1
|
Skrajnowska D, Szterk A, Ofiara K, Kowalczyk P, Bobrowska-Korczak B. The Genistein Supply and Elemental Composition of Rat Kidneys in an Induced Breast Cancer Model. Nutrients 2025; 17:1184. [PMID: 40218942 PMCID: PMC11990330 DOI: 10.3390/nu17071184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Many natural phytochemicals support the work of the kidneys. The health effects of genistein have been confirmed in many kidney diseases (inflammation and acute kidney injury, cancer or menopausal or senile changes). Genistein through various mechanisms can affect kidney conditions. Objectives: The purpose of this work was to analyze the supply of various forms of genistein at a low dose (0.2 mg/kg b.w.) on the renal mineral composition of rats under conditions of mammary gland tumorigenesis (induced with DMBA). Methods: Sprague rats at the age of 40 days were divided into four research groups, i.e., a control group receiving only standard feed and four groups receiving feed supplemented with genistein in the form of nanoparticles (0.1 mg/mL, i.e., 0.2 mg/kg.i.d.) (size: 92 ± 41 nm), genistein in microparticle form (0.1 mg/mL, i.e., 0.2 mg/kg.i.d.) (size: 587 ± 83 nm) and genistein in macroparticle form (normal, classical) (0.1 mg/mL, i.e., 0.2 mg/kg.i.d.). Mammary gland cancer was induced using DMBA (7,12-dimethyl-1,2-benz(a)anthracene). The experiment lasted 100 days. The concentrations of Ca, Zn, Fe, Cu, As, Se, Rb, Sr, Mo, B, and Mn were measured using the ICP-MS method, while the levels of K, Mg, and Na were measured using the FAAS method. Results: It was shown that, depending on the degree of miniaturization of genistein, its administration affected changes in kidney mineral composition, primarily resulting in a strongly reduced calcium content in the group of rats receiving nanogenistein. We found a negative impact of nanogenistein administration on the amount of calcium and iron, indicating an increased distribution or excretion of these elements from the body, as well as an increase in the number of elements, especially magnesium, sodium, zinc, boron, and copper concentrations, compared to the non-supplemented group. Conclusions: This study confirms the need for thorough clinical analyses in the future, with regard to the effects of genistein, especially its nanoforms on the body.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (D.S.)
| | - Arkadiusz Szterk
- ASLAB Science, Fort Służew 1/9, 02-787 Warsaw, Poland (K.O.)
- Chair of Preclinical Sciences, Department of Pharmacology and Toxicology, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Karol Ofiara
- ASLAB Science, Fort Służew 1/9, 02-787 Warsaw, Poland (K.O.)
| | - Paweł Kowalczyk
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (D.S.)
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (D.S.)
| |
Collapse
|
2
|
Wu K, Fei L, Wang X, Lei Y, Liu Y, Xu W, Chen J, Zhu E, Zhong M, Huang M, Jiang X, Yin F, Yan Z, Zhao X, Tang C, Patzak A, Liu X, Zheng Z. ZIP14 is involved in iron deposition and triggers ferroptosis in diabetic nephropathy. Metallomics 2022; 14:6596292. [PMID: 35641158 DOI: 10.1093/mtomcs/mfac034] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/25/2022] [Indexed: 11/12/2022]
Abstract
Ferroptosis is caused by lipid peroxidation and iron accumulation and can cause cell death. Abnormally expressed iron transporters are involved in ferroptosis in a variety of diseases. ZRT/IRT-like protein 14 (ZIP14) is a transport protein that can mediate cellular uptake of iron, zinc and manganese. Herein, we have tested the hypothesis that the divalent metal transporter ZIP14 is involved in the initiation of ferroptosis in diabetic nephropathy (DN). DN was induced in eight-week old male rats by streptozotocin (STZ) before analysis of the degree of renal tubular injury. In addition, an in vitro model of DN in HK2 cells was used. We showed that ZIP14 was upregulated and Fe2+ levels increased both in vivo and in vitro. Expression of glutathione peroxidase 4 (GPX4) and the level of glutathione (GSH) were reduced, whereas that of malondialdehyde (MDA) increased. Ferrostatin-1(Fer-1) treatment reduced the expression of ZIP14 and the levels of Fe2+ and MDA, which is consistent with ferroptosis. Fer-1 improved kidney function in DN rats. This was characterized by urine levels of protein-to-creatinine ratio, α 1-microglobulin and N-acetyl-β-D-glucosaminidase. Our study demonstrates a novel role for ZIP14 in diabetic kidney injury mediated by ferroptosis, and suggests a potential new therapeutic approach for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Keping Wu
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Department of Nephrology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lingyan Fei
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.,Institute of Translation Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin.,Department of Nephrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohua Wang
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yan Lei
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yu Liu
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wenqian Xu
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jiasi Chen
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Enyi Zhu
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ming Zhong
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Mingcheng Huang
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xi Jiang
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Fei Yin
- Department of Thoracic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhijun Yan
- Department of Anesthesia, The First Affiliated Hospital of Nanhua University, Hunan, China
| | - Xinying Zhao
- Department of Hematology, Guangzhou Women and Children's Medical center, Guangzhou Medical University, Guangzhou, China
| | - Chun Tang
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Andreas Patzak
- Institute of Translation Physiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin
| | - Xiaoping Liu
- Department of Hematology, Guangzhou Women and Children's Medical center, Guangzhou Medical University, Guangzhou, China
| | - Zhihua Zheng
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Zhao L, Zou Y, Zhang J, Zhang R, Ren H, Li L, Guo R, Zhang J, Liu F. Serum transferrin predicts end-stage Renal Disease in Type 2 Diabetes Mellitus patients. Int J Med Sci 2020; 17:2113-2124. [PMID: 32922172 PMCID: PMC7484672 DOI: 10.7150/ijms.46259] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/16/2020] [Indexed: 02/05/2023] Open
Abstract
Background: To investigate the relationship between serum iron status and renal outcome in patients with type 2 diabetes mellitus (T2DM). Methods: Chinese patients (n=111) with T2DM and biopsy-proven diabetic nephropathy (DN) were surveyed in a longitudinal, retrospective study. Serum iron, total iron-binding capacity, ferritin, and transferrin were measured at the time of renal biopsy. Iron deposition and transferrin staining were performed with renal biopsy specimens of DN patients and potential kidney donors. End-stage renal disease (ESRD) was the end-point. ESRD was defined as an estimated glomerular filtration rate <15 mL/min/1.73 m2 or the need for chronic renal replacement therapy. Cox proportional hazard models were used to estimate the hazard ratios (HRs) for the influence of serum iron metabolism on ESRD. Results: During a median follow up of 30.9 months, 66 (59.5%) patients progressed to ESRD. After adjusting for age, sex, baseline systolic blood pressure, renal functions, hemoglobin, HbA1c, and pathological findings, lower serum transferrin concentrations were significantly associated with higher ESRD in multivariate models. Compared with patients in the highest transferrin quartile (≥1.65 g/L), patients in the lowest quartile (≤1.15 g/L) had multivariable-adjusted HR (95% confidence interval) of 7.36 (1.40-38.65) for ESRD. Moreover, tubular epithelial cells in DN exhibited a higher deposition of iron and transferrin expression compared with healthy controls. Conclusions: Low serum transferrin concentration was associated with diabetic ESRD in patients with T2DM. Free iron nephrotoxicity and poor nutritional status with accumulated iron or transferrin deposition might contribute to ESRD.
