and immunological barrier. Prophylactically, barrier-protective care products, antioxidant substances (e.g., vitamin C, B3, E, polyphenols, flavonoids), sunscreen products/measurements, and retinoids are used. For correcting alterations in aged epidermis, chemical peelings (fruit acids, β-hydroxy acid, trichloroacetic acid, phenolic compounds), non-ablative (IPL, PDL, Nd:YAG) as well as ablative (CO2, Erbium-YAG) light-assisted methods are used.
Collapse
Affiliation(s)
- J Wohlrab
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Straße 40, 06097, Halle (Saale), Deutschland. .,An-Institut für angewandte Dermatopharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Deutschland.
| | - K Hilpert
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Straße 40, 06097, Halle (Saale), Deutschland
| | - L Wolff
- Universitätsklinik und Poliklinik für Dermatologie und Venerologie, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Straße 40, 06097, Halle (Saale), Deutschland
| |
Collapse
|
19
|
Lee EJ, Kim JY, Oh SH. Advanced glycation end products (AGEs) promote melanogenesis through receptor for AGEs. Sci Rep 2016; 6:27848. [PMID: 27293210 PMCID: PMC4904211 DOI: 10.1038/srep27848] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/25/2016] [Indexed: 12/22/2022] Open
Abstract
Accumulation of advanced glycation end products (AGEs) is linked with development or aggravation of many degenerative processes or disorders, including aging and atherosclerosis. AGEs production in skin cells is known to promote stiffness and loss of elasticity through their buildup in connective tissue. However, the impact of AGEs has yet to be fully explored in melanocytes. In this study, we confirmed the existence of receptor for AGE (RAGE) in melanocytes in western blot and immunofluorescence along with increased melanin production in ex vivo skin organ culture and in vitro melanocyte culture following AGEs treatment. Cyclic AMP response element-binding protein (CREB) and extracellular signal-regulated kinases (ERK) 1/2 are considered as key regulatory proteins in AGEs-induced melanogenesis. In addition, blockage experiment using anti-RAGE blocking antibody has indicated that RAGE plays a pivotal role in AGE-mediated melanogenesis. Therefore, it is apparent that AGEs, known markers of aging, promote melanogenesis via RAGE. In addition, AGEs could be implicated in pigmentation associated with photoaging according to the results of increased secretion of AGEs from keratinocytes following UV irradiation. AGE-mediated melanogenesis may thus hold promise as a novel mean of altering skin pigmentation.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Young Kim
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Baertschi SW, Clapham D, Foti C, Kleinman MH, Kristensen S, Reed RA, Templeton AC, Tønnesen HH. Implications of In-Use Photostability: Proposed Guidance for Photostability Testing and Labeling to Support the Administration of Photosensitive Pharmaceutical Products, Part 2: Topical Drug Product. J Pharm Sci 2015; 104:2688-701. [DOI: 10.1002/jps.24396] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 11/07/2022]
|
21
|
Prevention of dicarbonyl-mediated advanced glycation by glyoxalases: implication in skin aging. Biochem Soc Trans 2015; 42:518-22. [PMID: 24646271 DOI: 10.1042/bst20140017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Skin aging is the result of intrinsic chronological aging and photoaging, due to UV exposure, that both share important histological modifications and molecular features, including alterations of proteins. One of the main damage is glycation that occurs when reducing sugars react non-enzymatically with proteins. This reaction also happens when the dicarbonyl compounds GO (glyoxal) and MG (methylglyoxal), which are glucose derivatives, react with proteins. These compounds can be detoxified by the glyoxalase system composed of two enzymes, Glo1 (glyoxalase I) and Glo2 (glyoxalase II). The aims of the present mini-review are to briefly summarize our current knowledge of the biological roles of these enzymes in aging and then discuss the relevance of studying the role of glycation and of detoxifying systems in human skin aging.
Collapse
|
22
|
Watson REB, Gibbs NK, Griffiths CEM, Sherratt MJ. Damage to skin extracellular matrix induced by UV exposure. Antioxid Redox Signal 2014; 21:1063-77. [PMID: 24124905 DOI: 10.1089/ars.2013.5653] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Chronic exposure to environmental ultraviolet radiation (UVR) plays a key role in both photocarcinogenesis and induction of accelerated skin aging. Although the spatiotemporal consequences of UVR exposure for the composition and architecture of the dermal extracellular matrix (ECM) are well characterized, the pathogenesis of photoaging remains poorly defined. Given the compelling evidence for the role of reactive oxygen species (ROS) as mediators of photoaging, UVR-exposed human skin may be an accessible model system in which to characterize the role of oxidative damage in both internal and external tissues. RECENT ADVANCES Although the cell-mediated degradation of dermal components via UVR-induced expression of ECM proteases has long been identified as an integral part of the photoaging pathway, the relative importance and identity of cellular and extracellular photosensitizers (direct hit and bystanders models, respectively) in initiating this enzymatic activity is unclear. Recently, both age-related protein glycation and relative amino-acid composition have been identified as potential risk factors for photo-ionization and/or photo-sensitization. Here, we propose a selective multi-hit model of photoaging. CRITICAL ISSUES Bioinformatic analyses can be employed to identify candidate UVR targets/photosensitizers, but the action of UVR on protein structure and/or ROS production should be verified experimentally. Crucially, in the case of biochemically active ECM components such as fibronectin and fibrillin, the downstream effects of photo-degradation on tissue homeostasis remain to be confirmed. FUTURE DIRECTIONS Both topical antioxidants and inhibitors of detrimental cell signaling may be effective in abrogating the effects of specific UVR-mediated protein degradation in the dermis.
