1
|
Liu C, Yang QQ, Zhou YL. Peptides and Wound Healing: From Monomer to Combination. Int J Pept Res Ther 2024; 30:46. [DOI: 10.1007/s10989-024-10627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 01/02/2025]
|
2
|
Dardari D, Potier L, Sultan A, Francois M, M’Bemba J, Bouillet B, Chaillous L, Kessler L, Carlier A, Jalek A, Sbaa A, Orlando L, Bobony E, Detournay B, Kjartansson H, Bjorg Arsaelsdottir R, Baldursson BT, Charpentier G. Intact Fish Skin Graft vs. Standard of Care in Patients with Neuroischaemic Diabetic Foot Ulcers (KereFish Study): An International, Multicentre, Double-Blind, Randomised, Controlled Trial Study Design and Rationale. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1775. [PMID: 36556977 PMCID: PMC9786154 DOI: 10.3390/medicina58121775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Cell and/or tissue-based wound care products have slowly advanced in the treatment of non-healing ulcers, however, few studies have evaluated the effectiveness of these devices in the management of severe diabetic foot ulcers. METHOD This study (KereFish) is part of a multi-national, multi-centre, randomised, controlled clinical investigation (Odin) with patients suffering from deep diabetic wounds, allowing peripheral artery disease as evaluated by an ankle brachial index equal or higher than 0.6. The study has parallel treatment groups: Group 1 treatment with Kerecis® Omega3 Wound™ versus Group 2 treatment with standard of care. The primary objective is to test the hypothesis that a larger number of severe diabetic ulcers and amputation wounds, including those with moderate arterial disease, will heal in 16 weeks when treated with Kerecis® Omega3 Wound™ than with standard of care. CONCLUSION This study has received the ethics committee approval of each participating country. Inclusion of participants began in March 2020 and ended in July 2022. The first results will be presented in March 2023. The study is registered in ClinicalTrials.gov as Identifier: NCT04537520.
Collapse
Affiliation(s)
- Dured Dardari
- Diabetic Foot Unit, Centre Hospitalier sud Francilien Corbeil Essonnes, 91100 Corbeil-Essonnes, France
- LBEPS, IRBA, Université Evry Paris Saclay, 91025 Evry, France
| | - Louis Potier
- Diabetology Department, CHU Bichat—Claude Bernard, 75018 Paris, France
- Institut Necker-Enfants Malades, Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, 75006 Paris, France
| | - Ariane Sultan
- Diabetology Nutrition Department, CHU Montpelier, Université de Montpellier, 34090 Montpellier, France
- Inserm, CNRS, Phymedexp, CHU de Montpellier, 34090 Montpellier, France
| | | | | | - Benjamin Bouillet
- Department of Endocrinology-Diabetology, Dijon University Hospital, 21000 Dijon, France
- INSERM Unit, LNC-UMR 1231, University of Burgundy, 21078 Dijon, France
| | - Lucy Chaillous
- Department of Endocrinology, Metabolic Diseases and Nutrition, University Hospital of Nante, 44000 Nantes, France
| | - Laurence Kessler
- Department of Diabetology, CHU Strasbourg, 67000 Strasbourg, France
| | - Aurelie Carlier
- Diabetology Department, CHU Bichat—Claude Bernard, 75018 Paris, France
| | - Abdulkader Jalek
- Diabetology Nutrition Department, CHU Montpelier, Université de Montpellier, 34090 Montpellier, France
| | - Ayoub Sbaa
- Department of Diabetology, CHU Strasbourg, 67000 Strasbourg, France
| | - Laurent Orlando
- CERITD (Center for Study and Research for Improvement of the Treatment of Diabetes), Bioparc-Genopole Evry-Corbeil, 91042 Evry, France
| | - Elise Bobony
- CERITD (Center for Study and Research for Improvement of the Treatment of Diabetes), Bioparc-Genopole Evry-Corbeil, 91042 Evry, France
| | - Bruno Detournay
- CEMKA, 43 boulevard du Maréchal Joffre, 92340 Bourg-la-Reine, France
| | | | | | | | - Guillaume Charpentier
- CERITD (Center for Study and Research for Improvement of the Treatment of Diabetes), Bioparc-Genopole Evry-Corbeil, 91042 Evry, France
| |
Collapse
|
3
|
Molecular mechanisms of skin wound healing in non-diabetic and diabetic mice in excision and pressure experimental wounds. Cell Tissue Res 2022; 388:595-613. [PMID: 35386010 PMCID: PMC9110453 DOI: 10.1007/s00441-022-03624-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Experimental models for chronic skin lesions are excision and pressure ulcer, defined as “open” and “closed” lesions, respectively, only the latter characterized by tissue hypoxia. Moreover, systemic diseases, such as diabetes mellitus, affect wound repair. Thus, models for testing new therapies should be carefully selected according to the expected targets. In this study, we present an extensive and comparative histological, immunohistochemical, and molecular characterization of these two lesions in diabetic (db/db) and non-diabetic (C57BL/6 J) mice. In db/db mice, we found significant reduction in PGP9.5-IR innervation, reduction of capillary network, and reduced expression of NGF receptors. We found an increase in VEGF receptor Kdr expression, and the PI3K-Akt signaling pathway at the core of the altered molecular network. Db/db mice with pressure ulcers showed an impairment in the molecular regulation of hypoxia-related genes (Hif1a, Flt1, and Kdr), while extracellular matrix encoding genes (Itgb3, Timp1, Fn1, Col4a1) were upregulated by hyperglycemia and lesions. Overall, the molecular analysis suggests that db/db mice have a longer inflammatory phase of the wound repair process, delaying the progression toward the proliferation and remodeling phases.
Collapse
|
4
|
Fibronectin in development and wound healing. Adv Drug Deliv Rev 2021; 170:353-368. [PMID: 32961203 DOI: 10.1016/j.addr.2020.09.005] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 01/15/2023]
Abstract
Fibronectin structure and composition regulate contextual cell signaling. Recent advances have been made in understanding fibronectin and its role in tissue organization and repair. This review outlines fibronectin splice variants and their functions, evaluates potential therapeutic strategies targeting or utilizing fibronectin, and concludes by discussing potential future directions to modulate fibronectin function in development and wound healing.
