1
|
Zahran S, Bei KF, Adil A, Okoh P, Kitzler T, Alam A. Genetic Assessment of Living Kidney Transplant Donors: A Survey of Canadian Practices. Can J Kidney Health Dis 2025; 12:20543581241293200. [PMID: 39802879 PMCID: PMC11724417 DOI: 10.1177/20543581241293200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/04/2024] [Indexed: 01/16/2025] Open
Abstract
Background Kidney failure is a prevalent condition with tendency for familial clustering in up to 27% of the affected individuals. Living kidney donor (LKD) transplantation is the optimal treatment option; however, in Canada, more than 45% of LKDs are biologically related to their recipients which subjects recipients to worse graft survival and donors to higher future risk of kidney failure. Although not fully understood, this observation could be partially explained by genetic predisposition to kidney diseases. Genetic testing of potential LKDs may improve risk assessment and inform the safety of donation. The strategies to evaluate these donors are still evolving. In Canada, little is known about the practice of assessing for genetic conditions among LKDs. Aim The aim was to examine the Canadian practices regarding LKDs genetic assessment. Methods Questionnaires were sent to 23 Canadian adult transplant centers to examine their protocols for LKDs genetic assessment. Design The questionnaire comprised of 10 sections and 21 questions including case scenarios of different LKD encounters. Major domains of the survey addressed general demographics, information sharing practices, effect of mode of inheritance on candidacy decision, having a policy for LKD genetic evaluation, and case scenarios covering the following conditions: autosomal dominant polycystic kidney disease (ADPKD), Alport syndrome, Fabry disease, familial focal and segmental glomerulosclerosis (FSGS), atypical hemolytic uremic syndrome (aHUS), autosomal dominant tubulointerstitial kidney disease (ADTKD), sickle cell, and apolipoprotein L1 mutation (APOL1). Participants The questionnaire was sent to the living-donor assessment committee representative (nephrologist) in adult and pediatric kidney transplant centers across Canada. Results In total, 16 of 23 Canadian centers responded to the survey. Of the 8 surveyed genetic conditions, ADPKD, Alport syndrome, and aHUS were the most frequently encountered. More centers have specific policies for donor evaluation for ADPKD (25%) and aHUS (21.4%) vs none to very few for other genetic conditions. The most cited guidelines are Kidney Disease Improving Global Outcomes (KDIGO), Canadian Society of Nephrology/Canadian Society of Transplantation (CSN/CST), and the Canadian Blood Services' Kidney Paired Donation Protocol. Conclusions Canadian transplant centers follow a case-by-case approach rather than a standard protocol for genetic assessment of LKDs given that current guideline recommendations are based on expert opinion due to a lack of a reliable body of evidence. With the expected rise in utilization of the increasingly available genetic testing, early multidisciplinary assessment including medical geneticists has the potential to improve personalized management. Studies examining long-term donor and graft outcomes are needed to construct the basis for evidence-based recommendations and inform the safety of donations.
Collapse
Affiliation(s)
- Somaya Zahran
- Division of Nephrology, Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Ke Fan Bei
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, ON, Canada
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, The University Health Network, ON, Canada
| | - Aisha Adil
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, The University Health Network, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, ON, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, AB, Canada
| | - Princess Okoh
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, ON, Canada
- Kidney Health Education and Research Group, Toronto, ON, Canada
- Ajmera Transplant Center, Toronto General Hospital, The University Health Network, ON, Canada
| | - Thomas Kitzler
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of MUHC, McGill University Health Centre, Montreal, QC, Canada
| | - Ahsan Alam
- Multiorgan Transplant Program, Division of Nephrology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
2
|
Vivarelli M, Barratt J, Beck LH, Fakhouri F, Gale DP, Goicoechea de Jorge E, Mosca M, Noris M, Pickering MC, Susztak K, Thurman JM, Cheung M, King JM, Jadoul M, Winkelmayer WC, Smith RJH. The role of complement in kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2024; 106:369-391. [PMID: 38844295 DOI: 10.1016/j.kint.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Uncontrolled complement activation can cause or contribute to glomerular injury in multiple kidney diseases. Although complement activation plays a causal role in atypical hemolytic uremic syndrome and C3 glomerulopathy, over the past decade, a rapidly accumulating body of evidence has shown a role for complement activation in multiple other kidney diseases, including diabetic nephropathy and several glomerulonephritides. The number of available complement inhibitor therapies has also increased during the same period. In 2022, Kidney Diseases: Improving Global Outcomes (KDIGO) convened a Controversies Conference, "The Role of Complement in Kidney Disease," to address the expanding role of complement dysregulation in the pathophysiology, diagnosis, and management of various glomerular diseases, diabetic nephropathy, and other forms of hemolytic uremic syndrome. Conference participants reviewed the evidence for complement playing a primary causal or secondary role in progression for several disease states and considered how evidence of complement involvement might inform management. Participating patients with various complement-mediated diseases and caregivers described concerns related to life planning, implications surrounding genetic testing, and the need for inclusive implementation of effective novel therapies into clinical practice. The value of biomarkers in monitoring disease course and the role of the glomerular microenvironment in complement response were examined, and key gaps in knowledge and research priorities were identified.
