1
|
Yogita Mehra, Pragasam Viswanathan. Early Evidence of Global DNA Methylation and Hydroxymethylation Changes in Rat Kidneys Consequent to Hyperoxaluria-Induced Renal Calcium Oxalate Stones. CYTOL GENET+ 2022; 56:458-465. [DOI: 10.3103/s0095452722050085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/27/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
|
2
|
Mehra Y, Rajesh NG, Viswanathan P. Analysis and Characterization of Lactobacillus paragasseri and Lacticaseibacillus paracasei: Two Probiotic Bacteria that Can Degrade Intestinal Oxalate in Hyperoxaluric Rats. Probiotics Antimicrob Proteins 2022; 14:854-872. [PMID: 35699895 DOI: 10.1007/s12602-022-09958-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
In the present study, we characterized the probiotic properties of two commercially available bacterial strains, Lactobacillus paragasseri UBLG-36 and Lacticaseibacillus paracasei UBLPC-87, and evaluated their ability to degrade oxalate in vitro and in a hyperoxaluria-induced nephrolithiasis rat model. UBLG-36 harboring two oxalate catabolizing genes, oxalyl coenzyme A decarboxylase (oxc) and formyl coenzyme A transferase (frc), was previously shown to degrade oxalate in vitro effectively. Here, we show that UBLPC-87, lacking both oxc and frc, could still degrade oxalate in vitro. Both these strains harbored several potential putative probiotic genes that may have conferred them the ability to survive in low pH and 0.3% bile, resist antibiotic stress, show antagonistic activity against pathogenic bacteria, and adhere to epithelial cell surfaces. We further evaluated if UBLG-36 and UBLPC-87 could degrade oxalate in vivo and prevent hyperoxaluria-induced nephrolithiasis in rats. We observed that rats treated with 4.5% sodium oxalate (NaOx) developed hyperoxaluria and renal stones. However, when pre-treated with UBLG-36 or UBLPC-87 before administering 4.5% NaOx, the rats were protected against several pathophysiological manifestations of hyperoxaluria. Compared to the hyperoxaluric rats, the probiotic pre-treated rats showed reduced urinary excretion of oxalate and urea (p < 0.05), decreased serum blood urea nitrogen and creatinine (p < 0.05), alleviated stone formation and renal histological damage, and an overall decrease in renal tissue oxalate and calcium content (p < 0.05). Taken together, both UBLG-36 and UBLPC-87 are effective oxalate catabolizing probiotics capable of preventing hyperoxaluria and alleviating renal damage associated with nephrolithiasis.
Collapse
Affiliation(s)
- Yogita Mehra
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Nachiappa Ganesh Rajesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education & Research, Pondicherry, India
| | - Pragasam Viswanathan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
3
|
Krieger NS, Asplin JR, Granja I, Ramos FM, Flotteron C, Chen L, Wu TT, Grynpas MD, Bushinsky DA. Chlorthalidone Is Superior to Potassium Citrate in Reducing Calcium Phosphate Stones and Increasing Bone Quality in Hypercalciuric Stone-Forming Rats. J Am Soc Nephrol 2019; 30:1163-1173. [PMID: 31101664 DOI: 10.1681/asn.2018101066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The pathophysiology of genetic hypercalciuric stone-forming rats parallels that of human idiopathic hypercalciuria. In this model, all animals form calcium phosphate stones. We previously found that chlorthalidone, but not potassium citrate, decreased stone formation in these rats. METHODS To test whether chlorthalidone and potassium citrate combined would reduce calcium phosphate stone formation more than either medication alone, four groups of rats were fed a fixed amount of a normal calcium and phosphorus diet, supplemented with potassium chloride (as control), potassium citrate, chlorthalidone (with potassium chloride to equalize potassium intake), or potassium citrate plus chlorthalidone. We measured urine every 6 weeks and assessed stone formation and bone quality at 18 weeks. RESULTS Potassium citrate reduced urine calcium compared with controls, chlorthalidone reduced it further, and potassium citrate plus chlorthalidone reduced it even more. Chlorthalidone increased urine citrate and potassium citrate increased it even more; the combination did not increase it further. Potassium citrate, alone or with chlorthalidone, increased urine calcium phosphate supersaturation, but chlorthalidone did not. All control rats formed stones. Potassium citrate did not alter stone formation. No stones formed with chlorthalidone, and rats given potassium citrate plus chlorthalidone had some stones but fewer than controls. Rats given chlorthalidone with or without potassium citrate had higher bone mineral density and better mechanical properties than controls, whereas those given potassium citrate did not. CONCLUSIONS In genetic hypercalciuric stone-forming rats, chlorthalidone is superior to potassium citrate alone or combined with chlorthalidone in reducing calcium phosphate stone formation and improving bone quality.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York;
| | - John R Asplin
- Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois
| | - Ignacio Granja
- Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois
| | - Felix M Ramos
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Courtney Flotteron
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Luojing Chen
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine, Rochester, New York; and
| | - Marc D Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
4
|
Krieger NS, Grynpas M, VandenEynde A, Asplin JR, Frick KK, Kim MH, Ramos FM, Granja I, Bushinsky DA. Low Sodium Diet Decreases Stone Formation in Genetic Hypercalciuric Stone-Forming Rats. Nephron Clin Pract 2019; 142:147-158. [PMID: 30726853 DOI: 10.1159/000497117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/20/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Urine (u) calcium (Ca) excretion is directly dependent on dietary sodium (Na) intake leading to the recommendation for Na restriction in hypercalciuric kidney stone formers. However, there is no direct evidence that limiting Na intake will reduce recurrent stone formation. MATERIALS AND METHODS We used genetic hypercalciuric stone-forming (GHS) rats, which universally form Ca phosphate (P) kidney stones, fed either a low Na (LNa, 0.05%) or normal Na (NNa, 0.4%) Na diet (D) for 18 weeks. Urine was collected at 6-week intervals. Radiographic analysis for stone formation and bone analyses were done at the conclusion of the study. RESULTS Mean uCa was lower with LNaD than NNaD as was uP and LNaD decreased mean uNa and uChloride. There were no differences in urine supersaturation (SS) with respect to calcium phosphate (CaP) or Ca oxalate (CaOx). However, stone formation was markedly decreased with LNaD by radiographic analysis. The LNaD group had significantly lower femoral anterior-posterior diameter and volumetric bone mineral density (vBMD), but no change in vertebral trabecular vBMD. There were no differences in the bone formation rate or osteoclastic bone resorption between groups. The LNaD group had significantly lower femoral stiffness; however, the ultimate load and energy to fail was not different. CONCLUSION Thus, a low Na diet reduced uCa and stone formation in GHS rats, even though SS with respect to CaP and CaOx was unchanged and effects on bone were modest. These data, if confirmed in humans, support dietary Na restriction to prevent recurrent Ca nephrolithiasis.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA,
| | - Marc Grynpas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Amy VandenEynde
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John R Asplin
- Litholink Corporation, Laboratory Corporation of America® Holdings, Chicago, Illinois, USA
| | - Kevin K Frick
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Min Ho Kim
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Felix M Ramos
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ignacio Granja
- Litholink Corporation, Laboratory Corporation of America® Holdings, Chicago, Illinois, USA
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
5
|
Abstract
Kidney stones are mineral deposits in the renal calyces and pelvis that are found free or attached to the renal papillae. They contain crystalline and organic components and are formed when the urine becomes supersaturated with respect to a mineral. Calcium oxalate is the main constituent of most stones, many of which form on a foundation of calcium phosphate called Randall's plaques, which are present on the renal papillary surface. Stone formation is highly prevalent, with rates of up to 14.8% and increasing, and a recurrence rate of up to 50% within the first 5 years of the initial stone episode. Obesity, diabetes, hypertension and metabolic syndrome are considered risk factors for stone formation, which, in turn, can lead to hypertension, chronic kidney disease and end-stage renal disease. Management of symptomatic kidney stones has evolved from open surgical lithotomy to minimally invasive endourological treatments leading to a reduction in patient morbidity, improved stone-free rates and better quality of life. Prevention of recurrence requires behavioural and nutritional interventions, as well as pharmacological treatments that are specific for the type of stone. There is a great need for recurrence prevention that requires a better understanding of the mechanisms involved in stone formation to facilitate the development of more-effective drugs.