Collapse
|
5
|
Ye C, Zhang Y, Han C, Mao S, Ni L, Liu J, Wu J, Zhang J. A Wound Treatment Strategy for "Super Long-Term Difficult-to-Heal Wounds": A Single-Center Retrospective Study. INT J LOW EXTR WOUND 2020; 21:483-491. [PMID: 32962469 DOI: 10.1177/1534734620960292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic wounds are a challenge for clinicians. Treating chronic wounds in elderly patients is difficult due to comorbidities and poor immunity, tissue renewal, and regeneration. This study shared the therapeutic experiences of 40 patients with super long-term difficult-to-heal wounds and to describe the effects of negative pressure wound therapy (NPWT)-assisted debridement and autologous scalp grafting. Elderly patients with chronic wounds for more than 60 years who underwent NPWT-assisted debridement and autologous scalp grafting between 2015 and 2017 were retrospectively analyzed. Forty patients were identified and analyzed. Among all patients, the average wound area was 56 (interquartile range 30-90) cm2. The wound infection rate was 82.1%, and that before the first autologous scalp grafting was 51.3%. The average total number of surgeries was 3, and the number of times the NPWT device was replaced was once. A total of 97.4% of patients had one autologous scalp grafting performed. The transplanted scalp survived completely in 97.4% of patients. One hundred percent of patients had no postoperative complications and healed. The average wound healing time was 34.5 ± 10.1 days. This study showed that NPWT-assisted debridement and autologous scalp grafting have the advantages of high survival rate of the skin and decreased wound recurrence and may be a suitable treatment for super long-term difficult-to-heal wounds in elderly patients.
Collapse
Affiliation(s)
| | | | - Chunmao Han
- Second Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
| | | | | | - Jia Liu
- Zhejiang Quhua Hospital, Quzhou, China
| | - Junmei Wu
- Zhejiang Quhua Hospital, Quzhou, China
| | | |
Collapse
|
6
|
Abstract
Fibronectin (FN) circulating in the blood and produced by cells provides the basis of the extracellular matrix (ECM) formed in healing acute wounds. The time-dependent deposition of FN by macrophages, its synthesis by fibroblasts and myofibroblasts, and later degradation in the remodeled granulation tissue are a prerequisite for successful healing of wounds. However, the pattern of FN expression and deposition in skin lesions is disturbed. The degradation of the ECM components including FN in varicose veins prevails over ECM synthesis and deposition. FN is inconspicuous in the fibrotic lesions in lipodermatosclerosis, while tenascin-C containing FN-like peptide sequences are prominent. FN is produced in large amounts by fibroblasts at the edge of venous ulcers but FN deposition at the wound bed is impaired. Both the proteolytic environment in the wounds and the changed function of the ulcer fibroblasts may be responsible for the poor healing of venous ulcers. The aim of this review is to describe the current knowledge of FN pathophysiology in chronic venous diseases. In view of the fact that FN plays a crucial role in organizing the ECM, further research focused on FN metabolism in venous diseases may bring results applicable to the treatment of the diseases.
Collapse
Affiliation(s)
- Jiri Kanta
- Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Anna Zavadakova
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| |
Collapse
|
7
|
Shen Y, Zeglinski MR, Turner CT, Raithatha SA, Wu Z, Russo V, Oram C, Hiroyasu S, Nabai L, Zhao H, Bozin T, Westendorf K, Kopko I, Huang R, Arns S, Tan J, Zeng H, Boey A, Liggins R, Jaquith J, Cameron DR, Papp A, Granville DJ. Topical small molecule granzyme B inhibitor improves remodeling in a murine model of impaired burn wound healing. Exp Mol Med 2018; 50:1-11. [PMID: 29849046 PMCID: PMC5976625 DOI: 10.1038/s12276-018-0095-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/01/2018] [Accepted: 03/16/2018] [Indexed: 11/09/2022] Open
Abstract
Granzyme B (GzmB) is a serine protease that has long been thought to function exclusively in lymphocyte-mediated apoptosis. In recent years, this paradigm has been revisited due to the recognition that GzmB accumulates in the extracellular milieu in many autoimmune and chronic inflammatory disorders, and contributes to impaired tissue remodeling due to the cleavage of extracellular matrix proteins. Knockout studies suggest that GzmB-mediated cleavage of decorin (DCN) contributes to impaired collagen fibrillogenesis and remodeling. As DCN is anti-fibrotic and contributes to reduced hypertrophic scarring, GzmB-induced DCN cleavage could play a role in wound healing following burn injury. In the present study, a novel, gel-formulated, first-in-class small-molecule inhibitor of GzmB, VTI-1002, was assessed in a murine model of impaired, diabetic burn wound healing. VTI-1002 exhibited high specificity, potency, and target selectivity. Gel-formulated VTI-1002 was able to penetrate the stratum corneum and was retained in the skin with minimal systemic absorption. Daily topical administration of VTI-1002 gel for 30 days following thermal injury showed significantly accelerated wound closure, increased DCN protein levels, and collagen organization that was translated into significantly increased wound tensile strength compared to controls. Overall, VTI-1002 gel was well-tolerated in vivo and no adverse events were observed. Topical application of VTI-1002 represents a novel therapeutic approach for the treatment of cutaneous burn wounds.
Collapse
Affiliation(s)
- Yue Shen
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada.,viDA Therapeutics, Inc., Vancouver, BC, Canada
| | - Matthew R Zeglinski
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Christopher T Turner
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Sheetal A Raithatha
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,viDA Therapeutics, Inc., Vancouver, BC, Canada
| | - Zhenguo Wu
- Imaging Unit, Integrative Oncology Department, BC Cancer Agency Research Centre, Vancouver, BC, Canada.,Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Valerio Russo
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Cameron Oram
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Layla Nabai
- International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Hongyan Zhao
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - Tatjana Bozin
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Kathryn Westendorf
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.,viDA Therapeutics, Inc., Vancouver, BC, Canada
| | - Irina Kopko
- Centre for Drug Research and Development, Vancouver, BC, Canada
| | - Rachel Huang
- Centre for Drug Research and Development, Vancouver, BC, Canada
| | - Steve Arns
- Centre for Drug Research and Development, Vancouver, BC, Canada
| | - Jason Tan
- Centre for Drug Research and Development, Vancouver, BC, Canada
| | - Haishan Zeng
- Imaging Unit, Integrative Oncology Department, BC Cancer Agency Research Centre, Vancouver, BC, Canada.,Photomedicine Institute, Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Anthony Boey
- Centre for Drug Research and Development, Vancouver, BC, Canada
| | - Richard Liggins
- Centre for Drug Research and Development, Vancouver, BC, Canada
| | - James Jaquith
- Centre for Drug Research and Development, Vancouver, BC, Canada
| | | | - Anthony Papp
- BC Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| | - David J Granville
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada. .,International Collaboration On Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada. .,BC Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada. .,viDA Therapeutics, Inc., Vancouver, BC, Canada.
