1
|
Moghadamizad Z, Dalimi A, Pirestani M, Ghafarifar F. Designing a multi-epitope vaccine using Toxoplasma ROP5, ROP7, and SAG1 epitopes and immunogenicity evaluation against acute and chronic toxoplasmosis in BABL/c mice. Microb Pathog 2025; 204:107567. [PMID: 40216097 DOI: 10.1016/j.micpath.2025.107567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/29/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
This study designed and evaluated a multi-epitope DNA vaccine targeting Toxoplasma gondii immunodominant antigens-ROP5, ROP7, and SAG1-to assess its protective efficacy against acute and chronic toxoplasmosis in BALB/c mice. A bioengineered multi-epitope vaccine construct (MEVC) was synthesized by integrating computationally predicted B- and T-cell epitopes using SAPGTP linkers to ensure conformational stability and epitope accessibility. In silico analyses confirmed the MEVC's antigenicity (VaxiJen score: 0.96), non-allergenicity, solubility (GRAVY index: 0.45), and physicochemical stability (instability index: 32.14; aliphatic index: 78.3), supporting its suitability for immunization. The codon-optimized sequence (753 bp; 253 amino acids) was cloned into the pcDNA3.1(+) plasmid and amplified in Escherichia coli TOP10 cells. Thirty-six female BALB/c mice (6-8 weeks) were divided into three groups (n = 12/group) and immunized intramuscularly with 100 μg MEVC, empty vector, or phosphate-buffered saline (PBS) at weeks 0, 2, and 4. Post-immunization, mice were challenged with acute (2 × 103 RH strain tachyzoites, intraperitoneal) or chronic (10 PRU strain cysts, oral) infection. Molecular docking simulations demonstrated high-affinity binding of the MEVC to murine toll-like receptor 4 via hydrogen bonds and hydrophobic interactions, suggesting adjuvant-like immunogenicity. In vitro expression in HEK-293 cells confirmed protein synthesis, with Western blot detecting a 26 kDa immunoreactive band. MEVC-immunized mice exhibited significantly elevated anti-Toxoplasma IgG titers (1:12,800), dominated by IgG2a isotypes (P < 0.05), and robust IFN-γ production, indicative of Th1-polarized immunity. IL-4 levels remained low, confirming minimal Th2 skewing. Vaccination reduced cerebral cyst burden by 76 % (P < 0.01) in chronic infection, yet survival post-acute challenge extended only two days compared to controls. These results demonstrate partial protection against toxoplasmosis, with the MEVC eliciting cellular and humoral responses effective against chronic infection but limited efficacy in acute settings.
Collapse
Affiliation(s)
- Zeinab Moghadamizad
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghafarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Bhojnagarwala PS, Jose J, Zhao S, Weiner DB. DNA-based immunotherapy for cancer: In vivo approaches for recalcitrant targets. Mol Ther 2025:S1525-0016(25)00282-5. [PMID: 40211538 DOI: 10.1016/j.ymthe.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/10/2025] Open
Abstract
Immunotherapy has revolutionized cancer treatment and complements traditional therapies, including surgery, chemotherapy, radiation therapy, and targeted therapies. Immunotherapy redirects the patient's immune system against tumors via several immune-mediated approaches. Over the past few years, therapeutic immunization, which enable the patient's T cells to better recognize and kill tumors, have been increasingly tested in the clinic, with several approaches demonstrating treatment improvements. There has been a renewed interest in cancer vaccines due to advances in tumor antigen identification, immune response optimization, novel adjuvants, next-generation vaccine delivery platforms, and antigen designs. The COVID-19 pandemic accelerated progress in nucleic acid-based vaccine manufacturing, which spurred broader interest in mRNA or plasmid platforms. Enhanced DNA vaccine designs, including optimized leader sequences and RNA and codon optimizations, improved formulations, and delivery via adaptive electroporation using stereotactic intramuscular/intradermal methods have improved T cell responses to plasmid-delivered tumor antigens. Additionally, advancements for direct in vivo delivery of DNA-encoded monospecific/bispecific antibodies offer novel tumor-targeting strategies. This review summarizes the recent clinical data for therapeutic cancer vaccines utilizing the DNA platform, including vaccines targeting common tumor-associated and viral antigens and neoantigen vaccines using nucleic acid technologies. We also summarize preclinical data using DNA-launched monoclonal/bispecific antibodies, underscoring their potential as a novel cancer therapy tool.