Collapse
|
6
|
Frick KK, Krieger NS, Bushinsky DA. Modeling hypercalciuria in the genetic hypercalciuric stone-forming rat. Curr Opin Nephrol Hypertens 2015; 24:336-44. [PMID: 26050120 PMCID: PMC4495578 DOI: 10.1097/mnh.0000000000000130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW In this review, we discuss how the genetic hypercalciuric stone-forming (GHS) rats, which closely model idiopathic hypercalciuria and stone formation in humans, provide insights into the pathophysiology and consequences of clinical hypercalciuria. RECENT FINDINGS Hypercalciuria in the GHS rats is due to a systemic dysregulation of calcium transport, as manifest by increased intestinal calcium absorption, increased bone resorption and decreased renal tubule calcium reabsorption. Increased levels of vitamin D receptor in intestine, bone and kidney appear to mediate these changes. The excess receptors are biologically active and increase tissue sensitivity to exogenous vitamin D. Bones of GHS rats have decreased bone mineral density (BMD) as compared with Sprague-Dawley rats, and exogenous 1,25(OH)2D3 exacerbates the loss of BMD. Thiazide diuretics improve the BMD in GHS rats. SUMMARY Studying GHS rats allows direct investigation of the effects of alterations in diet and utilization of pharmacologic therapy on hypercalciuria, urine supersaturation, stone formation and bone quality in ways that are not possible in humans.
Collapse
Affiliation(s)
- Kevin K Frick
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | |
Collapse
|
7
|
Krieger NS, Asplin JR, Frick KK, Granja I, Culbertson CD, Ng A, Grynpas MD, Bushinsky DA. Effect of Potassium Citrate on Calcium Phosphate Stones in a Model of Hypercalciuria. J Am Soc Nephrol 2015; 26:3001-8. [PMID: 25855777 DOI: 10.1681/asn.2014121223] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/02/2015] [Indexed: 01/24/2023] Open
Abstract
Potassium citrate is prescribed to decrease stone recurrence in patients with calcium nephrolithiasis. Citrate binds intestinal and urine calcium and increases urine pH. Citrate, metabolized to bicarbonate, should decrease calcium excretion by reducing bone resorption and increasing renal calcium reabsorption. However, citrate binding to intestinal calcium may increase absorption and renal excretion of both phosphate and oxalate. Thus, the effect of potassium citrate on urine calcium oxalate and calcium phosphate supersaturation and stone formation is complex and difficult to predict. To study the effects of potassium citrate on urine supersaturation and stone formation, we utilized 95th-generation inbred genetic hypercalciuric stone-forming rats. Rats were fed a fixed amount of a normal calcium (1.2%) diet supplemented with potassium citrate or potassium chloride (each 4 mmol/d) for 18 weeks. Urine was collected at 6, 12, and 18 weeks. At 18 weeks, stone formation was visualized by radiography. Urine citrate, phosphate, oxalate, and pH levels were higher and urine calcium level was lower in rats fed potassium citrate. Furthermore, calcium oxalate and calcium phosphate supersaturation were higher with potassium citrate; however, uric acid supersaturation was lower. Both groups had similar numbers of exclusively calcium phosphate stones. Thus, potassium citrate effectively raises urine citrate levels and lowers urine calcium levels; however, the increases in urine pH, oxalate, and phosphate levels lead to increased calcium oxalate and calcium phosphate supersaturation. Potassium citrate induces complex changes in urine chemistries and resultant supersaturation, which may not be beneficial in preventing calcium phosphate stone formation.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York;
| | - John R Asplin
- Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois; and
| | - Kevin K Frick
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Ignacio Granja
- Litholink Corporation, Laboratory Corporation of America Holdings, Chicago, Illinois; and
| | - Christopher D Culbertson
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Adeline Ng
- Laboratory Medicine and Pathobiology Department, University of Toronto, Toronto, Ontario, Canada
| | - Marc D Grynpas
- Laboratory Medicine and Pathobiology Department, University of Toronto, Toronto, Ontario, Canada
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
8
|
Ng AH, Frick KK, Krieger NS, Asplin JR, Cohen-McFarlane M, Culbertson CD, Kyker-Snowman K, Grynpas MD, Bushinsky DA. 1,25(OH)₂D₃ induces a mineralization defect and loss of bone mineral density in genetic hypercalciuric stone-forming rats. Calcif Tissue Int 2014; 94:531-43. [PMID: 24481706 PMCID: PMC4276134 DOI: 10.1007/s00223-014-9838-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/07/2014] [Indexed: 11/29/2022]
Abstract
Genetic hypercalciuric stone-forming (GHS) rats, bred to maximize urine (u) calcium (Ca) excretion, demonstrate increased intestinal Ca absorption, increased bone Ca resorption, and reduced renal Ca reabsorption, all leading to elevated uCa compared to the parental Sprague-Dawley (SD) rats. GHS rats have increased numbers of vitamin D receptors (VDRs) at each site, with normal levels of 1,25(OH)₂D₃ (1,25D), suggesting their VDR is undersaturated with 1,25D. We have shown that 1,25D induces a greater increase in uCa in GHS than SD rats. To examine the effect of the increased VDR on the osseous response to 1,25D, we fed GHS and SD rats an ample Ca diet and injected either 1,25D [low dose (LD) 12.5 or high dose (HD) 25 ng/100 g body weight/day] or vehicle (veh) daily for 16 days. Femoral areal bone mineral density (aBMD, by DEXA) was decreased in GHS+LD and GHS+HD relative to GHS+veh, while there was no effect on SD. Vertebral aBMD was lower in GHS compared to SD and further decreased in GHS+HD. Both femoral and L6 vertebral volumetric BMD (by μCT) were lower in GHS and further reduced by HD. Histomorphometry indicated a decreased osteoclast number in GHS+HD compared to GHS+veh or SD+HD. In tibiae, GHS+HD trabecular thickness and number increased, with a 12-fold increase in osteoid volume but only a threefold increase in bone volume. Bone formation rate was decreased in GHS+HD relative to GHS+veh, confirming the mineralization defect. The loss of BMD and the mineralization defect in GHS rats contribute to increased hypercalciuria; if these effects persist, they would result in decreased bone strength, making these bones more fracture-prone. The enhanced effect of 1,25D in GHS rats indicates that the increased VDRs are biologically active.