Collapse
Affiliation(s)
- Rachel E B Watson
- 1 The Dermatology Centre, Salford Royal Hospital, Institute of Inflammation and Repair, The University of Manchester , Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | | | | | |
Collapse
|
23
|
Wang ZH. Anti-glycative effects of asiatic acid in human keratinocyte cells. Biomedicine (Taipei) 2014; 4:19. [PMID: 25520932 PMCID: PMC4264986 DOI: 10.7603/s40681-014-0019-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/30/2014] [Indexed: 02/02/2023] Open
Abstract
Background: Human skin keratinocyte (HaCaT) cells served to examine effects of asiatic acid (AA) at 1, 2, 4 and 8 μM against advanced glycative endproduct (AGE)-modified bovine serum albumin (BSA) induced glycative stress. Results: AGE-BSA treatment reduced cell viability; and increased reactive oxygen species, nitric oxide, protein carbonyl, interleukin (IL)-1beta and tumor necrosis factor-alpha levels in HaCaT cells. Yet AA pretreatments decreased these oxidative and inflammatory factors, dose-dependently lowering nitric oxide synthase activity and expression. AGE-BSA raised activity and expression of caspase-3 and caspase-8. AA pretreatments at 2-8 μM decreased activity and expression of these two caspases. AGE-BSA declined collagen I expression, but enhanced matrix metalloproteinase (MMP)-1, MMP-8 and MMP-9 protein expression. AA pretreatments at 2-8 μM maintained collagen I expression, and reduced three MMPs expression. AGE-BSA also up-regulated RAGE (receptor of AGE), p-p38 and p-JNK expression. AA pretreatments at 2-8 μM suppressed RAGE expression, and at 1-8 μM down-regulated p-p38 and p-JNK expression. Conclusion: Asiatic acid, via its anti-glycative activity, could protect skin. Thus, this compound could be developed as an external agent and applied for personalized medicine.
Collapse
Affiliation(s)
- Zhi-Hong Wang
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
24
|
Roca F, Grossin N, Chassagne P, Puisieux F, Boulanger E. Glycation: the angiogenic paradox in aging and age-related disorders and diseases. Ageing Res Rev 2014; 15:146-60. [PMID: 24742501 DOI: 10.1016/j.arr.2014.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 01/09/2023]
Abstract
Angiogenesis is generally a quiescent process which, however, may be modified by different physiological and pathological conditions. The "angiogenic paradox" has been described in diabetes because this disease impairs the angiogenic response in a manner that differs depending on the organs involved and disease evolution. Aging is also associated with pro- and antiangiogenic processes. Glycation, the post-translational modification of proteins, increases with aging and the progression of diabetes. The effect of glycation on angiogenesis depends on the type of glycated proteins and cells involved. This complex link could be responsible for the "angiogenic paradox" in aging and age-related disorders and diseases. Using diabetes as a model, the present work has attempted to review the age-related angiogenic paradox, in particular the effects of glycation on angiogenesis during aging.
Collapse
Affiliation(s)
- F Roca
- Vascular Aging Biology, Blood-Vessel Interface and Vascular Repair Unit, Lille School of Medicine, Lille2 University, Lille, France; Geriatrics Department, Rouen University Hospital, Rouen, France.
| | - N Grossin
- Vascular Aging Biology, Blood-Vessel Interface and Vascular Repair Unit, Lille School of Medicine, Lille2 University, Lille, France
| | - P Chassagne
- Geriatrics Department, Rouen University Hospital, Rouen, France
| | - F Puisieux
- Vascular Aging Biology, Blood-Vessel Interface and Vascular Repair Unit, Lille School of Medicine, Lille2 University, Lille, France; Gerontology Clinic, Les Bateliers Geriatric Hospital, Lille University Hospital, Lille, France
| | - E Boulanger
- Vascular Aging Biology, Blood-Vessel Interface and Vascular Repair Unit, Lille School of Medicine, Lille2 University, Lille, France; Gerontology Clinic, Les Bateliers Geriatric Hospital, Lille University Hospital, Lille, France
| |
Collapse
|
25
|
Ou-Yang H. The application of ultra-weak photon emission in dermatology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 139:63-70. [PMID: 24275519 DOI: 10.1016/j.jphotobiol.2013.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 11/29/2022]
Abstract
Ultra-weak photo emission (UPE) is a phenomenon closely associated with life and provides us a rare window to look into oxidative reactions in life directly without the aid of other agents. Dozens of independent studies have investigated UPE in skin in the last 2 decades. Skin serves as a convenient target for the application of UPE. As the outmost layer of our body, skin is also subjected to the influences from environmental factors such as ultraviolet light. Therefore UPE measurement can help us better understand the interaction between skin and the outside world. A variety of dermatological interventions may benefit from UPE studies. In particular, those treatments aiming to manage the oxidative status of the skin can be monitored directly by UPE measurements. In recent years, UPE has already been used as a valuable in vivo tool to assist the selection of better skin care ingredients and products. The knowledge gained by UPE studies of skin may also help generate new insights and new targets for future treatments. This review emphasizes in vivo and clinical measurement of UPE in skin. The applications of UPE in skin research related to antioxidants and sunscreens are discussed.
Collapse
Affiliation(s)
- Hao Ou-Yang
- Johnson & Johnson Consumer Company Worldwide, 199 Grandview Road, Skillman, NJ 08558, United States.
| |
Collapse
|
26
|
Gkogkolou P, Böhm M. Advanced glycation end products: Key players in skin aging? DERMATO-ENDOCRINOLOGY 2013; 4:259-70. [PMID: 23467327 PMCID: PMC3583887 DOI: 10.4161/derm.22028] [Citation(s) in RCA: 371] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging is the progressive accumulation of damage to an organism over time leading to disease and death. Aging research has been very intensive in the last years aiming at characterizing the pathophysiology of aging and finding possibilities to fight age-related diseases. Various theories of aging have been proposed. In the last years advanced glycation end products (AGEs) have received particular attention in this context. AGEs are formed in high amounts in diabetes but also in the physiological organism during aging. They have been etiologically implicated in numerous diabetes- and age-related diseases. Strategies inhibiting AGE accumulation and signaling seem to possess a therapeutic potential in these pathologies. However, still little is known on the precise role of AGEs during skin aging. In this review the existing literature on AGEs and skin aging will be reviewed. In addition, existing and potential anti-AGE strategies that may be beneficial on skin aging will be discussed.