Collapse
Affiliation(s)
- Marina Vivarelli
- Laboratory of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Laurence H Beck
- Section of Nephrology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Fadi Fakhouri
- Department of Nephrology, Centre Hospitalier Universitaire, Nantes, France; INSERM UMR S1064, Nantes, France
| | - Daniel P Gale
- Centre for Kidney and Bladder Health, University College London, UK
| | - Elena Goicoechea de Jorge
- Department of Immunology, Ophthalmology and ORL, Complutense University, Madrid, Spain; Area of Chronic Diseases and Transplantation, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Marta Mosca
- Department of Clinical and Experimental Medicine-Rheumatology Unit, University of Pisa, Pisa, Italy
| | - Marina Noris
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, Italy
| | - Matthew C Pickering
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College, Hammersmith Campus, London, UK
| | - Katalin Susztak
- Division of Nephrology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua M Thurman
- Division of Nephrology and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Michel Jadoul
- Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Wolfgang C Winkelmayer
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; Department of Internal Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; Department of Pediatrics, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
3
|
Thomas CP, Daloul R, Lentine KL, Gohh R, Anand PM, Rasouly HM, Sharfuddin AA, Schlondorff JS, Rodig NM, Freese ME, Garg N, Lee BK, Caliskan Y. Genetic evaluation of living kidney donor candidates: A review and recommendations for best practices. Am J Transplant 2023; 23:597-607. [PMID: 36868514 DOI: 10.1016/j.ajt.2023.02.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/25/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023]
Abstract
The growing accessibility and falling costs of genetic sequencing techniques has expanded the utilization of genetic testing in clinical practice. For living kidney donation, genetic evaluation has been increasingly used to identify genetic kidney disease in potential candidates, especially in those of younger ages. However, genetic testing on asymptomatic living kidney donors remains fraught with many challenges and uncertainties. Not all transplant practitioners are aware of the limitations of genetic testing, are comfortable with selecting testing methods, comprehending test results, or providing counsel, and many do not have access to a renal genetic counselor or a clinical geneticist. Although genetic testing can be a valuable tool in living kidney donor evaluation, its overall benefit in donor evaluation has not been demonstrated and it can also lead to confusion, inappropriate donor exclusion, or misleading reassurance. Until more published data become available, this practice resource should provide guidance for centers and transplant practitioners on the responsible use of genetic testing in the evaluation of living kidney donor candidates.