Collapse
Affiliation(s)
- Adeline H. Ng
- Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - Kevin K. Frick
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Nancy S. Krieger
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | | | | - Christopher D. Culbertson
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Kelly Kyker-Snowman
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Marc D. Grynpas
- Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - David A. Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
9
|
Frick KK, Asplin JR, Culbertson CD, Granja I, Krieger NS, Bushinsky DA. Persistence of 1,25D-induced hypercalciuria in alendronate-treated genetic hypercalciuric stone-forming rats fed a low-calcium diet. Am J Physiol Renal Physiol 2014; 306:F1081-7. [PMID: 24573387 DOI: 10.1152/ajprenal.00680.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genetic hypercalciuric stone-forming (GHS) rats demonstrate increased intestinal Ca absorption, increased bone resorption, and reduced renal tubular Ca reabsorption leading to hypercalciuria and all form kidney stones. GHS have increased vitamin D receptors (VDR) at these sites of Ca transport. Injection of 1,25(OH)2D3 (1,25D) leads to a greater increase in urine (u)Ca in GHS than in control Sprague-Dawley (SD), possibly due to the additional VDR. In GHS the increased uCa persists on a low-Ca diet (LCD) suggesting enhanced bone resorption. We tested the hypothesis that LCD, coupled to inhibition of bone resorption by alendronate (alen), would eliminate the enhanced 1,25D-induced hypercalciuria in GHS. SD and GHS were fed LCD and half were injected daily with 1,25D. After 8 days all were also given alen until euthanasia at day 16. At 8 days, 1,25D increased uCa in SD and to a greater extent in GHS. At 16 days, alen eliminated the 1,25D-induced increase in uCa in SD. However, in GHS alen decreased, but did not eliminate, the 1,25D-induced hypercalciuria, suggesting maximal alen cannot completely prevent the 1,25D-induced bone resorption in GHS, perhaps due to increased VDR. There was no consistent effect on mRNA expression of renal transcellular or paracellular Ca transporters. Urine CaP and CaOx supersaturation (SS) increased with 1,25D alone in both SD and GHS. Alen eliminated the increase in CaP SS in SD but not in GHS. If these results are confirmed in humans with IH, the use of bisphosphonates, such as alen, may not prevent the decreased bone density observed in these patients.
Collapse
Affiliation(s)
- Kevin K Frick
- Research Assistant Professor of Medicine, Univ. of Rochester School of Medicine and Dentistry, Division of Nephrology, Dept. of Medicine, 601 Elmwood Ave., Box 675, Rochester, NY 14642.
| | | | | | | | | | | |
Collapse
|
10
|
Frick KK, Asplin JR, Krieger NS, Culbertson CD, Asplin DM, Bushinsky DA. 1,25(OH)₂D₃-enhanced hypercalciuria in genetic hypercalciuric stone-forming rats fed a low-calcium diet. Am J Physiol Renal Physiol 2013; 305:F1132-8. [PMID: 23926184 DOI: 10.1152/ajprenal.00296.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The inbred genetic hypercalciuric stone-forming (GHS) rats exhibit many features of human idiopathic hypercalciuria and have elevated levels of vitamin D receptors (VDR) in calcium (Ca)-transporting organs. On a normal-Ca diet, 1,25(OH)2D3 (1,25D) increases urine (U) Ca to a greater extent in GHS than in controls [Sprague-Dawley (SD)]. The additional UCa may result from an increase in intestinal Ca absorption and/or bone resorption. To determine the source, we asked whether 1,25D would increase UCa in GHS fed a low-Ca (0.02%) diet (LCD). With 1,25D, UCa in SD increased from 1.2 ± 0.1 to 9.3 ± 0.9 mg/day and increased more in GHS from 4.7 ± 0.3 to 21.5 ± 0.9 mg/day (P < 0.001). In GHS rats on LCD with or without 1,25D, UCa far exceeded daily Ca intake (2.6 mg/day). While the greater excess in UCa in GHS rats must be derived from bone mineral, there may also be a 1,25D-mediated decrease in renal tubular Ca reabsorption. RNA expression of the components of renal Ca transport indicated that 1,25D administration results in a suppression of klotho, an activator of the renal Ca reabsorption channel TRPV5, in both SD and GHS rats. This fall in klotho would decrease tubular reabsorption of the 1,25D-induced bone Ca release. Thus, the greater increase in UCa with 1,25D in GHS fed LCD strongly suggests that the additional UCa results from an increase in bone resorption, likely due to the increased number of VDR in the GHS rat bone cells, with a possible component of decreased renal tubular calcium reabsorption.
Collapse
Affiliation(s)
- Kevin K Frick
- Univ. of Rochester School of Medicine and Dentistry, Div. of Nephrology, Dept. of Medicine, 601 Elmwood Ave., Box 675, Rochester, NY 14642.
| | | | | | | | | | | |
Collapse
|
11
|
Frick KK, Asplin JR, Favus MJ, Culbertson C, Krieger NS, Bushinsky DA. Increased biological response to 1,25(OH)(2)D(3) in genetic hypercalciuric stone-forming rats. Am J Physiol Renal Physiol 2013; 304:F718-26. [PMID: 23344574 DOI: 10.1152/ajprenal.00645.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic hypercalciuric stone-forming (GHS) rats, bred to maximize urine (U) calcium (Ca) excretion, have increased intestinal Ca absorption and bone Ca resorption and reduced renal Ca reabsorption, leading to increased UCa compared with the Sprague-Dawley (SD) rats. GHS rats have increased vitamin D receptors (VDR) at each of these sites, with normal levels of 1,25(OH)(2)D(3) (1,25D), indicating that their VDR is undersaturated with 1,25D. We tested the hypothesis that 1,25D would induce a greater increase in UCa in GHS rats by feeding both strains ample Ca and injecting 1,25D (25 ng · 100 g body wt(-1) · day(-1)) or vehicle for 16 days. With 1,25D, UCa in SD increased from 1.7 ± 0.3 mg/day to 24.4 ± 1.2 (Δ = 22.4 ± 1.5) and increased more in GHS from 10.5 ± 0.7 to 41.9 ± 0.7 (Δ = 29.8 ± 1.8; P = 0.003). To determine the mechanism of the greater increase in UCa in GHS rats, we measured kidney RNA expression of components of renal Ca transport. Expression of transient receptor potential vanilloid (TRPV)5 and calbindin D(28K) were increased similarly in SD + 1,25D and GHS + 1,25D. The Na(+)/Ca(2+) exchanger (NCX1) was increased in GHS + 1,25D. Klotho was decreased in SD + 1,25D and GHS + 1,25D. TRPV6 was increased in SD + 1,25D and increased further in GHS + 1,25D. Claudin 14, 16, and 19, Na/K/2Cl transporter (NKCC2), and secretory K channel (ROMK) did not differ between SD + 1,25D and GHS + 1,25D. Increased UCa with 1,25D in GHS exceeded that of SD, indicating that the increased VDR in GHS induces a greater biological response. This increase in UCa, which must come from the intestine and/or bone, must exceed any effect of 1,25D on TRPV6 or NCX1-mediated renal Ca reabsorption.
