1
|
Sagar PS, Saravanabavan S, Munt A, Wong ATY, Rangan GK. Effect of Early and Delayed Commencement of Paricalcitol in Combination with Enalapril on the Progression of Experimental Polycystic Kidney Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8110144. [PMID: 34821697 PMCID: PMC8621425 DOI: 10.3390/jcdd8110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Vitamin D secosteroids are intranuclear regulators of cellular growth and suppress the renin-angiotensin system. The aim of this study was to test the hypothesis that the vitamin D receptor agonist, paricalcitol (PC), either alone or with enalapril (E) (an angiotensin-converting enzyme inhibitor), reduces the progression of polycystic kidney disease. Preventative treatment of Lewis polycystic kidney (LPK) and Lewis control rats with PC (0.2 μg/kg i.p. 5 days/week) or vehicle from postnatal weeks 3 to 10 did not alter kidney enlargement. To evaluate the efficacy in established disease, LPK rats received either PC (0.8 μg/kg i.p; 3 days/week), vehicle, E (50 mg/L in water) or the combination of PC + E from weeks 10 to 20. In established disease, PC also did not alter the progression of kidney enlargement, kidney cyst growth or decline in renal function in LPK rats. Moreover, the higher dose of PC was associated with increased serum calcium and weight loss. However, in established disease, the combination of PC + E reduced systolic blood pressure and heart-body weight ratio compared to vehicle and E alone (p < 0.05). In conclusion, the combination of PC + E attenuated cardiovascular disease but caused hypercalcaemia and did not alter kidney cyst growth in LPK rats.
Collapse
Affiliation(s)
- Priyanka S. Sagar
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; (P.S.S.); (S.S.); (A.M.); (A.T.Y.W.)
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW 2145, Australia
| | - Sayanthooran Saravanabavan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; (P.S.S.); (S.S.); (A.M.); (A.T.Y.W.)
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW 2145, Australia
| | - Alexandra Munt
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; (P.S.S.); (S.S.); (A.M.); (A.T.Y.W.)
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW 2145, Australia
| | - Annette T. Y. Wong
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; (P.S.S.); (S.S.); (A.M.); (A.T.Y.W.)
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW 2145, Australia
| | - Gopala K. Rangan
- Michael Stern Laboratory for Polycystic Kidney Disease, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia; (P.S.S.); (S.S.); (A.M.); (A.T.Y.W.)
- Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW 2145, Australia
- Correspondence:
| |
Collapse
|
2
|
Brosnahan GM, Abebe KZ, Moore CG, Bae KT, Braun WE, Chapman AB, Flessner MF, Harris PC, Hogan MC, Perrone RD, Rahbari-Oskoui FF, Steinman TI, Torres VE, The Halt Pkd Investigators. Determinants of Progression in Early Autosomal Dominant Polycystic Kidney Disease: Is it Blood Pressure or Renin-Angiotensin-Aldosterone-System Blockade? Curr Hypertens Rev 2019; 14:39-47. [PMID: 29564978 PMCID: PMC6063360 DOI: 10.2174/1573402114666180322110209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/17/2022]
Abstract
Background The HALT PKD trial in early autosomal dominant polycystic kidney disease (ADPKD) showed that intensive control of systolic blood pressure to 95-110 mmHg was associated with a 14% slower rate of kidney volume growth compared to standard control. It is unclear whether this result was due to greater blockade of the renin-angiotensin-aldosterone system (RAAS) by allowing the use of higher drug doses in the low blood pressure arm, or due to the lower blood pressure per se. Methods In this secondary analysis of HALT PKD Study A, we categorized participants into high and low dose groups based on the median daily equivalent dose of RAAS blocking drugs used after the initial dose titration period. Using linear mixed models, we compared the percent change in total kidney volume and the slope of estimated glomerular filtration rate (eGFR) between the 2 groups. We also assessed the effects of time-varying dose and time-varying blood pressure parameters on these outcomes. Results Subjects in the high dose group (n=252) did not experience a slower increase in total kidney volume than those in the low-dose (n=225) group, after adjustment for age, sex, genotype, and BP arm. The chronic slope of eGFR decline was similar in the 2 groups. Higher time-varying systolic blood pressure was associated with a steeper decline in eGFR. Conclusion ADPKD progression (as detected by eGFR decline and TKV increase) was ameliorated by intense blood pressure control as opposed to pharmacologic intensity of RAAS blockade.
Collapse
Affiliation(s)
| | - Kaleab Z Abebe
- University of Pittsburgh, Pittsburgh, Pennsylvania, PA, United States
| | - Charity G Moore
- University of Pittsburgh, Pittsburgh, Pennsylvania, PA, United States
| | - Kyongtae T Bae
- University of Pittsburgh, Pittsburgh, Pennsylvania, PA, United States
| | | | | | | | | | - Marie C Hogan
- Mayo Clinic, Rochester, Minnesota, MN, United States
| | | | | | - Theodore I Steinman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, MA, United States
| | | | | |
Collapse
|
3
|
Rodenbeck SD, Zarse CA, McKenney-Drake ML, Bruning RS, Sturek M, Chen NX, Moe SM. Intracellular calcium increases in vascular smooth muscle cells with progression of chronic kidney disease in a rat model. Nephrol Dial Transplant 2017; 32:450-458. [PMID: 27510531 PMCID: PMC5837609 DOI: 10.1093/ndt/gfw274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/08/2016] [Indexed: 01/12/2023] Open
Abstract
Background Vascular smooth muscle cells (VSMCs) exhibit phenotypic plasticity, promoting vascular calcification and increasing cardiovascular risk. Changes in VSMC intracellular calcium ([Ca 2+ ] i ) are a major determinant of plasticity, but little is known about changes in [Ca 2+ ] i in chronic kidney disease (CKD). We have previously demonstrated such plasticity in aortas from our rat model of CKD and therefore sought to examine changes in [Ca 2+ ] i during CKD progression. Materials and Methods We examined freshly isolated VSMCs from aortas of normal rats, Cy/+ rats (CKD) with early and advanced CKD, and advanced CKD rats treated without and with 3% calcium gluconate (CKD + Ca 2+ ) to lower parathyroid hormone (PTH) levels. [Ca 2+ ] i was measured with fura-2. Results Cy/+ rats developed progressive CKD, as assessed by plasma levels of blood urea nitrogen, calcium, phosphorus, parathyroid hormone and fibroblast growth factor 23. VSMCs isolated from rats with CKD demonstrated biphasic alterations in resting [Ca 2+ ] i : VSMCs from rats with early CKD exhibited reduced resting [Ca 2+ ] i , while VSMCs from rats with advanced CKD exhibited elevated resting [Ca 2+ ] i . Caffeine-induced sarcoplasmic reticulum (SR) Ca 2+ store release was modestly increased in early CKD and was more drastically increased in advanced CKD. The advanced CKD elevation in SR Ca 2+ store release was associated with a significant increase in the activity of the sarco-endoplasmic reticulum Ca 2+ ATPase (SERCA); however, SERCA2a protein expression was decreased in advanced CKD. Following SR Ca 2+ store release, recovery of [Ca 2+ ] i in the presence of caffeine and extracellular Ca 2+ was attenuated in VSMCs from rats with advanced CKD. This impairment, together with reductions in expression of the Na + /Ca 2+ exchanger, suggest a reduction in Ca 2+ extrusion capability. Finally, store-operated Ca 2+ entry (SOCE) was assessed following SR Ca 2+ store depletion. Ca 2+ entry during recovery from caffeine-induced SR Ca 2+ store release was elevated in advanced CKD, suggesting a role for exacerbated SOCE with progressing CKD. Conclusions With progressive CKD in the Cy/+ rat there is increased resting [Ca 2+ ] i in VSMCs due, in part, to increased SOCE and impaired calcium extrusion from the cell. Such changes may predispose VSMCs to phenotypic changes that are a prerequisite to calcification.