Collapse
Affiliation(s)
- Lijun Zhao
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Division of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yutong Zou
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junlin Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rui Zhang
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Honghong Ren
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Lin Li
- Division of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ruikun Guo
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, Regenerative Medicine Research Center, Chengdu China
| | - Fang Liu
- Division of Nephrology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Agarwal R. Iron deficiency anemia in chronic kidney disease: Uncertainties and cautions. Hemodial Int 2017; 21 Suppl 1:S78-S82. [DOI: 10.1111/hdi.12561] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/11/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Rajiv Agarwal
- Department of Medicine; Indiana University School of Medicine and Richard L. Roudebush Veterans Administration Medical Center; Indianapolis Indiana USA
| |
Collapse
|
5
|
Clark BA, Osadchuk L, John J, Culver T, Marcus R. Effect of intravenous iron on outcomes of acute kidney injury. Transfusion 2016; 56:933-7. [PMID: 26801821 DOI: 10.1111/trf.13471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND Little is known about benefit versus risk in treating iron deficiency anemia with intravenous (IV) iron in patients with acute kidney injury (AKI). Concerns about adverse outcomes may dissuade use and could contribute to greater use of red blood cell (RBC) transfusion. STUDY DESIGN AND METHODS We performed a retrospective case-control study of patients with AKI who received IV iron (cases) compared to those with AKI without IV iron (controls). RESULTS We identified 67 cases and 67 controls matched for age, stage of chronic kidney disease, and severity of anemia (hemoglobin [Hb], 7.7 ± 0.1 mg/dL vs. 7.5 ± 0.1 mg/dL; p = 0.47). Cases tended to be sicker with longer length of stay (27 + 4 days vs. 15 + 1.3 days; p = 0.003) and more intensive care unit days (13 + 2 days vs. 5 + 1 days; p = 0.003), more often with diagnosis of sepsis and greater number of antibiotics used (2.7 ± 0.3 vs. 1.8 ± 0.2; p = 0.02). Sepsis and AKI preceded use of IV iron. Despite greater illness severity, there was no difference in dialysis (38.8% vs. 34.3%; p = 0.59), mortality (24% vs. 21%; p = 0.679), or severity and/or recovery of AKI. Discharge Hb was similar (9.0 ± 0.1 mg/dL vs. 9.1 ± 0.1 mg/dL; p = 0.47). IV iron was used later in the stay and hence the cases also had more RBC transfusions. CONCLUSIONS We were unable to find any adverse consequences of use of IV iron when used to treat anemia in patients with AKI in regard to recovery of AKI or mortality even in patients with a diagnosis of sepsis. Consideration of preemptive use of IV iron in AKI with severe anemia is warranted to determine if this would reduce RBC transfusion.
Collapse
Affiliation(s)
- Barbara A Clark
- Division of Nephrology and Hypertension, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Liliana Osadchuk
- Division of Nephrology and Hypertension, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Jones John
- Division of Nephrology and Hypertension, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Thuyanh Culver
- Division of Nephrology and Hypertension, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Richard Marcus
- Division of Nephrology and Hypertension, Allegheny General Hospital, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Tamay-Cach F, Quintana-Pérez JC, Trujillo-Ferrara JG, Cuevas-Hernández RI, Del Valle-Mondragón L, García-Trejo EM, Arellano-Mendoza MG. A review of the impact of oxidative stress and some antioxidant therapies on renal damage. Ren Fail 2015; 38:171-5. [DOI: 10.3109/0886022x.2015.1120097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
7
|
A randomized trial of intravenous and oral iron in chronic kidney disease. Kidney Int 2015; 88:905-14. [PMID: 26083656 PMCID: PMC4589436 DOI: 10.1038/ki.2015.163] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 03/31/2015] [Accepted: 04/09/2015] [Indexed: 02/04/2023]
Abstract
Although iron is commonly used to correct iron deficiency anemia (IDA) in chronic kidney disease (CKD) its effect on kidney function is unclear. To assess this, we randomly assigned patients with Stage 3 and 4 CKD and IDA to either open-label oral ferrous sulfate (69 patients to 325 mg three times daily for 8 weeks) or intravenous iron sucrose (67 patients to 200 mg every 2 weeks, total 1 gram). The primary outcome was the between group difference in slope of measured glomerular filtration rate (mGFR) change over two years. The trial was terminated early on the recommendation of an independent Data and Safety Monitoring Board based on little chance of finding differences in mGFR slopes, but a higher risk of serious adverse events in the intravenous iron treatment group. mGFR declined similarly over two years in both treatment groups (oral −3.6 mL/min/1.73m2, intravenous − 4.0 mL/min/1.73m2, between group difference − 0.35 mL/min/1.73m2 (95% confidence interval −2.9 to 2.3). There were 36 serious cardiovascular events among 19 participants assigned to the oral iron treatment group and 55 events among 17 participants of the intravenous iron group (adjusted incidence rate ratio 2.51 (1.56−4.04). Infections resulting in hospitalizations had a significant adjusted incidence rate ratio of 2.12 (1.24−3.64). Thus, among non-dialyzed patients with CKD and IDA, intravenous iron therapy is associated with an increased risk of serious adverse events, including those from cardiovascular causes and infectious diseases.