Collapse
Affiliation(s)
- Pratik S Bhojnagarwala
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | - Joshua Jose
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | - Shushu Zhao
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Tan Y, Mu J, Chen J. IL-36 Gamma: A Novel Adjuvant Cytokine Enhancing Protective Immunity Induced by DNA Immunization with TGIST and TGNSM Against Toxoplasma gondii Infection in Mice. Microorganisms 2024; 12:2258. [PMID: 39597646 PMCID: PMC11596725 DOI: 10.3390/microorganisms12112258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Toxoplasma gondii can cause congenital infections and abortions in humans. TgIST and TgNSM play critical roles in intracellular cyst formation and chronic infection. However, no studies have explored their potential to induce protective immunity against T. gondii infection. OBJECTIVE To evaluate the immune efficacy of DNA vaccines encoding TgNSM and TgIST genes against T. gondii infection, using the acute and chronic ME49 strain (Type II). METHODS DNA vaccines, including eukaryotic plasmids pVAX-IST and pVAX-NSM, were constructed. A cocktail DNA vaccine combining these two genes was formulated. The expression and immunogenicity were determined using the indirect immunofluorescence assay (IFA). Mice were immunized with DNA vaccines encoding either TgIST or TgNSM, as well as with the cocktail DNA vaccine. Humoral and cellular immune responses were analyzed by detecting antibody levels, cytotoxic T cell (CTL) responses, cytokines, and lymphocyte surface markers. Mouse survival and brain cyst counts were assessed 1 to 2 months post-vaccination in experimental toxoplasmosis models. The adjuvant efficacy of plasmid pVAX-IL-36γ in enhancing DNA vaccine-induced protective immunity was also evaluated. RESULTS DNA immunization with pVAX-IST and pVAX-NSM elicited strong humoral and cellular immune responses, characterized by increased Toxoplasma-specific IgG2a titers, Th1 responses (including production of IFN-γ, IL-2, IL-12p40, and IL-12p70), and cell-mediated activity with elevated frequencies of CD8+ and CD4+ T cells, and CTL responses. This provided significant protective efficacy against acute and chronic T. gondii infection. Mice immunized with the two-gene cocktail (pVAX-IST + pVAX-NSM) showed greater protection than those immunized with single-gene vaccines. Co-administration of the molecular adjuvant pVAX-IL-36γ further enhanced the protective immunity induced by the cocktail DNA vaccine. CONCLUSIONS TgIST and TgNSM induce effective immunity against T. gondii infection, making them promising vaccine candidates against toxoplasmosis. Additionally, IL-36γ is a promising genetic adjuvant that enhances protective immunity in a vaccine setting against T. gondii, and it should be evaluated in strategies against other apicomplexan parasites.
Collapse
Affiliation(s)
| | | | - Jia Chen
- Department of Radiology, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.T.); (J.M.)