| |
Collapse
|
8
|
Development and Characterisation of a Human Chronic Skin Wound Cell Line-Towards an Alternative for Animal Experimentation. Int J Mol Sci 2018; 19:ijms19041001. [PMID: 29584680 PMCID: PMC5979489 DOI: 10.3390/ijms19041001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022] Open
Abstract
Background: Chronic skin wounds are a growing financial burden for healthcare providers, causing discomfort/immobility to patients. Whilst animal chronic wound models have been developed to allow for mechanistic studies and to develop/test potential therapies, such systems are not good representations of the human chronic wound state. As an alternative, human chronic wound fibroblasts (CWFs) have permitted an insight into the dysfunctional cellular mechanisms that are associated with these wounds. However, such cells strains have a limited replicative lifespan and therefore a limited reproducibility/usefulness. Objectives: To develop/characterise immortalised cell lines of CWF and patient-matched normal fibroblasts (NFs). Methods and Results: Immortalisation with human telomerase resulted in both CWF and NF proliferating well beyond their replicative senescence end-point (respective cell strains senesced as normal). Gene expression analysis demonstrated that, whilst proliferation-associated genes were up-regulated in the cell lines (as would be expected), the immortalisation process did not significantly affect the disease-specific genotype. Immortalised CWF (as compared to NF) also retained a distinct impairment in their wound repopulation potential (in line with CWF cell strains). Conclusions: These novel CWF cell lines are a credible animal alternative and could be a valuable research tool for understanding both the aetiology of chronic skin wounds and for therapeutic pre-screening.
Collapse
|
9
|
Wang T, Zhao N, Long S, Ge L, Wang A, Sun H, Ran X, Zou Z, Wang J, Su Y. Downregulation of miR-205 in migrating epithelial tongue facilitates skin wound re-epithelialization by derepressing ITGA5. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1443-52. [PMID: 27169579 DOI: 10.1016/j.bbadis.2016.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/14/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
Keratinocyte migration is essential for re-epithelialization during skin wound healing, but the molecular mechanisms regulating this cellular response remain to be completely clarified. Here we show that keratinocyte-specific miR-205 is significantly downregulated in the leading edge of the migrating epithelial tongue after skin injury in mice. In HaCaT keratinocytes, miR-205 could be downregulated by TGF-β1 stimulation. And similar to the effect of TGF-β1, miR-205 knockdown could promote keratinocyte migration in wound scratch model in vitro. Furthermore, topical inhibition of miR-205 by administrating Pluronic gel containing antagomir-205 could accelerate re-epithelialization in mouse skin wound model in vivo. Moreover, we identified integrin alpha 5 (ITGA5) as one key functional miR-205 target in the re-epithelialization process and epidermal downregulation of miR-205 may desilence ITGA5 to promote keratinocyte migration. And knockdown of ITGA5 would abolish the pro-migratory effects of miR-205 inhibition in vitro. What's more, we found dysregulation of miR-205 and its target ITGA5 in epidermis of clinical chronic wound samples with persistence of high level miR-205 and absence of ITGA5. Our findings indicate that downregulation of miR-205 in the leading migrating keratinocytes is critical for re-epithelialization and miR-205 may be a potential therapeutic target for chronic wounds.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| | - Na Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Shuang Long
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Lan Ge
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Aiping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Huiqin Sun
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Xinze Ran
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Zhongmin Zou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Junping Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yongping Su
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
10
|
Romanelli M, Gilligan AM, Waycaster CR, Dini V. Difficult-to-heal wounds of mixed arterial/venous and venous etiology: a cost-effectiveness analysis of extracellular matrix. CLINICOECONOMICS AND OUTCOMES RESEARCH 2016; 8:153-61. [PMID: 27217787 PMCID: PMC4862353 DOI: 10.2147/ceor.s104067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Importance Difficult-to-heal wounds pose clinical and economic challenges, and cost-effective treatment options are needed. Objective The aim of this study is to determine the cost-effectiveness of extracellular matrix (ECM) relative to standard of care (SC) on wound closure for the treatment of mixed arterial/venous (A/V) or venous leg ulcers (VLUs). Design, setting, and participants A two-stage Markov model was used to predict the expected costs and outcomes of wound closure for ECM and SC. Outcome data used in the analysis were taken from an 8-week randomized clinical trial that directly compared ECM and SC. Patients were followed up for an additional 6 months to assess wound closure. Forty-eight patients completed the study; 25 for ECM and 23 for SC. SC was defined as a standard moist wound dressing. Transition probabilities for the Markov states were estimated from the clinical trial. Main outcomes and measures The economic outcome of interest was direct cost per closed-wound week. Resource utilization was based on the treatment regimen used in the clinical trial. Costs were derived from standard cost references. The payer’s perspective was taken. Results ECM-treated wounds closed, on average, after 5.4 weeks of treatment, compared with 8.3 weeks for SC wounds (P=0.02). Furthermore, complete wound closure was significantly higher in patients treated with ECM (P<0.05), with 20 wounds closed in the ECM group (80%) and 15 wounds closed in the SC group (65%). After 8 months, patients treated with ECM had substantially higher closed-wound weeks compared with SC (26.0 weeks versus 22.0 weeks, respectively). Expected direct costs per patient were $2,527 for ECM and $2,540 for SC (a cost savings of $13). Conclusion and relevance ECM yielded better clinical outcomes at a slightly lower cost in patients with mixed A/V and VLUs. ECM is an effective treatment for wound healing and should be considered for use in the management of mixed A/V and VLUs.