Collapse
|
8
|
Guo SX, Fang Q, You CG, Jin YY, Wang XG, Hu XL, Han CM. Effects of hydrogen-rich saline on early acute kidney injury in severely burned rats by suppressing oxidative stress induced apoptosis and inflammation. J Transl Med 2015; 13:183. [PMID: 26047940 PMCID: PMC4467622 DOI: 10.1186/s12967-015-0548-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/26/2015] [Indexed: 01/21/2023] Open
Abstract
Background Early acute kidney injury (AKI) in severely burned patients predicts a high mortality that is multi-factorial. Hydrogen has been reported to alleviate organ injury via selective quenching of reactive oxygen species. This study investigated the potential protective effects of hydrogen against severe burn-induced early AKI in rats. Methods Severe burn were induced via immersing the shaved back of rats into a 100°C bath for 15 s. Fifty-six Sprague–Dawley rats were randomly divided into Sham, Burn + saline, and Burn + hydrogen-rich saline (HS) groups, and renal function and the apoptotic index were measured. Kidney histopathology and immunofluorescence staining, quantitative real-time PCR, ELISA and western blotting were performed on the sera or renal tissues of burned rats to explore the underlying effects and mechanisms at varying time points post burn. Results Renal function and tubular apoptosis were improved by HS treatment. In addition, the oxidation–reduction potential and malondialdehyde levels were markedly reduced with HS treatment, whereas endogenous antioxidant enzyme activities were significantly increased. HS also decreased the myeloperoxidase levels and influenced the release of inflammatory mediators in the sera and renal tissues of the burned rats. The regulatory effects of HS included the inhibition of p38, JNK, ERK and NF-κB activation, and an increase in Akt phosphorylation. Conclusion Hydrogen can attenuate severe burn-induced early AKI; the mechanisms of protection include the inhibition of oxidative stress induced apoptosis and inflammation, which may be mediated by regulation of the MAPKs, Akt and NF-κB signalling pathways.
Collapse
Affiliation(s)
- Song-Xue Guo
- Department of Burn, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Quan Fang
- Department of Plastic Surgery, Binjiang Branch, Second Affiliated Hospital, School of Medicine, Zhejiang University, 1511 Jianghong Road, Hangzhou, 310000, Zhejiang, China.
| | - Chuan-Gang You
- Department of Burn, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Yun-Yun Jin
- Department of Burn, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Xin-Gang Wang
- Department of Burn, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| | - Xin-Lei Hu
- Department of Orthopedic, Binjiang Branch, Second Affiliated Hospital, School of Medicine, Zhejiang University, 1511 Jianghong Road, Hangzhou, 31000, Zhejiang, China.
| | - Chun-Mao Han
- Department of Burn, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
9
|
Astaxanthin attenuates early acute kidney injury following severe burns in rats by ameliorating oxidative stress and mitochondrial-related apoptosis. Mar Drugs 2015; 13:2105-23. [PMID: 25871290 PMCID: PMC4413202 DOI: 10.3390/md13042105] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/18/2015] [Accepted: 03/31/2015] [Indexed: 12/26/2022] Open
Abstract
Early acute kidney injury (AKI) is a devastating complication in critical burn patients, and it is associated with severe morbidity and mortality. The mechanism of AKI is multifactorial. Astaxanthin (ATX) is a natural compound that is widely distributed in marine organisms; it is a strong antioxidant and exhibits other biological effects that have been well studied in various traumatic injuries and diseases. Hence, we attempted to explore the potential protection of ATX against early post burn AKI and its possible mechanisms of action. The classic severe burn rat model was utilized for the histological and biochemical assessments of the therapeutic value and mechanisms of action of ATX. Upon ATX treatment, renal tubular injury and the levels of serum creatinine and neutrophil gelatinase-associated lipocalin were improved. Furthermore, relief of oxidative stress and tubular apoptosis in rat kidneys post burn was also observed. Additionally, ATX administration increased Akt and Bad phosphorylation and further down-regulated the expression of other downstream pro-apoptotic proteins (cytochrome c and caspase-3/9); these effects were reversed by the PI3K inhibitor LY294002. Moreover, the protective effect of ATX presents a dose-dependent enhancement. The data above suggested that ATX protects against early AKI following severe burns in rats, which was attributed to its ability to ameliorate oxidative stress and inhibit apoptosis by modulating the mitochondrial-apoptotic pathway, regarded as the Akt/Bad/Caspases signalling cascade.
Collapse
|
10
|
Feng Y, Liu Y, Wang L, Cai X, Wang D, Wu K, Chen H, Li J, Lei W. Sustained oxidative stress causes late acute renal failure via duplex regulation on p38 MAPK and Akt phosphorylation in severely burned rats. PLoS One 2013; 8:e54593. [PMID: 23349934 PMCID: PMC3547934 DOI: 10.1371/journal.pone.0054593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 12/13/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Clinical evidence indicates that late acute renal failure (ARF) predicts high mortality in severely burned patients but the pathophysiology of late ARF remains undefined. This study was designed to test the hypothesis that sustained reactive oxygen species (ROS) induced late ARF in a severely burned rat model and to investigate the signaling mechanisms involved. MATERIALS AND METHODS Rats were exposed to 100°C bath for 15 s to induce severe burn injury (40% of total body surface area). Renal function, ROS generation, tubular necrosis and apoptosis, and phosphorylation of MAPK and Akt were measured during 72 hours after burn. RESULTS Renal function as assessed by serum creatinine and blood urea nitrogen deteriorated significantly at 3 h after burn, alleviated at 6 h but worsened at 48 h and 72 h, indicating a late ARF was induced. Apoptotic cells and cleavage caspase-3 in the kidney went up slowly and turned into significant at 48 h and 72 h. Tubular cell ROS production shot up at 6 h and continuously rose during the 72-h experiment. Scavenging ROS with tempol markedly attenuated tubular apoptosis and renal dysfunction at 72 h after burn. Interestingly, renal p38 MAPK phosphorylation elevated in a time dependent manner whereas Akt phosphorylation increased during the first 24 h but decreased at 48 h after burn. The p38 MAPK specific inhibitor SB203580 alleviated whereas Akt inhibitor exacerbated burn-induced tubular apoptosis and renal dysfunction. Furthermore, tempol treatment exerted a duplex regulation through inhibiting p38 MAPK phosphorylation but further increasing Akt phosphorylation at 72 h postburn. CONCLUSIONS These results demonstrate that sustained renal ROS overproduction induces continuous tubular cell apoptosis and thus a late ARF at 72 h after burn in severely burned rats, which may result from ROS-mediated activation of p38 MAPK but a late inhibition of Akt phosphorylation.
