1
|
Pokhrel S, Triplett KD, Daly SM, Joyner JA, Sharma G, Hathaway HJ, Prossnitz ER, Hall PR. Complement Receptor 3 Contributes to the Sexual Dimorphism in Neutrophil Killing of Staphylococcus aureus. THE JOURNAL OF IMMUNOLOGY 2020; 205:1593-1600. [PMID: 32769122 DOI: 10.4049/jimmunol.2000545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022]
Abstract
We previously reported sex differences in innate susceptibility to Staphylococcus aureus skin infection and that bone marrow neutrophils (BMN) from female mice have an enhanced ability to kill S. aureus ex vivo compared with those of male mice. However, the mechanism(s) driving this sex bias in neutrophil killing have not been reported. Given the role of opsonins such as complement, as well as their receptors, in S. aureus recognition and clearance, we investigated their contribution to the enhanced bactericidal capacity of female BMN. We found that levels of C3 in the serum and CR3 (CD11b/CD18) on the surface of BMN were higher in female compared with male mice. Consistent with increased CR3 expression following TNF-α priming, production of reactive oxygen species (ROS), an important bactericidal effector, was also increased in female versus male BMN in response to serum-opsonized S. aureus Furthermore, blocking CD11b reduced both ROS levels and S. aureus killing by murine BMN from both sexes. However, at the same concentration of CD11b blocking Ab, S. aureus killing by female BMN was greatly reduced compared with those from male mice, suggesting CR3-dependent differences in bacterial killing between sexes. Overall, this work highlights the contributions of CR3, C3, and ROS to innate sex bias in the neutrophil response to S. aureus Given that neutrophils are crucial for S. aureus clearance, understanding the mechanism(s) driving the innate sex bias in neutrophil bactericidal capacity could identify novel host factors important for host defense against S. aureus.
Collapse
Affiliation(s)
- Srijana Pokhrel
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131
| | - Kathleen D Triplett
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131
| | - Seth M Daly
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131
| | - Jason A Joyner
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131
| | - Geetanjali Sharma
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131; and
| | - Helen J Hathaway
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131; and
| | - Pamela R Hall
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131;
| |
Collapse
|
2
|
Zhang P, Fu Y, Ju J, Wan D, Su H, Wang Z, Rui H, Jin Q, Le Y, Hou R. Estradiol inhibits fMLP-induced neutrophil migration and superoxide production by upregulating MKP-2 and dephosphorylating ERK. Int Immunopharmacol 2019; 75:105787. [PMID: 31401382 DOI: 10.1016/j.intimp.2019.105787] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/20/2019] [Accepted: 07/25/2019] [Indexed: 01/03/2023]
Abstract
Estrogen has been reported to inhibit neutrophil infiltration related inflammation and suppress neutrophils migration in vitro, but the underlying mechanism is not fully understood. By using HL-60 differentiated neutrophil-like cells (dHL-60) and human neutrophils, we examined the effect of 17-β estradiol (E2) on cell migration and superoxide production in response to chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) and explored the mechanisms involved. We found that fMLP significantly induced dHL-60 cell and neutrophil migration and superoxide production, which was inhibited by ERK inhibitor PD98059. E2 significantly inhibited fMLP-induced dHL-60 cell and neutrophil migration and superoxide production at both physiological and pharmacological concentrations. Mechanistic studies showed that pretreatment of these cells with E2 rapidly elevated the protein level of mitogen-activated protein kinase phosphatase 2 (MKP-2) and inhibited fMLP-induced ERK phosphorylation. Pretreatment of these cells with estrogen receptor (ER) antagonist ICI 182780 reversed the inhibition of fMP-induced cell migration and superoxide production, and the induction of MKP-2 expression and the suppression of fMP-induced ERK phosphorylation by E2. However, pretreatment of cells with G-protein coupled ER antagonist G15 had no such effect. Collectively, these results demonstrate that fMLP stimulates neutrophil chemotaxis and superoxide production through activating ERK, and indicate that ER-mediated upregulation of MKP-2 may dephosphorylate ERK and contribute to the inhibitory effect of E2 on neutrophil activation by fMLP. Our study reveals new mechanisms involved in the anti-inflammatory activity of estrogen.