Collapse
Affiliation(s)
- Stacey Dineen Rodenbeck
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chad A. Zarse
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, 950 W. Walnut Street, R2-202, Indianapolis, IN 46202, USA
| | - Mikaela L. McKenney-Drake
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rebecca S. Bruning
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael Sturek
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Neal X. Chen
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, 950 W. Walnut Street, R2-202, Indianapolis, IN 46202, USA
| | - Sharon M. Moe
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, 950 W. Walnut Street, R2-202, Indianapolis, IN 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medicine, Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| |
Collapse
|
4
|
Malas TB, Formica C, Leonhard WN, Rao P, Granchi Z, Roos M, Peters DJM, 't Hoen PAC. Meta-analysis of polycystic kidney disease expression profiles defines strong involvement of injury repair processes. Am J Physiol Renal Physiol 2017; 312:F806-F817. [PMID: 28148532 DOI: 10.1152/ajprenal.00653.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 12/25/2022] Open
Abstract
Polycystic kidney disease (PKD) is a major cause of end-stage renal disease. The disease mechanisms are not well understood and the pathogenesis toward renal failure remains elusive. In this study, we present the first RNASeq analysis of a Pkd1-mutant mouse model in a combined meta-analysis with other published PKD expression profiles. We introduce the PKD Signature, a set of 1,515 genes that are commonly dysregulated in PKD studies. We show that the signature genes include many known and novel PKD-related genes and functions. Moreover, genes with a role in injury repair, as evidenced by expression data and/or automated literature analysis, were significantly enriched in the PKD Signature, with 35% of the PKD Signature genes being directly implicated in injury repair. NF-κB signaling, epithelial-mesenchymal transition, inflammatory response, hypoxia, and metabolism were among the most prominent injury or repair-related biological processes with a role in the PKD etiology. Novel PKD genes with a role in PKD and in injury were confirmed in another Pkd1-mutant mouse model as well as in animals treated with a nephrotoxic agent. We propose that compounds that can modulate the injury-repair response could be valuable drug candidates for PKD treatment.
Collapse
Affiliation(s)
- Tareq B Malas
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Chiara Formica
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Wouter N Leonhard
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| | | | | | - Marco Roos
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; and
| |
Collapse
|
5
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a signalopathy of renal tubular epithelial cells caused by naturally occurring mutations in two distinct genes, polycystic kidney disease 1 (PKD1) and 2 (PKD2). Genetic variants in PKD1, which encodes the polycystin-1 (PC-1) protein, remain the predominant factor associated with the pathogenesis of nearly two-thirds of all patients diagnosed with PKD. Although the relationship between defective PC-1 with renal cystic disease initiation and progression remains to be fully elucidated, there are numerous clinical studies that have focused upon the control of effector systems involving heterotrimeric G protein regulation. A major regulator in the activation state of heterotrimeric G proteins are G protein-coupled receptors (GPCRs), which are defined by their seven transmembrane-spanning regions. PC-1 has been considered to function as an unconventional GPCR, but the mechanisms by which PC-1 controls signal processing, magnitude, or trafficking through heterotrimeric G proteins remains to be fully known. The diversity of heterotrimeric G protein signaling in PKD is further complicated by the presence of non-GPCR proteins in the membrane or cytoplasm that also modulate the functional state of heterotrimeric G proteins within the cell. Moreover, PC-1 abnormalities promote changes in hormonal systems that ultimately interact with distinct GPCRs in the kidney to potentially amplify or antagonize signaling output from PC-1. This review will focus upon the canonical and noncanonical signaling pathways that have been described in PKD with specific emphasis on which heterotrimeric G proteins are involved in the pathological reorganization of the tubular epithelial cell architecture to exacerbate renal cystogenic pathways.
Collapse
Affiliation(s)
- Taketsugu Hama
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
6
|
Saigusa T, Bell PD. Molecular pathways and therapies in autosomal-dominant polycystic kidney disease. Physiology (Bethesda) 2016; 30:195-207. [PMID: 25933820 DOI: 10.1152/physiol.00032.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is the most prevalent inherited renal disease, characterized by multiple cysts that can eventually lead to kidney failure. Studies investigating the role of primary cilia and polycystins have significantly advanced our understanding of the pathogenesis of PKD. This review will present clinical and basic aspects of ADPKD, review current concepts of PKD pathogenesis, evaluate potential therapeutic targets, and highlight challenges for future clinical studies.
Collapse
Affiliation(s)
- Takamitsu Saigusa
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina; and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - P Darwin Bell
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina; and Ralph Johnson VA Medical Center, Charleston, South Carolina
| |
Collapse
|
7
|
Saigusa T, Dang Y, Bunni MA, Amria MY, Steele SL, Fitzgibbon WR, Bell PD. Activation of the intrarenal renin-angiotensin-system in murine polycystic kidney disease. Physiol Rep 2015; 3:3/5/e12405. [PMID: 25999403 PMCID: PMC4463833 DOI: 10.14814/phy2.12405] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mechanism for early hypertension in polycystic kidney disease (PKD) has not been elucidated. One potential pathway that may contribute to the elevation in blood pressure in PKD is the activation of the intrarenal renin-angiotensin-system (RAS). For example, it has been shown that kidney cyst and cystic fluid contains renin, angiotensin II (AngII), and angiotensinogen (Agt). Numerous studies suggest that ciliary dysfunction plays an important role in PKD pathogenesis. However, it is unknown whether the primary cilium affects the intrarenal RAS in PKD. The purpose of this study was to determine whether loss of cilia or polycystin 1 (PC1) increases intrarenal RAS in mouse model of PKD. Adult Ift88 and Pkd1 conditional floxed allele mice with or without cre were administered tamoxifen to induce global knockout of the gene. Three months after tamoxifen injection, kidney tissues were examined by histology, immunofluorescence, western blot, and mRNA to assess intrarenal RAS components. SV40 immortalized collecting duct cell lines from hypomorphic Ift88 mouse were used to assess intrarenal RAS components in collecting duct cells. Mice without cilia and PC1 demonstrated increased kidney cyst formation, systolic blood pressure, prorenin, and kidney and urinary angiotensinogen levels. Interestingly immunofluorescence study of the kidney revealed that the prorenin receptor was localized to the basolateral membrane of principal cells in cilia (−) but not in cilia (+) kidneys. Collecting duct cAMP responses to AngII administration was greater in cilia (−) vs. cilia (+) cells indicating enhanced intrarenal RAS activity in the absence of cilia. These data suggest that in the absence of cilia or PC1, there is an upregulation of intrarenal RAS components and activity, which may contribute to elevated blood pressure in PKD.