| |
Collapse
|
4
|
Wang N, Xian J, Zhao P, Zhao W, Pu N, Jia X, Zhang Y, Bo X, Wang Z. Evaluation of protective immune responses induced by DNA vaccines encoding Echinococcus granulosus EgM123 protein in Beagle dogs. Front Vet Sci 2024; 11:1444741. [PMID: 39386253 PMCID: PMC11462624 DOI: 10.3389/fvets.2024.1444741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Echinococcus granulosus, known as cystic echinococcosis, is a prominent zoonotic parasitic disease of significant global concern. The definitive hosts serves as the primary reservoir for the transmission of echinococcosis, as well as a main factor in the prevention and control of the disease. Unfortunately, there is currently no commercially available vaccine for these hosts. Nevertheless, DNA vaccines show potential as a feasible strategy for the control and management of parasitic diseases. Methods In this study, the EgM123 antigen was selected for its well-documented immunogenic properties to develop a DNA vaccine aimed at combating E. granulosus infection in canines. Results The results showed a marked increase in IgG levels in the group vaccinated with pVAX1-EgM123 DNA compared to the PBS group. Additionally, the cytokines IL-1, IFN-γ, IL-4, and IL-6 were significantly upregulated in the pVAX1-EgM123 DNA vaccine group. Furthermore, in comparison to the PBS control group, the EgM123 DNA vaccine group exhibited a notable 87.85% reduction in worm burden and a 65.00% inhibition in segment development. Discussion These findings indicate that the pVAX1-EgM123 DNA vaccine shows promising immunogenicity, successfully eliciting a targeted immune response in canines. Moreover, it significantly diminishes the worm burden and hinders the progression of tapeworms in the pVAX1-EgM123 DNA vaccine group. These findings suggest that the pVAX1-EgM123 DNA vaccine holds promise as a potential candidate vaccine for combating E. granulosus infection in dogs.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jinwen Xian
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Pengpeng Zhao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wenqing Zhao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Tarim University, Xinjiang, China
| | - Na Pu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xinyue Jia
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yanyan Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
| | - Xinwen Bo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| |
Collapse
|
5
|
Ju K, Zhang Y, Xu Z, Li L, Zhao X, Zhou H. Protective Efficacy of a Novel DNA Vaccine with a CL264 Molecular Adjuvant against Toxoplasma gondii in a Murine Model. Vaccines (Basel) 2024; 12:577. [PMID: 38932306 PMCID: PMC11209281 DOI: 10.3390/vaccines12060577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Toxoplasmosis is a significant global zoonosis with devastating impacts, and an effective vaccine against toxoplasmosis for humans has not yet been developed. In this study, we designed and formulated a novel DNA vaccine encoding the inhibitor of STAT1 transcriptional activity (IST) of T. gondii utilizing the eukaryotic expression vector pEGFP-N1 for the first time, with CL264 being a molecular adjuvant. Following intramuscular injection of the vaccine into mice, the levels of antibodies and cytokines were assessed to evaluate the immune response. Additionally, mice were challenged with highly virulent RH-strain tachyzoites of T. gondii, and their survival time was observed. The results show that the levels of IgG in serum, the ratio of IgG2a/IgG1 and the levels of IFN-γ in splenocytes of mice were significantly higher in the pEGFP-TgIST group and the pEGFP-TgIST + CL264 group than in the control group. In addition, the proportion of CD4+/CD8+ T cells was higher in mice immunized with either the pEGFP-TgIST group (p < 0.001) or the pEGFP-TgIST + CL264 group (p < 0.05) compared to the three control groups. Notably, TgIST-immunized mice exhibited prolonged survival times after T. gondii RH strain infection (p < 0.05). Our findings collectively demonstrate that the TgIST DNA vaccine elicits a significant humoral and cellular immune response and offers partial protection against acute T. gondii infection in the immunized mice, which suggests that TgIST holds potential as a candidate for further development as a DNA vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | - Huaiyu Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (K.J.); (Y.Z.); (Z.X.); (L.L.); (X.Z.)
| |
Collapse
|
6
|
Liu C, Xue RY, Li GC, Zhang Y, Wu WY, Liu JY, Feng R, Jin Z, Deng Y, Jin ZL, Cheng H, Mao L, Zou QM, Li HB. pGM-CSF as an adjuvant in DNA vaccination against SARS-CoV-2. Int J Biol Macromol 2024; 264:130660. [PMID: 38460634 DOI: 10.1016/j.ijbiomac.2024.130660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The emergence of SARS-CoV-2 presents a significant global public health dilemma. Vaccination has long been recognized as the most effective means of preventing the spread of infectious diseases. DNA vaccines have attracted attention due to their safety profile, cost-effectiveness, and ease of production. This study aims to assess the efficacy of plasmid-encoding GM-CSF (pGM-CSF) as an adjuvant to augment the specific humoral and cellular immune response elicited by DNA vaccines based on the receptor-binding domain (RBD) antigen. Compared to the use of plasmid-encoded RBD (pRBD) alone, mice that were immunized with a combination of pRBD and pGM-CSF exhibited significantly elevated levels of RBD-specific antibody titers in serum, BALF, and nasal wash. Furthermore, these mice generated more potent neutralization antibodies against both the wild-type and Omicron pseudovirus, as well as the ancestral virus. In addition, pGM-CSF enhanced pRBD-induced CD4+ and CD8+ T cell responses and promoted central memory T cells storage in the spleen. At the same time, tissue-resident memory T (Trm) cells in the lung also increased significantly, and higher levels of specific responses were maintained 60 days post the final immunization. pGM-CSF may play an adjuvant role by promoting antigen expression, immune cells recruitment and GC B cell responses. In conclusion, pGM-CSF may be an effective adjuvant candidate for the DNA vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Chang Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; Department of Pharmacy, Chinese People's Liberation Army Unit 32265, Guangzhou 510310, PR China