Collapse
Affiliation(s)
- Paraskevi Gkogkolou
- Department of Dermatology; Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology; University of Münster; Münster, Germany
| | | |
Collapse
|
27
|
Robin S, Courderot-Masuyer C, Tauzin H, Guillon S, Gaborit J, Harbon S, Humbert P. Evaluation of protective and restoring effects of a mixture of silanols on photoaging. Use of a device allowing the quantification of contractile strengths of human fibroblasts after UVA irradiation. Int J Cosmet Sci 2012; 34:311-7. [DOI: 10.1111/j.1468-2494.2012.00716.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Abstract
Skin, the largest, most exposed organ of the body, provides a protective interface between humans and the environment. One of its primary roles is protection against exposure to sunlight, a major source of skin damage where the UV radiation (UVR) component functions as a complete carcinogen. Melanin pigmentation and the evolution of dark skin is an adaptive protective mechanism against high levels of UVR exposure. Recently, the hypothesis that skin pigmentation balances folate preservation and Vitamin D production has emerged. Both micronutrients are essential for reproductive success. Photodegradation of bioactive folates suggests a mechanism for the increased tendency of populations of low melanin pigmentation residing in areas of high UV exposure to develop skin cancers. Folate is proposed as a cancer prevention target for its role in providing precursors for DNA repair and replication, as well as its ability to promote genomic integrity through the generation of methyl groups needed for control of gene expression. The cancer prevention potential of folate has been demonstrated by large-scale epidemiological and nutritional studies indicating that decreased folate status increases the risk of developing certain cancers. While folate deficiency has been extensively documented by analysis of human plasma, folate status within skin has not been widely investigated. Nevertheless, inefficient delivery of micronutrients to skin and photolysis of folate argue that documented folate deficiencies will be present if not exacerbated in skin. Our studies indicate a critical role for folate in skin and the potential to protect sun exposed skin by effective topical delivery as a strategy for cancer prevention.
Collapse
Affiliation(s)
- J D Williams
- Division of Medicinal Chemistry, Department of Pharmacology and Toxicology, College of Pharmacy and Arizona Cancer Center, University of Arizona, Tucson, AZ, USA,
| | | | | | | | | |
Collapse
|
29
|
Abstract
Endogenous reactive intermediates such as photoexcited states of tissue chromophores, reactive oxygen species (ROS), reactive carbonyl species (RCS), and transition metal ions are mediators of tissue damage involved in initiation and progression of human pathologies including tumorigenesis, atherosclerosis, diabetes, and neurodegenerative disease. A large body of evidence now suggests that B6 vitamers antagonize the harmful activity of endogenous reactive intermediates fulfilling a very different role than that established as a cofactor for numerous enzymes. In this chapter, the structural basis of vitamin B6 activity as a potent antioxidant, metal chelator, carbonyl scavenger, and photosensitizer is presented and the physiological relevance is discussed.
Collapse
Affiliation(s)
- Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and Arizona Cancer Center, University of Arizona, Tucson, AZ, USA,
| | | |
Collapse
|
30
|
Shimoda H, Nakamura S, Morioka M, Tanaka J, Matsuda H, Yoshikawa M. Effect of cinnamoyl and flavonol glucosides derived from cherry blossom flowers on the production of advanced glycation end products (AGEs) and AGE-induced fibroblast apoptosis. Phytother Res 2011; 25:1328-35. [PMID: 21308824 DOI: 10.1002/ptr.3423] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 01/05/2011] [Accepted: 01/05/2011] [Indexed: 11/05/2022]
Abstract
Cherry blossom flowers are familiar to the Japanese, and some species of the flowers soaked in salty vinegar are used as processed foods. The constituents of aqueous ethanol extract from cherry blossom (Prunus lannesiana) flowers (CBE) were examined and cinnamoyl and flavonol glucosides were isolated. To elucidate the pharmacological functions of CBE and its constituents, their effects on the production of advanced glycation end products (AGEs) and on AGE-induced fibroblast damage were examined. CBE and 1-O-(E)-caffeoyl-β-D-glucopyranoside (CaG), a principal compound in CBE, significantly suppressed the production of AGEs derived from glucose and albumin at 100 μg/mL. Among the flavonol glucosides, quercetin 3-O-β-D-glucopyranoside (QG) exhibited potent suppressive activity (IC50 : 30 μg/mL). CBE and CaG suppressed glyoxal-induced AGE production in fibroblasts at 10 μg/mL, but QG did not. In addition, CBE and CaG recovered collagen lattice formation consisting of collagen and glycated fibroblasts at 10 μg/mL. Moreover, CBE and its constituents, except kaempferol 3-O-(6″-malony)-β-D-glucopyranoside, significantly suppressed fibroblast apoptosis induced by carboxymethyl lysine-collagen at 10 μg/mL. These results show that cinnamoyl and flavonol glucosides of cherry blossom flowers suppress AGE production and AGE-induced fibroblast apoptosis. Cherry blossom flowers may be effective against skin AGE production and fibroblast damage by AGEs.