Collapse
Affiliation(s)
- Yafei Feng
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Yi Liu
- Department of Oral Implantology, School of Stomatology, Fourth Military Medical University, Xi'an, China
- Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoqing Cai
- Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Dexin Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kaimin Wu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongli Chen
- Department of Toxicology, Fourth Military Medical University, Xi'an, China
| | - Jia Li
- Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Wei Lei
- Department of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Haase M, Bellomo R, Haase-Fielitz A. Novel Biomarkers, Oxidative Stress, and the Role of Labile Iron Toxicity in Cardiopulmonary Bypass-Associated Acute Kidney Injury. J Am Coll Cardiol 2010; 55:2024-33. [DOI: 10.1016/j.jacc.2009.12.046] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/30/2009] [Accepted: 12/07/2009] [Indexed: 12/15/2022]
|
12
|
Loru D, Incani A, Deiana M, Corona G, Atzeri A, Melis MP, Rosa A, Dessì MA. Protective effect of hydroxytyrosol and tyrosol against oxidative stress in kidney cells. Toxicol Ind Health 2009; 25:301-10. [DOI: 10.1177/0748233709103028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bioavailability studies in animals and humans fed with extravirgin olive oil demonstrated that hydroxytyrosol and tyrosol, the major simple phenolic compounds in extravirgin olive oil, are dose-dependently absorbed and excreted. Once absorbed, they undergo extensive metabolism; hydroxytyrosol and tyrosol concentrate mainly in the kidney, where they may exert an important role in the prevention of oxidative stress induced renal dysfunction. In this study we monitored the ability of hydroxytyrosol and tyrosol to protect renal cells (LLC-PK1) following oxidative damage induced by H2O2. Oxidative stress was evaluated by monitoring the changes of the membrane lipid fraction. Hydroxytyrosol exerted a significant antioxidant action, inhibiting the production of MDA, fatty acids hydroperoxides and 7-ketocholesterol, major oxidation products of unsaturated fatty acids and cholesterol, and thus protecting the cells from H2O2-induced damage. Tyrosol, instead, in this experimental model, did not exert any protective effect.
Collapse
Affiliation(s)
- D Loru
- Dipartimento di Biologia Sperimentale, Sezione di Patologia Sperimentale, Università degli Studi di Cagliari, Cittadella Universitaria SS 554, Km 4.5 09142 Monserrato (CA), Italy
| | - A Incani
- Dipartimento di Biologia Sperimentale, Sezione di Patologia Sperimentale, Università degli Studi di Cagliari, Cittadella Universitaria SS 554, Km 4.5 09142 Monserrato (CA), Italy
| | - M Deiana
- Dipartimento di Biologia Sperimentale, Sezione di Patologia Sperimentale, Università degli Studi di Cagliari, Cittadella Universitaria SS 554, Km 4.5 09142 Monserrato (CA), Italy
| | - G Corona
- Dipartimento di Biologia Sperimentale, Sezione di Patologia Sperimentale, Università degli Studi di Cagliari, Cittadella Universitaria SS 554, Km 4.5 09142 Monserrato (CA), Italy
| | - A Atzeri
- Dipartimento di Biologia Sperimentale, Sezione di Patologia Sperimentale, Università degli Studi di Cagliari, Cittadella Universitaria SS 554, Km 4.5 09142 Monserrato (CA), Italy
| | - MP Melis
- Dipartimento di Biologia Sperimentale, Sezione di Patologia Sperimentale, Università degli Studi di Cagliari, Cittadella Universitaria SS 554, Km 4.5 09142 Monserrato (CA), Italy
| | - A Rosa
- Dipartimento di Biologia Sperimentale, Sezione di Patologia Sperimentale, Università degli Studi di Cagliari, Cittadella Universitaria SS 554, Km 4.5 09142 Monserrato (CA), Italy
| | - MA Dessì
- Dipartimento di Biologia Sperimentale, Sezione di Patologia Sperimentale, Università degli Studi di Cagliari, Cittadella Universitaria SS 554, Km 4.5 09142 Monserrato (CA), Italy
| |
Collapse
|
13
|
Soler-García AA, Johnson D, Hathout Y, Ray PE. Iron-related proteins: candidate urine biomarkers in childhood HIV-associated renal diseases. Clin J Am Soc Nephrol 2009; 4:763-71. [PMID: 19279121 PMCID: PMC2666435 DOI: 10.2215/cjn.0200608] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 01/27/2009] [Indexed: 11/23/2022]
Abstract
BACKGROUND Because of the risk of performing renal biopsies in children with co-morbid conditions, we carried out this study to identify candidate protein biomarkers in the urine of HIV-infected children with renal disease. DESIGN, SETTING, PARTICIPANTS & MEASUREMENTS Urine samples from HIV-infected children with biopsy proven HIV-nephropathy (HIVAN; n = 4), HIV-associated Hemolytic Uremic Syndrome (HIV-HUS; n = 2), or no renal disease (n = 3) were analyzed by two-dimensional electrophoresis (2-DE) and proteomic methods. Positive findings were confirmed in HIV-infected children with (n = 20) and without (n = 10) proteinuria using commercially available assays. RESULTS By 2-DE analysis, a single urine marker was not sufficient to distinguish children with HIVAN from the others. High urine levels of beta(2)-microglobulin and retinol-binding protein (RBP) suggested the presence of tubular injury. In addition, we found elevated urine levels of iron and the iron-related proteins, transferrin, hemopexin, haptoglobin, lactoferrin, and neutrophil gelatinase-associated lipocalin (NGAL), in children with HIVAN and HIV-HUS. Furthermore, we detected a significant accumulation of iron in the urine and kidneys of HIV-transgenic (Tg) rats with renal disease. CONCLUSION These findings suggest that iron and iron-related proteins might be promising candidate urine biomarkers to identify HIV-infected children at risk of developing HIVAN and HIV-HUS. Moreover, based on the results of previous studies, we speculate that the release or accumulation of iron in the kidney of HIV-infected children may contribute to the rapid progression of their renal disease, and could become a new therapeutic target against HIVAN and HIV-HUS.