| | - Ruo-Yi Xue
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Guo-Cheng Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Yi Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Wei-Yi Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jing-Yi Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Rang Feng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Zhe Jin
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Yan Deng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Zi-Li Jin
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Hao Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Ling Mao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| | - Hai-Bo Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| |
Collapse
|
7
|
Xiao J, Chen H, Zheng R, Pu J, Gu X, Xie Y, He R, Xu J, Jing B, Peng X, Yang G. Recombinant GMA56 and ROP17 of Eimeria magna conferred protection against infection by homologous species. Front Immunol 2023; 13:1037949. [PMID: 36713437 PMCID: PMC9879601 DOI: 10.3389/fimmu.2022.1037949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
One of the most common rabbits coccidia species, Eimeria magna is mainly parasitic in the ileal and jejunal epithelial cells. E. magna infection can affect the growth performance of rabbits or cause other secondary diseases. Traditional methods of anticoccidial treatment typically result in drug resistance and drug residue. Therefore, vaccination is a promising alternative. Gametocyte antigen 56 (GAM56) and rhoptry kinase family proteins (ROPs) are involved in oocyst wall formation and parasite invasion, respectively. A virulence factor, ROP17 contains a serine/threonine kinase catalytic domain. In this study, recombinant E. magna GAM56 (rEmGAM56) and ROP17 (rEmROP17) proteins were obtained from a prokaryotic expression system and their reactogenicity was investigated with immunoblotting. To assess the potential of rEmGAM56 and rEmROP17 as coccidiosis vaccines, New Zealand White rabbits were subcutaneously immunized with 100 μg rEmGAM56 (rGC group) or rEmROP17 (rRC group) twice at 2-week intervals followed by homologous oocyst challenge. The rabbit serum was collected weekly to detect the specific antibody levels. The cytokine levels of pre-challenge serum were measured by enzyme-linked immunosorbent assay and the rabbits were observed and recorded post-challenge for the onset of clinical symptoms. The weight gain, oocyst output, and feed conversion ratio were calculated at the end of the experiment. The results showed that both rEmGAM56 and rEmROP17 had good reactogenicity. The rEmGAM56- or rEmROP17-immunized rabbits had milder clinical symptoms and feed conversion ratios of 3.27:1 and 3.37:1, respectively. The rEmGAM56-immunized rabbits had 81.35% body weight gain and 63.85% oocyst output reduction; the rEmROP17-immunized rabbits had 79.03% body weight gain and 80.10% oocyst output reduction. The ACI of rGC and rRC groups were 162.35 and 171.03, respectively. The specific antibody levels increased rapidly after immunization. Significantly increased interleukin (IL)-2, interferon (IFN)-γ, and IL-17 levels were evident in the rGC and rRC groups (p < 0.05). The rEmGAM56 and rEmROP17 elicited humoral and cellular responses, which protected against E. magna infection in rabbits. Thus, rEmGAM56 and rEmROP17 are potential vaccine candidates against E. magna, and rEmROP17 performed better than rEmGAM56.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hao Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ruoyu Zheng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jiayan Pu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Chengdu, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,*Correspondence: Guangyou Yang,
| |
Collapse
|
8
|
Yilmaz-Ozturk R, Calik H, Yaman S, Ustun-Karatop E, Cakir-Koc R. Immunogenic evaluation of multi-epitope peptide-loaded PCPP microparticles as a vaccine candidate against Toxoplasma Gondii. Comp Immunol Microbiol Infect Dis 2023; 92:101927. [PMID: 36528908 DOI: 10.1016/j.cimid.2022.101927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Toxoplasmosis is a major health problem and socioeconomic burden, affecting around 30-50% of the global population. Poly(dicarboxylatophenoxy)phosphazene (PCPP) polymer was chosen as adjuvant for the immunogenic peptide antigen. Peptide-loaded PCPP microparticles were synthesized via the coacervation method and the characterization studies of microparticles were conducted to determine their size, charge, morphology, encapsulation efficacy, and loading capacity. To evaluate in vivo efficacy of the vaccine candidate, Balb/c mice were immunized with the formulations. Brain and spleen tissues were isolated from animals to investigate cytokine levels, lymphocyte proliferation, and brain cyst formation. As a result, antibody and cytokine responses in groups immunized with peptide-loaded PCPP microparticles were found to be significantly higher when compared to the control group. In conclusion, our novel multi-epitope peptide-loaded PCPP microparticle-based vaccine formulation demonstrated considerable humoral and cellular immune responses against T. gondii and protected mice against T. gondii infection during Toxoplasmosis.