Collapse
Affiliation(s)
- Ping Zhang
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Yi Fu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215007, China
| | - Jihui Ju
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Dapeng Wan
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Hao Su
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Zhaodong Wang
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Huajuan Rui
- Department of Clinical Laboratory, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Qianheng Jin
- Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruixing Hou
- Institute of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China; Department of Hand Surgery, Ruihua Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215100, China.
| |
Collapse
|
3
|
Nowak K, Jabłońska E, Ratajczak-Wrona W. Neutrophils life under estrogenic and xenoestrogenic control. J Steroid Biochem Mol Biol 2019; 186:203-211. [PMID: 30381249 DOI: 10.1016/j.jsbmb.2018.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022]
Abstract
Over 100 years ago, scientists had identified cells that represent the most abundant population of peripheral blood leukocytes; they called this population neutrophils. Day by day, the knowledge specific to neutrophils is augmented with new and often surprising aspects and facts about neutrophils' life or death. Estrogens (estrone, estriol, and estradiol) are relevant for the regulation of immune responses that are related with neutrophils. An understanding of the molecular mechanism of the action of endogenous hormones allows us to predict the effects of the substances that commonly occur in an environment with estrogen-like properties (xenoestrogens (e.g., bisphenol A, DDT, tributyltin, polychlorinated biphenyls, nonylphenol and octylphenol)). Therefore, we summarize current literature on the impact of estrogens and xenoestrogens, on each aspect of neutrophil life, as well as describe its mechanism of actions in neutrophils.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland.
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Poland
| | | |
Collapse
|
4
|
Mercer F, Ng SH, Brown TM, Boatman G, Johnson PJ. Neutrophils kill the parasite Trichomonas vaginalis using trogocytosis. PLoS Biol 2018; 16:e2003885. [PMID: 29408891 PMCID: PMC5815619 DOI: 10.1371/journal.pbio.2003885] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/16/2018] [Accepted: 01/17/2018] [Indexed: 11/24/2022] Open
Abstract
T. vaginalis, a human-infective parasite, causes the most common nonviral sexually transmitted infection (STI) worldwide and contributes to adverse inflammatory disorders. The immune response to T. vaginalis is poorly understood. Neutrophils (polymorphonuclear cells [PMNs]) are the major immune cell present at the T. vaginalis-host interface and are thought to clear T. vaginalis. However, the mechanism of PMN clearance of T. vaginalis has not been characterized. We demonstrate that human PMNs rapidly kill T. vaginalis in a dose-dependent, contact-dependent, and neutrophil extracellular trap (NET)-independent manner. In contrast to phagocytosis, we observed that PMN killing of T. vaginalis involves taking "bites" of T. vaginalis prior to parasite death, using trogocytosis to achieve pathogen killing. Both trogocytosis and parasite killing are dependent on the presence of PMN serine proteases and human serum factors. Our analyses provide the first demonstration, to our knowledge, of a mammalian phagocyte using trogocytosis for pathogen clearance and reveal a novel mechanism used by PMNs to kill a large, highly motile target.