Collapse
Affiliation(s)
- Takamitsu Saigusa
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - Yujing Dang
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - Marlene A Bunni
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - May Y Amria
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - Stacy L Steele
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - Wayne R Fitzgibbon
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| | - P Darwin Bell
- Division of Nephrology, Department of Medicine, Medical University of South Carolina Charleston SC and Ralph Johnson VA Medical Center, Charleston, South Carolina
| |
Collapse
|
8
|
Anderson S, Oyama TT, Lindsley JN, Schutzer WE, Beard DR, Gattone VH, Komers R. 2-Hydroxyestradiol slows progression of experimental polycystic kidney disease. Am J Physiol Renal Physiol 2011; 302:F636-45. [PMID: 22160773 DOI: 10.1152/ajprenal.00265.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Male gender is a risk factor for progression of polycystic kidney disease (PKD). 17β-Estradiol (E2) protects experimentally, but clinical use is limited by adverse effects. Novel E2 metabolites provide many benefits of E2 without stimulating the estrogen receptor, and thus may be safer. We hypothesized that E2 metabolites are protective in a model of PKD. Studies were performed in male control Han:SPRD rats, and in cystic males treated with orchiectomy, 2-methoxyestradiol, 2-hydroxyestradiol (2-OHE), or vehicle, from age 3 to 12 wk. Cystic rats exhibited renal functional impairment (∼50% decrease in glomerular filtration and renal plasma flow rates, P < 0.05) and substantial cyst development (20.5 ± 2.0% of cortex area). 2-OHE was the most effective in limiting cysts (6.0 ± 0.7% of cortex area, P < 0.05 vs. vehicle-treated cystic rats) and preserving function, in association with suppression of proliferation, apoptosis, and angiogenesis markers. Downregulation of p21 expression and increased expression of Akt, the mammalian target of rapamycin (mTOR), and some of its downstream effectors were significantly reversed by 2-OHE. Thus, 2-OHE limits disease progression in a cystic rodent model. Mechanisms include reduced renal cell proliferation, apoptosis, and angiogenesis. These effects may be mediated, at least in part, by preservation of p21 and suppression of Akt and mTOR. Estradiol metabolites may represent a novel, safe intervention to slow progression of PKD.
Collapse
Affiliation(s)
- Sharon Anderson
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Geographic differences in the increasing ESRD rate have disappeared in Japan. Clin Exp Nephrol 2011; 15:708-713. [PMID: 21638004 DOI: 10.1007/s10157-011-0466-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 05/16/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND We previously showed that there are marked geographic differences in the incidence of end-stage renal disease (ESRD) within Japan. In addition, the use of renin-angiotensin system inhibitors was found to be inversely correlated with the increasing ESRD rate. It was recently demonstrated that the incidence of ESRD due to diabetic nephropathy is declining in both Europe and USA. Therefore, we investigated the increasing ESRD rate and its geographic difference in Japan. METHODS Each year, the Japanese Society for Dialysis Therapy reports the numbers of patients initiating maintenance dialysis therapy in each prefecture of Japan. We used old (1984-1991) and recent (2001-2008) data to compare the increasing ESRD rate, which was estimated from the slope of the regression line of the annual incidence corrected for population, between the two periods in 11 regions of Japan. RESULTS Increasing ESRD rate almost halved, from 11.1 ± 5.6 to 5.4 ± 0.7/million per year from the old to the recent period. Deceleration of the increasing ESRD rate from the old to the recent period was correlated with the incidence in the old period across 11 regions (r = 0.81, p < 0.003); i.e., the deceleration was greater in the regions where ESRD incidence had been higher. Whereas the increasing ESRD rate was significantly different among regions in the old period, this was not the case in the recent period, resulting in uniformity throughout Japan. CONCLUSIONS The increasing ESRD rate is slowing in Japan, and its geographic differences, previously observed, have disappeared.
Collapse
|
10
|
Sun Y, Zhou H, Yang BX. Drug discovery for polycystic kidney disease. Acta Pharmacol Sin 2011; 32:805-16. [PMID: 21642949 PMCID: PMC4009953 DOI: 10.1038/aps.2011.29] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 03/17/2011] [Indexed: 12/19/2022]
Abstract
In polycystic kidney disease (PKD), a most common human genetic diseases, fluid-filled cysts displace normal renal tubules and cause end-stage renal failure. PKD is a serious and costly disorder. There is no available therapy that prevents or slows down the cystogenesis and cyst expansion in PKD. Numerous efforts have been made to find drug targets and the candidate drugs to treat PKD. Recent studies have defined the mechanisms underlying PKD and new therapies directed toward them. In this review article, we summarize the pathogenesis of PKD, possible drug targets, available PKD models for screening and evaluating new drugs as well as candidate drugs that are being developed.
Collapse
Affiliation(s)
- Ying Sun
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Hong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| | - Bao-xue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing 100191, China
| |
Collapse
|
11
|
Jia G, Kwon M, Liang HL, Mortensen J, Nilakantan V, Sweeney WE, Park F. Chronic treatment with lisinopril decreases proliferative and apoptotic pathways in autosomal recessive polycystic kidney disease. Pediatr Nephrol 2010; 25:1139-46. [PMID: 20229187 DOI: 10.1007/s00467-010-1477-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 01/19/2010] [Accepted: 01/25/2010] [Indexed: 02/04/2023]
Abstract
Angiotensin converting enzyme (ACE) inhibition is a common therapeutic modality in the treatment of autosomal recessive polycystic kidney disease (ARPKD). This study was designed to investigate whether chronic inhibition of ACE would have a therapeutic effect in attenuating the progression of renal cystogenesis in an orthologous rat model of ARPKD, the polycystic kidney (PCK) rat. Lisinopril (3 mg/kg per day) was administered orally for a period of 12 weeks, beginning at post-natal week 4. Lisinopril treatment resulted in an approximately 30% improvement in the collecting duct cystic indices (CT CI) of PCK animals. Activation of extracellular signal-regulated kinase 1 (ERK1) and 2 (ERK2), proliferative signaling markers, and proliferating cell nuclear antigen (PCNA), an end-point marker for proliferation, was reduced following chronic treatment with lisinopril compared to that in vehicle-treated PCK rats. To assess whether apoptotic pathways were altered due to chronic ACE inhibition, we examined p38 mitogen activated protein kinase (MAPK) and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), which are markers of apoptotic signaling cascades. p38 MAPK was significantly reduced (P < 0.0001) following chronic treatment with lisinopril, but no change in the activation of SAPK/JNK could be detected by immunoblot analysis. Lisinopril treatment resulted in a significant reduction (P < 0.01) in cleaved caspase-7 levels, but not caspase-3 activity, in PCK rat kidneys compared to the vehicle-treated PCK rat kidneys. Proteinuria was completely ameliorated in the presence of chronic ACE inhibition in the lisinopril-treated rats compared with the vehicle-treated PCK rats. In all, these findings demonstrated that chronic ACE inhibition can beneficially alter proliferative and apoptotic pathways to promote therapeutic reductions in renal cyst development in ARPKD.
Collapse
Affiliation(s)
- Guangfu Jia
- Department of Medicine, Division of Nephrology, Medical College of Wisconsin, 8701 Watertown Plank Road, HRC 4100, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Belibi FA, Edelstein CL. Novel targets for the treatment of autosomal dominant polycystic kidney disease. Expert Opin Investig Drugs 2010; 19:315-28. [PMID: 20141351 DOI: 10.1517/13543781003588491] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Autosomal dominant (AD) polycystic kidney disease (PKD) is the most common life-threatening hereditary disorder. There is currently no therapy that slows or prevents cyst formation and kidney enlargement in humans. An increasing number of animal studies have advanced our understanding of molecular and cellular targets of PKD. AREAS COVERED IN THE REVIEW The purpose of this review is to summarize the molecular and cellular targets involved in cystogenesis and to update on the promising therapies that are being developed and tested based on knowledge of these molecular and cellular targets. WHAT THE READER WILL GAIN Insight into the pathogenesis of PKD and how a better understanding of the pathogenesis of PKD has led to the development of potential therapies to inhibit cyst formation and/or growth and improve kidney function. TAKE HOME MESSAGE The results of animal studies in PKD have led to the development of clinical trials testing potential new therapies to reduce cyst formation and/or growth. A vasopressin V2 receptor antagonist, mTOR inhibitors, blockade of the renin-angiotensin system and statins that reduce cyst formation and improve renal function in animal models of PKD are being tested in interventional studies in humans.