Collapse
Affiliation(s)
- Angel A Soler-García
- Division of Nephrology, Center for Cancer and Immunology Research, Children's Research Institute, NW, Washington, DC 20010, USA
| | | | | | | |
Collapse
|
14
|
Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009; 2:2. [PMID: 19133145 PMCID: PMC2672098 DOI: 10.1186/1755-8794-2-2] [Citation(s) in RCA: 380] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/08/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. REVIEW We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation).The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible.This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox stress thus requires suitable levels of both antioxidants and effective iron chelators. Some polyphenolic antioxidants may serve both roles.Understanding the exact speciation and liganding of iron in all its states is thus crucial to separating its various pro- and anti-inflammatory activities. Redox stress, innate immunity and pro- (and some anti-)inflammatory cytokines are linked in particular via signalling pathways involving NF-kappaB and p38, with the oxidative roles of iron here seemingly involved upstream of the IkappaB kinase (IKK) reaction. In a number of cases it is possible to identify mechanisms by which ROSs and poorly liganded iron act synergistically and autocatalytically, leading to 'runaway' reactions that are hard to control unless one tackles multiple sites of action simultaneously. Some molecules such as statins and erythropoietin, not traditionally associated with anti-inflammatory activity, do indeed have 'pleiotropic' anti-inflammatory effects that may be of benefit here. CONCLUSION Overall we argue, by synthesising a widely dispersed literature, that the role of poorly liganded iron has been rather underappreciated in the past, and that in combination with peroxide and superoxide its activity underpins the behaviour of a great many physiological processes that degrade over time. Understanding these requires an integrative, systems-level approach that may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| |
Collapse
|
15
|
Iron, oxidative stress, and clinical outcomes. Pediatr Nephrol 2008; 23:1195-9. [PMID: 18030498 DOI: 10.1007/s00467-007-0673-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/04/2007] [Accepted: 10/08/2007] [Indexed: 11/27/2022]
Abstract
It is well known that iron is pro-oxidant. Chronic kidney disease (CKD) is a pro-oxidant state, and intravenous administration of iron is frequently used to correct anemia. On one hand, there is little doubt that iron causes oxidative stress. On the other, it is far from clear whether oxidative stress, so generated, leads to poor clinical outcomes. Iron has benefits that may be independent of the correction of anemia. Furthermore, concerns surround the use of high doses of erythropoietin in causing excess heart failure and death in patients with CKD. Thus, it would be prudent if iron were to continue to be used judiciously in patients who require erythropoietin. Iron, given orally, would be the preferred first-line agent in patients not on hemodialysis. In patients with sepsis, intravenous treatment with iron should be avoided, because, in animal experiments, intravenous administration of iron can compound the inflammatory response and increase mortality. Clinical trials are needed to ascertain the risk and benefits of the intravenous administration of iron in patients with CKD.
Collapse
|
16
|
Lin MS, Li HY, Wei JN, Lin CH, Smith DJ, Vainio J, Shih SR, Chen YH, Lin LC, Kao HL, Chuang LM, Chen MF. Serum vascular adhesion protein-1 is higher in subjects with early stages of chronic kidney disease. Clin Biochem 2008; 41:1362-7. [PMID: 18644360 DOI: 10.1016/j.clinbiochem.2008.06.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 06/08/2008] [Accepted: 06/29/2008] [Indexed: 11/24/2022]
Abstract
OBJECTIVES An increased level of serum vascular adhesion protein-1 (VAP-1) has been found in patients with diabetes mellitus and vascular disorders. This study examined whether serum VAP-1 levels are associated with chronic kidney disease (CKD). DESIGN AND METHODS We included 262 subjects aged 30 and above with fasting plasma glucose level <7 mmol/L checked within 1 year. First morning urine specimens were collected. Microalbuminuria was defined if urinary albumin-to-creatinine ratio > or =30 microg/mg creatinine. The glomerular filtration rate (GFR) was estimated. CKD stages were defined according to the suggestions of the National Kidney Foundation. Serum VAP-1 levels were analyzed by immunofluorometric assay. RESULTS Serum VAP-1 levels were positively associated with the urinary albumin-to-creatinine ratio (r=0.29, p<0.0001) and negatively associated with estimated GFR (r=-0.24, p=0.0001). Subjects with CKD stage 2 (N=51) and stage 3 (N=91) had significantly higher levels of serum VAP-1 than those without CKD (p=0.0003 and p=0.035, adjusted for age and gender, respectively). A high serum VAP-1 level was associated with the presence of CKD (OR 1.63 for 1 SD increase of VAP-1, p=0.018), adjusting for age, sex, and smoking. Ordered logit models revealed that high serum VAP-1 levels correlated with advanced stages of CKD. CONCLUSIONS Serum levels of VAP-1 are associated with the severity of kidney damage or stages of kidney disease. The true mechanism which links the serum VAP-1 and CKD remains to be elucidated in further studies.
Collapse
Affiliation(s)
- Mao-Shin Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Diao WF, Chen WQ, Wu Y, Liu P, Xie XL, Li S, Shen PP, Ji J. Serum, liver, and kidney proteomic analysis for the alloxan-induced type I diabetic mice after insulin gene transfer of naked plasmid through electroporation. Proteomics 2007; 6:5837-45. [PMID: 17022097 DOI: 10.1002/pmic.200500697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene therapy has been reported to be effective in treating diabetes mellitus (DM), while little has been found out about the functional protein changes since. The liver and kidney play important roles in glucose absorption, metabolism, and excretion. Changes in the two organs may reflect pathologic alterations during DM, while the serum has a direct connection with most organs and pathological changes. We used alloxan to induce diabetic mice, electrotranferred the insulin gene into their sural muscles, and discovered that their blood glucose decreased to normal level. Consequently, proteomic approaches were applied to evaluate protein changes in the liver, kidney, and serum of normal, diabetic, and gene transferred mice. Forty-three proteins were found either up-regulated or down-reglulated in the liver, kidney, and serum of the alloxan-induced type I diabetic mice. Only five proteins in the liver, five proteins in the kidney, and seven proteins in the serum of diabetic mice were found to be back-regulated to normal levels after gene transfer. These back-regulated proteins are involved in lipid and glucose metabolism, associated with phosphorylation, signal transduction, oxidation, and immune inflammation. Our findings might promote a better understanding for the mechanism of DM, and provide novel targets for estimating the effects of gene therapy.
