1
|
Soltani M, Soltani M, Karami-Mohajeri S, Mohadesi A, Ranjbar M, Oghabian Z, Mehrpour O, Khosravi F. An interdisciplinary approach to assessing the toxicity reduction of cerium oxide nanoparticles coated with polyethylene glycol and polyvinylpyrrolidone polymers: An in vitro study. Toxicol In Vitro 2025; 105:106022. [PMID: 39986636 DOI: 10.1016/j.tiv.2025.106022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/18/2025] [Accepted: 02/07/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVE This study combines toxicology, analytical chemistry, and nanotechnology to develop cerium oxide nanoparticles, both uncoated and coated with Polyethylene Glycol and Polyvinylpyrrolidone polymers. The objective is to assess their toxicity reduction using cell-based assays. METHODS Nanoparticles were synthesized using the co-precipitation technique. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS) were employed to characterize their properties. The MTT assay evaluated cell viability, whereas reactive oxygen species and LPO assays were used to quantify oxidative stress. FINDINGS The chemical analysis of nanoparticles of the study revealed that cerium oxide nanoparticles exhibited better and more regular morphological characteristics compared to nanoparticles coated with PEG and PVP polymers in terms of size. In addition, cerium oxide nanoparticles combined with PVP polymer did not retain the morphology at the nano level. Toxicological studies demonstrated a reduction in the toxicity of cerium oxide nanoparticles when coated with PEG and PVP polymers. DISCUSSION AND CONCLUSION The study found that PEG coating significantly reduces the cytotoxicity of cerium oxide nanoparticles more effectively than PVP coating by mitigating oxidative stress. This approach presents a promising strategy for developing safer cerium oxide-based products for pharmaceutical and medical applications.
Collapse
Affiliation(s)
- Mohadeseh Soltani
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, 76175-14111 Kerman, Iran
| | - Motahareh Soltani
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Somayyeh Karami-Mohajeri
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran; Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Alireza Mohadesi
- Department of Chemistry, Payame Noor University, Tehran 19395-4697, Iran
| | - Mehdi Ranjbar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zohreh Oghabian
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Omid Mehrpour
- Michigan Poison & Drug Information Center, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Farshid Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
2
|
Kurhade PI, Kodape SM, Das A, Bansod PG. Synergistic action of sumatriptan delivery and targeting magnesium deficiency using green, pH-responsive MgO nanoparticles synthesized from mahua flower extracts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7217-7236. [PMID: 37936045 DOI: 10.1007/s11356-023-30648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
Magnesium oxide (MgO) nanoparticles were green synthesized using mahua (Madhuca longifolia) flower extracts by solvent evaporation and characterized by UV-visible spectroscopy, X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), and Energy dispersive X-ray analysis (EDX). The drug loading of sumatriptan succinate (SS), an anti-migraine drug, was optimized using MINITAB's response surface methodology (RSM) Box Behnken model (BBD) model. The investigation of drug adsorption and release kinetics was further conducted using the optimized set obtained through RSM. The optimized parameters consisted of 23.53 mg of nanoparticles, a loading time of 6 h, and a pH of 9, yielding the experimental drug loading efficiency ~47%. The primary objective of this study is to investigate the potential of utilizing these green synthesized MgO nanoparticles for a dual purpose. The primary objective of this study is to investigate the viability of utilizing MgO nanoparticles synthesized through green route for the delivery of an anti-migraine medication. Additionally, the study aims to examine the degradation of these nanoparticles at physiological pH levels, with the intention of potentially enhancing cellular absorption. The investigation involved the assessment of drug release kinetics using various mathematical models, with a focus on the release of SS from MgO nanoparticles. This evaluation was conducted at different pH levels, specifically pH 5, 7, and 9. It has been found that the SS release increases as pH decreases, which is attributed to the dissolution of MgO nanoparticles, which therefore exhibits varied behavior at different pHs. The confirmation of the degradation of the green synthesized MgO nanoparticles was achieved through the execution of a degradation study, followed by the analysis of the obtained samples using FESEM and EDS. At neutral, the release data obtained adhered to the Higuchi model, which suggests that the release of the drug is based on diffusion. This finding is particularly advantageous for the controlled release of an anti-migraine drug. The results obtained from the study indicate that MgO nanoparticles have the potential to serve as a significant component in drug delivery systems, specifically as drug carriers.
Collapse
Affiliation(s)
- Pranali I Kurhade
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, 440010, India
| | - Shyam M Kodape
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, 440010, India.
| | - Arijit Das
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, 440010, India
| | | |
Collapse
|
3
|
Kwang Benno Park H, Kumar P, Kebaili I, Boukhris I, Hwan Joo Y, Hyun Sung T, Kumar A. Optimization and modelling of magnesium oxide (MgO) photocatalytic degradation of binary dyes using response surface methodology. Sci Rep 2024; 14:9412. [PMID: 38658625 PMCID: PMC11043076 DOI: 10.1038/s41598-024-56797-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/11/2024] [Indexed: 04/26/2024] Open
Abstract
Textile industry dye effluent contains a mixture of different kinds of dyes. Many times, photocatalysis is targeted as a solution for the treatment of dye effluent from the textile industry. Many researches have been published related to the photocatalysis of single textile dyes but in the real-world scenario, effluent is a mixture of dyes. Magnesium oxide (MgO) is used as a photocatalyst to treat a mixture (binary solution) of Methylene blue (MB) and Methylene violet (MV) along with individual MB and MV dyes in this article. MgO shows remarkable photocatalytic activity at about 93 and 88% for MB and MV dye in binary solution within 135 min. Furthermore, to study the influence of process parameters, experiments are designed with the help of the central composite design (CCD), and Response surface methodology (RSM) is used to study the interactions between parameters. For this study, five parameters are selected i.e., Photocatalyst dosage, initial concentration of both dyes, time of exposure to the light source, and pH of the binary solution. The photocatalytic process is also optimized and finally optimization of process parameters is validated with an experiment. The result of the validation experiment is very close to the predicted photocatalytic activity.
Collapse
Affiliation(s)
| | - Pushpendra Kumar
- Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Imen Kebaili
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Imed Boukhris
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Yun Hwan Joo
- Department of Electrical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Tae Hyun Sung
- Department of Electrical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Anuruddh Kumar
- Center for Creative Convergence Education, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
4
|
Gatou MA, Skylla E, Dourou P, Pippa N, Gazouli M, Lagopati N, Pavlatou EA. Magnesium Oxide (MgO) Nanoparticles: Synthetic Strategies and Biomedical Applications. CRYSTALS 2024; 14:215. [DOI: 10.3390/cryst14030215] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
In recent times, there has been considerable interest among researchers in magnesium oxide (MgO) nanoparticles, due to their excellent biocompatibility, stability, and diverse biomedical uses, such as antimicrobial, antioxidant, anticancer, and antidiabetic properties, as well as tissue engineering, bioimaging, and drug delivery applications. Consequently, the escalating utilization of magnesium oxide nanoparticles in medical contexts necessitates the in-depth exploration of these nanoparticles. Notably, existing literature lacks a comprehensive review of magnesium oxide nanoparticles’ synthesis methods, detailed biomedical applications with mechanisms, and toxicity assessments. Thus, this review aims to bridge this gap by furnishing a comprehensive insight into various synthetic approaches for the development of MgO nanoparticles. Additionally, it elucidates their noteworthy biomedical applications as well as their potential mechanisms of action, alongside summarizing their toxicity profiles. This article also highlights challenges and future prospects for further exploring MgO nanoparticles in the biomedical field. Existing literature indicates that synthesized magnesium oxide nanoparticles demonstrate substantial biocompatibility and display significant antibacterial, antifungal, anticancer, and antioxidant properties. Consequently, this review intends to enhance readers’ comprehension regarding recent advancements in synthesizing MgO nanoparticles through diverse approaches and their promising applications in biomedicine.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Eirini Skylla
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Panagiota Dourou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| |
Collapse
|
5
|
Murtaza M, Aqib AI, Khan SR, Muneer A, Ali MM, Waseem A, Zaheer T, Al-Keridis LA, Alshammari N, Saeed M. Sodium Alginate-Based MgO Nanoparticles Coupled Antibiotics as Safe and Effective Antimicrobial Candidates against Staphylococcus aureus of Houbara Bustard Birds. Biomedicines 2023; 11:1959. [PMID: 37509597 PMCID: PMC10377686 DOI: 10.3390/biomedicines11071959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Alternative and modified therapeutic approaches are key elements in culminating antibiotic resistance. To this end, an experimental trial was conducted to determine the cytotoxicity and antibacterial potential of composites of magnesium oxide (MgO) nanoparticles and antibiotics stabilized in sodium alginate gel against multi-drug-resistant Staphylococcus aureus isolated from a houbara bustard. The characterization of preparations was carried out using X-ray diffraction (XRD), scanning transmissible electron microscopy (STEM), and Fourier-transform infrared spectroscopy (FTIR). The preparations used in this trial consisted of gel-stabilized MgO nanoparticles (MG), gel-stabilized tylosin (GT), gel-stabilized ampicillin (GA), gel-stabilized cefoxitin (GC), gel-stabilized MgO and tylosin (GMT), gel-stabilized MgO and cefoxitin (GMC), and gel-stabilized MgO and ampicillin (GMA). The study presents composites that cause a lesser extent of damage to DNA while significantly enhancing mitotic indices/phases compared to the other single component preparations with respect to the positive control (methyl methanesulphonate). It was also noted that there was a non-significant difference (p > 0.05) between the concentrations of composites and the negative control in the toxicity trial. Studying in parallel trials showed an increased prevalence, potential risk factors, and antibiotic resistance in S. aureus. The composites in a well diffusion trial showed the highest percentage increase in the zone of inhibition in the case of GT (58.42%), followed by GMT (46.15%), GC (40.65%), GMC (40%), GMA (28.72%), and GA (21.75%) compared to the antibiotics alone. A broth microdilution assay showed the lowest minimum inhibitory concentration (MIC) in the case of GMA (9.766 ± 00 µg/mL), followed by that of GT (13.02 ± 5.64 µg/mL), GMC (19.53 ± 0.00 µg/mL), GA (26.04 ± 11.28 µg/mL), GMT (26.04 ± 11.28 µg/mL), MG (39.06 ± 0.00 µg/mL), and GC (39.06 ± 0.00 µg/mL). The study thus concludes the effective tackling of multiple-drug-resistant S. aureus with sodium-alginate-stabilized MgO nanoparticles and antibiotics, whereas toxicity proved to be negligible for these composites.