Collapse
Affiliation(s)
- Kevin K Frick
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Influence of nutrition on feline calcium oxalate urolithiasis with emphasis on endogenous oxalate synthesis. Nutr Res Rev 2011; 24:96-110. [PMID: 21338551 DOI: 10.1017/s0954422410000351] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The prevalence of calcium oxalate (CaOx) uroliths detected in cats with lower urinary tract disease has shown a sharp increase over the last decades with a concomitant reciprocal decrease in the occurrence of struvite (magnesium ammonium phosphate) uroliths. CaOx stone-preventative diets are available nowadays, but seem to be marginally effective, as CaOx urolith recurrence occurs in patients fed these diets. In order to improve the preventative measures against CaOx urolithiasis, it is important to understand its aetiopathogenesis. The main research focus in CaOx formation in cats has been on the role of Ca, whereas little research effort has been directed towards the role and origin of urinary oxalates. As in man, the exogenous origin of urinary oxalates in cats is thought to be of minor importance, although the precise contribution of dietary oxalates remains unclear. The generally accepted dietary risk factors for CaOx urolithiasis in cats are discussed and a model for the biosynthetic pathways of oxalate in feline liver is provided. Alanine:glyoxylate aminotransferase 1 (AGT1) in endogenous oxalate metabolism is a liver-specific enzyme targeted in the mitochondria in cats, and allows for efficient conversion of glyoxylate to glycine when fed a carnivorous diet. The low peroxisomal activity of AGT1 in cat liver is compatible with the view that felids utilised a low-carbohydrate diet throughout evolution. Future research should focus on understanding de novo biosynthesis of oxalate in cats and their adaptation(s) in oxalate metabolism, and on dietary oxalate intake and absorption by cats.
Collapse
|
13
|
Bai S, Wang H, Shen J, Zhou R, Bushinsky DA, Favus MJ. Elevated vitamin D receptor levels in genetic hypercalciuric stone-forming rats are associated with downregulation of Snail. J Bone Miner Res 2010; 25:830-40. [PMID: 19929616 PMCID: PMC3153334 DOI: 10.1359/jbmr.091010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 09/21/2009] [Accepted: 10/09/2009] [Indexed: 11/18/2022]
Abstract
Patients with idiopathic hypercalciuria (IH) and genetic hypercalciuric stone-forming (GHS) rats, an animal model of IH, are both characterized by normal serum Ca, hypercalciuria, Ca nephrolithiasis, reduced renal Ca reabsorption, and increased bone resorption. Serum 1,25-dihydroxyvitamin D [1,25(OH)(2)D] levels are elevated or normal in IH and are normal in GHS rats. In GHS rats, vitamin D receptor (VDR) protein levels are elevated in intestinal, kidney, and bone cells, and in IH, peripheral blood monocyte VDR levels are high. The high VDR is thought to amplify the target-tissue actions of normal circulating 1,25(OH)(2)D levels to increase Ca transport. The aim of this study was to elucidate the molecular mechanisms whereby Snail may contribute to the high VDR levels in GHS rats. In the study, Snail gene expression and protein levels were lower in GHS rat tissues and inversely correlated with VDR gene expression and protein levels in intestine and kidney cells. In human kidney and colon cell lines, ChIP assays revealed endogenous Snail binding close to specific E-box sequences within the human VDR promoter region, whereas only one E-box specifically bound Snail in the rat promoter. Snail binding to rat VDR promoter E-box regions was reduced in GHS compared with normal control intestine and was accompanied by hyperacetylation of histone H(3). These results provide evidence that elevated VDR in GHS rats likely occurs because of derepression resulting from reduced Snail binding to the VDR promoter and hyperacetylation of histone H(3).
Collapse
Affiliation(s)
- Shaochun Bai
- Section of Endocrinology and Metabolism, The University of Chicago Pritzker School of MedicineChicago, IL, USA
| | - Hongwei Wang
- Section of Endocrinology and Metabolism, The University of Chicago Pritzker School of MedicineChicago, IL, USA
| | - Jikun Shen
- Section of Endocrinology and Metabolism, The University of Chicago Pritzker School of MedicineChicago, IL, USA
| | - Randal Zhou
- Section of Endocrinology and Metabolism, The University of Chicago Pritzker School of MedicineChicago, IL, USA
| | - David A Bushinsky
- Department of Medicine, University of Rochester School of MedicineRochester, New York, USA
| | - Murray J Favus
- Section of Endocrinology and Metabolism, The University of Chicago Pritzker School of MedicineChicago, IL, USA
| |
Collapse
|
14
|
Abstract
Kidney stone patients often have a decrease in BMD. It is unclear if reduced BMD is caused by a primary disorder of bone or dietary factors. To study the independent effects of hypercalciuria on bone, we used genetic hypercalciuric stone-forming (GHS) rats. GHS and control (Ctl) rats were fed a low Ca (0.02% Ca, LCD) or a high Ca (1.2% Ca, HCD) diet for 6 wk in metabolic cages. All comparisons are to Ctl rats. Urine Ca was greater in the GHS rats on both diets. GHS fed HCD had reduced cortical (humerus) and trabecular (L(1)-L(5) vertebrae) BMD, whereas GHS rats fed LCD had a reduction in BMD similar to Ctl. GHS rats fed HCD had a decrease in trabecular volume and thickness, whereas LCD led to a approximately 20-fold increase in both osteoid surface and volume. GHS rats fed HCD had no change in vertebral strength (failure stress), ductibility (failure strain), stiffness (modulus), or toughness, whereas in the humerus, there was reduced ductibility and toughness and an increase in modulus, indicating that the defect in mechanical properties is mainly manifested in cortical, rather than trabecular, bone. GHS rat cortical bone is more mineralized than trabecular bone and LCD led to a decrease in the mineralization profile. Thus, the GHS rats, fed an ample Ca diet, have reduced BMD with reduced trabecular volume, mineralized volume, and thickness, and their bones are more brittle and fracture prone, indicating that GHS rats have an intrinsic disorder of bone that is not secondary to diet.
Collapse
|
15
|
Effect of bolus and divided feeding on urine ions and supersaturation in genetic hypercalciuric stone-forming rats. Kidney Int 2007; 73:423-9. [PMID: 18046318 DOI: 10.1038/sj.ki.5002699] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Because urine ion excretion varies throughout the day, clinicians monitor 24 h urine samples to measure ion excretion and supersaturation in kidney stone patients. However, these results are averages and may not reflect maximal supersaturation which drives stone formation. We measured ion excretion and saturation in genetic hypercalciuric stone-forming rats on both a normal or low calcium diet over 0-3, 3-6 and 6-24 h using two feeding protocols, where the daily food allotment was fed either as a bolus or divided into three portions. With a normal calcium diet, urine calcium, oxalate, volume, and calcium oxalate supersaturation were significantly greater on the bolus compared to the divided feeds in the prandial and postprandial periods. Bolus eaters also excreted more calcium and oxalate and had increased volume over 24 h. Maximal calcium oxalate supersaturation was greater during the initial time periods than during the entire 24 h, regardless of the feeding schedule. With the low calcium diet, the effect of bolus feeding was reduced. Thus, urine ion excretion and supersaturation vary with the type of feeding. If these results are confirmed in man, it suggests that eating as a bolus may result in greater prandial and postprandial calcium oxalate supersaturation. This may increase growth on Randall's plaques and promote stone disease.