Collapse
Affiliation(s)
- Franck A Belibi
- University of Colorado Denver, Division of Renal Diseases and Hypertension, Box C281, 12700 East 19th Ave, Aurora, CO 80045, USA
| | | |
Collapse
|
13
|
Torres VE. Treatment strategies and clinical trial design in ADPKD. Adv Chronic Kidney Dis 2010; 17:190-204. [PMID: 20219622 DOI: 10.1053/j.ackd.2010.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/06/2010] [Accepted: 01/06/2010] [Indexed: 12/22/2022]
Abstract
More frequent utilization and continuous improvement of imaging techniques has enhanced appreciation of the high phenotypic variability of autosomal dominant polycystic kidney disease, improved understanding of its natural history, and facilitated the observation of its structural progression. At the same time, identification of the PKD1 and PKD2 genes has provided clues to how the disease develops when they (genetic mechanisms) and their encoded proteins (molecular mechanisms) are disrupted. Interventions designed to rectify downstream effects of these disruptions have been examined in animal models, and some are currently tested in clinical trials. Efforts are underway to determine whether interventions capable to slow down, stop, or reverse structural progression of the disease will also prevent decline of renal function and improve clinically significant outcomes.
Collapse
|
14
|
Zafar I, Belibi FA, He Z, Edelstein CL. Long-term rapamycin therapy in the Han:SPRD rat model of polycystic kidney disease (PKD). Nephrol Dial Transplant 2009; 24:2349-53. [PMID: 19321761 DOI: 10.1093/ndt/gfp129] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Short-term studies have demonstrated that rapamycin or everolimus treatment decreases cyst formation and improves renal function in animal models of polycystic kidney disease (PKD). Autosomal dominant polycystic kidney disease (ADPKD) patients would likely require life-long treatment with rapamycin. METHODS Male Han:SPRD rats with PKD (Cy/+) were treated with rapamycin (0.2 mg/kg/day IP) or vehicle from 1 to 12 months of age. Mean trough levels of rapamycin (ng/mL) were 6.6 +/- 0.1 at 8 weeks of age. Twelve-month-old littermates (+/+) were used as normal controls. RESULTS Twelve-month-old male Cy/+ rats treated with the vehicle had a more than doubling of kidney volume, severe chronic renal failure, severe hypertension and increased heart weight compared to normal littermate controls (+/+). After rapamycin treatment, 12-month-old Cy/+ rats had markedly improved kidney volume, renal function, blood pressure and heart weight not statistically different from controls. Rapamycin reduced the cyst volume density (CVD) by 72%. Mammalian target of rapamycin (mTOR) activation in the heart, as evidenced by a marked increase in the phospho-S6 protein that was inhibited by rapamycin, was demonstrated in 12-month-old Cy/+ rats. CONCLUSION In conclusion, long-term rapamycin treatment in Cy/+ rats results in a normalization of kidney volume, renal function, blood pressure and heart weight. The novel finding that rapamycin decreases hypertension, heart enlargement and mTOR signalling in the heart in PKD rats is reported. The only side effect of rapamycin treatment was an 11% decrease in body weight.
Collapse
Affiliation(s)
- Iram Zafar
- Division of Renal Diseases and Hypertension, University of Colorado Health Sciences Center, Denver, CO, USA
| | | | | | | |
Collapse
|
15
|
Kakoki M, Smithies O. The kallikrein-kinin system in health and in diseases of the kidney. Kidney Int 2009; 75:1019-30. [PMID: 19190676 DOI: 10.1038/ki.2008.647] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since kallikrein was discovered as a vasodilatory substance in human urine, the kallikrein-kinin system (KKS) has been considered to play a physiological role in controlling blood pressure. Gene targeting experiments in mice in which the KKS has been inactivated to varying degrees have, however, questioned this role, because basal blood pressures are not altered. Rather, these experiments have shown that the KKS has a different and important role in preventing changes associated with normal senescence in mice, and in reducing the nephropathy and accelerated senescence-associated phenotypes induced in mice by diabetes. Other experiments have shown that the KKS suppresses mitochondrial respiration, partly by nitric oxide and prostaglandins, and that this suppression may be a key to understanding how the KKS influences senescence-related diseases. Here we review the logical progression and experimental data leading to these conclusions, and discuss their relevance to human conditions.
Collapse
Affiliation(s)
- Masao Kakoki
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599-7525, USA.
| | | |
Collapse
|
16
|
Nunes ACF, Milani V, Porsch DB, Rossato LB, Mattos CB, Roisenberg I, Barros EJG. Frequency and clinical profile of patients with polycystic kidney disease in southern Brazil. Ren Fail 2008; 30:169-73. [PMID: 18300116 DOI: 10.1080/08860220701810265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common genetic nephropathies, affecting one in every 800-1000 individuals in the worldwide general population and 5-10% of hemodialysis patients. Little data concerning the prevalence of ADPKD in Brazil are available. Thus, the aim of the present study was to investigate both the frequency and clinical profile of ADPKD among hemodialysis patients in south of Brazil. METHODS This cross-sectional study consisted of patients from 24 hemodialysis centers. Patients were screened for ADPKD by clinical, laboratorial, and image examination in medical records. RESULTS Of 1326 patients on hemodialysis in the south of Brazil that composed this study, 99 (7.5%) had polycystic kidney as primary cause for chronic renal failure. Comparisons between ADPKD and non-ADPKD patients revealed no differences regarding mean age, gender, and ethnicity. CONCLUSIONS Our data revealed that ADPKD is prevalent among patients on hemodialysis in the south of Brazil. In addition, the clinical profile of ADPKD is similar to reported data from North America and Europe, putatively due to the similar ethnic composition mainly based on European descents.
Collapse
Affiliation(s)
- Ane Cláudia Fernandes Nunes
- Laboratory of Cellular, Genetics and Molecular Nephrology/ LIM-29, Division of Nephrology, São Paulo University Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
17
|
Zafar I, Tao Y, Falk S, McFann K, Schrier RW, Edelstein CL. Effect of statin and angiotensin-converting enzyme inhibition on structural and hemodynamic alterations in autosomal dominant polycystic kidney disease model. Am J Physiol Renal Physiol 2007; 293:F854-9. [PMID: 17581927 DOI: 10.1152/ajprenal.00059.2007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common life-threatening hereditary disease and is the fourth most common cause of end-stage kidney disease. Preclinical studies to identify effective interventions to prevent or slow progression of PKD nephropathy are therefore direly needed. Heterozygous Han:SPRD rats are an autosomal dominant PKD model with many of the characteristics of ADPKD in humans. In the present study, parameters known to antedate the decrease in renal function, namely, renal structure, renal blood flow (RBF), and mean arterial pressure (MAP), were evaluated with three different interventions, namely, HMG-CoA reductase inhibition with lovastatin, angiotensin-converting enzyme (ACE) inhibition with enalapril, and a combination of these two treatments. The statin therapy demonstrated structural and functional benefits, including increased RBF and decreased BUN, independently of a change in MAP, while the ACE inhibition therapy demonstrated structural benefit in association with a decrease in MAP. An enhancement of these protective interventions in this autosomal dominant PKD model was not demonstrated with the combined treatment.