Collapse
Affiliation(s)
- Rabia Yilmaz-Ozturk
- Yildiz Technical University, Department of Bioengineering, Istanbul 34220, Turkey; Health Institutes of Turkey (TUSEB), Turkey Biotechnology Institute, Istanbul, Turkey
| | - Hilal Calik
- Yildiz Technical University, Department of Bioengineering, Istanbul 34220, Turkey
| | - Serkan Yaman
- Gumushane University, Department of Genetics and Bioengineering, Gumushane 29100, Turkey; Health Institutes of Turkey (TUSEB), Turkey Biotechnology Institute, Istanbul, Turkey
| | - Eslin Ustun-Karatop
- University of Ottawa, Department of Electrical and Computer Engineering, Ottawa, ON K1N6N5, Canada
| | - Rabia Cakir-Koc
- Yildiz Technical University, Department of Bioengineering, Istanbul 34220, Turkey; Health Institutes of Turkey (TUSEB), Turkey Biotechnology Institute, Istanbul, Turkey.
| |
Collapse
|
9
|
Zhang X, Yuan H, Mahmmod YS, Yang Z, Zhao M, Song Y, Luo S, Zhang XX, Yuan ZG. Insight into the current Toxoplasma gondii DNA vaccine: a review article. Expert Rev Vaccines 2023; 22:66-89. [PMID: 36508550 DOI: 10.1080/14760584.2023.2157818] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Toxoplasma gondii (T.gondii) is a widespread protozoan with significant economic losses and public health importance. But so far, the protective effect of reported DNA-based vaccines fluctuates widely, and no study has demonstrated complete protection. AREAS COVERED This review provides an inclusive summary of T. gondii DNA vaccine antigens, adjuvants, and some other parameters. A total of 140 articles from 2000 to 2021 were collected from five databases. By contrasting the outcomes of acute and chronic challenges, we aimed to investigate and identify viable immunological strategies for optimum protection. Furthermore, we evaluated and discussed the impact of several parameters on challenge outcomes in the hopes of developing some recommendations to assist better future horizontal comparisons among research. EXPERT OPINION In the coming five years of research, the exploration of vaccine cocktails combining invasion antigens and metabolic antigens with genetic adjuvants or novel DNA delivery methods may offer us desirable protection against this multiple stage of life parasite. In addition to finding a better immune strategy, developing better in silico prediction methods, solving problems posed by variables in practical applications, and gaining a more profound knowledge of T.gondii-host molecular interaction is also crucial towards a successful vaccine.