Collapse
Affiliation(s)
- Maheen Murtaza
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Shanza Rauf Khan
- Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Afshan Muneer
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
- Department of Zoology, Government Sadiq College Women University, Bahawalpur 63100, Pakistan
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Ahmad Waseem
- Houbara Foundation International, Lal Sohanra Park, Bahawalpur 63100, Pakistan
- Oryx Falcon Veterinarian, Doha 6763, Qatar
| | - Tean Zaheer
- Department of Parasitology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Lamya Ahmed Al-Keridis
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| |
Collapse
|
6
|
Wang Y, Liu Y, Li X, Wang F, Huang Y, Liu Y, Zhu Y. Investigation of the Biosafety of Antibacterial Mg(OH) 2 Nanoparticles to a Normal Biological System. J Funct Biomater 2023; 14:jfb14040229. [PMID: 37103319 PMCID: PMC10141151 DOI: 10.3390/jfb14040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
The toxicity of Mg(OH)2 nanoparticles (NPs) as antibacterial agents to a normal biological system is unclear, so it is necessary to evaluate their potential toxic effect for safe use. In this work, the administration of these antibacterial agents did not induce pulmonary interstitial fibrosis as no significant effect on the proliferation of HELF cells was observed in vitro. Additionally, Mg(OH)2 NPs caused no inhibition of the proliferation of PC-12 cells, indicating that the brain's nervous system was not affected by Mg(OH)2 NPs. The acute oral toxicity test showed that the Mg(OH)2 NPs at 10,000 mg/kg induced no mortality during the administration period, and there was little toxicity in vital organs according to a histological analysis. In addition, the in vivo acute eye irritation test results showed little acute irritation of the eye caused by Mg(OH)2 NPs. Thus, Mg(OH)2 NPs exhibited great biosafety to a normal biological system, which was critical for human health and environmental protection.
Collapse
Affiliation(s)
- Ying Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanjing Liu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiyue Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fuming Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yaping Huang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yuezhou Liu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yimin Zhu
- Collaborative Innovation Central for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
7
|
Manan A, Aqib AI, Shahbaz A, Khan SR, Akram K, Majeed H, Muneer A, Murtaza M, Afrasiab M, Merola C, Niaz K, Ahmad I, Saeed M. Modification of the drug resistance of emerging milk-borne pathogens through sodium alginate-based antibiotics and nanoparticles. Front Vet Sci 2023; 10:1130130. [PMID: 37138921 PMCID: PMC10149700 DOI: 10.3389/fvets.2023.1130130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 05/05/2023] Open
Abstract
Streptococcus agalactiae and Klebsiella pneumoniae are emerging as major milk-borne pathogens. Additionally, resistance to antibiotics of pathogens is of concern. Therefore, this study investigated the prevalence and drug resistance of S. agalactiae and K. pneumoniae in mastitis milk samples and assessed the antimicrobial potential of sodium alginate (G)-stabilized MgO nanoparticles (M) and antibiotics (tylosin [T] and ampicillin [A]) against both of these pathogens. A total of n = 200 milk samples from cattle were collected using purposive sampling, and standard microbiological approaches were adopted to isolate target bacteria. Parametric and non-parametric statistical tests were used to analyze the obtained data. Four preparations, GT (gel-stabilized tylosin), GA (gel-stabilized ampicillin), GTM (tylosin and MgO nanoparticles stabilized in gel), and GAM (ampicillin and MgO nanoparticles stabilized in gel), were evaluated against both bacteria through well diffusion and broth microdilution method. The analysis revealed that 45.24% (95/210) of the milk samples were positive for mastitis, of which 11.58% (11/95) were positive for S. agalactiae and 9.47% (9/95) were positive for K. pneumoniae. S. agalactiae had a significantly higher zone of inhibition (ZOI) than K. pneumoniae against penicillin, tetracycline, and amoxicillin, whereas the opposite was observed against imipenem and erythromycin. All gel (G)-based preparations showed an increase in the percentage of ZOI compared with antibiotics alone, with GTM presenting the highest of all, i.e., 59.09 and 56.25% ZOI compared with tylosin alone against S. agalactiae and K. pneumoniae, respectively. Similarly, in a broth microdilution assay, the lowest MIC was found for K. pneumoniae (9.766 ± 0.0 μg/mL) against GTM, followed by GT, GAM, and GA after incubation for 24 h. A similar response was noted for preparations against S. agalactiae but with a comparatively higher MIC. A significant reduction in MIC with respect to incubation time was found at 8 h and remained until at 20 h against both pathogens. The cytotoxicity of the MgO nanoparticles used in this study was significantly lower than that of the positive control. Overall, this study found that K. pneumoniae and S. agalactiae appeared higher in prevalence and antimicrobial resistance, and sodium alginate-based antibiotics and MgO nanoparticles were effective alternative approaches for tackling antimicrobial resistance.
Collapse
Affiliation(s)
- Abdul Manan
- Department of Food Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
- *Correspondence: Amjad Islam Aqib
| | - Ansa Shahbaz
- Basic Health Unit, Health Department Punjab, Tehsil Tandlianwala, Faisalabad, Pakistan
| | - Shanza Rauf Khan
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Kashif Akram
- Department of Food Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Hamid Majeed
- Department of Food Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Afshan Muneer
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
- Afshan Muneer
| | - Maheen Murtaza
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Afrasiab
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
8
|
Nan J, Liu W, Zhang K, Sun Y, Hu Y, Lei P. Tantalum and magnesium nanoparticles enhance the biomimetic properties and osteo-angiogenic effects of PCL membranes. Front Bioeng Biotechnol 2022; 10:1038250. [PMID: 36507273 PMCID: PMC9730409 DOI: 10.3389/fbioe.2022.1038250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Segmental bone defects, accompanied by periosteum stripping or injury, usually lead to delayed bone union or nonunion, which have challenged orthopedic surgeons. The periosteum, which provides essential blood supply and initial stem cells for bone tissue, plays an important role in the repair of bone defects. The reconstruction of the destroyed periosteum has attracted the attention of researchers exploring more satisfactory therapies to repair bone defects. However, periosteum-like biomaterials have yet to meet the clinical requirements and resolve this challenging problem. In this study, we manufactured a nanofiber periosteum replacement based on poly-ε-caprolactone (PCL), in which tantalum nanoparticles (TaNPs) and nanoscale magnesium oxide (MgO) were introduced to enhance its osteogenic and angiogenic ability. The results of in vitro experiments indicated that the PCL/Ta/MgO periosteum replacement, with excellent cytocompatibility, promoted the proliferation of both bone marrow mesenchymal stem cells (BMSCs) and endothelial progenitor cells (EPCs). Furthermore, the incorporation of TaNPs and nano-MgO synergistically enhanced the osteogenic differentiation of BMSCs and the angiogenic properties of EPCs. Similarly, the results of in vivo experiments from subcutaneous implantation and critical-sized calvarial defect models showed that the PCL/Ta/MgO periosteum replacement combined the osteogenesis and angiogenesis abilities, promoting vascularized bone formation to repair critical-sized calvarial defects. The results of our study suggest that the strategy of stimulating repairing bone defects can be achieved with the periosteum repaired in situ and that the proposed periosteum replacement can act as a bioactive medium to accelerate bone healing.
Collapse
Affiliation(s)
- Jiangyu Nan
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Wenbin Liu
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China,*Correspondence: Wenbin Liu, ; Yihe Hu, ; Pengfei Lei,
| | - Kai Zhang
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Yan Sun
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Yihe Hu
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China,*Correspondence: Wenbin Liu, ; Yihe Hu, ; Pengfei Lei,
| | - Pengfei Lei
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China,*Correspondence: Wenbin Liu, ; Yihe Hu, ; Pengfei Lei,
| |
Collapse
|
9
|
Ma L, Andoh V, Shen Z, Liu H, Li L, Chen K. Subchronic toxicity of magnesium oxide nanoparticles to Bombyx mori silkworm. RSC Adv 2022; 12:17276-17284. [PMID: 35765455 PMCID: PMC9186304 DOI: 10.1039/d2ra01161a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Despite many research efforts devoted to the study of the effects of magnesium oxide nanoparticles (MgO NPs) on cells or animals in recent years, data related to the potential long-term effects of this nanomaterial are still scarce. The aim of this study is to explore the subchronic effects of MgO NPs on Bombyx mori silkworm, a complete metamorphosis insect with four development stages (egg, larva, pupa, month). With this end in view, silkworm larvae were exposed to MgO NPs at different mass concentrations (1%, 2%, 3% and 4%) throughout their fifth instar larva. Their development, survival rate, cell morphology, gene expressions, and especially silk properties were compared with a control. The results demonstrate that MgO NPs have no significant negative impact on the growth or tissues. The cocooning rate and silk quality also display normal results. However, a total of 806 genes are differentially expressed in the silk gland (a vital organ for producing silk). GO (Gene Ontology) results show that the expression of many genes related to transporter activity are significantly changed, revealing that active transport is the main mechanism for the penetration of MgO NPs, which also proves that MgO NPs are adsorbed by cells. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis demonstrates that the longevity regulating pathway-worm, peroxisome and MAPK signaling pathway are closely involved in the biological effects of MgO NPs. Overall, subchronic exposure to MgO NPs induced no apparent negative impact on silkworm growth or silks but changed the expressions of some genes.