Collapse
Affiliation(s)
- Hiroshi Shimoda
- Research and Development Division, Oryza Oil and Fat Chemical Co. Ltd, 1 Numata, Kitagata-cho, Ichinomiya, Aichi, 493-8001, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Lamore SD, Azimian S, Horn D, Anglin BL, Uchida K, Cabello CM, Wondrak GT. The malondialdehyde-derived fluorophore DHP-lysine is a potent sensitizer of UVA-induced photooxidative stress in human skin cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:251-64. [PMID: 20724175 DOI: 10.1016/j.jphotobiol.2010.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/13/2010] [Accepted: 07/19/2010] [Indexed: 02/06/2023]
Abstract
Light-driven electron and energy transfer involving non-DNA skin chromophores as endogenous photosensitizers induces oxidative stress in UVA-exposed human skin, a process relevant to photoaging and photocarcinogenesis. Malondialdehyde is an electrophilic dicarbonyl-species derived from membrane lipid peroxidation. Here, we present experimental evidence suggesting that the malondialdehyde-derived protein epitope dihydropyridine (DHP)-lysine is a potent endogenous UVA-photosensitizer of human skin cells. Immunohistochemical analysis revealed the abundant occurrence of malondialdehyde-derived and DHP-lysine epitopes in human skin. Using the chemically protected dihydropyridine-derivative (2S)-Boc-2-amino-6-(3,5-diformyl-4-methyl-4H-pyridin-1-yl)-hexanoic acid-t-butylester as a model of peptide-bound DHP-lysine, photodynamic inhibition of proliferation and induction of cell death were observed in human skin Hs27 fibroblasts as well as primary and HaCaT keratinocytes exposed to the combined action of UVA and DHP-lysine. DHP-lysine photosensitization induced intracellular oxidative stress, p38 MAPkinase activation, and upregulation of heme oxygenase-1 expression. Consistent with UVA-driven ROS formation from DHP-lysine, formation of superoxide, hydrogen peroxide, and singlet oxygen was detected in chemical assays, but little protection was achieved using SOD or catalase during cellular photosensitization. In contrast, inclusion of NaN(3) completely abolished DHP-photosensitization. Taken together, these data demonstrate photodynamic activity of DHP-lysine and support the hypothesis that malondialdehyde-derived protein-epitopes may function as endogenous sensitizers of UVA-induced oxidative stress in human skin.
Collapse
Affiliation(s)
- Sarah D Lamore
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
UVA and UVB radiation-induced oxidation products of quercetin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 97:123-31. [DOI: 10.1016/j.jphotobiol.2009.08.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 08/13/2009] [Accepted: 08/24/2009] [Indexed: 11/20/2022]
|
33
|
Fahlman BM, Krol ES. Inhibition of UVA and UVB radiation-induced lipid oxidation by quercetin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:5301-5. [PMID: 19530712 DOI: 10.1021/jf900344d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The flavonol quercetin is believed to provide protection against ultraviolet (UV)-induced damage to plants. As part of our investigations into the potential for quercetin to protect skin against UV-induced damage, we have measured the ability of quercetin to inhibit UV-induced lipid peroxidation in vitro in liposomes. Quercetin, which absorbs UV radiation at 255 and 365 nm, was determined to be a stronger inhibitor of lipid oxidation induced by UVB (3.7 radicals scavenged per molecule) than by lipid oxidation induced by UVA (1.9 radicals scavenged per molecule). The values for inhibition of UVB-induced lipid oxidation by quercetin are comparable to those when 2,2'-azobis(2-amidinopropane) was used as an oxidizing system (four radicals scavenged per molecule). The protective effect of quercetin appears to be mainly the result of scavenging of UV-generated radical species, although this may be decreased slightly in the UVA as a result of its absorption at 365 nm.
Collapse
Affiliation(s)
- Brian M Fahlman
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
34
|
Ou-Yang H, Stamatas G, Kollias N. Dermal contributions to UVA-induced oxidative stress in skin. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2009; 25:65-70. [DOI: 10.1111/j.1600-0781.2009.00403.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Effects of extracellular matrix glycosylation on proliferation and apoptosis of human dermal fibroblasts via the receptor for advanced glycosylated end products. Am J Dermatopathol 2008; 30:344-51. [PMID: 18645306 DOI: 10.1097/dad.0b013e31816a8c5b] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The balance between proliferation and apoptosis of skin cells is responsible for skin turnover and the success of the wound healing process. Recent reports have shown that advanced glycosylation end product (AGE) formation participates in dermatologic problems in diabetes. However, the effect on proliferation and apoptosis of dermal fibroblasts remains unclear. The aim of this study was to investigate the effects of dermal microenvironment glycosylation on the balance of cellular proliferation and apoptosis. Histology and immunohistochemical staining were performed on type II diabetic and nondiabetic skin tissue specimens to determine the distributions of proliferating cell nuclear antigen, apoptotic cells, AGEs, and receptors for AGEs (RAGEs). Matrix secreted by cultured human fibroblasts was glycosylated by 0.5 M D-ribose. RAGE-blocking antibodies were applied to inhibit the interaction of RAGE and AGEs in this system and then cell viability, cell cycle phase distribution, and apoptosis were measured. Diabetic skin has degenerative, loosely arranged collagen and increased apoptotic cells compared with normal skin. Expression of AGE and RAGE in diabetic skin tissue increased. Glycosylated matrix induced cell cycle arrest and apoptosis of cultured dermal fibroblasts, whereas application of RAGE-blocking antibodies redressed these changes. The accumulation of glycosylated extracellular matrix in diabetic skin tissue is a critical mediator of cellular function. Mediation of RAGE affects the balance of cellular proliferation and apoptosis, which confirms that diabetic wounds possess atypical origin in the repair process.