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW We will describe the pathophysiology of hypercalciuria and the mechanism of the resultant stone formation in a rat model and draw parallels to human hypercalciuria and stone formation. RECENT FINDINGS Through inbreeding we have established a strain of rats that excrete 8-10 times more urinary calcium than control rats. These genetic hypercalciuric rats absorb more dietary calcium at lower 1,25-dihydroxyvitamin D3 levels. Elevated urinary calcium excretion on a low-calcium diet indicated a defect in renal calcium reabsorption and/or an increase in bone resorption. Bone from hypercalciuric rats released more calcium when exposed to 1,25-dihydroxyvitamin D3. Bisphosphonate significantly reduced urinary calcium excretion in rats fed a low-calcium diet. Clearance studies showed a primary defect in renal calcium reabsorption. The intestine, bone and kidneys of the hypercalciuric rats had increased numbers of vitamin D receptors. When hydroxyproline is added to their diet they form calcium oxalate stones, the most common stone type in humans. Increased numbers of vitamin D receptors may cause hypercalciuria in these rats and humans. SUMMARY Understanding the mechanism of hypercalciuria and stone formation in this animal model will help clinicians devise effective treatment strategies for preventing recurrent stone formation in humans.
Collapse
Affiliation(s)
- David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
17
|
Bushinsky DA, Laplante K, Asplin JR. Effect of cinacalcet on urine calcium excretion and supersaturation in genetic hypercalciuric stone-forming rats. Kidney Int 2006; 69:1586-92. [PMID: 16557225 DOI: 10.1038/sj.ki.5000324] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Idiopathic hypercalciuria is the most common metabolic abnormality in patients with nephrolithiasis. Through successive inbreeding, we have developed a strain of rats whose urine calcium (UCa) excretion is approximately 8-10-fold greater than that of control rats and who spontaneously form kidney stones. We have termed these rats genetic hypercalciuric stone-forming (GHS) rats. The physiology of the hypercalciuria in the GHS rats closely parallels that of man. We have recently shown that the GHS rat kidneys have an increased number of receptors for calcium (CaR) compared to Sprague-Dawley rats, the strain of rats originally bred to develop the GHS rats. Calcimimetics, such as cinacalcet (Cin), increase the sensitivity of the CaR to Ca. The effects of Cin on UCa are complex and difficult to predict. We tested the hypothesis that Cin would alter urinary (U) Ca and supersaturation with respect to calcium hydrogen phosphate (CaHPO(4)) and calcium oxalate (CaOx). GHS or control rats were fed a normal Ca diet (0.6% Ca) for 28 days with Cin (30 mg/kg/24 h) added to the diet of half of each group for the last 14 days. The protocol was then repeated while the rats were fed a low Ca (0.02% Ca) diet. We found that Cin led to a marked reduction in circulating parathyroid hormone and a modest reduction in serum Ca. Cin did not alter UCa when the GHS rats were fed the normal Ca diet but lowered UCa when they were fed the low Ca diet. However, Cin did not alter U supersaturation with respect to either CaOx or CaHPO(4) on either diet. If these findings in GHS rats can be confirmed in man, it suggests that Cin would not be an effective agent in the treatment of human idiopathic hypercalciuria and resultant stone formation.
Collapse
Affiliation(s)
- D A Bushinsky
- Nephrology Division, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA.
| | | | | |
Collapse
|
18
|
O'Connor RC, Worcester EM, Evan AP, Meehan S, Kuznetsov D, Laven B, Sommer AJ, Bledsoe SB, Parks JH, Coe FL, Grynpas M, Gerber GS. Nephrolithiasis and nephrocalcinosis in rats with small bowel resection. ACTA ACUST UNITED AC 2005; 33:105-15. [PMID: 15815943 DOI: 10.1007/s00240-004-0460-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Intestinal resection (IR) may lead to hyperoxaluria and nephrolithiasis. A rat model of IR was developed, in which kidney stones form. We describe the urine chemistries and histopathologic features. Rats underwent resection of 40-45 cm of distal ileum (n=16) or sham resection (SR) (n=8), and were then fed a 1% Na oxalate, 0.02% Ca diet. After 1 week on the diet, 24 h urine samples were obtained for stone chemistries. At 4-7 months after surgery, kidneys were examined grossly and by light microscopy. The extent and location of crystallization was assessed by polarized light. Histochemistry and infrared spectroscopy were used to determine crystal composition. IR rats had higher urine oxalate excretion (P<0.01) and concentration (P<0.001) than SR rats, and lower urine citrate excretion; only IR rats formed kidney stones (12/15 surviving rats). Tissue calcification was found only in kidneys from IR rats, located in the cortex (83% of kidneys), medulla (73%) and papillary tip (47%). Crystals, composed of CaOx, apatite, and calcium carbonate, filled collecting duct lumens, and were associated with tubular obstruction, and interstitial inflammation. Crystals in the papillary interstitium incited inflammation with tubular destruction and development of progressive papillary erosion. This new rat model of nephrolithiasis and nephrocalcinosis resembles the pattern of urinary abnormalities and tissue calcification that may be seen in humans with small bowel resection. The model allows further studies of the mechanisms of renal crystal formation, and possible therapeutic interventions.
Collapse
|
19
|
Yao JJ, Bai S, Karnauskas AJ, Bushinsky DA, Favus MJ. Regulation of renal calcium receptor gene expression by 1,25-dihydroxyvitamin D3 in genetic hypercalciuric stone-forming rats. J Am Soc Nephrol 2005; 16:1300-8. [PMID: 15788476 DOI: 10.1681/asn.2004110991] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hypercalciuria in inbred genetic hypercalciuric stone-forming (GHS) rats is due, in part, to a decrease in renal tubule Ca reabsorption. Activation of the renal Ca receptor (CaR) may decrease renal tubule Ca reabsorption and cause hypercalciuria through suppression of Ca-sensitive potassium channel activity. Because the rat renal CaR gene is regulated by extracellular calcium and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and GHS rats have increased renal vitamin D receptor content, the current study was undertaken to determine the level of CaR gene expression in GHS rat kidney and whether CaR gene expression is regulated by 1,25(OH)2D3. Male GHS and normal control (NC) rats were fed a Ca-sufficient diet (0.6% Ca). Western blotting revealed a four-fold increase in CaR protein in GHS rat renal tissue, and 1,25(OH)2D3 administration increased renal CaR in both GHS and NC rats. Northern blot analysis of extracts of renal cortical tissue from GHS and NC rats revealed a major 7-kb transcript of CaR and a more modest 4-kb transcript, both of which were readily detectable. Both Northern blotting and real-time reverse transcription-PCR revealed increased basal CaR mRNA expression levels in GHS rat kidney. 1,25(OH)2D3 administration increased renal CaR mRNA levels 2.0- and 3.3-fold in GHS and NC rats, respectively. Despite the greater incremental increase by 1,25(OH)2D3 in NC rats, CaR mRNA levels remained higher in GHS rat kidney, and the elevation was more sustained. 1,25(OH)2D3 increased CaR mRNA through both elevated CaR gene expression and prolonged tissue half-life. These results demonstrate that GHS rats have high levels of CaR gene expression and CaR protein that may contribute to the hypercalciuria and calcium nephrolithiasis.