Collapse
Affiliation(s)
- Lin Ma
- College of Biotechnology, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212001 P. R. China
| | - Vivian Andoh
- College of Biotechnology, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212001 P. R. China .,Institute of Life Science, Jiangsu University Zhenjiang Jiangsu 212013 P. R. China
| | - Zhongyuan Shen
- College of Biotechnology, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212001 P. R. China
| | - Haiyan Liu
- Tea and Food Science and Technology Institute, Jiangsu Vocational College of Agriculture and Forestry Jurong 212400 China
| | - Long Li
- College of Biotechnology, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212001 P. R. China
| | - Keping Chen
- Institute of Life Science, Jiangsu University Zhenjiang Jiangsu 212013 P. R. China
| |
Collapse
|
10
|
Echeverry-Rendón M, Stančič B, Muizer K, Duque V, Calderon DJ, Echeverria F, Harmsen MC. Cytotoxicity Assessment of Surface-Modified Magnesium Hydroxide Nanoparticles. ACS OMEGA 2022; 7:17528-17537. [PMID: 35664586 PMCID: PMC9161253 DOI: 10.1021/acsomega.1c06515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/23/2022] [Indexed: 05/27/2023]
Abstract
Magnesium-based nanoparticles have shown promise in regenerative therapies in orthopedics and the cardiovascular system. Here, we set out to assess the influence of differently functionalized Mg nanoparticles on the cellular players of wound healing, the first step in the process of tissue regeneration. First, we thoroughly addressed the physicochemical characteristics of magnesium hydroxide nanoparticles, which exhibited low colloidal stability and strong aggregation in cell culture media. To address this matter, magnesium hydroxide nanoparticles underwent surface functionalization by 3-aminopropyltriethoxysilane (APTES), resulting in excellent dispersible properties in ethanol and improved colloidal stability in physiological media. The latter was determined as a concentration- and time-dependent phenomenon. There were no significant effects on THP-1 macrophage viability up to 1.500 μg/mL APTES-coated magnesium hydroxide nanoparticles. Accordingly, increased media pH and Mg2+ concentration, the nanoparticles dissociation products, had no adverse effects on their viability and morphology. HDF, ASCs, and PK84 exhibited the highest, and HUVECs, HPMECs, and THP-1 cells the lowest resistance toward nanoparticle toxic effects. In conclusion, the indicated high magnesium hydroxide nanoparticles biocompatibility suggests them a potential drug delivery vehicle for treating diseases like fibrosis or cancer. If delivered in a targeted manner, cytotoxic nanoparticles could be considered a potential localized and specific prevention strategy for treating highly prevalent diseases like fibrosis or cancer. Looking toward the possible clinical applications, accurate interpretation of in vitro cellular responses is the keystone for the relevant prediction of subsequent in vivo biological effects.
Collapse
Affiliation(s)
- Mónica Echeverry-Rendón
- IMDEA
Materials Institute, C/Eric Kandel 2, Getafe, Madrid 28906, Spain
- University
of Groningenn, University Medical
Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA11, NL-9713 GZ Groningen, The Netherlands
- Centro
de Investigación, Innovación y Desarrollo de Materiales
(CIDEMAT), Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Brina Stančič
- University
of Groningenn, University Medical
Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA11, NL-9713 GZ Groningen, The Netherlands
- Department
of Molecular Biology, Universidad Autónoma de Madrid, and Department
of Molecular Neuropathology, Center of Molecular
Biology Severo Ochoa (UAM-CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Kirsten Muizer
- University
of Groningenn, University Medical
Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA11, NL-9713 GZ Groningen, The Netherlands
| | - Valentina Duque
- Centro
de Investigación, Innovación y Desarrollo de Materiales
(CIDEMAT), Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Deanne Jennei Calderon
- Centro
de Investigación, Innovación y Desarrollo de Materiales
(CIDEMAT), Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Felix Echeverria
- Centro
de Investigación, Innovación y Desarrollo de Materiales
(CIDEMAT), Facultad de Ingeniería, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Martin C. Harmsen
- University
of Groningenn, University Medical
Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA11, NL-9713 GZ Groningen, The Netherlands
| |
Collapse
|
11
|
Nejati M, Rostami M, Mirzaei H, Rahimi-Nasrabadi M, Vosoughifar M, Nasab AS, Ganjali MR. Green methods for the preparation of MgO nanomaterials and their drug delivery, anti-cancer and anti-bacterial potentials: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Alaizeri ZM, Alhadlaq HA, Aldawood S, Akhtar MJ, Amer MS, Ahamed M. Facile Synthesis, Characterization, Photocatalytic Activity, and Cytotoxicity of Ag-Doped MgO Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2915. [PMID: 34835679 PMCID: PMC8618491 DOI: 10.3390/nano11112915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022]
Abstract
Due to unique physicochemical properties, magnesium oxide nanoparticles (MgO NPs) have shown great potential for various applications, including biomedical and environmental remediation. Moreover, the physiochemical properties of MgO NPs can be tailored by metal ion doping that can be utilized in photocatalytic performance and in the biomedical field. There is limited study on the photocatalytic activity and biocompatibility of silver (Ag)-doped MgO NPs. This study was planned for facile synthesis, characterization, and photocatalytic activity of pure and silver (Ag)-doped MgO NPs. In addition, cytotoxicity of pure and Ag-doped MgO NPs was assessed in human normal umbilical vein endothelial cells (HUVECs). Pure MgO NPs and Ag-doped (1, 2, 5, and 7.5 mol%) MgO NPs were prepared via a simple sol-gel procedure. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR), photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) were used to characterize the prepared samples. XRD results showed the preparation of highly crystalline NPs with no impurity peaks. TEM and SEM studies indicate smooth surfaces with almost spherical morphology of MgO NPs, and Ag-doping did not change the morphology. Elemental composition study suggested that Ag is uniformly distributed in MgO particles. Intensity of the PL spectra of MgO NPs decreased with increasing the concentration of Ag dopants. In comparison to pure MgO NPs, Ag-MgO NPs showed higher degradation of methylene blue (MB) dye under UV irradiation. The improved photocatalytic activity of Ag-MgO NPs was related to the effect of dopant concentration on reducing the recombination between electrons and holes. Cytotoxicity studies showed good biocompatibility of pure and Ag-doped MgO NPs with human normal umbilical vein endothelial cells (HUVECs). These results highlighted the potential of Ag-doped MgO NPs in environmental remediation.
Collapse
Affiliation(s)
- ZabnAllah M. Alaizeri
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (Z.M.A.); (S.A.); (M.A.)
| | - Hisham A. Alhadlaq
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (Z.M.A.); (S.A.); (M.A.)
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Saad Aldawood
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (Z.M.A.); (S.A.); (M.A.)
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mabrook S. Amer
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Maqusood Ahamed
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (Z.M.A.); (S.A.); (M.A.)
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
13
|
Razavi S, Janfaza S, Tasnim N, Gibson DL, Hoorfar M. Nanomaterial-based encapsulation for controlled gastrointestinal delivery of viable probiotic bacteria. NANOSCALE ADVANCES 2021; 3:2699-2709. [PMID: 36134186 PMCID: PMC9419840 DOI: 10.1039/d0na00952k] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/25/2021] [Indexed: 05/02/2023]
Abstract
Probiotics are microorganisms that have beneficial health effects when administered in adequate dosages. The oral administration of probiotic bacteria is widely considered beneficial for both intestinal as well as systemic health but its clinical efficacy is conflicted in the literature. This may at least in part be due to the loss of viability during gastrointestinal passage resulting in poor intestinal delivery. Microencapsulation technology has been proposed as a successful strategy to address this problem by maintaining the viability of probiotics, thereby improving their efficacy following oral administration. More recently, nanomaterials have demonstrated significant promise as encapsulation materials to improve probiotic encapsulation. The integration of nanotechnology with microencapsulation techniques can improve the controlled delivery of viable probiotic bacteria to the gut. The current review aims at summarizing the types of nanomaterials used for the microencapsulation of probiotics and showing how they can achieve the delivery and controlled release of probiotics at the site of action.
Collapse
Affiliation(s)
| | - Sajjad Janfaza
- School of Engineering, University of British Columbia Kelowna BC Canada
| | - Nishat Tasnim
- School of Engineering, University of British Columbia Kelowna BC Canada
| | - Deanna L Gibson
- Department of Biology, Faculty of Science, University of British Columbia Kelowna Canada
- Department of Medicine, Faculty of Medicine, University of British Columbia Vancouver Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia Kelowna BC Canada
| |
Collapse
|
14
|
Effect of Magnesium Substitution on Structural, Magnetic and Biological Activity of Co(1-x)Mg(x)Fe2O4 Nano-colloids. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01862-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics (Basel) 2020; 5:biomimetics5020027. [PMID: 32521669 PMCID: PMC7345077 DOI: 10.3390/biomimetics5020027] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
The development of new nanomaterials with high biomedical performance and low toxicity is essential to obtain more efficient therapy and precise diagnostic tools and devices. Recently, scientists often face issues of balancing between positive therapeutic effects of metal oxide nanoparticles and their toxic side effects. In this review, considering metal oxide nanoparticles as important technological and biomedical materials, the authors provide a comprehensive review of researches on metal oxide nanoparticles, their nanoscale physicochemical properties, defining specific applications in the various fields of nanomedicine. Authors discuss the recent development of metal oxide nanoparticles that were employed as biomedical materials in tissue therapy, immunotherapy, diagnosis, dentistry, regenerative medicine, wound healing and biosensing platforms. Besides, their antimicrobial, antifungal, antiviral properties along with biotoxicology were debated in detail. The significant breakthroughs in the field of nanobiomedicine have emerged in areas and numbers predicting tremendous application potential and enormous market value for metal oxide nanoparticles.