Collapse
|
36
|
Wondrak GT, Cabello CM, Villeneuve NF, Zhang S, Ley S, Li Y, Sun Z, Zhang DD. Cinnamoyl-based Nrf2-activators targeting human skin cell photo-oxidative stress. Free Radic Biol Med 2008; 45:385-95. [PMID: 18482591 PMCID: PMC3710742 DOI: 10.1016/j.freeradbiomed.2008.04.023] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Revised: 03/14/2008] [Accepted: 04/07/2008] [Indexed: 11/23/2022]
Abstract
Strong experimental evidence suggests the involvement of photo-oxidative stress mediated by reactive oxygen species as a crucial mechanism of solar damage relevant to human skin photoaging and photocarcinogenesis. Based on the established role of antioxidant response element (ARE)-mediated gene expression in cancer chemoprevention, we tested the hypothesis that small molecule Nrf2-activators may serve a photo-chemopreventive role by targeting skin cell photo-oxidative stress. A luciferase-based reporter gene assay was used as a primary screen for the identification of novel agents that modulate the Nrf2-Keap1 signaling pathway. A series of cinnamoyl-based electrophilic Michael acceptors including cinnamic aldehyde and methyl-1-cinnamoyl-5-oxo-2-pyrrolidine-carboxylate was identified as potent Nrf2-activators. Hit confirmation was performed in a secondary screen, based on immunodetection of Nrf2 protein upregulation in human Hs27 skin fibroblasts, HaCaT keratinocytes, and primary skin keratinocytes. Bioefficacy profiling of positive test compounds in skin cells demonstrated compound-induced upregulation of hemeoxygenase I and NAD(P)H-quinone oxidoreductase, two Nrf2 target genes involved in the cellular antioxidant response. Pretreatment with cinnamoyl-based Nrf2-activators suppressed intracellular oxidative stress and protected against photo-oxidative induction of apoptosis in skin cells exposed to high doses of singlet oxygen. Our pilot studies suggest feasibility of developing cinnamoyl-based Nrf2-activators as novel photo-chemopreventive agents targeting skin cell photo-oxidative stress.
Collapse
Affiliation(s)
- Georg T. Wondrak
- Address correspondence to: Georg T. Wondrak, Ph.D. University of Arizona Arizona Cancer Center 1515 North Campbell Avenue Tucson, AZ 85724 USA Telephone: 520-626-9017 FAX: 520-626-8567 Donna D. Zhang, Ph.D University of Arizona College of Pharmacy 1703 East Mabel Tucson, AZ 85724 USA Telephone: 520-626-9918 FAX: 520-626-2466
| | | | | | | | | | | | | | - Donna D. Zhang
- Address correspondence to: Georg T. Wondrak, Ph.D. University of Arizona Arizona Cancer Center 1515 North Campbell Avenue Tucson, AZ 85724 USA Telephone: 520-626-9017 FAX: 520-626-8567 Donna D. Zhang, Ph.D University of Arizona College of Pharmacy 1703 East Mabel Tucson, AZ 85724 USA Telephone: 520-626-9918 FAX: 520-626-2466
| |
Collapse
|
37
|
Pageon H, Técher MP, Asselineau D. Reconstructed skin modified by glycation of the dermal equivalent as a model for skin aging and its potential use to evaluate anti-glycation molecules. Exp Gerontol 2008; 43:584-8. [PMID: 18485649 DOI: 10.1016/j.exger.2008.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 03/17/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
Glycation is a slow chemical reaction which takes place between amino residues in protein and a reducing sugar. In skin this reaction creates new residues or induces the formation of cross-links (advanced glycation end products or AGEs) in the extracellular matrix of the dermis. Formation of such cross-links between macromolecules may be responsible for loss of elasticity or modification of other properties of the dermis observed during aging. We had previously developed a reconstructed skin model which enabled us to study the consequences of matrix alteration by preglycation of the collagen and have reported several modifications of interest induced by glycation in the dermal and epidermal compartments of reconstructed skin as well as at the level of the dermal-epidermal junction. For example we showed that collagen IV and laminin were increased in the basement membrane zone and that alpha6 and beta1 integrins in epidermis were expanded to suprabasal layers. The aim of this new study was to look at the biological effects of glycation inhibitors like aminoguanidine in the skin model. Aminoguanidine was mixed with collagen in the presence of ribose as reducing sugar, and immunostaining was used to visualize its effects on AGE Products and biological markers. After aminoguanidine treatment, we found a low amount of AGE products and a possible return to the normal pattern of distribution of markers in skin constructs as compared to those treated with ribose only. Interestingly similar results were also obtained, although to a lesser extent, with a blueberry extract. In conclusion the glycation inhibitory effect has been functionally demonstrated in the reconstructed skin model and it is shown that this model can be used to assess anti-glycation agents.
Collapse
Affiliation(s)
- Hervé Pageon
- L'Oréal, Life Sciences Advanced Research, Centre Charles Zviak, 90 rue du Général Roguet, 92583 Clichy, France.
| | | | | |
Collapse
|
38
|
Karran P, Attard N. Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer 2008; 8:24-36. [PMID: 18097462 DOI: 10.1038/nrc2292] [Citation(s) in RCA: 349] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thiopurines have diverse clinical applications and their long-term use as anti-rejection drugs in transplant patients has been associated with a significantly increased risk of various types of cancer. Although they are slowly being replaced by a new generation of non-thiopurine immunosuppressants, it is anticipated that their use in the management of inflammatory and autoimmune diseases will continue to increase. Therapy-related cancer will remain a potential consequence of prolonged treatment for these generally non-life-threatening conditions. Understanding how thiopurines contribute to the development of cancer will facilitate clinical decisions about the potential risks to patients of long-term treatment for chronic inflammatory disorders.
Collapse
Affiliation(s)
- Peter Karran
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, UK.