Collapse
Affiliation(s)
- Iram Zafar
- University of Colorado School of Medicine, 4200 East Ninth Ave., B173, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
18
|
Torres VE, King BF, Chapman AB, Brummer ME, Bae KT, Glockner JF, Arya K, Risk D, Felmlee JP, Grantham JJ, Guay-Woodford LM, Bennett WM, Klahr S, Meyers CM, Zhang X, Thompson PA, Miller JP. Magnetic resonance measurements of renal blood flow and disease progression in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 2006; 2:112-20. [PMID: 17699395 DOI: 10.2215/cjn.00910306] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Whether changes in renal blood flow (RBF) are associated with and possibly contribute to cystic disease progression in autosomal dominant polycystic kidney disease (ADPKD) has not been ascertained. The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) was created to develop imaging techniques and analyses to evaluate progression. A total of 131 participants with early ADPKD had measurements of RBF and total kidney (TKV) and cyst (TCV) volumes by magnetic resonance and of GFR by iothalamate clearance at baseline and 1, 2, and 3 yr. The effects of age, gender, body mass index, hypertension status, mean arterial pressure (MAP), TKV, TCV, RBF, renal vascular resistance (RVR), GFR, serum uric acid, HDL and LDL cholesterol, 24-h urine volume, sodium (UNaE) and albumin (UAE) excretions, and estimated protein intake were examined at baseline on TKV, TCV, and GFR slopes. TKV and TCV increased, RBF decreased, and GFR remained stable. TKV, TCV, RVR, serum uric acid, UAE, UNaE, age, body mass index, MAP, and estimated protein intake were positively and RBF and GFR negatively correlated with TKV and TCV slopes. TKV, RBF, UNaE, and UAE were independent predictors of TKV and TCV slopes (structural disease progression). TKV, TCV, RVR, and MAP were negatively and RBF positively correlated with GFR slopes. Regression to the mean confounded the analysis of GFR slopes. TKV and RBF were independent predictors of GFR decline (functional disease progression). In ADPKD, RBF reduction (1) parallels TKV increase, (2) precedes GFR decline, and (3) predicts structural and functional disease progression.
Collapse
|
19
|
Usami T, Kimura G. Proposal for mapping renal failure in Japan and its application for strategy to arrest endstage renal disease. Clin Exp Nephrol 2006; 10:8-12. [PMID: 16544172 DOI: 10.1007/s10157-005-0404-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 12/22/2005] [Indexed: 01/13/2023]
Abstract
Remarkable regional differences in the annual incidence of endstage renal disease (ESRD) was found within Japan, which has a relatively homogeneous ethnic composition. In addition, there existed no regional difference in the incidence of ESRD due to polycystic kidney disease, the major genetic disorder of the kidneys. These findings suggest that the presence of factors other than genetic disposition contribute to the differences. On the other hand, there were similar regional variations in the incidences of ESRD between two causes of ESRD: chronic glomerulonephritis and diabetic nephropathy. Because it is unlikely that the regional distribution of underlying disease incidence and the disease-specific progression rate would be similar for two different causes, this observation suggests that factors governing the progression rate, which operate commonly for all causes of ESRD but differ among regions, may play an important role in generating the regional differences. Finally, we examined regional differences in the amounts of inhibitors of the renin-angiotensin system used, especially angiotensin-converting enzyme (ACE) inhibitors, in our search for an explanation of the regional differences in ESRD dynamics. Among antihypertensive agents examined, only ACE inhibitors were negatively correlated with the annual incidence of ESRD. The renal protective effects of ACE inhibitors have been established by results with animal models of progressive nephropathy and by large-scale clinical trials. Our epidemiological results for Japan as a whole show the same protective effects still more convincingly from a different approach. It is not completely clear yet at present, however, how regional variations in the incidence of ESRD are generated. If we could identify in future the factors that contribute to the regional differences, strategies for the treatment of renal disease will become available from different angles. Thus, much effort will be encouraged for the further analysis of regional differences in ESRD dynamics.
Collapse
Affiliation(s)
- Takeshi Usami
- Department of Internal Medicine and Pathophysiology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan.
| | | |
Collapse
|
20
|
Stringer KD, Komers R, Osman SA, Oyama TT, Lindsley JN, Anderson S. Gender hormones and the progression of experimental polycystic kidney disease. Kidney Int 2005; 68:1729-39. [PMID: 16164649 DOI: 10.1111/j.1523-1755.2005.00589.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Male gender is a risk factor for progression of autosomal-dominant polycystic kidney disease (ADPKD), clinically and in the Han:SPRD rat model. Orchiectomy limits progression, but mechanisms of the detrimental effect of androgen, and/or beneficial effects of estrogen, are not known. This protocol tested the hypothesis that male gender (intact androgen status) promotes progression, while female gender (intact estrogen status) is protective; and that these disease-modifying effects are due to changes in expression of known fibrotic mediators. METHODS Studies were performed in male and female noncystic control (+/+) and cystic (+/-) rats subjected to orchiectomy, ovariectomy, or sham operation. At 12 weeks of age, renal function was measured. Blood and kidneys were taken for measurement of plasma and renal renin, endothelin (ET-1), endothelial nitric oxide synthase (eNOS), and vascular endothelial growth factor (VEGF), using biochemical, protein expression, and immunohistochemical methods. RESULTS Cystic male rats exhibited significantly reduced glomerular filtration (GFR) and effective renal plasma flow (ERPF) rates, with suppression of plasma and renal renin, up-regulation of renal ET-1 and eNOS, and down-regulation of renal VEGF expression. Orchiectomy attenuated the fall in GFR and ERPF, while numerically limiting changes in eNOS and VEGF. Female rats exhibited less cystic growth, with normal renin status, lesser elevation of renal ET-1, and proportionately lesser changes in VEGF and eNOS. Ovariectomy led to higher blood pressure and reduced GFR and ERPF, with a trend toward upregulation of ET-1, and significant down-regulation of VEGF and eNOS. CONCLUSION Female gender is protective, but ovariectomy attenuates the protective effect of female gender, in association with changes in renal expression of ET-1, VEGF, and eNOS. The accelerated disease in male rats can be attenuated by orchiectomy and consequent changes in expression of disease mediators.
Collapse
Affiliation(s)
- Kenneth D Stringer
- Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
21
|
Grantham JJ, Chapman AB, Torres VE. Volume Progression in Autosomal Dominant Polycystic Kidney Disease: The Major Factor Determining Clinical Outcomes. Clin J Am Soc Nephrol 2005; 1:148-57. [PMID: 17699202 DOI: 10.2215/cjn.00330705] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autosomal dominant polycystic kidney disease (PKD) is a hereditary condition characterized by the progressive enlargement of innumerable renal cysts that contribute to life-altering morbidity early in the course of the disease. Evidence indicates that the rate of increase in kidney volume can be reliably measured by magnetic resonance or computed tomography imaging, thus providing objective means to judge the effectiveness of therapies that are targeted to the aberrant growth of renal tubules. It is now possible, therefore, to monitor the effectiveness of potential therapies on the signature abnormality in autosomal dominant PKD before irreversible damage has been done by the cysts. Evidence accumulated from human cross-sectional and longitudinal studies and longitudinal studies of PKD models in animals provide strong support for the view that reducing the rate of kidney volume enlargement will ameliorate the late-stage development of renal insufficiency.