Collapse
Affiliation(s)
| | - Adrienne M Gilligan
- Department of Life Sciences, Truven Health Analytics, Fort Worth, TX, USA; Department of Pharmacotherapy, University of North Texas Health Sciences Center, Fort Worth, TX, USA
| | - Curtis R Waycaster
- Department of Pharmacotherapy, University of North Texas Health Sciences Center, Fort Worth, TX, USA; Department of Market Access, Smith and Nephew Inc., Fort Worth, TX, USA
| | - Valentina Dini
- Department of Dermatology, University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
McFadden JP, Kimber I. A Review on the Potential Role of Basement Membrane Laminin in the Pathogenesis of Psoriasis. Scand J Immunol 2015; 83:3-9. [DOI: 10.1111/sji.12384] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/02/2015] [Indexed: 01/21/2023]
Affiliation(s)
- J. P. McFadden
- Department of Cutaneous Allergy; St John's Institute of Dermatology; Kings College; Guy's Hospital; London UK
| | - I. Kimber
- Faculty of Life Sciences; University of Manchester; Manchester UK
| |
Collapse
|
12
|
Gilligan A, Waycaster C, Landsman A. Wound closure in patients with DFU: a cost-effectiveness analysis of two cellular/tissue-derived products. J Wound Care 2015; 24:149-56. [DOI: 10.12968/jowc.2015.24.3.149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- A.M. Gilligan
- Manager, Health Economics and Outcomes Research, Adjunct Assistant Professor, Smith & Nephew Inc., Fort Worth, TX
- Manager, Health Economics and Outcomes Research, Adjunct Assistant Professor, Director, Health Economics and Outcomes Research, Adjunct Assistant Professor;, University of North Texas Health Sciences Center, Department of Pharmacotherapy, Fort Worth, TX
| | - C.R. Waycaster
- Manager, Health Economics and Outcomes Research, Adjunct Assistant Professor, Smith & Nephew Inc., Fort Worth, TX
- Manager, Health Economics and Outcomes Research, Adjunct Assistant Professor, Director, Health Economics and Outcomes Research, Adjunct Assistant Professor;, University of North Texas Health Sciences Center, Department of Pharmacotherapy, Fort Worth, TX
| | - A.L. Landsman
- Assistant Professor of Surgery, Harvard Medical School, Division of Podiatric Surgery, Cambridge Health Alliance, Cambridge, MA
| |
Collapse
|
13
|
Hiebert PR, Wu D, Granville DJ. Granzyme B degrades extracellular matrix and contributes to delayed wound closure in apolipoprotein E knockout mice. Cell Death Differ 2013; 20:1404-14. [PMID: 23912712 DOI: 10.1038/cdd.2013.96] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/03/2013] [Accepted: 06/06/2013] [Indexed: 01/09/2023] Open
Abstract
Chronic inflammation and excessive protease activity have a major role in the persistence of non-healing wounds. Granzyme B (GzmB) is a serine protease expressed during chronic inflammation that, in conjunction with perforin, has a well-established role in initiating apoptotic cell death. GzmB is also capable of acting extracellularly, independent of perforin and can degrade several extracellular matrix (ECM) proteins that are critical during wound healing. We used apolipoprotein E (ApoE) knockout (AKO) mice as a novel model of chronic inflammation and impaired wound healing to investigate the role of GzmB in chronic wounds. Wild-type and AKO mice were grown to 7 weeks (young) or 37 weeks (old) of age on a regular chow or high-fat diet (HFD), given a 1-cm diameter full thickness wound on their mid dorsum and allowed to heal for 16 days. Old AKO mice fed a HFD exhibited reduced wound closure, delayed contraction, chronic inflammation and altered ECM remodeling. Conversely, GzmB/ApoE double knockout mice displayed improved wound closure and contraction rates. In addition, murine GzmB was found to degrade both fibronectin and vitronectin derived from healthy mouse granulation tissue. In addition, GzmB-mediated degradation of fibronectin generated a fragment similar in size to that observed in non-healing mouse wounds. These results provide the first direct evidence that GzmB contributes to chronic wound healing in part through degradation of ECM.
Collapse
Affiliation(s)
- P R Hiebert
- UBC James Hogg Research Centre, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
14
|
Thamm OC, Theodorou P, Stuermer E, Zinser MJ, Neugebauer EA, Fuchs PC, Koenen P. Adipose-derived stem cells and keratinocytes in a chronic wound cell culture model: the role of hydroxyectoine. Int Wound J 2013; 12:387-96. [PMID: 23841674 DOI: 10.1111/iwj.12120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/09/2013] [Accepted: 06/01/2013] [Indexed: 12/23/2022] Open
Abstract
Chronic wounds represent a major socio-economic problem in developed countries today. Wound healing is a complex biological process. It requires a well-orchestrated interaction of mediators, resident cells and infiltrating cells. In this context, mesenchymal stem cells and keratinocytes play a crucial role in tissue regeneration. In chronic wounds these processes are disturbed and cell viability is reduced. Hydroxyectoine (HyEc) is a membrane protecting osmolyte with protein and macromolecule stabilising properties. Adipose-derived stem cells (ASC) and keratinocytes were cultured with chronic wound fluid (CWF) and treated with HyEc. Proliferation was investigated using MTT test and migration was examined with transwell-migration assay and scratch assay. Gene expression changes of basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF), matrix metalloproteinases-2 (MMP-2) and MMP-9 were analysed by quantitative real-time polymerase chain reaction (qRT-PCR). CWF significantly inhibited proliferation and migration of keratinocytes. Addition of HyEc did not affect these results. Proliferation capacity of ASC was not influenced by CWF whereas migration was significantly enhanced. HyEc significantly reduced ASC migration. Expression of b-FGF, VEGF, MMP-2 and MMP-9 in ASC, and b-FGF, VEGF and MMP-9 in keratinocytes was strongly induced by chronic wound fluid. HyEc enhanced CWF induced gene expression of VEGF in ASC and MMP-9 in keratinocytes. CWF negatively impaired keratinocyte function, which was not influenced by HyEc. ASC migration was stimulated by CWF, whereas HyEc significantly inhibited migration of ASC. CWF induced gene expression of VEGF in ASC and MMP-9 in keratinocytes was enhanced by HyEc, which might partly be explained by an RNA stabilising effect of HyEc.