Collapse
|
16
|
Environmentally Friendly Water-Based Self-Crosslinking Acrylate Dispersion Containing Magnesium Nanoparticles and Their Films Exhibiting Antimicrobial Properties. COATINGS 2020. [DOI: 10.3390/coatings10040340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A water-based polymeric acrylate dispersion (latex) containing MgO nanoparticles, which had been added at a concentration of 1.5% (with respect to the monomers) during the preparation procedure, was investigated as an environmentally friendly binder for sanitary interior paints. The properties of this new latex were compared to those of a reference system free of the magnesium nanoparticles, synthesized by the same route, i.e., by semi-continuous emulsion polymerization. Tests were made in order to ascertain the mechanical and chemical properties, flash corrosion resistance and antimicrobial effect of the latex films. The results revealed that the new latex containing magnesium nanoparticles provided solvent-resistant coating films having pronounced antimicrobial activity against all the tested bacterial and fungal strains. The desirable antimicrobial properties can be ascribed to the sharp-edged character of magnesium nanoparticles, the peroxidation of lipids and the formation of reactive oxygen species. Moreover, no flash corrosion was formed beneath coating films containing magnesium nanoparticles, which can be attributed to the alkaline action due to the dissolution of a fraction of MgO in latex medium. The results of all of the tests provided evidence of the superiority of the polymeric dispersion with the magnesium nanoparticles to the reference system containing no nanoparticles.
Collapse
|
17
|
Kgosiemang IK, Lefojane R, Direko P, Madlanga Z, Mashele S, Sekhoacha M. Green synthesis of magnesium and cobalt oxide nanoparticles using Euphorbia tirucalli: Characterization and potential application for breast cancer inhibition. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1735422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ipeleng Kopano Kgosiemang
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| | - Relebohile Lefojane
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| | - Paballo Direko
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| | - Zandile Madlanga
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| | - Samson Mashele
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Free State, Bloemfontein, South Africa
| | - Mamello Sekhoacha
- Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
18
|
Maharramov AM, Hasanova UA, Suleymanova IA, Osmanova GE, Hajiyeva NE. The engineered nanoparticles in food chain: potential toxicity and effects. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1412-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
19
|
Jiang S, Shi Y, Li M, Xiong L, Sun Q. Characterization of Maillard reaction products micro/nano-particles present in fermented soybean sauce and vinegar. Sci Rep 2019; 9:11285. [PMID: 31375781 PMCID: PMC6677813 DOI: 10.1038/s41598-019-47800-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 07/18/2019] [Indexed: 11/09/2022] Open
Abstract
The endogenous micro/nano-particles in daily food have drawn much attention due to specific properties potential biological impact. The aim of this study was to investigate the nanoparticles in traditional fermented soybean sauces and vinegars in order to study the safety problems of nanoparticles in daily food. The transmission electron microscope results showed that all samples exhibited diverse nanostructures with diameters ranging from 10 to 400 nm. The concentration of nanoparticles in these foods was determined to be around 1.15 × 107-3.43 × 109 particles/mL. Furthermore, the absorbance at 420 nm was found in all the fermented foods, which was ascribed to Maillard reaction products. The 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) results showed that nanoparticles in traditional fermented foods did not decrease cell viability in the concentration range tested (<200 μg/mL), which were equivalent to 20 L~200 L of selected soybean sauces and vinegars. However, further studies need to be performed to find out the interaction of nanoparticle with cell (food with body) after ingestion.
Collapse
Affiliation(s)
- Suisui Jiang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yanping Shi
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Man Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
20
|
Mittag A, Schneider T, Westermann M, Glei M. Toxicological assessment of magnesium oxide nanoparticles in HT29 intestinal cells. Arch Toxicol 2019; 93:1491-1500. [PMID: 30989313 DOI: 10.1007/s00204-019-02451-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/09/2019] [Indexed: 01/05/2023]
Abstract
Nanoparticles (NPs) are increasingly used in different consumer-related areas, for instance in food packaging or as additives, because of their enormous potential. Magnesium oxide (MgO) is an EU-approved food additive (E number 530). It is commonly used as a drying agent for powdered foods, for colour retention or as a food supplement. There are no consistent results regarding the effects of oral MgO NP uptake. Consequently, the aim of this study was to examine the effects of MgO NPs in the HT29 intestinal cell line. MgO NP concentrations ranged from 0.001 to 100 μg/ml and incubation times were up to 24 h. The cytotoxic and genotoxic potential were investigated. Apoptotic processes and cell cycle changes were analysed by flow cytometry. Finally, oxidative stress was examined. Transmission electron microscopy indicated that there was no cellular uptake. MgO NPs had no cytotoxic or genotoxic effects in HT29 cells and they did not induce apoptotic processes, cell cycle changes or oxidative stress.
Collapse
Affiliation(s)
- Anna Mittag
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Thomas Schneider
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Martin Westermann
- Electron Microscopy Centre, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Glei
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
21
|
Synthesis and anticancer properties of bacterial cellulose-magnesium oxide bionanocomposite. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.2478/cipms-2019-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Given the increase in global mortality rate due to various types of cancer, the present study aimed to develop optimal conditions for the synthesis of cellulose-magnesium oxide nanocomposite with favorable anticancer activity. For this purpose, the Taguchi method was used to design nine experiments with varied ratios of cellulose biopolymer, magnesium oxide nanoparticles and different stirring times. The scanning electron microscopy (SEM) images confirmed the formation of cellulose-magnesium oxide nanocomposite. The anticancer activity level of nine nanocomposites studied was evaluated using MTT assay on Michigan Cancer Foundation-7 (MCF-7) cell line. The nanocomposite synthesized in experiment 9 (8 mg/ml of magnesium oxide, 2 mg/ml of cellulose and stirring time of 60 min) showed the highest growth inhibitory activity on the cancer cells. Based on the attained results,e cellulose-magnesium oxide nanocomposite synthesized in optimal conditions can be used as an eligible anticancer agent.
Collapse
|
22
|
The Green Synthesis of MgO Nano-Flowers Using Rosmarinus officinalis L. (Rosemary) and the Antibacterial Activities against Xanthomonas oryzae pv. oryzae. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5620989. [PMID: 30906776 PMCID: PMC6398066 DOI: 10.1155/2019/5620989] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/15/2019] [Indexed: 11/17/2022]
Abstract
Recently, the use of herbs in the agriculture and food industry has increased significantly. In particular, Rosmarinus officinalis L. extracts have been reported to have strong antibacterial properties, which depend on their chemical composition. The present study displayed a biological method for synthesis of magnesium oxide (MgO) nano-flowers. The nano-flowers are developed without using any catalyst agent. Aqueous Rosemary extract was used to synthesize MgO nano-flowers (MgONFs) in stirring conditions and temperature at 70°C for 4 h. The mixture solution was checked by UV-Vis spectrum to confirm the presence of nanoparticles. The MgO nano-flowers powder was further characterized in this study by the X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared spectroscopy. In addition, bacteriological tests indicated that MgO nano-flowers significantly inhibited bacterial growth, biofilm formation, and motility of Xanthomonas oryzae pv. oryzae, which is the causal agent of bacterial blight disease in rice. The electronic microscopic observation showed that bacterial cell death may be mainly due to destroy of cell integrity, resulting in leakage of intracellular content. As recommended, the use of Rosemary extract is an effective and green way to produce the MgO nano-flowers, which can be widely used in agricultural fields to suppress bacterial infection.
Collapse
|
23
|
Mazaheri N, Naghsh N, Karimi A, Salavati H. In vivo Toxicity Investigation of Magnesium Oxide Nanoparticles in Rat for Environmental and Biomedical Applications. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e1543. [PMID: 31457037 PMCID: PMC6697860 DOI: 10.21859/ijb.1543] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background Magnesium oxide nanoparticles are characterized with a wide variety of applications and are mass-produced throughout the world. However, questions remain regarding their safety. There has been paucity of toxicology research on their side effects, especially under in vivo conditions. Objectives The present paper aims at evaluating the toxicity of administering 10–15 nm magnesium oxide nanoparticles to Wistar rat under in vivo conditions. In addition, hematology, biochemistry, and histopathology of the rats are examined at various concentrations (62.5-125-250-500 μg.mL-1) over 28-days period. Materials and Methods In this study, 35 male Wistar rats were randomly divided into five groups, comprising one control group and four experimental groups, assigned to various doses of MgO nanoparticles by intraperitoneal injection. Eventually, blood samples were collected, and all animals were sacrificed for liver and kidney tissue investigation. Results The findings showed that high concentrations of Magnesium oxide nanoparticles (250 and 500 μg.mL-1) significantly increased white blood cells, red blood cells, hemoglobin, and hematocrit compared with the control group (P < 0.05). Moreover, the nanoparticles elevated the levels of aspartate aminotransferase and alkaline phosphatase, whereas no significant difference in levels of alanine aminotransferase, gamma-glutamyl transpeptidase, urea, and creatinine were recorded in comparison with the control group (P < 0.05). Histopathological examinations in the rat’s liver showed proliferation of bile ductules, congestion in some regions of the liver sinusoids, and apoptotic cells (probably) in high-dose groups, but no histological changes were found in the kidney functions. Conclusions The results from the present study showed that the magnesium oxide nanoparticles in concentrations lower than 250 μg.mL-1 are safe for desired applications.