Collapse
Affiliation(s)
- Wei-Fei Diao
- Department of Biochemistry and Molecular Biology, College of Life Sciences, National Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Wangila GW, Nagothu KK, Steward R, Bhatt R, Iyere PA, Willingham WM, Sorenson JRJ, Shah SV, Portilla D. Prevention of cisplatin-induced kidney epithelial cell apoptosis with a Cu superoxide dismutase-mimetic [copper2II(3,5-ditertiarybutylsalicylate)4(ethanol)4]. Toxicol In Vitro 2006; 20:1300-12. [PMID: 16814979 DOI: 10.1016/j.tiv.2006.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/28/2006] [Accepted: 04/18/2006] [Indexed: 11/25/2022]
Abstract
Copper(2)(II)(3,5-ditertiarybutylsalicylate)(4)(ethanol)(4), Cu(2)(II)(3,5-DTBS)(4)(Eth)(4), was synthesized and characterized for evaluation as an anti-apoptotic superoxide dismutase (SOD)-mimetic in an in vitro 50 microM cis-diamminedichloroplatinum(II), [Pt(II)(NH(3))(2)(Cl)(2)]-treated kidney proximal tubule epithelial cell (LLC-PK) preparation. Synthesized Cu(2)(II)(3,5-DTBS)(4)(Eth)(4) was characterized by elemental analysis, FTIR spectrophotometry, and X-ray crystallography. The IC(50) for SOD-mimetic reactivity of Cu(2)(II)(3,5-DTBS)(4)(Eth)(4), determined with the xanthine/xanthine oxidase/nitroblue tetrazolium (NBT) system, was found to be 2.69 microM for the binuclear chelate. Pretreatment of LLC-PK cells with 20 microM Cu(2)(II)(3,5-DTBS)(4)(Eth)(4) prevented 50 microM Pt(II)(NH(3))(2)(Cl)(2)-induced and superoxide-mediated apoptosis. This SOD-mimetic significantly suppressed Pt(II)(NH(3))(2)(Cl)(2)-induced translocation of pro-apoptotic Bax from the cytosol to the inner mitochondrial membrane, prevented Pt(II)(NH(3))(2)(Cl)(2)-induced release of cytochrome c from the inner mitochondrial membrane and the appearance of cytochrome c in the cytosol, and prevented conversion of procaspase-3 to active caspase-3. Cu(2)(II)(3,5-DTBS)(4)(Eth)(4) treatment inhibited Pt(II)(NH(3))(2)(Cl)(2)-mediated tubular cell injury by preventing activation of cellular mechanisms that lead to proximal tubule kidney cell death. Based on these observations, Pt(II)(NH(3))(2)(Cl)(2)- induced O(2)(-)-mediated apoptosis can be mechanistically overcome with a small molecular mass SOD-mimetic, Cu(2)(II)(3,5-DTBS)(4)(Eth)(4). Prior treatment of patients who are to undergo treatment with Pt(II)(NH(3))(2)(Cl)(2) for their neoplastic disease with Cu(2)(II)(3,5-DTBS)(4)(Eth)(4) may be beneficial to these patients.
Collapse
Affiliation(s)
- Grant W Wangila
- Departments of Chemistry and Physics, University of Arkansas at Pine Bluff, 1200 North University Drive, Pine Bluff, AR 71601, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Reactive oxygen species (ROS) play a key role in the pathophysiological processes of renal diseases. The cellular damage is mediated by an alteration in the antioxidant status, which increases the concentration of ROS in the stationary state (oxidative stress). Oxidative stress mediates a wide range of renal impairments, from acute renal failure, rhabdomyolysis, obstructive nephropathy, hyperlipidemia, and glomerular damage to chronic renal failure and hemodialysis. Therefore, interventions favoring the scavenging and/or depuration of ROS (dietary and pharmacological antioxidants) should attenuate or prevent the oxidative stress, thereby mitigating against the subsequent renal damage.
Collapse
Affiliation(s)
- Devinder Singh
- Department of Medical Pharmacology & Toxicology, University of California Davis, Davis, CA, USA.
| | | | | | | |
Collapse
|
20
|
Abstract
Inflammation is a central component of progressive chronic kidney disease (CKD). Iron promotes oxidative stress and inflammatory response in animals and promotes progressive CKD. Parenteral iron provokes oxidative stress in patients with CKD; however, its potential to provoke an inflammatory response is unknown. In 20 veterans with CKD, 100 mg iron sucrose was administered intravenously over 5 min and urinary excretion rate and plasma concentration of monocyte chemoattractant protein-1 (MCP-1) were measured at timed intervals over 24 h. Patients were then randomized to placebo or N-acetyl cysteine (NAC) 600 mg b.i.d. and the experiment was repeated at 1 week. Iron sucrose markedly increased plasma concentration and urinary excretion rate of MCP-1 at baseline and at 1 week visits (P < 0.0001 for time effect). Urinary excretion peaked at 30 min and plasma concentration at 15 min. Plasma MCP-1 concentration fell from 164 +/- 17.7 to 135 +/- 17.7 pg/ml with NAC, whereas it remained unchanged from 133 +/- 12.5 to 132 +/- 17.7 pg/ml with placebo (P=0.001 for visit x antioxidant drug interaction). There was a reduction in MCP-1 urinary excretion rate from visit 1 to 2. At the baseline visit, the urinary excretion rate averaged 305 +/- 66 pg/min and at the second visit 245 +/- 67 pg/min (mean difference 60 +/- 28 pg/min, P = 0.030). There was no improvement in urinary MCP-1 excretion with NAC. In conclusion, iron sucrose causes rapid and transient generation and/or release of MCP-1 plasma concentration and increases urinary excretion rate, and systemic MCP-1 level but the urinary excretion rate is not abrogated with the antioxidant NAC. These results may have implications for the progression of CKD with parenteral iron.
Collapse
Affiliation(s)
- R Agarwal
- Indiana University School of Medicine and Richard L Roudebush VA Medical Center, Indianapolis, Indiana 46202, USA.
| |
Collapse
|
21
|
Rodrigo R, Bosco C. Oxidative stress and protective effects of polyphenols: comparative studies in human and rodent kidney. A review. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:317-327. [PMID: 16380298 DOI: 10.1016/j.cbpc.2005.11.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 11/05/2005] [Accepted: 11/06/2005] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) play a key role in the pathophysiological processes of a wide range of renal diseases. Thus, antioxidants are expected to decrease the vulnerability of the kidney to oxidative challenges. Polyphenols, particularly abundant in red wine, could act as ROS scavengers, iron chelators and enzyme modulators. In addition, chronic exposure to moderate amounts of ethanol results in increased activity of the renal antioxidant enzymes, further supporting a renoprotective effect of red wine based on its antioxidant properties. An enhancement of plasma antioxidant capacity following red wine consumption has been reported both in man and rodents, thereby providing a contributory factor to its renoprotective effect because the kidney is a highly perfused organ. Although phenol concentration of red wine does not influence the activity of antioxidant enzymes of the kidney, the concentration of these compounds is negatively correlated with tissue lipid peroxidation, assessed by thiobarbituric acid reactive substances, and positively correlated with the antioxidant capacity of plasma. Moreover, amelioration of myoglobinuric renal damage was found in rats following chronic exposure to flavonol-rich red wine. Also, pretreatment with resveratrol, or other red wine polyphenols, decreased kidney damage caused by ischaemia-reperfusion. The aim of the present review is to examine the pathophysiological basis of the renoprotective effect of red wine in man and rodents, based on functional, biochemical and ultrastructural evidence.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Cleofina Bosco
- Morphology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
22
|
Michael B, Fishbane S, Coyne DW, Agarwal R, Warnock DG. Drug Insight: safety of intravenous iron supplementation with sodium ferric gluconate complex. ACTA ACUST UNITED AC 2006; 2:92-100. [PMID: 16932400 DOI: 10.1038/ncpneph0068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Accepted: 10/03/2005] [Indexed: 11/09/2022]
Abstract
Intravenous iron is necessary for optimal management of anemia in patients receiving hemodialysis and is utilized in the majority of these patients in the US. The availability of nondextran formulations of intravenous iron has significantly improved the safety of its use. The nondextran iron formulation sodium ferric gluconate complex (SFGC) has been extensively studied in the hemodialysis population, with two large phase IV trials documenting its safety. SFGC is efficacious and, at recommended doses, is associated with a low incidence of adverse events. There have been few comparative studies of the nondextran intravenous iron preparations; however, they are known to have different pharmacokinetic characteristics. There is also evidence to indicate that these compounds differ in terms of their cytotoxic and proinflammatory properties, and their propensity to induce oxidative stress. This paper reviews the current literature on the safety of SFGC and examines the emerging safety issues surrounding the use of intravenous iron.