Collapse
Affiliation(s)
- Oliver C Thamm
- Clinic for Plastic and Reconstructive Surgery, Handsurgery, Burn Care Center, University of Witten/Herdecke, Cologne-Merheim Medical Center, Köln, Germany
| | - Panagiotis Theodorou
- Clinic for Plastic and Reconstructive Surgery, Handsurgery, Burn Care Center, University of Witten/Herdecke, Cologne-Merheim Medical Center, Köln, Germany
| | - Ewa Stuermer
- Institute for Research in Operative Medicine (IFOM), University of Witten/Herdecke, Köln, Germany
| | - Max J Zinser
- Clinic for Plastic and Reconstructive Surgery, Handsurgery, Burn Care Center, University of Witten/Herdecke, Cologne-Merheim Medical Center, Köln, Germany
| | - Edmund A Neugebauer
- Institute for Research in Operative Medicine (IFOM), University of Witten/Herdecke, Köln, Germany
| | - Paul C Fuchs
- Clinic for Plastic and Reconstructive Surgery, Handsurgery, Burn Care Center, University of Witten/Herdecke, Cologne-Merheim Medical Center, Köln, Germany
| | - Paola Koenen
- Department of Trauma and Orthopedic Surgery, University of Witten/Herdecke, Cologne-Merheim Medical Center, Köln, Germany
| |
Collapse
|
15
|
Lenselink EA. Role of fibronectin in normal wound healing. Int Wound J 2013; 12:313-6. [PMID: 23742140 DOI: 10.1111/iwj.12109] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/06/2013] [Indexed: 01/31/2023] Open
Abstract
Fibronectin is an adhesive molecule that plays a crucial role in wound healing, particularly in extracellular matrix (ECM) formation and also in reepithelialisation. Fibronectin plays many different roles in the wound healing process because of the presence of specific function domains and binding sites in its structure. Fibronectin interacts with different cell types, cytokines and the ECM. The main role of fibronectin is ECM formation. First, plasma fibronectin forms a provisional fibrin-fibronectin matrix, which will later be replaced by the mature ECM-containing tissue fibronectin.
Collapse
|
16
|
Widgerow AD. Chronic wounds - is cellular 'reception' at fault? Examining integrins and intracellular signalling. Int Wound J 2013; 10:185-92. [PMID: 22494436 PMCID: PMC7950432 DOI: 10.1111/j.1742-481x.2012.00967.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
As with all physiologic processes, chronic wounds are associated with unique intracellular and cellular/extracellular matrix (ECM) receptor types and signalling messages. These cellular receptors mediate responses of the epidermis to provisional wound matrix and change in form and number in cases of impaired wound healing. Integrins are the major cell-surface receptors for cell adhesion and migration and epidermal keratinocytes express several integrins that bind ECM ligands in provisional wound ECM. Integrin receptors and more particularly integrin clusters and focal adhesion points appear to influence epidermal and dermal cell matrix interactions, cell motility, cell phenotype and ultimate healing trajectory. In chronic wounds, a variety of changes in receptors have been identified: decreased integrin α5β1 receptors affect the integration of fibronectin and subsequent keratinocyte migration; integrin αvβ6 stimulate transforming growth factor (TGF)-β and may increase the susceptibility to ulceration and fibrosis; however, TGF-β signal receptors have been found to be dysfunctional in many chronic wounds; additionally receptor interactions result in increased senescent cells including fibroblasts, myofibroblasts and even keratinocytes - this produces a degradative ECM and wound bed and corrosive chronic wound fluid. The activation or inhibition of integrin receptors by various agents may provide an excellent means of influencing wound healing. This process offers an earlier intervention into the wound healing cascade promoting intrinsic healing and elaboration of growth factors and ECM proteins, which may be more cost effective than the traditional attempts at extrinsic addition of these agents.
Collapse
Affiliation(s)
- Alan D Widgerow
- Faculty of Health Sciences, Plastic Surgery Department, University of the Witwatersrand, Johannnesburg, South Africa and Adar science Inc., Irvine, CA, USA.
| |
Collapse
|
17
|
Hiebert PR, Granville DJ. Granzyme B in injury, inflammation, and repair. Trends Mol Med 2012; 18:732-41. [DOI: 10.1016/j.molmed.2012.09.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/14/2012] [Accepted: 09/27/2012] [Indexed: 01/24/2023]
|
18
|
A Prospective, Single-Center, Nonblinded, Comparative, Postmarket Clinical Evaluation of a Bovine-Derived Collagen With Ionic Silver Dressing versus a Carboxymethylcellulose and Ionic Silver Dressing for the Reduction of Bioburden in Variable-Etiology, Bilateral Lower-Extremity Wounds. Adv Skin Wound Care 2012; 25:220-5. [DOI: 10.1097/01.asw.0000414705.56138.65] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Trøstrup H, Lundquist R, Christensen LH, Jorgensen LN, Karlsmark T, Haab BB, Agren MS. S100A8/A9 deficiency in nonhealing venous leg ulcers uncovered by multiplexed antibody microarray profiling. Br J Dermatol 2011; 165:292-301. [PMID: 21517798 DOI: 10.1111/j.1365-2133.2011.10384.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Knowledge on the underlying mechanisms for nonhealing chronic wounds is fragmentary. OBJECTIVES To increase our understanding of the pathogenesis, the relationship between healing ability and a large panel of proteins was studied using a specially designed wound-healing antibody-based microarray. METHODS Wound fluid from nondiabetic patients with nonhealing venous leg ulcers was compared with that from patients with healing open granulating acute wounds. The high-throughput method enabled simultaneous measurement of the relative levels of 48 different proteins representing major categories of wound-healing modulators. RESULTS Unexpectedly, several of the examined proteins, including various proinflammatory cytokines, proteinases and antiproteinases, were not significantly (P>0·001) changed in chronic wound fluid. For example, levels of matrix metalloproteinase-9 and one of its substrates type IV collagen were similar in the two groups. The wound fluid samples displayed similar degrees of fragmentation of fibronectin by Western blot analysis and the total fibronectin levels were doubled (P<0·001) in chronic compared with acute wounds. The increased fibronectin originated from α-smooth muscle actin-positive myofibroblasts and not from the circulation. S100A8/A9 was the sole protein that was reduced (P<0·001) in wound fluid from venous ulcers [median 226 μg mL(-1) (interquartile range 213-278)] compared with healing wounds [455 μg mL(-1) (382-504)], probably reflecting a difference in inflammatory cell composition. CONCLUSION The molecular anomalies in chronic wounds are more subtle than the current paradigm and neither excessive proteinase activity nor deficiencies of examined extracellular matrix proteins, growth factors or angiogenic/angiostatic factors appear to contribute significantly to the nonhealing state of venous leg ulcers.