Collapse
Affiliation(s)
- Xirui Zhang
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Hao Yuan
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yasser S Mahmmod
- Veterinary Sciences Division, Faculty of Health Sciences, Higher Colleges of Technology, 17155, Abu Dhabi, United Arab Emirates
| | - Zipeng Yang
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Mengpo Zhao
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Yining Song
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| | - Shengjun Luo
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Xiu-Xiang Zhang
- College of Agriculture, South China Agricultural University, 510642, Guangzhou, PR China
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, 510642, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, PR China
| |
Collapse
|
10
|
Mining the Proteome of Toxoplasma Parasites Seeking Vaccine and Diagnostic Candidates. Animals (Basel) 2022; 12:ani12091098. [PMID: 35565525 PMCID: PMC9099775 DOI: 10.3390/ani12091098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The One Health concept to toxoplasmosis highlights that the health of humans is closely related to the health of animals and our common environment. Toxoplasmosis outcomes might be severe and fatal in patients with immunodeficiency, diabetes, and pregnant women and infants. Consequently, the development of effective vaccine and diagnostic strategies is urgent for the elimination of this disease. Proteomics analysis has allowed the identification of key proteins that can be utilized in the development of novel disease diagnostics and vaccines. This work presents relevant proteins found in the proteome of the life cycle-specific stages of Toxoplasma parasites. In fact, it brings together the main functionality key proteins from Toxoplasma parasites coming from proteomic approaches that are most likely to be useful in improving the disease management, and critically proposes innovative directions to finally develop promising vaccines and diagnostics tools. Abstract Toxoplasma gondii is a pathogenic protozoan parasite that infects the nucleated cells of warm-blooded hosts leading to an infectious zoonotic disease known as toxoplasmosis. The infection outcomes might be severe and fatal in patients with immunodeficiency, diabetes, and pregnant women and infants. The One Health approach to toxoplasmosis highlights that the health of humans is closely related to the health of animals and our common environment. The presence of drug resistance and side effects, the further improvement of sensitivity and specificity of serodiagnostic tools and the potentiality of vaccine candidates to induce the host immune response are considered as justifiable reasons for the identification of novel targets for the better management of toxoplasmosis. Thus, the identification of new critical proteins in the proteome of Toxoplasma parasites can also be helpful in designing and test more effective drugs, vaccines, and diagnostic tools. Accordingly, in this study we present important proteins found in the proteome of the life cycle-specific stages of Toxoplasma parasites that are potential diagnostic or vaccine candidates. The current study might help to understand the complexity of these parasites and provide a possible source of strategies and biomolecules that can be further evaluated in the pathobiology of Toxoplasma parasites and for diagnostics and vaccine trials against this disease.
Collapse
|
11
|
Xu Y, Wu J, Yuan X, Liu W, Pan J, Xu B. MicroRNA-155 contributes to host immunity against Toxoplasma gondii. Parasite 2021; 28:83. [PMID: 34907898 PMCID: PMC8672677 DOI: 10.1051/parasite/2021082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/26/2021] [Indexed: 11/14/2022] Open
Abstract
Toxoplasma gondii is well known to infect almost all avian and mammalian species including humans, with worldwide distribution. This protozoan parasite can cause serious toxoplasmosis, posing with a risk to public health. The role of microRNAs in the pathogenesis of T. gondii has not been well described. The aim of the present study was to investigate the role of microRNA-155 (miR-155) in mediating innate and adaptive immune responses during T. gondii infection in mice models. The survival and parasite burden in T. gondii-infected miR-155−/− and wild-type (WT) C57BL6 mice were compared. In these two mouse models, ELISA tests were used for analysis of Th1-associated, Th2-associated, and Th17-associated cytokines, and flow cytometry was used for analysis of the subpopulations of NK, NKT, CD8+T, CD4+T cells and regulatory T cells (Tregs), as well as Ly6Chi inflammatory monocytes and dendritic cells. The lack of miR-155 led to increased parasite burden and decreased survival of infected mice in contrast to WT mice. Innate and adaptive immune responses were reduced in the absence of miR-155, along with decreased proinflammatory mediators, Th-1-associated and Th-2-associated cytokines and accumulation of lymphocyte subpopulations. Also, CD8+ T cell exhaustion was also worsened in the absence of miR-155 via targeting of SHIP-1 and SOCS1, showing as up-regulated recruitment of Tregs and expression of PD-1, and down-regulated expression of IFN-γ and TNF-α in CD8+ T cells. Our results show that miR-155 is a critical immune regulator for the control of T. gondii infection, suggesting that miR-155 can be explored as a potential molecular target for boosting immunity against T. gondii.
Collapse
Affiliation(s)
- Yanan Xu
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, PR China
| | - Junhua Wu
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, PR China
| | - Xiaoqi Yuan
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, PR China
| | - Wenyuan Liu
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, PR China
| | - Jiewen Pan
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, PR China
| | - Binbin Xu
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, PR China
| |
Collapse
|
12
|
Warner RC, Chapman RC, Davis BN, Davis PH. REVIEW OF DNA VACCINE APPROACHES AGAINST THE PARASITE TOXOPLASMA GONDII. J Parasitol 2021; 107:882-903. [PMID: 34852176 DOI: 10.1645/20-157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite that affects both humans and livestock. Transmitted to humans through ingestion, it is the second-leading cause of foodborne illness-related death. Currently, there exists no approved vaccine for humans or most livestock against the parasite. DNA vaccines, a type of subunit vaccine which uses segments of the pathogen's DNA to generate immunity, have shown varying degrees of experimental efficacy against infection caused by the parasite. This review compiles DNA vaccine efforts against Toxoplasma gondii, segmenting the analysis by parasite antigen, as well as a review of concomitant adjuvant usage. No single antigenic group was consistently more effective within in vivo trials relative to others.