Collapse
Affiliation(s)
- Jim J Yao
- The University of Chicago, Pritzker School of Medicine, 5841 S. Maryland Avenue, MC 1027, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
20
|
Bushinsky DA, Asplin JR. Thiazides Reduce Brushite, but not Calcium Oxalate, Supersaturation, and Stone Formation in Genetic Hypercalciuric Stone–Forming Rats. J Am Soc Nephrol 2005; 16:417-24. [PMID: 15647340 DOI: 10.1681/asn.2004070543] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Over 59 generations, a strain of rats has been inbred to maximize urine calcium excretion. The rats now excrete eight to 10 times as much calcium as controls. These rats uniformly form calcium phosphate (apatite) kidney stones and have been termed genetic hypercalciuric stone-forming (GHS) rats. The addition of a common amino acid and oxalate precursor, hydroxyproline, to the diet of the GHS rats leads to formation of calcium oxalate (CaOx) kidney stones. Hydroxyproline-supplemented GHS rats were used to test the hypothesis that the thiazide diuretic chlorthalidone would decrease urine calcium excretion, supersaturation, and perhaps stone formation. All GHS rats received a fixed amount of a standard 1.2% calcium diet with 5% trans-4-hydroxy-l-proline (hydroxyproline) so that the rats would exclusively form CaOx stones. Half of the rats had chlorthalidone (Thz; 4 to 5 mg/kg per d) added to their diets. Urine was collected weekly, and at the conclusion of the study, the kidneys, ureters, and bladders were radiographed for the presence of stones. Compared with control, the addition of Thz led to a significant reduction of urine calcium and phosphorus excretion, whereas urine oxalate excretion increased. Supersaturation with respect to the calcium hydrogen phosphate fell, whereas supersaturation with respect to CaOx was unchanged. Rats that were fed Thz had fewer stones. As calcium phosphate seems to be the preferred initial solid phase in patients with CaOx kidney stones, the reduction in supersaturation with respect to the calcium phosphate solid phase may be the mechanism by which thiazides reduce CaOx stone formation.
Collapse
Affiliation(s)
- David A Bushinsky
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Strong Memorial Hospital, 601 Elmwood Avenue, Box 675, Rochester, NY 14642, USA.
| | | |
Collapse
|
21
|
Evan AP, Bledsoe SB, Smith SB, Bushinsky DA. Calcium oxalate crystal localization and osteopontin immunostaining in genetic hypercalciuric stone-forming rats. Kidney Int 2004; 65:154-61. [PMID: 14675046 DOI: 10.1111/j.1523-1755.2004.00396.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The inbred genetic hypercalciuric stone-forming (GHS) rats develop calcium phosphate (apatite) stones when fed a normal 1.2% calcium diet. The addition of 1% hydroxyproline to this diet does not alter the type of stone formed, while rats fed this diet with 3% hydroxyproline form mixed apatite and calcium oxalate stones and those with 5% hydroxyproline added form only calcium oxalate stones. The present study was designed to determine the localization of stone formation and if this solid phase resulted in pathologic changes to the kidneys. METHODS GHS rats were fed 15 g of the standard diet or the diet supplemented with 1%, 3%, or 5% hydroxyproline for 18 weeks. A separate group of Sprague-Dawley rats (the parental strain of the GHS rats), fed the standard diet for a similar duration, served as an additional control. At 18 weeks, all kidneys were perfusion-fixed for structural analysis, detection of crystal deposits using the Yasue silver substitution method, and osteopontin immunostaining. RESULTS There were no crystal deposits found in the kidneys of Sprague-Dawley rats. Crystal deposits were found in the kidneys of all GHS rats and this Yasue-stained material was detected only in the urinary space. No crystal deposits were noted within the cortical or medullary segments of the nephron and there was no evidence for tubular damage in any group. The only pathologic changes occurred in 3% and 5% hydroxyproline groups with the 5% group showing the most severe changes. In these rats, which form only calcium oxalate stones, focal sites along the urothelial lining of the papilla and fornix of the urinary space demonstrated a proliferative response characterized by increased density of urothelial cells that surrounded the crystal deposits. At the fornix, some crystals were lodged within the interstitium, deep to the proliferative urothelium. There was increased osteopontin immunostaining in the proliferating urothelium. CONCLUSION Thus in the GHS rat, the initial stone formation occurred solely in the urinary space. Tubular damage was not observed with either apatite or calcium oxalate stones. The apatite stones do not appear to cause any pathological change while those rats forming calcium oxalate stones have a proliferative response of the urothelium, with increased osteopontin immunostaining, around the crystal deposits in the fornix.
Collapse
Affiliation(s)
- Andrew P Evan
- Anatomy Department, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | |
Collapse
|
22
|
Ferraz RRN, Tiselius HG, Heilberg IP, Heiberg IP. Fat malabsorption induced by gastrointestinal lipase inhibitor leads to an increase in urinary oxalate excretion. Kidney Int 2004; 66:676-82. [PMID: 15253722 DOI: 10.1111/j.1523-1755.2004.00790.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Unabsorbed fat and bile acids may react with calcium in the intestinal lumen, limiting the amount of free calcium binding with oxalate and thereby raising intestinal oxalate absorption leading to hyperoxaluria. The aim of the present study was to determine whether orlistat (Xenical), a gastrointestinal lipase inhibitor, might increase urinary oxalate in an experimental rat model. METHODS Thirty-nine male adult Wistar rats were fed a standard diet alone (controls) or supplemented with either 2% sodium oxalate (NaOx) or 3.2 mL of soy oil, or with both (NaOx + soy oil) for 4 weeks (diet period). Orlistat (16 mg/day) was added to the diet from the 5th to the 8th week (diet + orlistat period). Urinary oxalate (uOx), calcium (uCa), magnesium (uMg), and citrate (uCit) were determined and the ion-activity product of calcium oxalate [AP (CaOx) index(rat)] was estimated. RESULTS Compared to baseline uOx significantly increased after diet + orlistat in controls (0.64 +/- 0.1 mg/24 hours vs. 0.56 +/-0.1 mg/24 hours), soy oil (0.80 +/- 0.3 mg/24 hours vs. 0.49 +/-0.2 mg/24 hours), and NaOx (2.48 +/- 0.8 mg/24 hours vs. 0.57 +/- 0.2 mg/24 hours), but the most marked increase occurred in NaOx + soy oil (3.87 +/- 0.7 mg/24 hours vs. 0.47 +/- 0.1 mg/24 hours). All groups except controls presented a significant reduction in uCa and uMg. Orlistat induced a significant increase in AP (CaOx) index(rat) compared, respectively, to baseline and to the diet period in NaOx (4.52 +/- 2.34 mg/24 hours vs. 0.94 +/- 0.86 and 1.53 +/- 0.93 mg/24 hours) and NaOx + soy oil (6.49 +/- 4.03 mg/24 hours vs. 0.54 +/- 0.17 and 1.76 +/- 1.32 mg/24 hours). CONCLUSION These data suggest that the use of lipase inhibitors, especially under a diet rich in oxalate alone or associated with fat, leads to a significant and marked increase in urinary oxalate and a slight reduction in uCa and uMg that, taken together, resulted in an increase in AP (CaOx) index(rat), elevating the risk of stone formation.