Collapse
Affiliation(s)
- H Trøstrup
- Copenhagen Wound Healing Center, Department of Dermatology, Bispebjerg University Hospital, Bispebjerg Bakke 23, DK-2400 Copenhagen NV, Denmark
| | | | | | | | | | | | | |
Collapse
|
20
|
To WS, Midwood KS. Plasma and cellular fibronectin: distinct and independent functions during tissue repair. FIBROGENESIS & TISSUE REPAIR 2011; 4:21. [PMID: 21923916 PMCID: PMC3182887 DOI: 10.1186/1755-1536-4-21] [Citation(s) in RCA: 412] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/16/2011] [Indexed: 01/01/2023]
Abstract
Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate aberrant tissue-repair processes.
Collapse
Affiliation(s)
- Wing S To
- Department of Matrix Biology, Kennedy Institute of Rheumatology Division, Nuffield Department of Orthopedic Rheumatology and Musculoskeletal Sciences, Oxford University, 65 Aspenlea Road, London, W6 8LH, UK.
| | | |
Collapse
|
21
|
Schultz GS, Davidson JM, Kirsner RS, Bornstein P, Herman IM. Dynamic reciprocity in the wound microenvironment. Wound Repair Regen 2011; 19:134-48. [PMID: 21362080 DOI: 10.1111/j.1524-475x.2011.00673.x] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here, we define dynamic reciprocity (DR) as an ongoing, bidirectional interaction among cells and their surrounding microenvironment. In this review, we posit that DR is especially meaningful during wound healing as the DR-driven biochemical, biophysical, and cellular responses to injury play pivotal roles in regulating tissue regenerative responses. Such cell-extracellular matrix interactions not only guide and regulate cellular morphology, but also cellular differentiation, migration, proliferation, and survival during tissue development, including, e.g., embryogenesis, angiogenesis, as well as during pathologic processes including cancer, diabetes, hypertension, and chronic wound healing. Herein, we examine DR within the wound microenvironment while considering specific examples across acute and chronic wound healing. This review also considers how a number of hypotheses that attempt to explain chronic wound pathophysiology may be understood within the DR framework. The implications of applying the principles of DR to optimize wound care practice and future development of innovative wound healing therapeutics are also briefly considered.
Collapse
Affiliation(s)
- Gregory S Schultz
- Department of Obstetrics and Gynecology, University of Florida, Gainesville, Florida, USA
| | | | | | | | | |
Collapse
|
22
|
Randomized comparison of OASIS wound matrix versus moist wound dressing in the treatment of difficult-to-heal wounds of mixed arterial/venous etiology. Adv Skin Wound Care 2011; 23:34-8. [PMID: 20101114 DOI: 10.1097/01.asw.0000363485.17224.26] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE In this study, a biological extracellular matrix was compared with a moist wound dressing to determine its effectiveness in the treatment of mixed arterial/venous and venous ulcers. METHODS Patients were evaluated for complete wound healing, time to dressing change, and formation of granulation tissue. RESULTS Extracellular matrix-treated ulcers achieved complete healing on average in 5.4 weeks as compared with 8.3 weeks for the control group treated with moist wound dressing (P = .02). At the primary time point evaluated (8 weeks), complete wound closure was achieved in 80% of extracellular matrix-treated ulcers compared with 65% of ulcers in the control group (P < .05). Statistically significant differences favoring the extracellular-matrix treatment group were also reported for time to dressing change (P < .05), and for percentage of granulation tissue formed (P < .05). CONCLUSION Overall, the biological extracellular matrix was more beneficial than moist wound dressings for the treatment of patients with mixed arterial/venous or venous ulcers.
Collapse
|
23
|
Wei-Ze L, Mei-Rong H, Jian-Ping Z, Yong-Qiang Z, Bao-Hua H, Ting L, Yong Z. Super-short solid silicon microneedles for transdermal drug delivery applications. Int J Pharm 2010; 389:122-9. [DOI: 10.1016/j.ijpharm.2010.01.024] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/16/2009] [Accepted: 01/15/2010] [Indexed: 11/25/2022]
|
24
|
Moor AN, Vachon DJ, Gould LJ. Proteolytic activity in wound fluids and tissues derived from chronic venous leg ulcers. Wound Repair Regen 2009; 17:832-9. [DOI: 10.1111/j.1524-475x.2009.00547.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Raffetto JD. Dermal pathology, cellular biology, and inflammation in chronic venous disease. Thromb Res 2009; 123 Suppl 4:S66-71. [DOI: 10.1016/s0049-3848(09)70147-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
HARTMANN ANKE, QUIST JENNIFER, HAMM HENNING, BRÖCKER EVABETTINA, FRIEDL PETER. Transplantation of Autologous Keratinocyte Suspension in Fibrin Matrix to Chronic Venous Leg Ulcers. Dermatol Surg 2008. [DOI: 10.1097/00042728-200807000-00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Agren MS, Werthén M. The extracellular matrix in wound healing: a closer look at therapeutics for chronic wounds. INT J LOW EXTR WOUND 2007; 6:82-97. [PMID: 17558006 DOI: 10.1177/1534734607301394] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Disappointing results with the use of exogenous recombinant growth factors in chronic wounds have redirected the focus to the extracellular matrix (ECM). Newer research has clearly changed our view on the role of the ECM in tissue repair and dismissed the dogma that the sole function of ECM is a passive physical support for cells. It is now clear that intact or fragmented ECM molecules are capable of transducing signals pivotal for cell processes in wound healing primarily via integrin interactions in concert with growth factor activation. In addition, our knowledge about ECM molecules in minute concentrations with biological activity, but devoid of significant structural influence, is increasing. This article reviews the multifaceted molecular roles of ECM in the normal wound-healing process and some molecular abnormalities in chronic wounds, and touches on potential therapies based on the developments of tissue biology.
Collapse
Affiliation(s)
- Magnus S Agren
- Department of Surgery K, Bispebjerg Hospital, Copenhagen University Hospital, Copenhagen, Denmark.
| | | |
Collapse
|
28
|
Koria P, Andreadis ST. KGF promotes integrin alpha5 expression through CCAAT/enhancer-binding protein-beta. Am J Physiol Cell Physiol 2007; 293:C1020-31. [PMID: 17596295 DOI: 10.1152/ajpcell.00169.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Keratinocyte growth factor (KGF) and alpha(5)beta(1)-integrin are not expressed in normal skin but they are both highly upregulated in the migrating epidermis during wound healing. Here we report that KGF increased alpha(5) mRNA and protein levels in epidermoid carcinoma cells and stratified bioengineered epidermis. Interestingly, KGF increased integrin alpha(5) in the basal as well as suprabasal cell epidermal layers. Promoter studies indicated that KGF-induced integrin alpha(5) promoter activation was dependent on the C/EBP transcription factor binding site. Accordingly, KGF induced sustained phosphorylation of C/EBP-beta that was dependent on activation of ERK1/2. In addition, a dominant negative form of C/EBP-beta inhibited alpha(5) promoter activity and blocking C/EBP-beta with siRNA diminished integrin alpha(5) expression. Taken together, our data indicate that KGF increased integrin alpha(5) expression by phosphorylating C/EBP-beta. Interestingly, KGF-induced upregulation of integrin alpha(5) was more pronounced in three-dimensional tissue analogues than in conventional two-dimensional culture suggesting that stratified epidermis may be useful in understanding the effects of growth factors in the local tissue microenvironment.