Collapse
Affiliation(s)
- Beckie Michael
- Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
23
|
Ward DT, Hamilton K, Burnand R, Smith CP, Tomlinson DR, Riccardi D. Altered expression of iron transport proteins in streptozotocin-induced diabetic rat kidney. Biochim Biophys Acta Mol Basis Dis 2005; 1740:79-84. [PMID: 15878745 DOI: 10.1016/j.bbadis.2005.01.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 01/17/2005] [Accepted: 01/31/2005] [Indexed: 01/10/2023]
Abstract
Diabetes mellitus is associated with altered iron homeostasis in both human and animal diabetic models. Iron is a metal oxidant capable of generating reactive oxygen species (ROS) and has been postulated to contribute to diabetic nephropathy. Two proteins involved in iron metabolism that are expressed in the kidney are the divalent metal transporter, DMT1 (Slc11a2), and the Transferrin Receptor (TfR). Thus, we investigated whether renal DMT1 or TfR expression is altered in diabetes, as this could potentially affect ROS generation and contribute to diabetic nephropathy. Rats were rendered diabetic with streptozotocin (STZ-diabetes) and renal DMT1 and TfR expression studied using semi-quantitative immunoblotting and immunofluorescence. In STZ-diabetic Sprague-Dawley rats, renal DMT1 expression was significantly reduced and TfR expression increased after 2 weeks. DMT1 downregulation was observed in both proximal tubules and collecting ducts. Renal DMT1 expression was also decreased in Wistar rats following 12 weeks of STZ-diabetes, an effect that was fully corrected by insulin-replacement but not by cotreatment with the aldose reductase inhibitor, sorbinil. Increased renal TfR expression was also observed in STZ-diabetic Wistar rats together with elevated cellular iron accumulation. Together these data demonstrate renal DMT1 downregulation and TfR upregulation in STZ-diabetes. Whilst the consequence of altered DMT1 expression on renal iron handling and oxidant damage remains to be determined, the attenuation of the putative lysosomal iron exit pathway in proximal tubules could potentially explain lysosomal iron accumulation reported in human diabetes and STZ-diabetic animals.
Collapse
Affiliation(s)
- D T Ward
- Faculty of Life Sciences, G38 Stopford Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Oxidants derived either from leukocytes in proliferative glomerular nephritis or from resident glomerular cells in nonproliferative glomerulonephritis have been shown to have several biologic effects relevant to chronic kidney disease. These include: the ability of oxidants to damage glomerular basement membrane (GBM) and to directly induce proteinuria; effects that would lead to a fall in the glomerular filtration rate; and effects that would account for the morphologic changes observed in chronic kidney disease. In experimental models the role of oxidants has been demonstrated in both proliferative glomerulonephritis (e.g., anti-GBM antibody disease) as well as experimental models of minimal change disease and membranous nephropathy. Oxidants have also been shown to be an important mediator of the various pathways that have been implicated in diabetic nephropathy. Antioxidants and iron chelators have also been shown to retard functional and morphologic changes observed in progressive kidney disease. Taken together, these experimental studies suggest an important role of oxidants in chronic kidney disease.
Collapse
Affiliation(s)
- Sudhir V Shah
- Division of Nephrology, Department of Medicine, University of Arkansas for Medical Sciences, 4301 W.Markman, Slot 501, Little Rock, AR 72205, USA.
| |
Collapse
|
25
|
Sengoelge G, Sunder-Plassmann G, Hörl WH. Potential risk for infection and atherosclerosis due to iron therapy. J Ren Nutr 2005; 15:105-10. [PMID: 15648017 DOI: 10.1053/j.jrn.2004.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Iron is an essential nutrient, but carries potential risks. Iron therapy not only affects the functions of leukocytes, endothelial cells, and cytokine production, but also causes oxidative stress and can support bacterial growth. Intravenous iron therapy may result in nontransferrin-bound iron. This may act as a catalytic agent in the formation of hydroxyl radicals, and thus potentially contribute to cell damage and atherosclerosis. Potential long-term complications of intravenous iron therapy in end-stage renal disease patients include atherosclerosis and infection, particularly in patients with iron overload.
Collapse
Affiliation(s)
- Gürkan Sengoelge
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
26
|
Leehey DJ, Palubiak DJ, Chebrolu S, Agarwal R. Sodium ferric gluconate causes oxidative stress but not acute renal injury in patients with chronic kidney disease: a pilot study. Nephrol Dial Transplant 2004; 20:135-40. [PMID: 15522899 DOI: 10.1093/ndt/gfh565] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Intravenous (i.v) iron is widely used to treat anaemia in patients with chronic kidney disease (CKD). Although beneficial and usually well tolerated, concerns have been raised about its ability to cause oxidative stress and renal injury. METHODS To determine if i.v. iron causes oxidative stress [as assessed by plasma and urine malondialdehye (MDA)] and/or renal injury (as assessed by urinary albumin, total protein and enzymuria), we conducted a prospective, four-way randomized crossover, blinded end-point trial in eight patients with CKD. Two widely used doses of sodium ferric gluconate (125 mg infused over 1 h and 250 mg infused over 2 h) were given with or without the antioxidant N-acetylcysteine (NAC), resulting in four treatment dose-antioxidant/placebo combinations in each patient. Transferrin saturation was measured with urea polyacrylamide gel electrophoresis, MDA by high performance liquid chromatography, and albuminuria and proteinuria by standard clinical methods. Enzymuria was assessed by measurement of N-acetyl-beta-D-glucosaminidase (NAG) excretion by colorimetric assay. RESULTS I.v. ferric gluconate infusion at both doses resulted in a marked increase in transferrin saturation and a significant increase in plasma MDA levels. Urinary MDA levels also increased at the higher dose of iron. There was no evidence of acute renal injury, as assessed by albuminuria, proteinuria or enzymuria. Pre-treatment with NAC had no effect on oxidative stress or the above urinary parameters. CONCLUSIONS I.v. ferric gluconate caused oxidative stress (as reflected by increased MDA), but this was not associated with biochemical manifestations of acute renal injury.