Collapse
Affiliation(s)
- Christie P Thomas
- Department of of Internal Medicine and Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA; VA Medical Center, Iowa City, Iowa, USA.
| | - Reem Daloul
- Division of Nephrology, Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
| | - Krista L Lentine
- Saint Louis University Transplant Center, SSM Health Saint Louis University Hospital, St. Louis, Missouri, USA
| | - Reginald Gohh
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Prince M Anand
- Mid-Carolinas Transplant Center, Medical University of South Carolina, Lancaster, South Carolina, USA
| | - Hila Milo Rasouly
- Center for Precision Medicine and Genomics, Department of Medicine, Columbia University, New York City, New York, USA
| | - Asif A Sharfuddin
- Division of Nephrology and Transplant, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Johannes S Schlondorff
- Department of Internal Medicine, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Nancy M Rodig
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Margaret E Freese
- Department of of Internal Medicine and Iowa Institute of Human Genetics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Neetika Garg
- Division of Nephrology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Brian K Lee
- Kidney/Pancreas Transplant Center, Dell Seton Medical Center, University of Texas at Austin, Austin, Texas, USA
| | - Yasar Caliskan
- Saint Louis University Transplant Center, SSM Health Saint Louis University Hospital, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Caliskan Y, Safak S, Oto OA, Velioglu A, Yelken B, Mirioglu S, Dirim AB, Yildiz A, Guller N, Yazici H, Ersoy A, Turkmen A, Lentine KL. Propensity score-matched analysis of long-term outcomes for living kidney donation in alternative complement pathway diseases: a pilot study. J Nephrol 2023; 36:979-986. [PMID: 36808609 DOI: 10.1007/s40620-023-01588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/15/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND Atypical hemolytic syndrome (aHUS) and C3 glomerulopathy (C3G) are complement-mediated rare diseases with excessive activation of the alternative pathway. Data to guide the evaluation of living-donor candidates for aHUS and C3G are very limited. The outcomes of living donors to recipients with aHUS and C3G (Complement disease-living donor group) were compared with a control group to improve our understanding of the clinical course and outcomes of living donation in this context. METHODS Complement disease-living donor group [n = 28; aHUS(53.6%), C3G(46.4%)] and propensity score-matched control-living donor group (n = 28) were retrospectively identified from 4 centers (2003-2021) and followed for major cardiac events (MACE), de novo hypertension, thrombotic microangiopathy (TMA), cancer, death, estimated glomerular filtration rate (eGFR) and proteinuria after donation. RESULTS None of the donors for recipients with complement-related kidney diseases experienced MACE or TMA whereas two donors in the control group developed MACE (7.1%) after 8 (IQR, 2.6-12.8) years (p = 0.15). New-onset hypertension was similar between complement disease and control donor groups (21.4% vs 25%, respectively, p = 0.75). There were no differences between study groups regarding last eGFR and proteinuria levels (p = 0.11 and p = 0.70, respectively). One related donor for a recipient with complement-related kidney disease developed gastric cancer and another related donor developed a brain tumor and died in the 4th year after donation (2, 7.1% vs none, p = 0.15). No recipient had donor-specific human leukocyte antigen antibodies at the time of transplantation. Median follow-up period of transplant recipients was 5 years (IQR, 3-7). Eleven (39.3%) recipients [aHUS (n = 3) and C3G (n = 8)] lost their allografts during the follow-up period. Causes of allograft loss were chronic antibody-mediated rejection in 6 recipients and recurrence of C3G in 5. Last serum creatinine and last eGFR of the remaining patients on follow up were 1.03 ± 038 mg/dL and 73.2 ± 19.9 m/min/1.73 m2 for aHUS patients and 1.30 ± 0.23 mg/dL and 56.4 ± 5.5 m/min/1.73 m2 for C3G patients. CONCLUSION The present study highlights the importance and complexity of living related-donor kidney transplant for patients with complement-related kidney disorders and motivates the need for further research to determine the optimal risk-assessment for living donor candidates to recipients with aHUS and C3G.
Collapse
Affiliation(s)
- Yasar Caliskan
- Saint Louis University Transplant Center, SSM-Saint Louis University Hospital, 1201 S. Grand Blvd., St. Louis, MO, 63104, USA. .,Division of Nephrology, Istanbul University Istanbul School of Medicine, Istanbul, Turkey.