| | | |
Collapse
|
39
|
Menter JM, Abukhalaf IK, Patta AM, Silvestrov NA, Willis I. Fluorescence of putative chromophores in Skh-1 and citrate-soluble calf skin collagens. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2007; 23:222-8. [DOI: 10.1111/j.1600-0781.2007.00312.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Nitroxides are more efficient inhibitors of oxidative damage to calf skin collagen than antioxidant vitamins. Biochim Biophys Acta Gen Subj 2007; 1780:58-68. [PMID: 17964728 DOI: 10.1016/j.bbagen.2007.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/13/2007] [Accepted: 09/21/2007] [Indexed: 11/20/2022]
Abstract
Reactive oxygen species generated upon UV-A exposure appear to play a major role in dermal connective tissue transformations including degradation of skin collagen. Here we investigate on oxidative damage to collagen achieved by exposure to (i) UV-A irradiation and to (ii) AAPH-derived radicals and on its possible prevention using synthetic and natural antioxidants. Oxidative damage was identified through SDS-PAGE, circular dichroism spectroscopy and quantification of protein carbonyl residues. Collagen (2 mg/ml) exposed to UV-A and to AAPH-derived radicals was degraded in a time- and dose-dependent manner. Upon UV-A exposure, maximum damage was observable at 730 kJ/m2 UV-A, found to be equivalent to roughly 2 h of sunshine, while exposure to 5 mM AAPH for 2 h at 50 degrees C lead to maximum collagen degradation. In both cases, dose-dependent protection was achieved by incubation with muM concentrations of nitroxide radicals, where the extent of protection was shown to be dictated by their structural differences whereas the vitamins E and C proved less efficient inhibitors of collagen damage. These results suggest that nitroxide radicals may be able to prevent oxidative injury to dermal tissues in vivo alternatively to commonly used natural antioxidants.
Collapse
|
41
|
Lohwasser C, Neureiter D, Weigle B, Kirchner T, Schuppan D. The Receptor for Advanced Glycation End Products Is Highly Expressed in the Skin and Upregulated by Advanced Glycation End Products and Tumor Necrosis Factor-Alpha. J Invest Dermatol 2006; 126:291-9. [PMID: 16374460 DOI: 10.1038/sj.jid.5700070] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Advanced glycation end products (AGEs) form non-enzymatically from reactions of proteins with reducing sugars. In the skin, AGEs were reported to accumulate in dermal elastin and collagens and to interact nonspecifically with the cell membrane of dermal fibroblasts. Therefore, AGEs may influence the process of skin aging. We investigated the presence of the AGE receptor RAGE in skin and the influence of AGEs on receptor expression and the formation of extracellular matrix (ECM). Sections of sun-protected and sun-exposed skin were analyzed with monoclonal antibodies against (RAGE), heat-shock protein 47, factor XIIIa, CD31, and CD45. RAGE was mainly expressed in fibroblasts, dendrocytes, and keratinocytes and to a minor extent in endothelial and mononuclear cells. Human foreskin fibroblasts (HFFs) highly expressed RAGE on the protein and mRNA level when analyzed by quantitative Western blotting and real-time PCR. Incubation of HFFs with the specific RAGE ligand Nepsilon-(carboxymethyl)lysine-modified BSA (CML-BSA) and tumor necrosis factor-alpha resulted in significant upregulation of RAGE expression. CML-BSA induced a mildly profibrogenic pattern, increasing connective tissue growth factor, transforming growth factor-beta (TGF-beta) 1, and procollagen-alpha1(I) mRNA, whereas expression of matrix metalloproteinase (MMP)-1, -2, -3, and -12 was unaffected. We conclude that in HFFs, AGE-RAGE interactions may influence the process of skin aging through mild stimulation of ECM gene expression.
Collapse
|
42
|
Shen B, Scaiano JC, English AM. Zeolite Encapsulation Decreases TiO2-photosensitized ROS Generation in Cultured Human Skin Fibroblasts†. Photochem Photobiol 2006; 82:5-12. [PMID: 16149847 DOI: 10.1562/2005-05-29-ra-551] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sunscreens protect skin against sunburn. However, studies have demonstrated that UV-irradiated sunscreen components such as titanium dioxide (TiO2) promote the photogeneration of reactive oxygen species (ROS). Because encapsulation of TiO2 within zeolites alters its photocatalytic activity, supramolecular composites based on NaY zeolite hosts containing TiO2 guests were prepared, and the effects on ROS formation in cells under UVA-irradiation evaluated. DCFH-DA (2',7'-dichlorofluorescein diacetate) was used as a profluorescent probe to monitor intracellular ROS. The detection of intracellular 2',7'-dichlorofluorescein (DCF) fluorescence by confocal microscopy revealed that DCFH-DA was taken up, hydrolyzed and oxidized by yeast cells and cultured human skin fibroblasts within 20 and 6 min, respectively. Higher DCF fluorescence was observed in fibroblasts following UVA irradiation in the absence but not in the presence of the radical nitroxide, TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperydine-1-oxyl), which exhibits superoxide dismutase-mimetic and catalase-mimetic activity. UVA-induced fluorescence increased by approximately 50% in the presence of 32-nm anatase TiO2 particles and decreased by essentially an equal amount in the presence of TiO2 encapsulated within NaY zeolites (TiO2@NaY). Addition of the uncomplexed NaY host also decreased (by approximately 30%) the amount of UVA-induced fluorescence but, unexpectedly, the combination of the free guest and host (TiO2+NaY) caused a doubling of the fluorescence. Protection of cells against TiO2-induced intracellular ROS by encapsulation suggests that supramolecular species may be beneficial in photoprotection of the skin. In contrast, the potentiation of TiO2-induced ROS by uncomplexed NaY points to a critical role for formulation when free TiO2 is used as a sun screen ingredient.
Collapse
Affiliation(s)
- Biao Shen
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
43
|
Wondrak GT, Jacobson MK, Jacobson EL. Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci 2006; 5:215-37. [PMID: 16465308 DOI: 10.1039/b504573h] [Citation(s) in RCA: 273] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endogenous chromophores in human skin serve as photosensitizers involved in skin photocarcinogenesis and photoaging. Absorption of solar photons, particularly in the UVA region, induces the formation of photoexcited states of skin photosensitizers with subsequent generation of reactive oxygen species (ROS), organic free radicals and other toxic photoproducts that mediate skin photooxidative stress. The complexity of endogenous skin photosensitizers with regard to molecular structure, pathways of formation, mechanisms of action, and the diversity of relevant skin targets has hampered progress in this area of photobiology and most likely contributed to an underestimation of the importance of endogenous sensitizers in skin photodamage. Recently, UVA-fluorophores in extracellular matrix proteins formed posttranslationally as a consequence of enzymatic maturation or spontaneous chemical damage during chronological and actinic aging have been identified as an abundant source of light-driven ROS formation in skin upstream of photooxidative cellular stress. Importantly, sensitized skin cell photodamage by this bystander mechanism occurs after photoexcitation of sensitizers contained in skin structural proteins without direct cellular photon absorption thereby enhancing the potency and range of phototoxic UVA action in deeper layers of skin. The causative role of photoexcited states in skin photodamage suggests that direct molecular antagonism of photosensitization reactions using physical quenchers of photoexcited states offers a novel chemopreventive opportunity for skin photoprotection.