Collapse
|
23
|
Stevenson AE, Hynds WK, Markwell PJ. The relative effects of supplemental dietary calcium and oxalate on urine composition and calcium oxalate relative supersaturation in healthy adult dogs. Res Vet Sci 2003; 75:33-41. [PMID: 12801461 DOI: 10.1016/s0034-5288(03)00042-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to establish the relative effects of dietary calcium and oxalate (in the form of oxalic acid) on the composition of urine produced by healthy adult Cairn Terriers and Miniature Schnauzers. A nutritionally complete dry dog food was fed to 7 dogs (4 Cairn terriers and 3 Miniature schnauzers) for 24 weeks. The dogs were fed the diet alone, or supplemented with six different combinations of dietary calcium (as carbonate and sulphate) and oxalate (as oxalic acid) commonly found in dry commercially prepared dog foods. Urine pH, volume, specific gravity, and concentrations of 12 analytes were measured for each dog; urinary relative supersaturation (RSS) with calcium oxalate (CaOx) was calculated from these values. The effects of supplemental calcium and oxalate were established using two-way analysis of variance and multiple range tests (least significant difference); P<0.05 was considered significant. The lowest level of dietary calcium and oxalate resulted in the lowest CaOx RSS. The high calcium, low oxalate diet resulted in the highest CaOx RSS, a low calcium diet with increased dietary oxalate also tended to increase CaOx RSS although results were highly variable. Urinary calcium concentration increased significantly with dietary calcium; urinary oxalate increased, although inconsistently, with dietary oxalic acid only when dietary calcium was low. Measures to reduce both calcium and oxalate should be considered when implementing dietary changes to reduce the risk of calcium oxalate formation in dogs. A reduction in dietary calcium without a concomitant decrease in dietary oxalate may increase the risk of CaOx crystallisation in susceptible dogs.
Collapse
Affiliation(s)
- A E Stevenson
- The WALTHAM Centre for Pet Nutrition, Waltham on the Wolds, Melton Mowbray, Leicestershire LE14 4RT, UK
| | | | | |
Collapse
|
24
|
Affiliation(s)
- Kevin K Frick
- Department of Medicine, Nephrology Unit, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | |
Collapse
|
25
|
de O G Mendonça C, Martini LA, Baxmann AC, Nishiura JL, Cuppari L, Sigulem DM, Heilberg IP. Effects of an oxalate load on urinary oxalate excretion in calcium stone formers. J Ren Nutr 2003; 13:39-46. [PMID: 12563622 DOI: 10.1053/jren.2003.50002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To investigate the oxalate intake and the effect of an oxalate load on urinary oxalate excretion in calcium stone-forming (CSF) patients. DESIGN Prospective study. SETTING University-affiliated outpatient Renal Lithiasis Unit. PATIENTS AND CONTROLS Seventy (70) CSF and 41 healthy subjects (HS) collected a 24-hour urine sample and were submitted to a 3-day dietary record to determine mean oxalate (Ox), calcium (Ca) and vitamin C intake. Fifty-eight (58) CSF patients were randomly selected to receive milk (N = 28) or dark (N = 30) chocolate as an oxalate load. INTERVENTION Administration of either milk (94 mg Ox + 430 mg Ca) or dark chocolate (94 mg Ox + 26 mg Ca) for 3 days. A 24-hour urine sample was obtained before and after the load to determine calcium, oxalate, sodium, potassium, urea, and creatinine. MAIN OUTCOME MEASURE Oxalate intake and excretion. RESULTS CSF patients presented mean Ox intake of 98 +/- 137 mg/d, similar to that of HS (108 +/- 139 mg/d). Mean Ox and vitamin C intake was directly correlated with Ox excretion only in CSF. The consumption of dark chocolate induced a significant increase in mean urinary Ox (36 +/- 14 versus 30 +/- 10 mg/24 hr) not observed in the milk chocolate group. Thus, a 2-fold increase in Ox intake in this population of CSF patients produced a significant 20% increase in oxaluria, not observed when Ca was consumed simultaneously. CONCLUSION The present study suggests that even small increases in Ox intake affect oxalate excretion and the mitigation of urinary oxalate increase by Ca consumption reinforces that Ca and Ox intakes for CSF patients should be in balance. Further studies are necessary to assess whether or not a 20% increase in oxaluria will lead to a higher risk of stone formation.
Collapse
|
26
|
Bushinsky DA, Asplin JR, Grynpas MD, Evan AP, Parker WR, Alexander KM, Coe FL. Calcium oxalate stone formation in genetic hypercalciuric stone-forming rats. Kidney Int 2002; 61:975-87. [PMID: 11849452 DOI: 10.1046/j.1523-1755.2002.00190.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Over 54 generations, we have successfully bred a strain of rats that maximizes urinary calcium excretion. The rats now consistently excrete 8 to 10 times as much calcium as controls, uniformly form poorly crystalline calcium phosphate kidney stones, and are termed genetic hypercalciuric stone-forming (GHS) rats. These rats were used to test the hypothesis that increasing urinary oxalate excretion would not only increase the supersaturation with respect to the calcium oxalate solid phase, but also would increase the ratio of calcium oxalate-to-calcium phosphate supersaturation and result in calcium oxalate stone formation. METHODS To increase urine oxalate excretion an oxalate precursor, hydroxyproline, was added to the diet of male GHS rats. The GHS rats were fed a standard 1.2% calcium diet alone or with 1%, 3% or 5% trans-4-hydroxy-l-proline (hydroxyproline). RESULTS The addition of 1% hydroxyproline to the diet of GHS rats led to an increase in urinary oxalate excretion, which did not increase further with the provision of additional hydroxyproline. The addition of 1% and 3% hydroxyproline did not alter calcium excretion while the provision of 5% hydroxyproline led to a decrease in urine calcium excretion. The addition of 1% hydroxyproline led to an increase in urinary calcium oxalate supersaturation, which did not further increase with additional hydroxyproline. The addition of 1% and 3% hydroxyproline did not alter urinary supersaturation with respect to calcium hydrogen phosphate while the addition of 5% hydroxyproline tended to lower this supersaturation. Compared to rats fed the control and the 3% hydroxyproline diet the addition of 5% hydroxyproline increased the ratio of calcium oxalate supersaturation to calcium phosphate supersaturation. Virtually all rats formed stones. In the control and 1% hydroxyproline group, all of the stones were composed of calcium and phosphate (apatite), in the 3% hydroxyproline group the stones were a mixture of apatite and calcium oxalate, while in the 5% hydroxyproline group all of the stones were calcium oxalate. CONCLUSIONS The provision of additional dietary hydroxyproline to GHS rats increases urinary oxalate excretion, calcium oxalate supersaturation and the ratio of calcium oxalate-to-calcium phosphate supersaturation, resulting in the formation of calcium oxalate kidney stones. Thus, with the addition of a common amino acid, the GHS rats now not only model the most common metabolic abnormality found in patients with nephrolithiasis, hypercalciuria, but form the most common type of kidney stone, calcium oxalate.