Collapse
|
22
|
Warford-Woolgar L, Peng CYC, Shuhyta J, Wakefield A, Sankaran D, Ogborn M, Aukema HM. Selectivity of cyclooxygenase isoform activity and prostanoid production in normal and diseased Han:SPRD-cy rat kidneys. Am J Physiol Renal Physiol 2005; 290:F897-904. [PMID: 16234308 DOI: 10.1152/ajprenal.00332.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Renal prostanoids are important regulators of normal renal function and maintenance of renal homeostasis. In diseased kidneys, renal cylooxygenase (COX) expression and prostanoid formation are altered. With the use of the Han:Sprague-Dawley-cy rat, the aim of this study was to determine the relative contribution of renal COX isoforms (protein, gene expression, and activity) on renal prostanoid production [thromboxane B(2) (TXB(2), stable metabolite of TXA(2)), prostaglandin E(2) (PGE(2)), and 6-keto-prostaglandin F(1alpha) (6-keto-PGF(1alpha), stable metabolite of PGI(2))] in normal and diseased kidneys. In diseased kidneys, COX-1-immunoreactive protein and mRNA levels were higher and COX-2 levels were lower compared with normal kidneys. In contrast, COX activities were higher in diseased compared with normal kidneys for both COX-1 [0.05 +/- 0.02 vs. 0.45 +/- 0.11 ng prostanoids x min(-1) x mg protein(-1) (P < 0.001)] and COX-2 [0.64 +/- 0.10 vs. 2.32 +/- 0.22 ng prostanoids x min(-1).mg protein(-1) (P < 0.001)]. As the relative difference in activity was greater for COX-1, the ratio of COX-1/COX-2 was higher in diseased compared with normal kidneys, although the predominant activity was still due to the COX-2 isoform in both genotypes. Endogenous and steady-state in vitro levels of prostanoids were approximately 2-10 times higher in diseased compared with normal kidneys. The differences between normal and diseased kidney prostanoids were in the order of TXB(2) > 6-keto-PGF(1alpha) > PGE(2), as determined by higher renal prostanoid levels and COX activity ratios of TXB(2)/6-keto-PGF(1alpha), TXB(2)/PGE(2), and 6-keto-PGF(1alpha)/PGE(2). This specificity in both the COX isoform type and for the prostanoids produced has implications for normal and diseased kidneys in treatments involving selective inhibition of COX isoforms.
Collapse
Affiliation(s)
- Lori Warford-Woolgar
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Kato N, Usami T, Fukuda M, Motokawa M, Kamiya Y, Yoshida A, Kimura G. Different regional dynamics of end-stage renal disease in Japan by different causes. Nephrology (Carlton) 2005; 10:400-4. [PMID: 16109089 DOI: 10.1111/j.1440-1797.2005.00404.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND We recently showed that there were clear regional differences in the dynamics of end-stage renal disease (ESRD) within Japan, which has an ethnically homogenous population. We speculate on the reason for these regional differences by correlating the regional distributions in the incidence of ESRD due to each of the following individual causes of ESRD: chronic glomerulonephritis (CGN), diabetic nephropathy (DMN) and polycystic kidney disease (PKD). METHODS The number of ESRD patients entering maintenance dialysis therapy due to individual causes of renal disease in each prefecture was reported annually for a 6-year period by the Japanese Society for Dialysis Therapy. After combining data from several prefectures into 11 geopolitical regions in Japan, the mean annual incidence of ESRD across the 11 regions was correlated among the three causes of ESRD. RESULTS There were significant regional differences in the incidence of ESRD due to CGN (P<0.0001) and DMN (P=0.0015), the distributions of which were similar to each other across the 11 regions. In contrast, no regional differences were found in the incidence of ESRD due to PKD (P=0.6) as the major genetic disorder of the kidneys, suggesting that genetic backgrounds are relatively uniform throughout Japan. The regional distributions due to PKD were not correlated with those due to other causes: CGN and DMN. CONCLUSION Risk factors common to nephropathy progression, rather than an underlying disease incidence and genetic predisposition, might contribute to regional differences in the overall ESRD incidence in Japan. Other possibilities such as the prevalence of underlying diseases, and acceptance or rejection rates into treatment programmes must be considered further for better explanations.
Collapse
Affiliation(s)
- Nobuo Kato
- Department of Internal Medicine and Pathophysiology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Krishnamurthi G, Stantz KM, Steinmetz R, Gattone VH, Cao M, Hutchins GD, Liang Y. Functional imaging in small animals using X-ray computed tomography--study of physiologic measurement reproducibility. IEEE TRANSACTIONS ON MEDICAL IMAGING 2005; 24:832-43. [PMID: 16011312 DOI: 10.1109/tmi.2005.851385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
X-ray computed tomography (CT) has been traditionally used for morphologic analysis and in the recent past has been used for physiology imaging. This paper seeks to demonstrate functional CT as an effective tool for monitoring changes in tissue physiology associated with disease processes and cellular and molecular level therapeutic processes. We investigated the effect of noise and sampling time on the uncertainty of tissue physiologic parameters. A whole body compartmental model of mouse was formulated to simulate tissue time density curves and study the deviation of tissue physiologic parameters from their true values. These results were then used to determine the appropriate scanning protocols for the experimental studies. Dynamic contrast enhanced CT (DCE-CT) was performed in mice following the injection of hydrophilic iodinated contrast agent (CA) at three different injection rates, namely 0.5 ml/min, 1 ml/min, and 2.0 ml/min. These experiments probed the Nyquist sampling limit for reproducibility of tissue physiologic parameters. Separate experiments were performed with three mice at four different X-ray tube currents corresponding to different image noise values. A two-compartment model (2CM) model was formulated to describe the contrast kinematics in the kidney cortex. Three different 2CMs were implemented namely the 4-parameter (4P), 5-parameter (5P), and the 6-parameter (6P) model. The tissue kinematics is fitted to the models by using the Levenberg-Marquardt algorithm implemented in IDL (RSI Inc.) programming language to minimize the weighted sum of squares. The relevant tissue physiologic parameters extracted from the models are the renal blood flow (RBF), glomerular filtration rate (GFR), fractional plasma volume, fractional tubular volumes and urine formation rates. The experimental results indicate that the deviation of the tissue physiologic parameters is within the limits required for tracking disease physiology in vivo and thus small animal functional X-ray CT would be able to determine changes in tissue physiology in vivo.