| | - Seda Safak
- Division of Nephrology, Istanbul University Istanbul School of Medicine, Istanbul, Turkey
| | - Ozgur Akin Oto
- Division of Nephrology, Istanbul University Istanbul School of Medicine, Istanbul, Turkey
| | - Arzu Velioglu
- Division of Nephrology, Marmara University School of Medicine, Istanbul, Turkey
| | - Berna Yelken
- Organ Transplantation Center, Koc University Hospital, Istanbul, Turkey
| | - Safak Mirioglu
- Division of Nephrology, Istanbul University Istanbul School of Medicine, Istanbul, Turkey.,Division of Nephrology, Bezmialem Vakif University School of Medicine, Istanbul, Turkey
| | - Ahmet Burak Dirim
- Division of Nephrology, Istanbul University Istanbul School of Medicine, Istanbul, Turkey
| | - Abdulmecit Yildiz
- Division of Nephrology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Nurana Guller
- Division of Nephrology, Istanbul University Istanbul School of Medicine, Istanbul, Turkey
| | - Halil Yazici
- Division of Nephrology, Istanbul University Istanbul School of Medicine, Istanbul, Turkey
| | - Alparslan Ersoy
- Division of Nephrology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Aydin Turkmen
- Division of Nephrology, Istanbul University Istanbul School of Medicine, Istanbul, Turkey
| | - Krista L Lentine
- Saint Louis University Transplant Center, SSM-Saint Louis University Hospital, 1201 S. Grand Blvd., St. Louis, MO, 63104, USA
| |
Collapse
|
5
|
Abbas F, Abbas SF. De Novo and Recurrent Thrombotic Microangiopathy After Renal Transplantation: Current Concepts in Management. EXP CLIN TRANSPLANT 2021; 20:549-557. [PMID: 34546154 DOI: 10.6002/ect.2021.0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Thrombotic microangiopathy is a well-recognized complication of kidney transplantation that leads frequently to allograft failure. This serious outcome can greatly depend on the underlying etiology and on the timing of therapeutic interventions. Thrombotic microangiopathy syndrome may occur with no previous history of thrombotic microangiopathy (that is, de novo thrombotic microangiopathy), mostly due to medica tions or infections. More frequently, it may recur after kidney transplant in patients with endstage renal failure due to atypical hemolytic uremic syndrome. However, for patients with Shiga-toxininduced hemolytic uremic syndrome, particularly pediatric patients, there is a favorable prognosis. A fundamental tool for management of this disease is genetic screening for abnormal mutations; this can recognize the suggested approach of therapy and may determine the outcome of the disease to a large extent. Although patients with complement factor H and I mutations have worse prognosis, other patients with membrane cofactor protein mutations, for example, have a more favorable prognosis. Accordingly, the plan of therapy can be tailored with a better chance of cure. Unfortunately, the successful use of the biological agent eculizumab, an anti-C5 agent, in some of these syndromes is largely impeded by its high cost, which is linked to its use as a life-long therapy. However, newly suggested therapeutic options may ameliorate this drawback.
Collapse
Affiliation(s)
- Fedaei Abbas
- From the Nephrology Department, Jaber El Ahmed Military Hospital, Safat, Kuwait.,the Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool, United Kingdom
| | | |
Collapse
|
6
|
Kurup M, Mandelbrot D, Garg N, Singh T. Living Related Donor Kidney Transplantation in Atypical HUS: When Should It Be Considered? KIDNEY360 2021; 2:524-527. [PMID: 35369010 PMCID: PMC8785996 DOI: 10.34067/kid.0007112020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/14/2021] [Indexed: 02/04/2023]
|
7
|
Abbas F, El Kossi M, Kim JJ, Sharma A, Halawa A. Thrombotic microangiopathy after renal transplantation: Current insights in de novo and recurrent disease. World J Transplant 2018; 8:122-141. [PMID: 30211021 PMCID: PMC6134269 DOI: 10.5500/wjt.v8.i5.122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/26/2018] [Accepted: 07/10/2018] [Indexed: 02/05/2023] Open
Abstract
Thrombotic microangiopathy (TMA) is one of the most devastating sequalae of kidney transplantation. A number of published articles have covered either de novo or recurrent TMA in an isolated manner. We have, hereby, in this article endeavored to address both types of TMA in a comparative mode. We appreciate that de novo TMA is more common and its prognosis is poorer than recurrent TMA; the latter has a genetic background, with mutations that impact disease behavior and, consequently, allograft and patient survival. Post-transplant TMA can occur as a recurrence of the disease involving the native kidney or as de novo disease with no evidence of previous involvement before transplant. While atypical hemolytic uremic syndrome is a rare disease that results from complement dysregulation with alternative pathway overactivity, de novo TMA is a heterogenous set of various etiologies and constitutes the vast majority of post-transplant TMA cases. Management of both diseases varies from simple maneuvers, e.g., plasmapheresis, drug withdrawal or dose modification, to lifelong complement blockade, which is rather costly. Careful donor selection and proper recipient preparation, including complete genetic screening, would be a pragmatic approach. Novel therapies, e.g., purified products of the deficient genes, though promising in theory, are not yet of proven value.