Collapse
Affiliation(s)
| | - Nooshin Naghsh
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Akbar Karimi
- Department of Biology, Payame Noor University, Tehran, Iran
| | | |
Collapse
|
24
|
Akhtar MJ, Ahamed M, Alhadlaq HA, Alrokayan SA. MgO nanoparticles cytotoxicity caused primarily by GSH depletion in human lung epithelial cells. J Trace Elem Med Biol 2018; 50:283-290. [PMID: 30262293 DOI: 10.1016/j.jtemb.2018.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022]
Abstract
Bio-response of magnesium oxide nanoparticles (MgO NPs) is emerging, obviously, with a conflicting flavor. This study evaluates the underlying mechanism of bio-responses of MgO NPs in human lung epithelial (A549) cell. TEM size of NPs was 40-50 nm and cuboidal in shape. EDS data showed no detectable impurity. Zeta potential of MgO NPs suggested a fair dispersion in complete culture media and in PBS. MgO NPs induced a concentration dependent cytotoxicity when measured by MTT and NRU. MgO NPs induced cytotoxicity strongly correlated with intracellular depletion of antioxidant GSH. MgO NPs did not induce concentration dependent ROS. All live treatment conditions caused autophagy, a survival mechanism when deprived of nutrients and antioxidant. At highest cytotoxic concentration of MgO NPs, there was significant elevation in MMP and caspase-3 activity. GSH depletion mediated autophagy failure lead to MgO NPs induced death at higher concentrations that might have potentiated by induced ROS. This study suggested a mechanism of cytotoxicity caused by MgO NPs that was primarily dependent on GSH depletion, and ROS induction played secondary role in toxicity. Significantly higher toxicity observed for MgO NPs in comparison to Mg salt clearly indicated the involvement of nanoparticulate form in toxicity.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salman A Alrokayan
- Research Chair for Biomedical Applications of Nanomaterials, Biochemistry Department, College of Science, Building 5, PO Box 2455, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
25
|
Ma B, Yu N, Han Y, Gao M, Wang S, Li S, Guo L, She Z, Zhao Y, Jin C, Gao F. Effect of magnesium oxide nanoparticles on microbial diversity and removal performance of sequencing batch reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:475-482. [PMID: 29908478 DOI: 10.1016/j.jenvman.2018.05.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/18/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
The performance, microbial enzymatic activity and microbial community of a sequencing batch reactor (SBR) have been explored under magnesium oxide nanoparticles (MgO NPs) stress. The NH4+-N removal efficiency kept relatively stable during the whole operational process. The MgO NPs at 30-60 mg/L slightly restrained the removal of chemical oxygen demand (COD), and the presence of MgO NPs also affected the denitrification and phosphorus removal. The specific oxygen uptake rate, nitrifying and denitrifying rates, phosphorus removal rate, and microbial enzymatic activities distinctly varied with the increase of MgO NPs concentration. The appearance of MgO NPs promoted more reactive oxygen species generation and lactate dehydrogenase leakage from activated sludge, suggesting that MgO NPs had obvious toxicity to activated sludge in the SBR. The protein and polysaccharide contents of extracellular polymeric substances from activated sludge increased with the increase of MgO NPs concentration. The microbial richness and diversity at different MgO NPs concentrations obviously varied at the phylum, class and genus levels due to the biological toxicity of MgO NPs.
Collapse
Affiliation(s)
- Bingrui Ma
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao, 266100, China
| | - Naling Yu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Yuetong Han
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Sen Wang
- Shcool of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Shanshan Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao, 266100, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao, 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Feng Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
26
|
Elmotasem H, Farag HK, Salama AA. In vitro and in vivo evaluation of an oral sustained release hepatoprotective caffeine loaded w/o Pickering emulsion formula – Containing wheat germ oil and stabilized by magnesium oxide nanoparticles. Int J Pharm 2018; 547:83-96. [DOI: 10.1016/j.ijpharm.2018.05.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/12/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023]
|
27
|
Akram MW, Fakhar-e-Alam M, Butt AR, Munir T, Ali A, Alimgeer KS, Mehmood-ur-Rehman K, Iqbal S, Ali S, Ikram M, Amin N, Wang ZM. Magnesium Oxide in Nanodimension: Model for MRI and Multimodal Therapy. JOURNAL OF NANOMATERIALS 2018; 2018:1-12. [DOI: 10.1155/2018/4210920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The prime focus of this investigation is to determine which morphology of magnesium oxide (MgO) is nontoxic and accumulates in sufficient quantity to a human brain cellular/tissue model. Thus, nanostructured MgO was synthesized from a coprecipitation technique involving twin synthetic protocols and the resulting product was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), size distribution histogram, Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) analysis and elemental composition was confirmed by EDX analysis. They were tested for selective antigen response in a human brain cancer model through biodistribution, biotoxicity via MTT assay, and tissue morphology. In addition, the MRI compatibility of MgO nanostructures and immunofluorescence studies were investigated on nanoconjugates with different immunoglobulins in the brain section. The results indicated that MgO had some degree of bindings with the antigens. These results led to the empirical modeling of MgO nanomaterials towards toxicity in cancer cells by analyzing the statistical data obtained by experiments. All these results are providing new rational strategy with the concept of MgO for MRI and PTT/PDT.
Collapse
Affiliation(s)
- M. Waseem Akram
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Muhammad Fakhar-e-Alam
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Physics, Government College University, Faisalabad 38000, Pakistan
| | - Alvina Rafiq Butt
- Physics Department, Government College University (GCU), Lahore 54000, Pakistan
| | - T. Munir
- Department of Physics, Government College University, Faisalabad 38000, Pakistan
| | - Akbar Ali
- Department of Physics, COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - K. S. Alimgeer
- Department of Electrical Engineering, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | | | - Seemab Iqbal
- Department of Physics, Government College University, Faisalabad 38000, Pakistan
| | - Salamat Ali
- Physics Department, Government College University (GCU), Lahore 54000, Pakistan
| | - Muhammad Ikram
- Physics Department, Government College University (GCU), Lahore 54000, Pakistan
| | - N. Amin
- Department of Physics, Government College University, Faisalabad 38000, Pakistan
| | - Zhiming M. Wang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
28
|
Gold K, Slay B, Knackstedt M, Gaharwar AK. Antimicrobial Activity of Metal and Metal‐Oxide Based Nanoparticles. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201700033] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Karli Gold
- Department of Biomedical Engineering Texas A&M University College Station TX 77843 USA
| | - Buford Slay
- Department of Biomedical Engineering Texas A&M University College Station TX 77843 USA
| | - Mark Knackstedt
- Department of Biomedical Engineering Texas A&M University College Station TX 77843 USA
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering Texas A&M University College Station TX 77843 USA
- Department of Materials Science and Engineering Texas A&M University College Station TX 77843 USA
- Center for Remote Health and Technology Texas A&M University College Station TX 77843 USA
| |
Collapse
|
29
|
Hayat S, Muzammil S, Rasool MH, Nisar Z, Hussain SZ, Sabri AN, Jamil S. In vitroantibiofilm and anti-adhesion effects of magnesium oxide nanoparticles against antibiotic resistant bacteria. Microbiol Immunol 2018; 62:211-220. [DOI: 10.1111/1348-0421.12580] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 12/19/2017] [Accepted: 01/15/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Sumreen Hayat
- Department of Microbiology; Government College University; Jhang Road Faisalabad Pakistan
- Department of Microbiology and Molecular Genetics; University of the Punjab; Quaid-e-Azam Campus, Canal Road Lahore Pakistan
| | - Saima Muzammil
- Department of Microbiology; Government College University; Jhang Road Faisalabad Pakistan
| | | | - Zonaira Nisar
- Department of Microbiology; Government College University; Jhang Road Faisalabad Pakistan
| | - Syed Zajif Hussain
- Department of Chemistry; Syed Babar Ali School of Science and Engineering; Lahore University of Management Sciences; Sector U, DHA Lahore Pakistan
| | - Anjum Nasim Sabri
- Department of Microbiology and Molecular Genetics; University of the Punjab; Quaid-e-Azam Campus, Canal Road Lahore Pakistan
| | - Saba Jamil
- Department of Chemistry; University of Agriculture; Agriculture University Road, Faisalabad Pakistan
| |
Collapse
|
30
|
Mangalampalli B, Dumala N, Perumalla Venkata R, Grover P. Genotoxicity, biochemical, and biodistribution studies of magnesium oxide nano and microparticles in albino wistar rats after 28-day repeated oral exposure. ENVIRONMENTAL TOXICOLOGY 2018; 33:396-410. [PMID: 29282847 DOI: 10.1002/tox.22526] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Increased utilization and exposure levels of Magnesium oxide (MgO) nanoparticles (NPs) to humans and environment may raise unexpected consequences. The goal of this study was to evaluate the toxicological implications of MgO NPs and MPs after 28 day repeated oral administration in Wistar rats with three different doses (250, 500, and 1000 mg/kg). The MgO particles were characterised systematically in order to get more insights of the toxicological behaviour. MgO NPs induced significant DNA damage and aberrations in chromosomes. Moreover, hepatic enzymes released into the systemic circulation caused significant elevated levels of physiological enzymes in blood. NPs could interfere with proteins and enzymes and alter the redox balance in cell environment. Significant accumulation of Mg in all tissues and clearance via urine and faeces was noted in size dependent kinetics. Oral administration of MgO NPs altered the biochemical and genotoxic parameters in dose dependent and gender independent manner.