Collapse
Affiliation(s)
- Rosalie C Warner
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Ryan C Chapman
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Brianna N Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| | - Paul H Davis
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, 68182
| |
Collapse
|
13
|
Zhu YC, Ma LJ, Zhang JL, Liu JF, He Y, Feng JY, Chen J. Protective Immunity Induced by TgMIC5 and TgMIC16 DNA Vaccines Against Toxoplasmosis. Front Cell Infect Microbiol 2021; 11:686004. [PMID: 34595126 PMCID: PMC8476850 DOI: 10.3389/fcimb.2021.686004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite, which is responsible for a widely distributed zoonosis. Effective vaccines against toxoplasmosis are necessary to protect the public health. The aim of this study is to evaluate the immune efficacy of DNA vaccines encoding TgMIC5 and TgMIC16 genes against T. gondii infection. The recombinant plasmid pVAX-MIC5 and pVAX-MIC16 were constructed and injected intramuscularly in mice. The specific immune responses and protection against challenge with T. gondii RH tachyzoites were evaluated by measuring the cytokine levels, serum antibody concentrations, lymphocyte proliferation, lymphocyte populations, and the survival time. The protection against challenge with the T. gondii RH tchyzoites and PRU cysts was examined by evaluation of the reduction in the brain cyst burden. The results indicated that immunized mice showed significantly increased levels of IgG, IFN-γ, IL-2, IL-12p70, and IL-12p40 and percentages of CD4+ and CD8+ T cells. Additionally, vaccination prolonged the mouse survival time and reduced brain cysts compared with controls. Mouse groups immunized with a two-gene cocktail of pVAX-MIC5 + pVAX-MIC16 were more protected than mouse groups immunized with a single gene of pVAX-MIC5 or pVAX-MIC16. These results demonstrate that TgMIC5 and TgMIC16 induce effective immunity against toxoplasmosis and may serve as a good vaccine candidate against T. gondii infection.
Collapse
Affiliation(s)
- Yu-Chao Zhu
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China
| | - Li-Juan Ma
- Department of Integrated Chinese and Western Medicine Oncology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Ji-Li Zhang
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China
| | - Jian-Fa Liu
- Immunology Innovation Team, Ningbo University School of Medicine, Ningbo, China
| | - Yong He
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China
| | - Ji-Ye Feng
- Department of Hepatobiliary Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Jia Chen
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China.,Immunology Innovation Team, Ningbo University School of Medicine, Ningbo, China
| |
Collapse
|
14
|
Zhu Y, Xu Y, Hong L, Zhou C, Chen J. Immunization With a DNA Vaccine Encoding the Toxoplasma gondii' s GRA39 Prolongs Survival and Reduce Brain Cyst Formation in a Murine Model. Front Microbiol 2021; 12:630682. [PMID: 33995293 PMCID: PMC8113873 DOI: 10.3389/fmicb.2021.630682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
Toxoplasma gondii, an obligate intracellular protozoan parasite, can cause infect almost all warm-blooded animals and humans. To evaluate the immunogenicity and protective efficacy of T. gondii GRA39 (TgGRA39) in mice by using DNA immunization, we constructed a recombinant eukaryotic plasmid pVAX-TgGRA39. The specific immune responses in immunized mice were analyzed by serum antibody and cytokine measurements, lymphocyte proliferation assays and flow cytometry of T lymphocyte subclasses. Also, protective efficacy against acute and chronic T. gondii infection was assessed by observing the survival time after challenge with the highly virulent T. gondii RH strain (Genotype I) and counting the number of cyst-forming in brain at 4 weeks post-infection with the cyst-forming PRU strain of T. gondii (Genotype II), respectively. Our results showed that DNA immunization with pVAX-GRA39 via intramuscular injection three times, at 2-week intervals could elicit humoral and cellular immune response, indicated by enhanced levels of IgG and IgG2a antibodies (a slightly elevated IgG2a to IgG1 ratio), and increased levels of cytokines IFN-γ, IL-2, IL-12, IL-17A, IL-17F, IL-22 and IL-23 and percentages of CD3+ CD4+ CD8- and CD3+ CD8+ CD4– T cells, in contrast to non-immunized mice. The significant increase in the expression levels of IL-6, TGF-β1, IL-1β, and the transcription factor factors RORγt, RORα, and STAT3 involved in the activation and pathway of Th17 and Tc17 cells, were also observed. However, no significant difference was detected in level of IL-4 and IL-10 (p > 0.05). These effective immune responses had mounted protective immunity against T. gondii infection, with a prolonged survival time (16.80 ± 3.50 days) and reduced cyst numbers (44.5%) in comparison to the control mice. Our data indicated that pVAX-TgGRA39 could induce effective humoral, and Th1-type, Th17, and Tc17 cellular immune responses, and may represent a promising vaccine candidate against both acute and chronic T. gondii infection.