Collapse
Affiliation(s)
- Frances Mercer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shek Hang Ng
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Taylor M. Brown
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Grace Boatman
- Pomona College, Claremont, California, United States of America
| | - Patricia J. Johnson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
5
|
Sofo V, Götte M, Laganà AS, Salmeri FM, Triolo O, Sturlese E, Retto G, Alfa M, Granese R, Abrão MS. Correlation between dioxin and endometriosis: an epigenetic route to unravel the pathogenesis of the disease. Arch Gynecol Obstet 2015; 292:973-86. [DOI: 10.1007/s00404-015-3739-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
6
|
Norwitz ER, Bonney EA, Snegovskikh VV, Williams MA, Phillippe M, Park JS, Abrahams VM. Molecular Regulation of Parturition: The Role of the Decidual Clock. Cold Spring Harb Perspect Med 2015; 5:a023143. [PMID: 25918180 PMCID: PMC4632866 DOI: 10.1101/cshperspect.a023143] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The timing of birth is a critical determinant of perinatal outcome. Despite intensive research, the molecular mechanisms responsible for the onset of labor both at term and preterm remain unclear. It is likely that a "parturition cascade" exists that triggers labor at term, that preterm labor results from mechanisms that either prematurely stimulate or short-circuit this cascade, and that these mechanisms involve the activation of proinflammatory pathways within the uterus. It has long been postulated that the fetoplacental unit is in control of the timing of birth through a "placental clock." We suggest that it is not a placental clock that regulates the timing of birth, but rather a "decidual clock." Here, we review the evidence in support of the endometrium/decidua as the organ primarily responsible for the timing of birth and discuss the molecular mechanisms that prime this decidual clock.
Collapse
Affiliation(s)
- Errol R Norwitz
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, Massachusetts 02111 Mother Infant Research Institute (MIRI), Tufts University School of Medicine, Boston, Massachusetts 02110
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Burlington, Vermont 05405
| | - Victoria V Snegovskikh
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Women and Infants Hospital of Rhode Island, Providence, Rhode Island 02905
| | - Michelle A Williams
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115
| | - Mark Phillippe
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Vikki M Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06510
| |
Collapse
|
7
|
Zivna H, Zivny P, Vokurkova D, Svejkovska K, Palicka V. The effect of chronic iron losses on liver regeneration in male and female rats. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2010; 154:153-8. [PMID: 20668497 DOI: 10.5507/bp.2010.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND We studied the effect of iron deficiency on liver regeneration and innate immunity - respiratory burst of PMN. METHODS Wistar rats, males (M) and females (F) had sham withdrawals or males (M-w) and females (F-w) had nine blood withdrawals every week. All rats were sacrificed in 10(th) week after 67% hepatectomy (PH) after (3)H-thymidin application. We determined erythrocyte and leukocyte count, respiratory burst (RB), serum prohepcidin, estradiol, iron, iron binding capacity (TIBC) and liver iron stores. RESULTS Liver DNA synthesis in M-w and F-w increased versus M and F (p=0.05). Serum prohepcidin after PH decreased in M, F (p=0.001) and F-w (p=0.05), but not in M-w. Blood withdrawals increased spontaneous RB (p<0.05), stimulated RB at females (p<0.01). Stimulated RB was lower in M-w then in M (p<0.01). Serum iron was lower in males than in females, but higher in rats with withdrawals than in rats without withdrawals. TIBC decreased after PH in M, F, F-w groups (p<0.001), less at M-w (p<0.05). Liver iron stores decreased in M, less in F. CONCLUSIONS Both genders with blood withdrawals had early beginning of liver regeneration after PH. The preconditioning (withdrawals) leads to increase in iron turnover and stores following best reactivity of PMN, rapid decrease in serum prohepcidin, and early initiation of liver regeneration, mainly in females. We assume, the females have higher iron turnover, liver iron stores more easily mobilized for blood losses, because next gravidity physio logically begin immediately after birth. Simply transfer of experimental results to human medicine is difficult.
Collapse
Affiliation(s)
- Helena Zivna
- Charles University, Hradec Kralove, Czech Republic.
| | | | | | | | | |
Collapse
|
8
|
Ansar Ahmed S, Karpuzoglu E, Khan D. Effects of Sex Steroids on Innate and Adaptive Immunity. SEX HORMONES AND IMMUNITY TO INFECTION 2010:19-51. [DOI: 10.1007/978-3-642-02155-8_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Bruner-Tran KL, Yeaman GR, Crispens MA, Igarashi TM, Osteen KG. Dioxin may promote inflammation-related development of endometriosis. Fertil Steril 2008; 89:1287-98. [PMID: 18394613 DOI: 10.1016/j.fertnstert.2008.02.102] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 02/08/2008] [Accepted: 02/08/2008] [Indexed: 01/09/2023]
Abstract
Laboratory and population-based studies suggest that exposure to environmental toxicants may be one of several triggers for the development of endometriosis. We discuss evidence that modulation of the endometrial endocrine-immune interface could mechanistically link toxicant exposure to the development of this disease.