Collapse
Affiliation(s)
- Bhanuramya Mangalampalli
- Toxicology Unit, Pharmacology and Toxicology Department, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Naresh Dumala
- Toxicology Unit, Pharmacology and Toxicology Department, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
- Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Rekhadevi Perumalla Venkata
- Toxicology Unit, Pharmacology and Toxicology Department, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Paramjit Grover
- Toxicology Unit, Pharmacology and Toxicology Department, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| |
Collapse
|
31
|
Mangalampalli B, Dumala N, Grover P. Allium cepa root tip assay in assessment of toxicity of magnesium oxide nanoparticles and microparticles. J Environ Sci (China) 2018; 66:125-137. [PMID: 29628079 DOI: 10.1016/j.jes.2017.05.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/10/2017] [Accepted: 05/05/2017] [Indexed: 06/08/2023]
Abstract
Allium cepa bioassay had been used from decades for the assessment of toxicants and their harmful effects on environment as well as human health. Magnesium oxide (MgO) particles are being utilized in different fields. However, reports on the adverse effects of MgO nanoparticles on the environment and mankind are scarce. Hence, the toxicity of MgO particles is of concern because of their increased utilization. In the current study, A. cepa was used as an indicator to assess the toxicological efficiency of MgO nano- and microparticles (NPs and MPs) at a range of exposure concentrations (12.5, 25, 50, and 100μg/mL). The toxicity was evaluated by using various bioassays on A. cepa root tip cells such as comet assay, oxidative stress and their uptake/internalization profile. Results indicated a dose dependent increase in chromosomal aberrations and decrease in mitotic index (MI) when compared to control cells and the effect was more significant for NPs than MPs (at p<0.05). Comet analysis revealed that the Deoxyribonucleic acid (DNA) damage in terms of percent tail DNA ranged from 6.8-30.1 over 12.5-100μg/mL concentrations of MgO NPs and was found to be significant at the exposed concentrations. A significant increase in generation of hydrogen peroxide and superoxide radicals was observed in accordance with the lipid peroxidation profile in both MgO NPs and MPs treated plants when compared with control. In conclusion, this investigation revealed that MgO NPs exposure exhibited greater toxicity on A. cepa than MPs.
Collapse
Affiliation(s)
- Bhanuramya Mangalampalli
- Toxicology Unit, Pharmacology and Toxicology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India; Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India.
| | - Naresh Dumala
- Toxicology Unit, Pharmacology and Toxicology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India; Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Paramjit Grover
- Toxicology Unit, Pharmacology and Toxicology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India; Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India.
| |
Collapse
|
32
|
Akram MW, Fakhar-E-Alam M, Atif M, Butt AR, Asghar A, Jamil Y, Alimgeer KS, Wang ZM. In vitro evaluation of the toxic effects of MgO nanostructure in Hela cell line. Sci Rep 2018; 8:4576. [PMID: 29545644 PMCID: PMC5854676 DOI: 10.1038/s41598-018-23105-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/06/2018] [Indexed: 01/28/2023] Open
Abstract
MgO is an attractive choice for carcinogenic cell destruction in photodynamic therapy, as confirmed by manifold analysis. The prime focus of the presented research is to investigate the toxicity caused by morphologically different MgO nanostructures obtained by annealing at various annealing temperatures. Smart (stimuli-responsive) MgO nanomaterials are a very promising class of nanomaterials, and their properties can be controlled by altering their size, morphology, or other relevant characteristics. The samples investigated here were grown by the co-precipitation technique. Toxicity-dependent parameters were assessed in a HeLa cell model after annealing the grown samples at 350 °C, 450 °C, and 550 °C. After the overall characterization, an analysis of toxicity caused by changes in the MgO nanostructure morphology was tested in a HeLa cell model using a neutral red assay and microscopy. The feasibility of using MgO for PDT was assessed. Empirical modelling was applied to corroborate the experimental results obtained from assessing cell viability losses and reactive oxygen species. The results indicate that MgO is an excellent candidate material for medical applications and could be utilized for its potential ability to upgrade conventionally used techniques.
Collapse
Affiliation(s)
- M Waseem Akram
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| | - Muhammad Fakhar-E-Alam
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, 610054, Chengdu, China
- Department of Physics, Government College University, 38000, Faisalabad, Pakistan
| | - M Atif
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia.
- National Institute of Laser and Optronics, Nilore, Islamabad, Pakistan.
| | | | - Ali Asghar
- Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan
| | - Yasir Jamil
- Laser Spectroscopy Lab., Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - K S Alimgeer
- COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, 610054, Chengdu, China.
| |
Collapse
|
33
|
Jeevanandam J, Chan YS, Danquah MK. Calcination-Dependent Morphology Transformation of Sol-Gel- Synthesized MgO Nanoparticles. ChemistrySelect 2017. [DOI: 10.1002/slct.201701911] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jaison Jeevanandam
- Department of Chemical Engineering; Faculty of Engineering and Science; Curtin University, CDT 250, Miri; Sarawak Malaysia 98009
| | - Yen San Chan
- Department of Chemical Engineering; Faculty of Engineering and Science; Curtin University, CDT 250, Miri; Sarawak Malaysia 98009
| | - Michael K. Danquah
- Department of Chemical Engineering; Faculty of Engineering and Science; Curtin University, CDT 250, Miri; Sarawak Malaysia 98009
| |
Collapse
|
34
|
Mangalampalli B, Dumala N, Grover P. Acute oral toxicity study of magnesium oxide nanoparticles and microparticles in female albino Wistar rats. Regul Toxicol Pharmacol 2017; 90:170-184. [PMID: 28899817 DOI: 10.1016/j.yrtph.2017.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 01/08/2023]
Abstract
Advancements in nanotechnology have led to the development of the nanomedicine, which involves nanodevices for diagnostic and therapeutic purposes. A key requirement for the successful use of the nanoparticles (NPs) in biomedical applications is their good dispensability, colloidal stability in biological media, internalization efficiency, and low toxicity. Therefore, toxicological profiling is necessary to understand the mechanism of NPs and microparticles (MPs). MgO NPs have attracted wide scientific interest due to ease of synthesis, chemical stability and unique properties. However, their toxic effects on humans should also be of concern with the increased applications of nano MgO. The present study was aimed to assess the toxicological potential of MgO NPs in comparison to their micron counterparts in female Wistar rats. Toxicity was evaluated using genotoxicity, histological, biochemical, antioxidant and biodistribution parameters post administration of MgO particles to rats through oral route. The results obtained from the investigation revealed that the acute exposure to the high doses of MgO NPs produced significant (p < 0.01) DNA damage and biochemical alterations. Antioxidant assays revealed prominent oxidative stress at the high dose level for both the particles. Toxicokinetic analysis showed significant levels of Mg accumulation in the liver and kidney tissues apart from urine and feces. Further, mechanistic investigational reports are warranted to document safe exposure levels and health implications post exposure to high levels of NPs.
Collapse
Affiliation(s)
- Bhanuramya Mangalampalli
- Toxicology Unit, Pharmacology and Toxicology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India; Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Naresh Dumala
- Toxicology Unit, Pharmacology and Toxicology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India; Academy of Scientific and Innovative Research, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Paramjit Grover
- Toxicology Unit, Pharmacology and Toxicology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India.
| |
Collapse
|
35
|
Moeini-Nodeh S, Rahimifard M, Baeeri M, Abdollahi M. Functional Improvement in Rats' Pancreatic Islets Using Magnesium Oxide Nanoparticles Through Antiapoptotic and Antioxidant Pathways. Biol Trace Elem Res 2017; 175:146-155. [PMID: 27234250 DOI: 10.1007/s12011-016-0754-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022]
Abstract
According to undiscovered toxicity and safety of magnesium oxide nanoparticles (MgO NPs) in isolated pancreatic islet cells, this study was designed to examine the effects of its various concentrations on a time-course basis on the oxidative stress, viability, and function of isolated islets of rat's pancreas. Pancreatic islets were isolated and exposed to different MgO NP (<100 nm) concentrations within three different time points. After that, oxidative stress biomarkers were investigated and the best exposure time was selected. Then, safety of MgO NPs was investigated by flow cytometry and fluorescent staining, and levels of insulin secretion and caspase activity were measured. The results illustrated a considerable decrease in oxidative stress markers such as reactive oxygen species (ROS) and lipid peroxidation (LPO) levels of pancreatic islets which were treated by MgO NPs for 24 h. Also, in that time of exposure, cell apoptosis investigation by flow cytometry and insulin test showed that MgO NPs, in a concentration of 100 μg/ml, decreased the rate of apoptotic cells via inhibiting caspase-9 activity and made a significant increase in the level of insulin secretion. Data of function and apoptosis biomarkers correlated with each other. It is concluded that the use of MgO NPs in concentration of as low as 100 μg/ml can induce antiapoptotic, antioxidative, and antidiabetic effects in rat pancreatic islets, which support its possible benefit in islet transplantation procedures.
Collapse
Affiliation(s)
- Shermineh Moeini-Nodeh
- Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran.