Collapse
Affiliation(s)
- Yuchao Zhu
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yanan Xu
- The Ningbo Women and Children's Hospital, Ningbo, China
| | - Lu Hong
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Chunxue Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jia Chen
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China.,The Ningbo Women and Children's Hospital, Ningbo, China
| |
Collapse
|
15
|
Chu KB, Quan FS. Advances in Toxoplasma gondii Vaccines: Current Strategies and Challenges for Vaccine Development. Vaccines (Basel) 2021; 9:vaccines9050413. [PMID: 33919060 PMCID: PMC8143161 DOI: 10.3390/vaccines9050413] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Toxoplasmosis, caused by the apicomplexan parasite Toxoplasma gondii, is one of the most damaging parasite-borne zoonotic diseases of global importance. While approximately one-third of the entire world’s population is estimated to be infected with T. gondii, an effective vaccine for human use remains unavailable. Global efforts in pursuit of developing a T. gondii vaccine have been ongoing for decades, and novel innovative approaches have been introduced to aid this process. A wide array of vaccination strategies have been conducted to date including, but not limited to, nucleic acids, protein subunits, attenuated vaccines, and nanoparticles, which have been assessed in rodents with promising results. Yet, translation of these in vivo results into clinical studies remains a major obstacle that needs to be overcome. In this review, we will aim to summarize the current advances in T. gondii vaccine strategies and address the challenges hindering vaccine development.
Collapse
Affiliation(s)
- Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Fu-Shi Quan
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- Correspondence:
| |
Collapse
|
16
|
Smith NC, Goulart C, Hayward JA, Kupz A, Miller CM, van Dooren GG. Control of human toxoplasmosis. Int J Parasitol 2020; 51:95-121. [PMID: 33347832 DOI: 10.1016/j.ijpara.2020.11.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/21/2022]
Abstract
Toxoplasmosis is caused by Toxoplasma gondii, an apicomplexan parasite that is able to infect any nucleated cell in any warm-blooded animal. Toxoplasma gondii infects around 2 billion people and, whilst only a small percentage of infected people will suffer serious disease, the prevalence of the parasite makes it one of the most damaging zoonotic diseases in the world. Toxoplasmosis is a disease with multiple manifestations: it can cause a fatal encephalitis in immunosuppressed people; if first contracted during pregnancy, it can cause miscarriage or congenital defects in the neonate; and it can cause serious ocular disease, even in immunocompetent people. The disease has a complex epidemiology, being transmitted by ingestion of oocysts that are shed in the faeces of definitive feline hosts and contaminate water, soil and crops, or by consumption of intracellular cysts in undercooked meat from intermediate hosts. In this review we examine current and future approaches to control toxoplasmosis, which encompass a variety of measures that target different components of the life cycle of T. gondii. These include: education programs about the parasite and avoidance of contact with infectious stages; biosecurity and sanitation to ensure food and water safety; chemo- and immunotherapeutics to control active infections and disease; prophylactic options to prevent acquisition of infection by livestock and cyst formation in meat; and vaccines to prevent shedding of oocysts by definitive feline hosts.
Collapse
Affiliation(s)
- Nicholas C Smith
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
| | - Cibelly Goulart
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD 4878, Australia
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|