Collapse
Affiliation(s)
- Fedaey Abbas
- Nephrology Department, Jaber El Ahmed Military Hospital, Safat 13005, Kuwait
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
| | - Mohsen El Kossi
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Doncaster Renal Unit, Doncaster Royal Infirmary, Doncaster DN2 5LT, United Kingdom
| | - Jon Jin Kim
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Nottingham Children Hospital, Nottingham NG7 2UH, United Kingdom
| | - Ajay Sharma
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Transplant Surgery, Royal Liverpool University Hospitals, Liverpool UK L7 8XP, United Kingdom
| | - Ahmed Halawa
- Faculty of Health and Science, University of Liverpool, Institute of Learning and Teaching, School of Medicine, Liverpool L69 3GB, United Kingdom
- Department of Transplantation Surgery, Sheffield Teaching Hospitals, Sheffield S57AU, United Kingdom
| |
Collapse
|
8
|
Fox LC, Cohney SJ, Kausman JY, Shortt J, Hughes PD, Wood EM, Isbel NM, de Malmanche T, Durkan A, Hissaria P, Blombery P, Barbour TD. Consensus opinion on diagnosis and management of thrombotic microangiopathy in Australia and New Zealand. Intern Med J 2018; 48:624-636. [DOI: 10.1111/imj.13804] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Lucy C. Fox
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine; Monash University; Melbourne Victoria Australia
| | - Solomon J. Cohney
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine; Monash University; Melbourne Victoria Australia
- Department of Medicine; University of Melbourne; Melbourne Victoria Australia
| | - Joshua Y. Kausman
- Department of Paediatrics; University of Melbourne; Melbourne Victoria Australia
- Department of Nephrology and Murdoch Children's Research Institute; Royal Children's Hospital; Melbourne Victoria Australia
| | - Jake Shortt
- Monash Haematology; Monash Health; Melbourne Victoria Australia
- School of Clinical Sciences, Monash Health; Monash University; Melbourne Victoria Australia
| | - Peter D. Hughes
- Department of Medicine; University of Melbourne; Melbourne Victoria Australia
- Department of Nephrology; Royal Melbourne Hospital; Melbourne Victoria Australia
| | - Erica M. Wood
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine; Monash University; Melbourne Victoria Australia
- Monash Haematology; Monash Health; Melbourne Victoria Australia
| | - Nicole M. Isbel
- Department of Nephrology; Princess Alexandra Hospital; Brisbane Queensland Australia
| | - Theo de Malmanche
- New South Wales Health Pathology; Newcastle New South Wales Australia
| | - Anne Durkan
- Department of Nephrology; The Children's Hospital at Westmead; Sydney New South Wales Australia
| | - Pravin Hissaria
- Department of Immunology; Royal Adelaide Hospital; Adelaide South Australia Australia
| | - Piers Blombery
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine; Monash University; Melbourne Victoria Australia
- Department of Pathology; Peter MacCallum Cancer Centre; Melbourne Victoria Australia
| | - Thomas D. Barbour
- Department of Medicine; University of Melbourne; Melbourne Victoria Australia
- Department of Nephrology; Royal Melbourne Hospital; Melbourne Victoria Australia
| |
Collapse
|
9
|
Fox LC, Cohney SJ, Kausman JY, Shortt J, Hughes PD, Wood EM, Isbel NM, de Malmanche T, Durkan A, Hissaria P, Blombery P, Barbour TD. Consensus opinion on diagnosis and management of thrombotic microangiopathy in Australia and New Zealand. Nephrology (Carlton) 2018; 23:507-517. [DOI: 10.1111/nep.13234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Lucy C Fox
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine; Monash University; Melbourne Victoria Australia
| | - Solomon J Cohney
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine; Monash University; Melbourne Victoria Australia
- Department of Medicine; University of Melbourne; Melbourne Victoria Australia
| | - Joshua Y Kausman
- Department of Nephrology and Murdoch Children's Research Institute; Royal Children's Hospital; Melbourne Victoria Australia