Collapse
|
25
|
Wong H, Vivian L, Weiler G, Filler G. Patients with autosomal dominant polycystic kidney disease hyperfiltrate early in their disease. Am J Kidney Dis 2004; 43:624-8. [PMID: 15042539 DOI: 10.1053/j.ajkd.2003.12.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) ranks among the most common genetic disorders. The development of end-stage renal failure usually is after the fourth decade of life. Angiotensin-converting enzyme (ACE) inhibitors often are used as agents to slow the progression of renal failure, although their effectiveness and starting point in ADPKD remain unclear. METHODS We measured technetium 99m diethylenetriamine pentaacetic acid glomerular filtration rate (GFR) and serum cystatin C (Cys-C) levels in 18 children with ADPKD and 41 control patients. Data are given as mean +/- SD. Mean age was 9.8 +/- 5.9 years, mean height was 137.5 +/- 34.3 cm, and mean weight was 39.2 +/- 22.8 kg in the ADPKD group, not significantly different from controls, with an average age of 10.4 +/- 4.9 years, height of 138.0 +/- 26.1 cm, and weight of 38.0 +/- 16.8 kg. RESULTS Mean serum creatinine levels did not differ between the ADPKD (0.6 +/- 0.2 mg/dL [51.1 +/- 20.4 micromol/L]) and control groups (0.7 +/- 0.2 mg/dL [59.8 +/- 15.3 micromol/L]; P = 0.19). Mean GFR was 142 +/- 33.2 mL/min/1.73 m2 in the ADPKD group, significantly greater than that in controls (110 +/- 12 mL/min/1.73 m2; P < 0.0001). Mean Cys-C level for the ADPKD group was 0.71 +/- 0.11 mg/L, significantly lower than that of controls (0.81 +/- 0.12 mg/L; P = 0.0011). No patient with ADPKD had hypertension, and only 1 patient had minimal microalbuminuria. Although renal length on ultrasound was significantly increased, there was no correlation between renal length and GFR or number of cysts. CONCLUSION Therefore, the high GFR measurements represent early hyperfiltration in children and adolescents with ADPKD, which may give a rationale to start ACE inhibitor therapy.
Collapse
Affiliation(s)
- Hubert Wong
- Department of Pediatrics, Division of Pediatric Nephrology, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
26
|
Guay-Woodford LM. Murine models of polycystic kidney disease: molecular and therapeutic insights. Am J Physiol Renal Physiol 2003; 285:F1034-49. [PMID: 14600027 DOI: 10.1152/ajprenal.00195.2003] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous murine (mouse and rat) models of polycystic kidney disease (PKD) have been described in which the mutant phenotype results from a spontaneous mutation or engineering via chemical mutagenesis, transgenic technologies, or gene-specific targeting in mouse orthologs of human PKD genes. These murine phenotypes closely resemble human PKD, with common abnormalities observed in tubular epithelia, the interstitial compartment, and the extracellular matrix of cystic kidneys. In both human and murine PKD, genetic background appears to modulate the renal cystic phenotype. In murine models, these putative modifying effects have been dissected into discrete factors called quantitative trait loci and genetically mapped. Several lines of experimental evidence support the hypothesis that PKD genes and their modifiers may define pathways involved in cystogenesis and PKD progression. Among the various pathway abnormalities described in murine PKD, recent provocative data indicate that structural and/or functional defects in the primary apical cilia of tubular epithelia may play a key role in PKD pathogenesis. This review describes the most widely studied murine models; highlights the data regarding specific gene defects and genetic modifiers; summarizes the data from these models that have advanced our understanding of PKD pathogenesis; and examines the effect of various therapeutic interventions in murine PKD.
Collapse
Affiliation(s)
- Lisa M Guay-Woodford
- Division of Genetic and Translational Medicine, Department of Medicine, University of Alabama at Birmingham, Kaul 740, 1530 3rd Ave. South 19th St., Birmingham, AL 35294, USA.
| |
Collapse
|
27
|
Torres VE, Sweeney WE, Wang X, Qian Q, Harris PC, Frost P, Avner ED. EGF receptor tyrosine kinase inhibition attenuates the development of PKD in Han:SPRD rats. Kidney Int 2003; 64:1573-9. [PMID: 14531789 DOI: 10.1046/j.1523-1755.2003.00256.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Increasing evidence supports an important role for the epidermal growth factor (EGF)/transforming growth factor-alpha (TGF-alpha)/EGF receptor (EGFR) axis in promoting tubular epithelial cell proliferation and cyst formation in polycystic kidney disease (PKD). METHODS To determine whether the inhibition of EGFR tyrosine kinase activity can attenuate the development of PKD in the Han:SPRD rat, a frequently used animal model of autosomal-dominant slowly progressive PKD (ADPKD), wild-type and cy/+ rats were treated with EKI-785 or EKB-569 or with vehicle alone. Western analysis, immunoprecipitation, and immunohistochemistry were used to ascertain the expression, activation, and localization of EGFR. RESULTS Overexpression, activation and apical mislocalization of EGFR were observed in the cy/+ rats. The intraperitoneal administration of EKI-785 reversed the activation of the EGFR to the level observed in wild-type animals. The intraperitoneal administration of EKI-785 (90 mg/kg body weight every third day) or of EKB-569 (20 mg/kg body weight every third day) to cy/+ rats resulted in lower kidney weights, serum concentrations of blood urea nitrogen (BUN), cyst volumes, and fibrosis scores. The administration of EKB-569 by gavage was less effective probably because of lower bioavailability. CONCLUSION These results support a significant role for the EGF/TGF-alpha/EGFR axis in the development of PKD in the Han:SPRD rat and the therapeutic potential of EGFR tyrosine kinase inhibition in ADPKD.
Collapse
Affiliation(s)
- Vicente E Torres
- Division of Nephrology, Mayo Foundation, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Al-Nimri MA, Komers R, Oyama TT, Subramanya AR, Lindsley JN, Anderson S. Endothelial-derived vasoactive mediators in polycystic kidney disease. Kidney Int 2003; 63:1776-84. [PMID: 12675853 DOI: 10.1046/j.1523-1755.2003.00913.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is characterized by hypertension and renal vasoconstriction. Mediators of these hemodynamic changes are not well understood, but evidence suggests that endothelial-derived mediators may participate. METHODS Baseline measurements of blood pressure, proteinuria, and urinary nitrite/nitrate excretion were performed in control and cystic male Han:SPRD rats (6 weeks of age). They were then treated with the nitric oxide (NO), nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), or vehicle, for 6 weeks. After repeat systemic measurements, renal function was determined using inulin and para-aminohippurate (PAH) clearances. Levels of renal endothelin-1 (ET-1) and renal endothelial NOS (eNOS) proteins were determined, and immunohistochemistry localized renal eNOS and neuronal NOS (nNOS). RESULTS Administration of L-NAME aggravated systemic hypertension and renal vasoconstriction in the cystic rats, but did not affect the progression of proteinuria or cystic expansion. Cystic rats demonstrated marked increases in renal ET-1 and eNOS levels. L-NAME reduced eNOS expression in the membrane compartment, but increased eNOS in the cytosol. Localization studies indicated that renal eNOS was abundant in nonvascular compartments, but not in renal vascular and glomerular structures, whereas renal nNOS was diffusely diminished. CONCLUSION These alterations of endothelial-derived mediators (up-regulation of ET-1, and dysfunction of the NO system) contribute to vasoconstriction, and thereby are likely to contribute to the progressive loss of renal function in polycystic kidney disease (PKD).