Collapse
Affiliation(s)
- Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ, USA
| | | | | |
Collapse
|
44
|
Abstract
Chronic exposure to solar ultraviolet irradiation can result in wrinkle formation in many individuals. Wrinkling appears to be the conclusion of mechanisms that result in decreased synthesis of extracellular matrix molecules within the dermis, accompanied by increased remodeling of the matrix by specific endopeptidases (matrix metalloproteinases) and proteases (originating from infiltrating cells of the immune system). In this review, we discuss the changes that occur in the extracellular matrix of photoaged skin and the mechanisms by which they are modulated.
Collapse
Affiliation(s)
- Rachel E B Watson
- Dermatopharmacology Unit, Dermatology Centre, University of Manchester, Hope Hospital, Manchester, UK
| | | |
Collapse
|
45
|
Lohwasser C, Neureiter D, Weigle B, Kirchner T, Schuppan D. The Receptor for Advanced Glycation End Products Is Highly Expressed in the Skin and Upregulated by AGE and Tumor Necrosis Factor-alpha. J Invest Dermatol 2005. [DOI: 10.1111/j.0022-202x.2005.23936.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
He YY, Huang JL, Block ML, Hong JS, Chignell CF. Role of Phagocyte Oxidase in UVA-Induced Oxidative Stress and Apoptosis in Keratinocytes. J Invest Dermatol 2005; 125:560-6. [PMID: 16117799 DOI: 10.1111/j.0022-202x.2005.23851.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic exposure to ultraviolet radiation including ultraviolet A (315-400 nm) (UVA) may cause photocarcinogenesis and photoaging. The UVA-induced production of reactive oxygen species (ROS) and the resultant oxidative stress exposure play an important role in these biological processes. Here we have investigated the role of phagocyte oxidase (PHOX, gp91phox) in the production of ROS, redox status change, and apoptosis after UVA exposure by using gp91phox-deficient (gp91phox-/-) primary keratinocytes. UVA radiation resulted in increased ROS production and oxidation of reduced glutathione (GSH) to its oxidized form (GSSG). The presence of diphenylene iodonium (DPI) inhibited ROS production by UVA. In comparison with wild-type cells, gp91phox-/- cells produced slightly less ROS and GSH oxidation. UVA radiation induced apoptosis in wild-type keratinocytes as detected by phosphatidylserine (PS) translocation, caspase activation, and DNA fragmentation. As compared with wild-type cells, UVA induced less PS translocation in gp91phox-deficient cells. No difference, however, was observed in caspase activation and DNA fragmentation after UVA exposure in wild-type and gp91phox-/- cells. These findings suggest that gp91phox plays a limited role in the UVA-induced ROS production, oxidative stress, and therefore the PS translocation, but has no effect on UVA-induced caspase activation and DNA fragmentation during apoptosis.
Collapse
Affiliation(s)
- Yu-Ying He
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| | | | | | | | | |
Collapse
|
47
|
Wondrak GT, Jacobson MK, Jacobson EL. Identification of quenchers of photoexcited States as novel agents for skin photoprotection. J Pharmacol Exp Ther 2005; 312:482-91. [PMID: 15475591 DOI: 10.1124/jpet.104.075101] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Photooxidative stress is a key mechanism in UVA-induced skin photodamage. Photoexcited states of endogenous UVA chromophores such as porphyrins, melanin precursors, and cross-link-fluorophores of skin collagen exert skin photodamage by direct reaction with substrate molecules (type I photosensitization) or molecular oxygen (type II), leading to formation of reactive oxygen species. Based on our previous research on the role of photoexcited states of endogenous skin chromophores as sensitizers of photooxidative stress, we describe here the identification of a novel class of chemopreventive agents for topical skin photoprotection: quenchers of photoexcited states (QPES). QPES compounds antagonize the harmful excited state chemistry of endogenous sensitizers by physical quenching, facilitating the harmless return of the sensitizer excited state to the electronic ground state by energy dissipation. To identify QPES compounds suitable for development, we designed a primary screening assay based on QPES suppression of photosensitized plasmid cleavage using conditions that exclude antioxidants. This screen is followed with a screen to test for nonsacrificial quenching of dye-sensitized singlet oxygen ((1)O(2)) formation by electron paramagnetic resonance detection of 2,2,6,6-tetramethyl-piperidine-1-oxyl, a stable free radical indicative of (1)O(2) formation. These initial screens identified a pyrrolidine pharmacophore with pronounced QPES activity, and l-proline and other noncytotoxic proline derivatives containing this pharmacophore were then screened for efficacy in cellular models of sensitized photodamage. These compounds showed QPES protection against dye-sensitized and psoralen-UVA-induced apoptosis and suppression of proliferation in cultured human skin keratinocytes and fibroblasts. Furthermore, QPES photoprotection of reconstructed full thickness human skin exposed to solar simulated light has been demonstrated.