- Department of Paediatrics; University of Melbourne; Melbourne Victoria Australia
| | - Jake Shortt
- Monash Haematology, Monash Health, Monash University; Melbourne Victoria Australia
- School of Clinical Sciences; Monash Health, Monash University; Melbourne Victoria Australia
| | - Peter D Hughes
- Department of Medicine; University of Melbourne; Melbourne Victoria Australia
- Department of Nephrology; Royal Melbourne Hospital; Melbourne Victoria Australia
| | - Erica M Wood
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine; Monash University; Melbourne Victoria Australia
- Monash Haematology, Monash Health, Monash University; Melbourne Victoria Australia
| | - Nicole M Isbel
- Department of Nephrology; Princess Alexandra Hospital; Brisbane Queensland Australia
| | - Theo de Malmanche
- New South Wales Health Pathology, Immunology; Newcastle New South Wales Australia
| | - Anne Durkan
- Department of Nephrology; The Children's Hospital at Westmead; Sydney New South Wales Australia
| | - Pravin Hissaria
- Department of Immunology; Royal Adelaide Hospital; Adelaide South Australia Australia
| | - Piers Blombery
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine; Monash University; Melbourne Victoria Australia
- Department of Pathology; Peter MacCallum Cancer Centre; Melbourne Victoria Australia
| | - Thomas D Barbour
- Department of Medicine; University of Melbourne; Melbourne Victoria Australia
- Department of Nephrology; Royal Melbourne Hospital; Melbourne Victoria Australia
| |
Collapse
|
10
|
Lentine KL, Kasiske BL, Levey AS, Adams PL, Alberú J, Bakr MA, Gallon L, Garvey CA, Guleria S, Li PKT, Segev DL, Taler SJ, Tanabe K, Wright L, Zeier MG, Cheung M, Garg AX. KDIGO Clinical Practice Guideline on the Evaluation and Care of Living Kidney Donors. Transplantation 2017; 101:S1-S109. [PMID: 28742762 PMCID: PMC5540357 DOI: 10.1097/tp.0000000000001769] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/20/2017] [Indexed: 12/17/2022]
Abstract
The 2017 Kidney Disease: Improving Global Outcomes (KDIGO) Clinical Practice Guideline on the Evaluation and Care of Living Kidney Donors is intended to assist medical professionals who evaluate living kidney donor candidates and provide care before, during and after donation. The guideline development process followed the Grades of Recommendation Assessment, Development, and Evaluation (GRADE) approach and guideline recommendations are based on systematic reviews of relevant studies that included critical appraisal of the quality of the evidence and the strength of recommendations. However, many recommendations, for which there was no evidence or no systematic search for evidence was undertaken by the Evidence Review Team, were issued as ungraded expert opinion recommendations. The guideline work group concluded that a comprehensive approach to risk assessment should replace decisions based on assessments of single risk factors in isolation. Original data analyses were undertaken to produce a "proof-in-concept" risk-prediction model for kidney failure to support a framework for quantitative risk assessment in the donor candidate evaluation and defensible shared decision making. This framework is grounded in the simultaneous consideration of each candidate's profile of demographic and health characteristics. The processes and framework for the donor candidate evaluation are presented, along with recommendations for optimal care before, during, and after donation. Limitations of the evidence are discussed, especially regarding the lack of definitive prospective studies and clinical outcome trials. Suggestions for future research, including the need for continued refinement of long-term risk prediction and novel approaches to estimating donation-attributable risks, are also provided.In citing this document, the following format should be used: Kidney Disease: Improving Global Outcomes (KDIGO) Living Kidney Donor Work Group. KDIGO Clinical Practice Guideline on the Evaluation and Care of Living Kidney Donors. Transplantation. 2017;101(Suppl 8S):S1-S109.