Collapse
Affiliation(s)
- Muna A Al-Nimri
- Division of Nephrology and Hypertension, Oregon Health and Science University, and Portland VA Medical Center, Portland, Oregon 97201, USA
| | | | | | | | | | | |
Collapse
|
29
|
Cowley BD, Ricardo SD, Nagao S, Diamond JR. Increased renal expression of monocyte chemoattractant protein-1 and osteopontin in ADPKD in rats. Kidney Int 2001; 60:2087-96. [PMID: 11737583 DOI: 10.1046/j.1523-1755.2001.00065.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Human autosomal-dominant polycystic kidney disease (ADPKD) is variable in the rate of deterioration of renal function, with end-stage renal disease (ESRD) occurring in only approximately 50% of affected individuals. Evidence suggests that interstitial inflammation may be important in the development of ESRD in ADPKD. Han:SPRD rats manifest ADPKD that resembles the human disease. Homozygous cystic (Cy/Cy) rats develop rapidly progressive PKD and die near age 3 weeks. Heterozygous (Cy/+) females develop slowly progressive PKD without evidence of renal dysfunction until the second year of life, whereas heterozygous (Cy/+) males develop more aggressive PKD with renal failure beginning by 8 to 12 weeks of age. METHODS To examine the relationship between proinflammatory chemoattractants and the development of interstitial inflammation and ultimately renal failure in ADPKD, we evaluated monocyte chemoattractant protein-1 (MCP-1) and osteopontin mRNAs and proteins in kidneys from Han:SRPD rats. RESULTS MCP-1 and osteopontin mRNAs, expressed at low levels in kidneys from normal (+/+) animals at all ages, were markedly elevated in kidneys from 3-week-old Cy/Cy animals. In kidneys from heterozygous (Cy/+) adults of either gender, MCP-1 and osteopontin mRNAs were more abundant than normal; MCP-1 mRNA was more abundant in Cy/+ males than in females. Thus, chemoattractant mRNA expression correlated with the development of renal failure in Cy/Cy and Cy/+ rats. Osteopontin mRNA, localized by in situ hybridization, was moderately expressed in the renal medulla of normal animals; however, this mRNA was expressed at very high levels in the cystic epithelia of Cy/+ and Cy/Cy animals. MCP-1 and osteopontin proteins, localized by immunohistochemistry, were weakly detected in +/+ kidneys but were densely expressed in Cy/Cy and in adult Cy/+ kidneys, primarily over cystic epithelium. Increased expression of chemoattractants was associated with the accumulation of ED-1 positive cells (macrophages) in the interstitium of cystic kidneys. CONCLUSIONS We suggest that proinflammatory chemoattractants have a role in the development of interstitial inflammation and renal failure in ADPKD.
Collapse
Affiliation(s)
- B D Cowley
- Division of Nephrology & Hypertension, Department of Medicine, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, USA.
| | | | | | | |
Collapse
|
30
|
Tanner GA, Tanner JA. Chronic caffeine consumption exacerbates hypertension in rats with polycystic kidney disease. Am J Kidney Dis 2001; 38:1089-95. [PMID: 11684564 DOI: 10.1053/ajkd.2001.28614] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disorder frequently associated with renal failure, hypertension, and other abnormalities. The present study determined whether chronic caffeine intake in an animal model of this disease would affect renal structure and function and blood pressure. Heterozygous male Han:Sprague-Dawley rats with ADPKD and normal littermates were provided with either tap water or solutions of caffeine to drink, starting at 1 month of age. When rats were aged 6 months, glomerular filtration rate (GFR) and mean arterial blood pressure (MAP) were measured under Inactin (Byk Gulden, Konstanz, Germany) anesthesia. Caffeine intake had no effect on GFR or cyst development in rats with PKD. MAP was greater in rats with PKD than normal rats and was increased more by caffeine. The hypertensive effect of chronic caffeine intake could not be ascribed to direct pressor effects of angiotensin II. Based on our finding that caffeine exacerbates hypertension in rats with PKD, it may be prudent for patients with ADPKD to limit coffee consumption to four or fewer cups of caffeinated coffee per day, pending studies of humans.
Collapse
Affiliation(s)
- G A Tanner
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
31
|
Yoshida T, Kuwahara M, Maita K, Harada T. Immunohistochemical study on hypoxia in spontaneous polycystic liver and kidney disease in rats. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2001; 53:123-8. [PMID: 11484829 DOI: 10.1078/0940-2993-00183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hypoxia-inducible factor (HIF) mediates homeostatic responses to hypoxia and activates transcription of hypoxia-inducible genes including vascular endothelial growth factor (VEGF). The aim of this study was to examine the expressions of VEGF, HIF-1alpha and HIF-3alpha in spontaneously occurring hepatorenal polycystic lesions in two Sprague-Dawley (Crj:CD) rats. Hepatic multiple cysts were derived from the interlobular and large bile ducts, while renal cysts were from the collecting ducts and distal tubuli. These findings were confirmed by a lectin peanut agglutinin (PNA) histochemistry. In the polycystic liver, VEGF immunoreaction was strongly evident in the cytoplasm of hepatocytes, whereas expression of HIF-3alpha, but not HIF-1alpha, was found in a few nuclei of hepatocytes. In the polycystic kidney, VEGF immunoreaction was increased in the cytoplasm of collecting ducts and distal tubuli, whereas nuclear expression of HIF-1alpha and HIF-3alpha was evident in the proximal tubuli and thin loop of Henle, respectively. The results suggest that hypoxia-related molecules may be induced by cystic alterations in a heterogeneous appearance.
Collapse
Affiliation(s)
- T Yoshida
- Laboratory of Pathology, Toxicology Division II, Institute of Environmental Toxicology, Ibaraki, Japan.
| | | | | | | |
Collapse
|
32
|
Abstract
An increased understanding of the molecular genetic and cellular pathophysiologic mechanisms responsible for the development of autosomal-dominant polycystic kidney disease (ADPKD), made possible by the advances in molecular biology and genetics of the last three decades, has laid the foundation for the development of effective therapies. As the concept that a polycystic kidney is a neoplasm in disguise is becoming increasingly accepted, the development of therapies for ADPKD may benefit greatly from the expanding body of information on cancer chemoprevention and chemosuppression. This review summarizes the observations that already have been made and discusses therapies for PKD that deserve investigation.
Collapse
Affiliation(s)
- Q Qian
- Mayo Clinic/Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
33
|
Kang SH, Oyama TT, Kennefick TM, Thompson MM, Anderson S. Impaired adaptation to renal mass reduction in the polycystic rat. Am J Kidney Dis 2000; 35:923-9. [PMID: 10793028 DOI: 10.1016/s0272-6386(00)70264-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a serious cause of renal failure. In many renal-disease models, surgical renal mass reduction accelerates disease progression. We explored whether surgical renal mass reduction and the method of renal mass reduction accelerate the course of ADPKD. Studies were conducted in male heterozygous cystic Han:SPRD rats and unaffected littermate controls. Control and cystic rats were subjected to 50% renal mass reduction by uninephrectomy, 50% renal mass reduction by infarction of half of each kidney, or sham operation. Most groups were followed up to the age of 20 weeks, with serial measurements of blood pressure and proteinuria. At 20 weeks, glomerular filtration rate (GFR) and renal plasma flow (RPF) rate were measured. Similar studies to 12 weeks of age were performed in additional groups of control and cystic rats with either sham operation or 50% renal infarction. In noncystic rats, uninephrectomy led to minimal effects on blood pressure and proteinuria and to substantial compensatory renal hypertrophy, hyperfiltration, and hyperperfusion. Similar renal mass reduction by segmental infarction led to greater values for blood pressure and proteinuria and significant compensatory hyperfiltration. In contrast, the cystic rats showed a significant reduction in baseline renal blood flow, more profound increases in blood pressure and proteinuria, and no compensatory increases in GFR and RPF after reduction of renal mass. These studies suggest that the ability of cystic kidneys to respond to acquired loss of nephrons is impaired and that these kidneys are at greater risk when additional renal injury is superimposed.
Collapse
Affiliation(s)
- S H Kang
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health Sciences University, Portland 97201-2940, USA
| | | | | | | | | |
Collapse
|