Collapse
Affiliation(s)
- David A Bushinsky
- Department of Medicine, Nephrology Unit, University of Rochester School of Medicine, Strong Memorial Hospital, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Bushinsky DA, Grynpas MD, Asplin JR. Effect of acidosis on urine supersaturation and stone formation in genetic hypercalciuric stone-forming rats. Kidney Int 2001; 59:1415-23. [PMID: 11260403 DOI: 10.1046/j.1523-1755.2001.0590041415.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We have successively inbred over 45 generations a strain of rats to maximize urine calcium excretion. The rats now consistently excrete 8 to 10 times as much calcium as controls and uniformly form poorly crystalline calcium phosphate kidney stones. In humans with calcium nephrolithiasis, consumption of a diet high in acid precursors is often cited as a risk factor for the development of calcium-based kidney stones; however, the effect of this diet on urinary supersaturation with respect to the common solid phases found in kidney stones has not been determined. METHODS To determine the effect of the addition of an acid precursor on urine ion excretion, supersaturation, and stone formation, we fed these genetic hypercalciuric stone-forming (GHS) rats 13 g/day of a 1.2% calcium diet with 0.0, 0.5, 1.0, or 1.5% NH4Cl in the drinking water for 14 weeks (N = 8 for each). Urine was collected and analyzed every two weeks. RESULTS As expected, the addition of dietary NH4Cl led to a progressive fall in urine pH and urine citrate, while urine ammonium increased. Urine calcium and phosphorus increased, while urine oxalate fell. Increasing dietary NH4Cl led to a fall in supersaturation with respect to CaHPO4 (brushite) and CaOx and a rise in supersaturation with respect to uric acid. In spite of differences in supersaturation, most rats in each group formed stones that contained calcium phosphate and not calcium oxalate. CONCLUSIONS Thus, while the provision of additional dietary acids alters urinary ion excretion and lowers supersaturation with respect to CaHPO4 and CaOx, it does not change the character or rate of stone formation in the GHS rats.
Collapse
Affiliation(s)
- D A Bushinsky
- Nephrology Unit, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
28
|
Bushinsky DA. Bench to bedside: lessons from the genetic hypercalciuric stone-forming rat. Am J Kidney Dis 2000; 36:LXI-LXIV. [PMID: 10977815 DOI: 10.1053/ajkd.2000.18014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- D A Bushinsky
- University of Rochester Medical Center, Nephrology Unit, Rochester, NY, USA
| |
Collapse
|
29
|
Bushinsky DA, Parker WR, Asplin JR. Calcium phosphate supersaturation regulates stone formation in genetic hypercalciuric stone-forming rats. Kidney Int 2000; 57:550-60. [PMID: 10652032 DOI: 10.1046/j.1523-1755.2000.00875.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Hypercalciuria is the most common metabolic abnormality observed in patients with nephrolithiasis. Hypercalciuria raises urine supersaturation with respect to the solid phases of calcium oxalate and calcium phosphate, leading to an enhanced probability for nucleation and growth of crystals into clinically significant stones. However, there is little direct proof that supersaturation itself regulates stone formation. Through successive inbreeding of the most hypercalciuric progeny of hypercalciuric Sprague-Dawley rats, we have established a strain of rats, each of which excrete abnormally large amounts of urinary calcium and each of which forms calcium phosphate kidney stones. We used these hypercalciuric (GHS) rats to test the hypothesis that an isolated reduction in urine supersaturation, achieved by decreasing urine phosphorus excretion, would decrease stone formation in these rats. METHODS Thirty 44th-generation female GHS rats were randomly divided into three groups. Ten rats received a high-phosphorus diet (0.565% phosphorus), 10 a medium-phosphorus diet (0.395% phosphorus), and 10 a low-phosphorus diet (0.225% phosphorus) for a total of 18 weeks. The lowered dietary phosphorus would be expected to result in a decrease in urine phosphorus excretion and a decrease in urinary supersaturation with respect to the calcium phosphate solid phase. Every two weeks, 24-hour urine collections were obtained. All relevant ions were measured, and supersaturation with respect to calcium oxalate and calcium hydrogen phosphate were determined. At the conclusion of the experiment, each rat was killed, and the kidneys, ureters, and bladder were dissected en block and x-rayed to determine whether any stones formed. A decrease in stone formation with a reduction in urinary supersaturation would support the hypothesis that supersaturation alone can regulate stone formation. RESULTS Decreasing the dietary phosphorus intake led to a progressive decrease in urine phosphorus excretion and an increase in urine calcium excretion, the latter presumably caused by decreased intestinal calcium phosphate binding and increased calcium absorption. With decreasing dietary phosphorus intake, there was a progressive decrease in saturation with respect to the calcium phosphate solid phase. Fifteen of the 20 kidneys from the 10 rats fed the high-phosphorus diet had radiographic evidence of kidney stone formation, whereas no kidneys from the rats fed either the medium- or low-phosphorus diet developed kidney stones. CONCLUSIONS A decrease in urine phosphorus excretion not only led to a decrease in urine supersaturation with respect to the calcium phosphate solid phase but to an elimination of renal stone formation. The results of this study support the hypothesis that variation in supersaturation alone can regulate renal stone formation. Whether a reduction of dietary phosphorus will alter stone formation in humans with calcium phosphate nephrolithiasis remains to be determined.
Collapse
Affiliation(s)
- D A Bushinsky
- Nephrology Unit, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
30
|
Heilberg IP. Update on dietary recommendations and medical treatment of renal stone disease. Nephrol Dial Transplant 2000; 15:117-23. [PMID: 10607782 DOI: 10.1093/ndt/15.1.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- I P Heilberg
- Nephrology Division, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
31
|
Abstract
In humans, idiopathic hypercalciuria is associated with stone formation. In order to study the mechanisms that are responsible for excess urine calcium excretion, in ways that are difficult or impossible in humans, we have developed a rat model of hypercalciuria. Spontaneously hypercalciuric rats have been successively inbred for over 50 generations to produce a strain in which urine calcium excretion is over 10 times greater than that of controls, and all rats form kidney stones. Analysis of the model has revealed that the rats not only exhibit increased intestinal calcium reabsorption but an independent defect in renal tubular calcium resorption and an increased tendency for bone resorption. These findings closely parallel those in patients with idiopathic hypercalciuria. In the intestine, bone and kidney there is an increased number of vitamin D receptors which are hyperresponsive to 1,25-dihydroxyvitamin D3. Whether the increased number of vitamin D receptors is directly responsible for the hypercalciuria and whether the same abnormality is present in humans with idiopathic hypercalciuria is under investigation. Hypercalciuric rats appear to be an excellent model to provide insights into the mechanisms causing hypercalciuria, and to delineate treatments for stone disease.
Collapse
Affiliation(s)
- D A Bushinsky
- University of Rochester School of Medicine and Dentistry, Strong Memorial Hospital, Rochester, NY 14642, USA.
| |
Collapse
|