- Endocrinology and Metabolism Research Center, Institute of Clinical Endocrine Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Jeevanandam J, Chan YS, Danquah MK. Biosynthesis and characterization of MgO nanoparticles from plant extracts via induced molecular nucleation. NEW J CHEM 2017. [DOI: 10.1039/c6nj03176e] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We synthesized 18–80 nm sized MgO nanoparticles using three different leaf extracts with biophysical characteristics.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- Department of Chemical Engineering
- Faculty of Engineering and Science
- Miri
- Malaysia
| | - Yen San Chan
- Department of Chemical Engineering
- Faculty of Engineering and Science
- Miri
- Malaysia
| | - Michael K. Danquah
- Department of Chemical Engineering
- Faculty of Engineering and Science
- Miri
- Malaysia
| |
Collapse
|
37
|
Shiri M, Navaei-Nigjeh M, Baeeri M, Rahimifard M, Mahboudi H, Shahverdi AR, Kebriaeezadeh A, Abdollahi M. Blockage of both the extrinsic and intrinsic pathways of diazinon-induced apoptosis in PaTu cells by magnesium oxide and selenium nanoparticles. Int J Nanomedicine 2016; 11:6239-6250. [PMID: 27920530 PMCID: PMC5125760 DOI: 10.2147/ijn.s119680] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diazinon (DZ) is an organophosphorus insecticide that acts as an acetylcholinesterase inhibitor. It is important to note that it can induce oxidative stress, lipid peroxidation, diabetic disorders, and cytotoxicity. Magnesium oxide (MgO) and selenium nanoparticles (Se NPs) showed promising protection against oxidative stress, lipid peroxidation, cytotoxicity, and diabetic disorders. Therefore, this study was conducted to explore the possible protective mechanisms of MgO and Se NPs against DZ-induced cytotoxicity in PaTu cell line. Cytotoxicity of DZ, in the presence or absence of effective doses of MgO and Se NPs, was determined in human pancreatic cancer cell line (PaTu cells) after 24 hours of exposure by using mitochondrial activity and mitochondrial membrane potential assays. Then, the insulin, proinsulin, and C-peptide release; caspase-3 and -9 activities; and total thiol molecule levels were assessed. Determination of cell viability, including apoptotic and necrotic cells, was assessed via acridine orange/ethidium bromide double staining. Furthermore, expression of 15 genes associated with cell death/apoptosis in various phenomena was examined after 24 hours of contact with DZ and NPs by using real-time polymerase chain reaction. Compared to the individual cases, the group receiving the combination of MgO and Se NPs showed more beneficial effects in reducing the toxicity of DZ. Cotreatment of PaTu cell lines with MgO and Se NPs counteracts the toxicity of DZ on insulin-producing cells.
Collapse
Affiliation(s)
- Mahdi Shiri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences
- School of Medicine, Artesh University of Medical Sciences
| | - Mona Navaei-Nigjeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences
| | - Mahban Rahimifard
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences
| | - Hossein Mahboudi
- Department of Biotechnology, Faculty of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Shahverdi
- Department of Biotechnology, Faculty of Pharmacy and Biotechnology Research Center
| | - Abbas Kebriaeezadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences
- Toxicology Interest Group, USERN
- Endocrinology & Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Mahmoud A, Ezgi Ö, Merve A, Özhan G. In Vitro Toxicological Assessment of Magnesium Oxide Nanoparticle Exposure in Several Mammalian Cell Types. Int J Toxicol 2016; 35:429-437. [DOI: 10.1177/1091581816648624] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Worldwide researchers have rising concerns about magnesium-based materials, especially magnesium oxide (MgO) nanaoparticles, due to increasing usage as promising structural materials in various fields including cancer treatment. However, there is a serious lack of information about their toxicity at the cellular and molecular levels. In this study, the toxic potentials of MgO nanoparticles were investigated on liver (HepG2), kidney (NRK-52E), intestine (Caco-2), and lung (A549) cell lines. For the toxicological assessment, the following assays were used: the particle characterization by transmission electron microscopy, the determination of cellular uptake by inductively coupled plasma-mass spectrometry, MTT and neutral red uptake assays for cytotoxicity, comet assay for genotoxicity, and the determination of malondialdehyde (MDA), 8-hydroxydeoxyguanosine, protein carbonyl, and glutathione levels by enzyme-linked immune sorbent assays for the potential of oxidative damage and annexin V-fluorescein isothiocyanate (FITC) apoptosis detection assay with propidium iodide (PI) for apoptosis. Magnesium oxide nanoparticles were taken up by the cells depending on their concentration and agglomeration/aggregation potentials. Magnesium oxide nanoparticles induced DNA (≤14.27 fold) and oxidative damage. At a concentration of ≥323.39 µg/mL, MgO nanoparticles caused 50% inhibition in cell viability by 2 different cytotoxicity assays. The cell sensitivity to cytotoxic and genotoxic damage induced by MgO nanoparticles was ranked as HepG2 < A549 < Caco-2 < NRK-52E. Although it was observed that MgO nanoparticles induced apoptotic effects on the cells, apoptosis was not the main cell death. DNA damage, cell death, and oxidative damage effects of MgO nanoparticles should raise concern about the safety associated with their applications in consumer products.
Collapse
Affiliation(s)
- Abudayyak Mahmoud
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Öztaş Ezgi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Arici Merve
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Gül Özhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| |
Collapse
|
39
|
He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP, Irwin P. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnology 2016; 14:54. [PMID: 27349516 PMCID: PMC4924328 DOI: 10.1186/s12951-016-0202-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/06/2016] [Indexed: 12/17/2022] Open
Abstract
Background Magnesium oxide nanoparticles (MgO nanoparticles, with average size of 20 nm) have considerable potential as antimicrobial agents in food safety applications due to their structure, surface properties, and stability. The aim of this work was to investigate the antibacterial effects and mechanism of action of MgO nanoparticles against several important foodborne pathogens. Results Resazurin (a redox sensitive dye) microplate assay was used for measuring growth inhibition of bacteria treated with MgO nanoparticles. The minimal inhibitory concentrations of MgO nanoparticles to 104 colony-forming unit/ml (CFU/ml) of Campylobacter jejuni, Escherichia coli O157:H7, and Salmonella Enteritidis were determined to be 0.5, 1 and 1 mg/ml, respectively. To completely inactivate 108−9 CFU/ml bacterial cells in 4 h, a minimal concentration of 2 mg/ml MgO nanoparticles was required for C. jejuni whereas E. coli O157:H7 and Salmonella Enteritidis required at least 8 mg/ml nanoparticles. Scanning electron microscopy examination revealed clear morphological changes and membrane structural damage in the cells treated with MgO nanoparticles. A quantitative real-time PCR combined with ethidium monoazide pretreatment confirmed cell membrane permeability was increased after exposure to the nanoparticles. In a cell free assay, a low level (1.1 μM) of H2O2 was detected in the nanoparticle suspensions. Consistently, MgO nanoparticles greatly induced the gene expression of KatA, a sole catalase in C. jejuni for breaking down H2O2 to H2O and O2. Conclusions MgO nanoparticles have strong antibacterial activity against three important foodborne pathogens. The interaction of nanoparticles with bacterial cells causes cell membrane leakage, induces oxidative stress, and ultimately leads to cell death.
Collapse
Affiliation(s)
- Yiping He
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA.
| | | | - Sue Reed
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Andrew Gehring
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Terence P Strobaugh
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| | - Peter Irwin
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, PA, 19038, USA
| |
Collapse
|
40
|
Heydary V, Navaei-Nigjeh M, Rahimifard M, Mohammadirad A, Baeeri M, Abdollahi M. Biochemical and molecular evidences on the protection by magnesium oxide nanoparticles of chlorpyrifos-induced apoptosis in human lymphocytes. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2016; 20:1021-31. [PMID: 26941804 PMCID: PMC4755087 DOI: 10.4103/1735-1995.172811] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: Chlorpyrifos (CP) is one of the most widely used organophosphate (OP) insecticides in agricultural and residential pest control with its attendant adverse health effect. In the present study, it is proposed to investigate the possible modulatory role of magnesium oxide nanoparticles (MgO NPs) against CP-induced toxicity in human lymphocytes and determine the mechanisms lying behind this protection by viability and biochemical assays. Materials and Methods: Isolated lymphocytes were exposed to 12 μg/mL CP either alone or in combination with different concentrations of MgO NPs (0.1 μg/mL, 1 μg/mL, 10 μg/mL, and 100 μg/mL). After a 3-day incubation, the viability and oxidative stress markers including cellular mitochondrial activity, caspase-3 and -9 activities, total antioxidant power, lipid peroxidation, and myeloperoxidase (MPO) activity were measured. Also, the levels of tumor necrosis factor-α (TNF-α) as inflammatory index, along with acetylcholinesterase (AChE) activity were measured. Statistical differences were determined using one-way analysis of variance (ANOVA) and Dunnett's multiple comparison tests. Results: It is indicated that CP-exposed lymphocytes treated with MgO NPs resulted in a substantial reduction in the pace of mortality as well as the stages of oxidative stress in a dose-dependent manner. Also, MgO NPs (100 μg/mL) meaningfully restored CP-induced increase of TNF-α (P < 0.001) and decrease of AChE activity (P < 0.001) and were capable of preventing CP-treated human lymphocytes from apoptosis (P < 0.001). Conclusion: Our results demonstrate that MgO NPs in approximate 100 nm diameter not only make cells resistant to the toxic properties of CP but also attenuate toxic effects of CP, which is demonstrating the potential of MgO NPs to be applied in future immune deficiency therapeutic strategies.