Collapse
Affiliation(s)
| | | | | | | | - Josefina Alberú
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | | | | | - Dorry L. Segev
- Johns Hopkins University, School of Medicine, Baltimore, MD
| | | | | | | | | | | | | |
Collapse
|
11
|
Okumi M, Tanabe K. Prevention and treatment of atypical haemolytic uremic syndrome after kidney transplantation. Nephrology (Carlton) 2017; 21 Suppl 1:9-13. [PMID: 26988663 DOI: 10.1111/nep.12776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Atypical haemolytic uraemic syndrome is a rare disorder characterized by an over-activated, dysregulated alternative complement pathway due to genetic mutation and environmental triggers. Atypical haemolytic uraemic syndrome is a serious, life-threatening disease characterized by thrombotic microangiopathy, which causes haemolytic anaemia, thrombocytopaenia, and acute renal failure. Since recurrences of atypical haemolytic uraemic syndrome frequently lead to end-stage kidney disease even in renal allografts, kidney transplantation for patients with end-stage kidney disease secondary to atypical haemolytic uraemic syndrome has long been contraindicated. However, over the past several years, advancements in the management of atypical haemolytic uraemic syndrome have allowed successful kidney transplantation in these patients. The key factor of this success is eculizumab, a humanized anti-C5 monoclonal antibody, which inhibits terminal membrane-attack complex formation and thrombotic microangiopathy progression. In the setting of kidney transplantation, there are different possible triggers of post-transplant atypical haemolytic uraemic syndrome recurrence, such as brain-death related injury, ischaemia-reperfusion injury, infections, the use of immunosuppressive drugs, and rejection. Principal strategies are to prevent endothelial damage that could potentially activate alternative complement pathway activation and subsequently lead to atypical haemolytic uraemic syndrome recurrence in kidney allograft. Published data shows that prophylactic eculizumab therapy is highly effective for the prevention of post-transplant atypical haemolytic uraemic syndrome recurrence, and prompt treatment with eculizumab as soon as recurrence is diagnosed is important to maintain renal allograft function. Further study to determine the optimal dosing and duration of prophylactic therapy and treatment of post-transplant atypical haemolytic uraemic syndrome recurrence is needed.
Collapse
Affiliation(s)
- Masayoshi Okumi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
12
|
Goodship THJ, Cook HT, Fakhouri F, Fervenza FC, Frémeaux-Bacchi V, Kavanagh D, Nester CM, Noris M, Pickering MC, Rodríguez de Córdoba S, Roumenina LT, Sethi S, Smith RJH. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference. Kidney Int 2016; 91:539-551. [PMID: 27989322 DOI: 10.1016/j.kint.2016.10.005] [Citation(s) in RCA: 465] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/10/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023]
Abstract
In both atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G) complement plays a primary role in disease pathogenesis. Herein we report the outcome of a 2015 Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference where key issues in the management of these 2 diseases were considered by a global panel of experts. Areas addressed included renal pathology, clinical phenotype and assessment, genetic drivers of disease, acquired drivers of disease, and treatment strategies. In order to help guide clinicians who are caring for such patients, recommendations for best treatment strategies were discussed at length, providing the evidence base underpinning current treatment options. Knowledge gaps were identified and a prioritized research agenda was proposed to resolve outstanding controversial issues.