Collapse
Affiliation(s)
- Kaylon L Bruner-Tran
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
10
|
Smith JM, Wira CR, Fanger MW, Shen L. Human Fallopian Tube Neutrophils – A Distinct Phenotype from Blood Neutrophils. Am J Reprod Immunol 2006; 56:218-29. [PMID: 16938110 DOI: 10.1111/j.1600-0897.2006.00410.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PROBLEM The role of neutrophils in the human Fallopian tube (FT) is unknown. In order to provide insights into their functions in the FT, we systematically compared neutrophils from normal FT and peripheral blood (PB). METHOD OF STUDY Flow cytometric analysis of surface receptors, granule proteins, and intracellular cytokines expressed by neutrophils from enzymatically dispersed FT and PB was performed. RESULTS Fallopian tube neutrophils expressed significantly higher levels of CD64, human class II histocompatibility antigen DR (HLA-DR), gamma-interferon, and vascular endothelial growth factor than those from PB. Fewer FT neutrophils expressed IL-8 receptors compared to PB, while more expressed the receptor for the bacterial-derived chemoattractant formyl-Met-Leu-Phe (fMLP). The number of FT neutrophils containing the granule proteins matrix metalloproteinase-9, lactoferrin, and myeloperoxidase was decreased versus PB. CONCLUSION Fallopian tube neutrophils exhibit a phenotype distinct from PB neutrophils, suggesting functional activation of innate immune defense in the female reproductive tract as well as a potential role in maintaining normal FT physiology.
Collapse
Affiliation(s)
- Jennifer M Smith
- Department of Microbiology & Immunology, Dartmouth Medical School, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
11
|
Abrahams VM, Visintin I, Aldo PB, Guller S, Romero R, Mor G. A role for TLRs in the regulation of immune cell migration by first trimester trophoblast cells. THE JOURNAL OF IMMUNOLOGY 2006; 175:8096-104. [PMID: 16339547 DOI: 10.4049/jimmunol.175.12.8096] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Normal pregnancy is characterized by the presence of innate immune cells at the maternal-fetal interface. Originally, it was postulated that the presence of these leukocytes was due to an immune response toward paternal Ags expressed by the invading trophoblasts. Instead, we and others postulate that these innate immune cells are necessary for successful implantation and pregnancy. However, elevated leukocyte infiltration may be an underlying cause of pregnancy complications, such as preterm labor or preeclampsia. Furthermore, such conditions have been attributed to an intrauterine infection. Therefore, we hypothesize that first trimester trophoblast cells, upon recognition of microbes through TLRs, may coordinate an immune response by recruiting cells of the innate immune system to the maternal-fetal interface. In this study, we have demonstrated that human first trimester trophoblast cells constitutively secrete the chemokines growth-related oncogene, growth-related oncogene alpha, IL-8, and MCP-1 and are able to recruit monocytes and NK cells, and to a lesser degree, neutrophils. Following the ligation of TLR-3 by the viral ligand, poly(I:C), or TLR-4 by bacterial LPS, trophoblast secretion of chemokines is significantly increased and this in turn results in elevated monocyte and neutrophil chemotaxis. In addition, TLR-3 stimulation also induces trophoblast cells to secrete RANTES. These results suggest a novel mechanism by which first trimester trophoblast cells may differentially modulate the maternal immune system during normal pregnancy and in the presence of an intrauterine infection. Such altered trophoblast cell responses might contribute to the pathogenesis of certain pregnancy complications.
Collapse
Affiliation(s)
- Vikki M Abrahams
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|