Collapse
Affiliation(s)
- Vida Heydary
- Toxicology and Poisoning Research Center, Ahar Branch, Ahar, Iran; Pharmaceutical Sciences Research Center, Ahar Branch, Ahar, Iran; Islamic Azad University, Ahar Branch, Ahar, Iran
| | - Mona Navaei-Nigjeh
- Toxicology and Poisoning Research Center, Ahar Branch, Ahar, Iran; Pharmaceutical Sciences Research Center, Ahar Branch, Ahar, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Poisoning Research Center, Ahar Branch, Ahar, Iran; Pharmaceutical Sciences Research Center, Ahar Branch, Ahar, Iran
| | - Azadeh Mohammadirad
- Toxicology and Poisoning Research Center, Ahar Branch, Ahar, Iran; Pharmaceutical Sciences Research Center, Ahar Branch, Ahar, Iran
| | - Maryam Baeeri
- Toxicology and Poisoning Research Center, Ahar Branch, Ahar, Iran; Pharmaceutical Sciences Research Center, Ahar Branch, Ahar, Iran
| | - Mohammad Abdollahi
- Toxicology and Poisoning Research Center, Ahar Branch, Ahar, Iran; Pharmaceutical Sciences Research Center, Ahar Branch, Ahar, Iran; Islamic Azad University, Ahar Branch, Ahar, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Ghobadian M, Nabiuni M, Parivar K, Fathi M, Pazooki J. Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 122:260-267. [PMID: 26283286 DOI: 10.1016/j.ecoenv.2015.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 06/04/2023]
Abstract
Magnesium oxide nanoparticles (MgONPs) are used in medicine, manufacturing and food industries. Because of their extensive application in our daily lives, environmental exposure to these nanoparticles is inevitable. The present study examined the effects of MgONPs on zebrafish (Danio rerio) early developmental stages. The results showed that, at different concentrations, MgONPs induced cellular apoptosis and intracellular reactive oxygen species. The hatching rate and survival of embryos decreased in a dose dependent manner. The 96-h LC50 value of MgONPs on zebrafish survival was 428 mg/l and the 48-h EC50 value of MgONPs on zebrafish embryo hatching rate was 175 mg/l. Moreover different types of malformation were observed in exposed embryos. The results demonstrate the toxic effects of MgONPs on zebrafish embryos and emphasize the need for further studies.
Collapse
Affiliation(s)
- Mehdi Ghobadian
- Department of Developmental Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Mohammad Nabiuni
- Department of Developmental Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Kazem Parivar
- Department of Developmental Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mojtaba Fathi
- Department of Biochemistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Jamileh Pazooki
- Department of Biological Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
42
|
Rafiei S, Rezatofighi SE, Ardakani MR, Madadgar O. In vitro
anti‐foot‐and‐mouth disease virus activity of magnesium oxide nanoparticles. IET Nanobiotechnol 2015; 9:247-51. [DOI: 10.1049/iet-nbt.2014.0028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Solmaz Rafiei
- Department of BiologyFaculty of ScienceUniversity of Shahid ChamranAhvazIran
| | | | | | - Omid Madadgar
- Department of Microbiology and ImmunologyFaculty of Veterinary MedicineUniversity of TehranTehranIran
| |
Collapse
|
43
|
Ge S, Wang Y, Tian J, Lei D, Yu Q, Wang G. Anin vitrostudy on the biocompatibility of WE magnesium alloys. J Biomed Mater Res B Appl Biomater 2015; 104:482-7. [DOI: 10.1002/jbm.b.33388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/13/2014] [Accepted: 01/22/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Shuping Ge
- College of Chemistry and Chemical Engineering; Chongqing University of Technology; Chongqing 400054 China
| | - Yi Wang
- Key Laboratory of Biorheological Science and Technology; Chongqing University, Ministry of Education, Bioengineering College of Chongqing University; Chongqing 400044 China
| | - Jie Tian
- Key Laboratory of Biorheological Science and Technology; Chongqing University, Ministry of Education, Bioengineering College of Chongqing University; Chongqing 400044 China
| | - Daoxi Lei
- Key Laboratory of Biorheological Science and Technology; Chongqing University, Ministry of Education, Bioengineering College of Chongqing University; Chongqing 400044 China
| | - Qingsong Yu
- Center for Surface Science and Plasma Technology; Department of Mechanical and Aerospace Engineering; University of Missouri; Columbia Missouri 65211
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology; Chongqing University, Ministry of Education, Bioengineering College of Chongqing University; Chongqing 400044 China
| |
Collapse
|
44
|
Gelli K, Porika M, Anreddy RNR. Assessment of pulmonary toxicity of MgO nanoparticles in rats. ENVIRONMENTAL TOXICOLOGY 2015; 30:308-314. [PMID: 24096598 DOI: 10.1002/tox.21908] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 08/13/2013] [Accepted: 08/27/2013] [Indexed: 06/02/2023]
Abstract
In this study, we have evaluated the pulmonary toxicity of MgO nanoparticles (MgO NPs) in rats following their exposure. NPs in phosphate buffered saline + 1% Tween 80 were exposed via intratracheal instillation at a doses of 1 mg/kg or 5 mg/kg into rat lungs and evaluated for various tissue damage markers like alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) in bronchoalveolar lavage (BAL) fluid and histopathology of lungs at 1, 7, and 30 days of post-exposure intervals. A dose-dependant increase in ALP and LDH activity was observed in BAL fluids of rat lungs than sham control at all post-exposure periods (P <0.05), and a dose-dependant infiltration of interstitial lymphocytes, peribronchiolar lymphocytic infiltration, and dilated and/or congested vessels at 1 day post-exposure period, worsened at 1 week period, and were reduced at 1 month at histology, indicating the pulmonary toxicity of MgO NPs. In conclusion, MgO NPs exposure produced a dose-dependent pulmonary toxicity in rats and was comparable with that of Quartz particles.
Collapse
Affiliation(s)
- Kiranmai Gelli
- Department of Pharmacology, Vaageswari College of Pharmacy, Karimnagar, 505481, Andhra Pradesh, India
| | | | | |
Collapse
|
45
|
Shen Y, Leng M, Yu H, Zhang Q, Luo X, Gregersen H, Wang G, Liu X. Effect of amphiphilic PCL-PEG nano-micelles on HepG2 cell migration. Macromol Biosci 2014; 15:372-84. [PMID: 25367414 DOI: 10.1002/mabi.201400376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/27/2014] [Indexed: 01/18/2023]
Abstract
Uptake of nanoparticles (NPs) affects cell migration but the mechanism remains poorly understood. In this study, the amphiphilic block PCL-PEG nano-micelles with well-controlled hydrophilic/hydrophobic chains were used to investigate the effect of internalized nano-micelles on cancer cell migration. Our results indicated that the nano-micelles with medium PCL and PEG chains increased expression of Rho GTPases and impeded focal adhesion components. This could enhance Hep G2 cell motility. The nano-micelles with large PCL and PEG chains showed lower Rho GTPase levels and higher FA components. This is consistent with slower cell migration. Understanding the mechanism of NPs regulating cell behaviors may help the design of efficient drug delivery systems based on polymer micelles.
Collapse
Affiliation(s)
- Yang Shen
- Institute of Biomedical Engineering, School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Tanveer S, Farrukh MA, Ali S, Khaleeq-ur-Rahman M, Imtiaz A. In vitroToxicological Study of Metal Oxides Nanoparticles on Oxidation of Succinate in Krebs Cycle and Their Resultant Effect in Metabolic Pathways. J CHIN CHEM SOC-TAIP 2014. [DOI: 10.1002/jccs.201300535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Jebali A, Hekmatimoghaddam S, Kazemi B, allaveisie A, Masoudi A, Daliri K, Sedighi N, Ranjbari J. Lectin coated MgO nanoparticle: its toxicity, antileishmanial activity, and macrophage activation. Drug Chem Toxicol 2014; 37:400-9. [DOI: 10.3109/01480545.2013.870192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
48
|
Patel MK, Ali MA, Zafaryab M, Agrawal VV, Rizvi MMA, Ansari Z, Ansari S, Malhotra BD. Biocompatible nanostructured magnesium oxide-chitosan platform for genosensing application. Biosens Bioelectron 2013; 45:181-8. [DOI: 10.1016/j.bios.2012.12.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 12/26/2012] [Accepted: 12/27/2012] [Indexed: 11/29/2022]
|
49
|
Hezaveh H, Muhamad II. Effect of MgO nanofillers on burst release reduction from hydrogel nanocomposites. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:1443-1453. [PMID: 23515904 DOI: 10.1007/s10856-013-4914-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/10/2013] [Indexed: 06/01/2023]
Abstract
In this study, MgO nanoparticles are applied to control the initial burst release by modification of matrix structure, thereby affecting the release mechanism. The effects of MgO nanofiller loading on the in vitro release of a model drug are investigated. Surface topography and release kinetics of hydrogel nanocomposites are also studied in order to have better insight into the release mechanism. It was found that the incorporation of MgO nanofillers can significantly decrease the initial burst release. The effect of genipin (GN) on burst release was also compared with MgO nanoparticles, and it was found that the impact of MgO on burst release reduction is more obvious than GN; however, GN cross-linking caused greater final release compared to blanks and nanocomposites. To confirm the capability of nanocomposite hydrogels to reduce burst release, the release of β-carotene in Simulated Gastric Fluid and Simulated Intestinal Fluid was also carried out. Thus, the application of MgO nanoparticles seems to be a promising strategy to control burst release.
Collapse
Affiliation(s)
- Hadi Hezaveh
- Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | | |
Collapse
|
50
|
Impact of Nanomaterials on Health and Environment. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2012. [DOI: 10.1007/s13369-012-0324-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|