Collapse
Affiliation(s)
- Piyush Koria
- Bioengineering Laboratory, Dept. of Chemical and Biological Engineering, 908 Furnas Hall, Univ. at Buffalo, State Univ. of New York, Amherst, NY 14260, USA
| | | |
Collapse
|
29
|
Abstract
The dermis normally directs all phases of skin wound healing following tissue trauma or disease. However, in chronic wounds, the dermal matrix is insufficient to stimulate healing and assistance by external factors is needed for wound closure. Although the concept of the extracellular matrix directing wound healing is not new, ideas about how best to provide the extracellular matrix components required to 'jump-start' the healing process are still evolving. Historically, these strategies have included use of enzyme-inhibiting dressing materials, which bind matrix metalloproteinases and remove them from the chronic wound environment, or direct application of purified growth factors to stimulate fibroblast activity and deposition of neo-matrix. More recently, the application of a structurally intact, biochemically complex extracellular matrix, designed to provide the critical extracellular components of the dermis in a single application, has allowed for the reconstruction of new, healthy tissue and restoration of tissue integrity in the previously chronic wound. This review focuses on this third mechanism as an emerging tactic in effective wound repair. Intact extracellular matrix can quickly, easily, and effectively provide key extracellular components of the dermis necessary to direct the healing response and allow for the proliferation of new, healthy tissue. Its application may promote the healing of wounds that have been refractory to other, more conventional treatment strategies, and may eventually show utility when used earlier in wound healing treatment with the goal of preventing wounds from reaching a truly chronic, nonresponsive state.
Collapse
Affiliation(s)
- Jason P Hodde
- Cook Biotech Incorporated, West Lafayette, Indianapolis 47906, USA.
| | | |
Collapse
|
30
|
Liebau J, Heidrich S, Berger A, Tenenhaus M, Rennekampff HO. Expression of epithelial matrix molecules collagen and laminin and corresponding integrins in chronic wounds. EUROPEAN JOURNAL OF PLASTIC SURGERY 2006. [DOI: 10.1007/s00238-006-0098-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Koria P, Andreadis ST. Epidermal Morphogenesis: The Transcriptional Program of Human Keratinocytes during Stratification. J Invest Dermatol 2006; 126:1834-41. [PMID: 16645587 DOI: 10.1038/sj.jid.5700325] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The epidermis serves to protect the body against environmental assaults and at the same time is able to survive and replenish itself under harsh conditions. The epidermis accomplishes this feat via a well-orchestrated program of stratification and terminal differentiation that provides barrier against infection, radiation, and water loss. Despite significant progress in skin biology, many molecules and pathways that are involved in stratification and barrier formation remain unknown. Here, we employed tissue-engineered models of complete versus impaired epidermal stratification to discover the genes that may be important in this process. Transcriptional profiling at different stages of development showed significant differences in transcription, signaling, and most important metabolism-associated genes between fully stratified and poorly stratified epithelia. These transcriptional changes correlated well with functional data on cell proliferation, expression of adhesion molecules, and utilization of metabolic pathways, ultimately leading to different phenotypes. Our data identified genes that were not previously known to play a role in epidermis and established a link between metabolism and morphogenesis in skin epithelium.
Collapse
Affiliation(s)
- Piyush Koria
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, New York 14260, USA
| | | |
Collapse
|
32
|
Sweitzer SM, Fann SA, Borg TK, Baynes JW, Yost MJ. What Is the Future of Diabetic Wound Care? DIABETES EDUCATOR 2006; 32:197-210. [PMID: 16554422 DOI: 10.1177/0145721706286897] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With diabetes affecting 5% to 10% of the US population, development of a more effective treatment for chronic diabetic wounds is imperative. Clinically, the current treatment in topical wound management includes debridement, topical antibiotics, and a state-of-the-art topical dressing. State-of-the-art dressings are a multi-layer system that can include a collagen cellulose substrate, neonatal foreskin fibroblasts, growth factor containing cream, and a silicone sheet covering for moisture control. Wound healing time can be up to 20 weeks. The future of diabetic wound healing lies in the development of more effective artificial "smart" matrix skin substitutes. This review article will highlight the need for novel smart matrix therapies. These smart matrices will release a multitude of growth factors, cytokines, and bioactive peptide fragments in a temporally and spatially specific, event-driven manner. This timed and focal release of cytokines, enzymes, and pharmacological agents should promote optimal tissue regeneration and repair of full-thickness wounds. Development of these kinds of therapies will require multidisciplinary translational research teams. This review article outlines how current advances in proteomics and genomics can be incorporated into a multidisciplinary translational research approach for developing novel smart matrix dressings for ulcer treatment. With the recognition that the research approach will require both time and money, the best treatment approach is the prevention of diabetic ulcers through better foot care, education, and glycemic control.