Collapse
Affiliation(s)
- David J Leehey
- Division of Nephrology, Department of Medicine, Loyola University School of Medicine and Edward Hines Jr VA Medical Center, Hines, IL 60141, USA.
| | | | | | | |
Collapse
|
27
|
|
28
|
Agarwal R, Vasavada N, Sachs NG, Chase S. Oxidative stress and renal injury with intravenous iron in patients with chronic kidney disease. Kidney Int 2004; 65:2279-89. [PMID: 15149341 DOI: 10.1111/j.1523-1755.2004.00648.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Intravenous iron is widely prescribed in patients with chronic kidney disease (CKD) and can cause oxidative stress. The relationship of oxidative stress and renal injury in patients with CKD is unknown. Whether renal injury can occur at a time point when transferrin is incompletely saturated is also unclear. METHODS We conducted a randomized, open-label, parallel group trial to compare the oxidative stress induced by intravenous administration of 100 mg iron sucrose over 5 minutes and its protection with N-acetylcysteine (NAC) in 20 subjects with stage 3 or 4 CKD. Transferrin saturation was measured with urea polyacrylamide gel electrophoresis, oxidative stress by malondialdehyde (MDA) measurement by high-performance liquid chromatography, and renal injury by enzymuria and proteinuria. Reduced and oxidized glutathione and free radical scavengers as well as urinary monocyte chemoattractant protein-1 were also measured. RESULTS Parenteral iron increased plasma concentration and urinary excretion rate of MDA, a biomarker of lipid peroxidation, within 15 to 30 minutes of iron sucrose administration. This was accompanied by enzymuria and increase in proteinuria. In contrast, saturation of transferrin was not maximally seen until 3 hours after the end of infusion. Oxidative stress, enzymuria and proteinuria were transient and were completely resolved in 24 hours. NAC reduced acute generation of systemic oxidative stress but failed to abrogate proteinuria or enzymuria. CONCLUSION Intravenous iron produces oxidative stress that is associated with transient proteinuria and tubular damage. The rapid production of oxidative stress even when transferrin is not completely saturation suggests free iron independent mechanism(s) to be operative in producing oxidative stress and transient renal injury. Long-term implications of these findings need further study.
Collapse
Affiliation(s)
- Rajiv Agarwal
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, and Richard L. Roudebush VA Medical Center, Indianapolis, 46202, USA.
| | | | | | | |
Collapse
|
29
|
|
30
|
Abstract
Recent epidemiologic studies show that iron deficiency occurs in the vast majority of patients with chronic kidney disease (CKD). In patients with CKD, increased iron losses and, to a lesser extent, poor oral absorption, can lead to iron-deficiency anemia. Correction of iron-deficiency anemia is preferable by the oral route, however, data on oral iron use are limited in this population. In CKD patients, parenteral iron administered with recombinant human erythropoietin (rHuEpo), is the best potential option for the correction of anemia. Nondextran iron preparations are preferable because of a reduced incidence of serious adverse events. Parenteral iron in CKD patients may not be entirely innocuous and, although commonly used, have not received Food and Drug Administration approval for use in this patient population. Exposure to intravenous (IV) iron may lead to oxidative stress, renal injury, infection, cardiovascular disease, and osteomalacia. Studies are needed to confirm the existence and magnitude of these complications. The current data suggest that the overall risk-benefit ratio favors use of IV iron when compared with untreated or partially treated iron-deficiency anemia.
Collapse
Affiliation(s)
- Rajiv Agarwal
- Indiana University School of Medicine and Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
31
|
Abstract
Over the last decade, oxidative stress has been implicated in the pathogenesis of a wide variety of seemingly unrelated renal diseases. Epidemiological studies have documented an association of moderate wine consumption with a decreased risk of cardiovascular and neurological diseases; however, similar studies in the kidney are still lacking. The kidney is an organ highly vulnerable to damage caused by reactive oxygen species (ROS), likely due to the abundance of polyunsaturated fatty acids in the composition of renal lipids. ROS are involved in the pathogenic mechanism of conditions such as glomerulosclerosis and tubulointerstitial fibrosis. The health benefits of moderate consumption of red wine can be partly attributed to its antioxidant properties. Indeed, the kidney antioxidant defense system is enhanced after chronic exposure to moderate amounts of wine, a response arising from the combined effects of ethanol and the nonalcoholic components, mainly polyphenols. Polyphenols behave as potent ROS scavengers and metal chelators; ethanol, in turn, modulates the activity of antioxidant enzymes. Therefore, a hypothesis that red wine causes a decreased vulnerability of the kidney to the oxidative challenges could be proposed. This view is partly supported by direct evidences indicating that wine and antioxidants isolated from red wine, as well as other antioxidants, significantly attenuate or prevent the oxidative damage to the kidney. The present hypothesis paper provides a collective body of evidence suggesting a protective role of moderate wine consumption against the production and progression of renal diseases, based on the existing concepts on the pathophysiology of kidney injury mediated by oxidative stress.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Renal Pathophysiology Laboratory, Molecular and Clinical Pharmacology Program, ICBM, Facultad de Medicina Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|
32
|
Abstract
BACKGROUND DMT1 (Nramp2/DCT1) is the major apical iron transporter in absorptive cells of the duodenum, but also transports transferrin-iron across the membrane of acidified endosomes in peripheral tissues. DMT1 mRNA and protein expression has been detected in rat and mouse kidney, but its role at that site remains to be clarified. METHODS Immunoblotting and immunohistochemistry with specific affinity purified anti-DMT1 polyclonal antibodies were used to study expression and localization of DMT1 in mouse kidney. Possible regulation of DMT1 protein expression by the body iron stores also was examined in normal mice deprived of dietary iron, and in the genetically anemic mk mice that bear a loss of function mutation at DMT1 (G185R). RESULTS In microsomal kidney fractions, DMT1 isoform I (encoded by the iron responsive element (IRE)-containing mRNA) is detected as an abundant 70 to 75 kD membrane protein. DMT1 is expressed in the cortex and not in the medulla, and is present at the brush border and apical pole of epithelial cells of proximal tubules. In contrast to the intestine, DMT1 protein expression in kidney is only slightly increased upon deprivation of dietary iron, suggesting different regulation at the two sites. In kidneys from mk/mk mice, the level of detectable DMT1(G185R) protein is drastically decreased compared to mk/+ controls. CONCLUSION These results suggest that DMT1 may act as a re-uptake system for divalent cations at the brush border of kidney proximal tubules. A pathological mutation at DMT1 affects targeting/expression of the protein in the kidney.
Collapse
|