Collapse
Affiliation(s)
- Georg T Wondrak
- University of Arizona, Arizona Cancer Center, 1515 North Campbell Ave., Tucson, AZ 85724, USA
| | | | | |
Collapse
|
48
|
Wondrak GT, Roberts MJ, Jacobson MK, Jacobson EL. 3-hydroxypyridine chromophores are endogenous sensitizers of photooxidative stress in human skin cells. J Biol Chem 2004; 279:30009-20. [PMID: 15133022 DOI: 10.1074/jbc.m404379200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photocarcinogenesis and photoaging are established consequences of chronic exposure of human skin to solar irradiation. Accumulating evidence supports a causative involvement of UVA irradiation in skin photo-damage. UVA photodamage has been attributed to photosensitization by endogenous skin chromophores leading to the formation of reactive oxygen species and organic free radicals as key mediators of cellular photooxidative stress. In this study, 3-hydroxypyridine derivatives contained in human skin have been identified as a novel class of potential endogenous photosensitizers. A structure-activity relationship study of skin cell photosensitization by endogenous pyridinium derivatives (pyridinoline, desmosine, pyridoxine, pyridoxamine, pyridoxal, pyridoxal-5'-phosphate) and various synthetic hydroxypyridine isomers identified 3-hydroxypyridine and N-alkyl-3-hydroxypyridinium cation as minimum phototoxic chromophores sufficient to effect skin cell sensitization toward UVB and UVA, respectively. Photosensitization of cultured human skin keratinocytes (HaCaT) and fibroblasts (CF3) by endogenous and synthetic 3-hydroxypyridine derivatives led to a dose-dependent inhibition of proliferation, cell cycle arrest in G2/M, and induction of apoptosis, all of which were reversible by thiol antioxidant intervention. Enhancement of UVA-induced intracellular peroxide formation and p38 mitogen-activated protein kinase-dependent stress signaling suggest a photooxidative mechanism of skin cell photosensitization by 3-hydroxypyridine derivatives. 3-hydroxypyridine derivatives were potent photosensitizers of macromolecular damage, effecting protein (RNase A) photocross-linking and peptide (melittin) photooxidation with incorporation of molecular oxygen. Based on these results, we conclude that 3-hydroxypyridine derivatives comprising a wide range of skin biomolecules, such as enzymatic collagen cross-links, B6 vitamers, and probably advanced glycation end products in chronologically aged skin constitute a novel class of UVA photosensitizers, capable of skin photooxidative damage.
Collapse
Affiliation(s)
- Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
49
|
Wondrak GT, Roberts MJ, Cervantes-Laurean D, Jacobson MK, Jacobson EL. Proteins of the extracellular matrix are sensitizers of photo-oxidative stress in human skin cells. J Invest Dermatol 2003; 121:578-86. [PMID: 12925218 DOI: 10.1046/j.1523-1747.2003.12414.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sensitized production of reactive oxygen species after photo-excitation of endogenous chromophores is thought to contribute to skin photo-oxidative stress. Here we present experimental evidence in support of a potential role of extracellular matrix proteins as skin photosensitizers. Human and bovine type I collagen and elastin sensitized of hydrogen peroxide generation upon irradiation with solar simulated light or ultraviolet A. Induction of intracellular oxidative stress by extracellular matrix-protein sensitization was demonstrated by flow cytometric analysis of fibroblasts preloaded with the intracellular redox dye dihydrorhodamine 123 and exposed to pre-irradiated type I collagen. Pre-irradiated collagen and elastin induced pronounced inhibition of proliferation in cultured keratinocytes and fibroblasts, which was reversed by antioxidant or catalase treatment and reproduced by exposure to concentrations of H2O2 formed during extracellular matrix-protein irradiation. In fibroblasts, chromosomal DNA damage as a consequence of collagen-sensitized H2O2 formation was demonstrated using a single cell electrophoresis assay. The enzymatic cross-links pyridinoline and desmosine were examined as candidate sensitizer chromophores contained in collagen and elastin, respectively. Pyridinoline, but not desmosine, sensitized light-driven H2O2 production and inhibition of fibroblast proliferation. Our results support the hypothesis that extracellular matrix proteins play a functional role in skin photoaging and carcinogenesis by sensitization of photo-oxidative damage.
Collapse
Affiliation(s)
- Georg T Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
50
|
Roberts MJ, Wondrak GT, Laurean DC, Jacobson MK, Jacobson EL. DNA damage by carbonyl stress in human skin cells. Mutat Res 2003; 522:45-56. [PMID: 12517411 DOI: 10.1016/s0027-5107(02)00232-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Reactive carbonyl species (RCS) are potent mediators of cellular carbonyl stress originating from endogenous chemical processes such as lipid peroxidation and glycation. Skin deterioration as observed in photoaging and diabetes has been linked to accumulative protein damage from glycation, but the effects of carbonyl stress on skin cell genomic integrity are ill defined. In this study, the genotoxic effects of acute carbonyl stress on HaCaT keratinocytes and CF3 fibroblasts were assessed. Administration of the alpha-dicarbonyl compounds glyoxal and methylglyoxal as physiologically relevant RCS inhibited skin cell proliferation, led to intra-cellular protein glycation as evidenced by the accumulation of N(epsilon)-(carboxymethyl)-L-lysine (CML) in histones, and caused extensive DNA strand cleavage as assessed by the comet assay. These effects were prevented by treatment with the carbonyl scavenger D-penicillamine. Both glyoxal and methylglyoxal damaged DNA in intact cells. Glyoxal caused DNA strand breaks while methylglyoxal produced extensive DNA-protein cross-linking as evidenced by pronounced nuclear condensation and total suppression of comet formation. Glycation by glyoxal and methylglyoxal resulted in histone cross-linking in vitro and induced oxygen-dependent cleavage of plasmid DNA, which was partly suppressed by the hydroxyl scavenger mannitol. We suggest that a chemical mechanism of cellular DNA damage by carbonyl stress occurs in which histone glycoxidation is followed by reactive oxygen induced DNA stand breaks. The genotoxic potential of RCS in cultured skin cells and its suppression by a carbonyl scavenger as described in this study have implications for skin damage and carcinogenesis and its prevention by agents selective for carbonyl stress.
Collapse
Affiliation(s)
- Michael J Roberts
- Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, 1515 North Campbell Avenue, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|