Collapse
Affiliation(s)
- Sarah M Sweitzer
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina, School of Medicine, Columbia, 29208, USA.
| | | | | | | | | |
Collapse
|
33
|
Comi AM, Weisz CJC, Highet BH, Skolasky RL, Pardo CA, Hess EJ. Sturge-Weber syndrome: altered blood vessel fibronectin expression and morphology. J Child Neurol 2005; 20:572-7. [PMID: 16159522 DOI: 10.1177/08830738050200070601] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sturge-Weber syndrome presents with vascular malformations of the brain, skin, and eye. Fibronectin has potent effects on angiogenesis, vessel remodeling, and vessel innervation density. To determine fibronectin expression in the blood vessels of Sturge-Weber syndrome brain and skin tissue and to quantify the density and circumference of Sturge-Weber syndrome blood vessels by type compared with controls, we performed in situ hybridization for fibronectin messenger ribonucleic acid (RNA) expression on six Sturge-Weber syndrome cortical brain samples, six epilepsy brain samples, skin from two port-wine stain skin lesions, and two normal skin samples from two subjects with Sturge-Weber syndrome. Fibronectin messenger RNA was expressed in blood vessels and endothelial cells in the parenchyma of both Sturge-Weber syndrome and control brain tissues and in skin samples. Fibronectin expression was significantly reduced by 23% in the Sturge-Weber syndrome meningeal vessels compared with the epilepsy controls (P < .01). Fibronectin expression was significantly increased by 19% in the Sturge-Weber syndrome parenchymal vessels compared with the epilepsy controls (P < .05). No difference was found in the expression of fibronectin in port-wine stain skin blood vessels. The density of leptomeningeal blood vessels in the Sturge-Weber syndrome brain tissue samples was 45% greater than in the epilepsy samples (P < .05). Blood vessel circumference was significantly decreased in the Sturge-Weber syndrome meningeal vessels compared with the controls (27%; P < .05). When blood vessels from different brain regions were compared, fibronectin expression was decreased in Sturge-Weber syndrome meningeal vessels and was increased in the parenchymal vessels. Altered blood vessel fibronectin expression in Sturge-Weber syndrome could contribute to abnormal vascular structure and function in this disorder.
Collapse
Affiliation(s)
- Anne M Comi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Hansen JK, Thibeault SL. Current understanding and review of the literature: vocal fold scarring. J Voice 2005; 20:110-20. [PMID: 15964741 DOI: 10.1016/j.jvoice.2004.12.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
Vocal fold scarring is the greatest cause of poor voice after vocal fold injury. Scarring causes a disruption of the viscoelastic layered structure of the lamina propria, an increase in stiffness of the vibratory structure, and glottic incompetence. Current treatments for this complex condition are inconsistent and often produce suboptimal results. Research investigating this condition has dramatically increased over the last several years. The literature has been directed toward understanding vocal fold scarring at the biological level and translating this to the clinical forum. We present an up-to-date, thorough, and scholarly review of the literature in vocal fold scarring since 1996.
Collapse
Affiliation(s)
- Jennifer K Hansen
- University of Utah, School of Medicine, Division of Otolaryngology-Head and Neck Surgery, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
35
|
Ferguson B, Gray SD, Thibeault S. Time and Dose Effects of Mitomycin C on Extracellular Matrix Fibroblasts and Proteins. Laryngoscope 2005; 115:110-5. [PMID: 15630378 DOI: 10.1097/01.mlg.0000150694.08259.80] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES/HYPOTHESIS The objective was to determine treatment dose and time-dependent effects of injected mitomycin C on extracellular matrix fibroblasts, collagen, and fibronectin, important mediators in the wound healing response, in a rat cutaneous wound model. STUDY DESIGN A prospective, controlled animal study. METHODS Forty rats were injected with three different doses (0.4, 2.3, and 5.0 mg/mL) of mitomycin C at three different wound sites with a fourth wound site receiving saline as a control. The rats were grouped to have their tissue harvested at five different dates ranging from 1 week to 8 weeks. After death, samples from the wound site underwent Western blot analysis for collagen and fibronectin and histological analysis measuring fibroblast apoptosis. RESULTS Over an 8-week period, collagen and fibronectin significantly decreased and fibroblast apoptosis significantly increased. No correlation was found between the injected dose of mitomycin C and either the extracellular matrix protein concentration or the rate of fibroblast apoptosis. CONCLUSION Mitomycin C demonstrated a long-term effect in a wound, inhibiting collagen and fibronectin production and inducing apoptosis. Use of mitomycin C in excess of 0.4 mg/mL did not alter protein concentrations or rate of apoptosis.
Collapse
Affiliation(s)
- Bryce Ferguson
- Division of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
36
|
Moseley R, Stewart JE, Stephens P, Waddington RJ, Thomas DW. Extracellular matrix metabolites as potential biomarkers of disease activity in wound fluid: lessons learned from other inflammatory diseases? Br J Dermatol 2004; 150:401-13. [PMID: 15030321 DOI: 10.1111/j.1365-2133.2004.05845.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The new era of pharmacogenetics has identified a potential for individuals to receive customized treatments for a variety of disease states. For such individualized treatments to fulfil their potential, it will be essential for clinicians to be able to monitor disease activity, ideally in a rapid, noninvasive fashion. The accessibility of the skin offers much potential to develop noninvasive tests of metabolic and disease activity for clinical use. Impaired human wound healing in the skin is a chronic inflammatory disorder in which the development of such tests has considerable potential, aiding clinical decision making and monitoring responses to treatment. This review article discusses how studies in other human diseases have highlighted potential biochemical markers (biomarkers) of disease activity in secreted biofluids, as aids to determining disease and metabolic activity within tissues. Using, as examples, lessons learned in the study of disease activity and prognosis of other chronic inflammatory conditions, such as osteoarthritis and periodontal disease, this review highlights the potential of dermal extracellular matrix (ECM) components (collagens, proteoglycans, hyaluronan and glycoproteins) for such uses. The limitations of currently utilized techniques and the concept that analysis of ECM components in wound fluid may represent useful biomarkers of disease activity are also discussed.
Collapse
Affiliation(s)
- R Moseley
- Wound Biology Group, Department of Oral Surgery, Medicine & Pathology, Dental School, University of Wales College of Medicine, Cardiff, UK.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Fibrous and interstitial proteins compose the extracellular matrix of the vocal fold lamina propria and account for its biomechanic properties. Vocal fold scarring is characterized by altered biomechanical properties, which create dysphonia. Although alterations of the fibrous proteins have been confirmed in the rabbit vocal fold scar, interstitial proteins, which are known to be important in wound repair, have not been investigated to date. Using a rabbit model, interstitial proteins decorin, fibromodulin, and fibronectin were examined immunohistologically, two months postinduction of vocal fold scar by means of forcep biopsy. Significantly decreased decorin and fibromodulin with significantly increased fibronectin characterized scarred vocal fold tissue. The implications of altered interstitial proteins levels and their affect on the fibrous proteins will be discussed in relation to increased vocal fold stiffness and viscosity, which characterizes vocal fold scar.
Collapse
Affiliation(s)
- Susan L Thibeault
- Division of Otolaryngology, Head and Neck Surgery, Department of Communicative Disorders, University of Utah, Salt Lake City 84132, USA.
| | | | | |
Collapse
|