Collapse
Affiliation(s)
| | - H Terence Cook
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College Hammersmith Campus, London, UK
| | - Fadi Fakhouri
- INSERM, UMR-S 1064, and Department of Nephrology and Immunology, CHU de Nantes, Nantes, France
| | - Fernando C Fervenza
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | | | - David Kavanagh
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Carla M Nester
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Marina Noris
- IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Clinical Research Center for Rare Diseases "Aldo e Cele Daccò," Ranica, Bergamo, Italy
| | - Matthew C Pickering
- Centre for Complement and Inflammation Research, Department of Medicine, Imperial College Hammersmith Campus, London, UK
| | - Santiago Rodríguez de Córdoba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain; Centro de Investigación Biomédica en Enfermedades Raras, Madrid, Spain
| | - Lubka T Roumenina
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S1138, Complément et Maladies, Centre de Recherche des Cordeliers, Paris, France; Université Paris Descartes Sorbonne Paris-Cité, Paris, France; Université Pierre et Marie Curie (UPMC-Paris-6), Paris, France
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|
13
|
Campistol JM, Arias M, Ariceta G, Blasco M, Espinosa L, Espinosa M, Grinyó JM, Macía M, Mendizábal S, Praga M, Román E, Torra R, Valdés F, Vilalta R, Rodríguez de Córdoba S. An update for atypical haemolytic uraemic syndrome: diagnosis and treatment. A consensus document. Nefrologia 2015; 35:421-47. [PMID: 26456110 DOI: 10.1016/j.nefro.2015.07.005] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 02/07/2023] Open
Abstract
Haemolytic uraemic syndrome (HUS) is a clinical entity defined as the triad of nonimmune haemolytic anaemia, thrombocytopenia, and acute renal failure, in which the underlying lesions are mediated by systemic thrombotic microangiopathy (TMA). Different causes can induce the TMA process that characterizes HUS. In this document we consider atypical HUS (aHUS) a sub-type of HUS in which the TMA phenomena are the consequence of the endotelial damage in the microvasculature of the kidneys and other organs due to a disregulation of the activity of the complement system. In recent years, a variety of aHUs-related mutations have been identified in genes of the the complement system, which can explain approximately 60% of the aHUS cases, and a number of mutations and polymorphisms have been functionally characterized. These findings have stablished that aHUS is a consequence of the insufficient regulation of the activiation of the complement on cell surfaces, leading to endotelial damage mediated by C5 and the complement terminal pathway. Eculizumab is a monoclonal antibody that inhibits the activation of C5 and blocks the generation of the pro-inflammatory molecule C5a and the formation of the cell membrane attack complex. In prospective studies in patients with aHUS, the use of Eculizumab has shown a fast and sustained interruption of the TMA process and it has been associated with significative long-term improvements in renal function, the interruption of plasma therapy and important reductions in the need of dialysis. According to the existing literature and the accumulated clinical experience, the Spanish aHUS Group published a consensus document with recommendations for the treatment of aHUs (Nefrologia 2013;33[1]:27-45). In the current online version of this document, we update the aetiological classification of TMAs, the pathophysiology of aHUS, its differential diagnosis and its therapeutic management.
Collapse
Affiliation(s)
| | - Manuel Arias
- Servicio de Nefrología, Hospital Universitario Marqués de Valdecilla, Santander, España
| | - Gema Ariceta
- Servicio de Nefrología Pediátrica, Hospital Universitari Materno-Infantil Vall d'Hebrón, Universidad Autónoma de Barcelona, Barcelona, España
| | - Miguel Blasco
- Servicio de Nefrología, Hospital Clínic, Barcelona, España
| | - Laura Espinosa
- Servicio de Nefrología Pediátrica, Hospital La Paz, Madrid, España
| | - Mario Espinosa
- Servicio de Nefrología, Hospital Universitario Reina Sofía, Córdoba, España
| | - Josep M Grinyó
- Servicio de Nefrología, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, España
| | - Manuel Macía
- Servicio de Nefrología, Hospital Virgen de la Candelaria, Santa Cruz de Tenerife, España
| | | | - Manuel Praga
- Servicio de Nefrología, Hospital Universitario 12 de Octubre, Madrid, España
| | - Elena Román
- Servicio de Nefrología Pediátrica, Hospital La Fe, Valencia, España
| | - Roser Torra
- Enfermedades Renales Hereditarias, Fundació Puigvert, Barcelona, España
| | - Francisco Valdés
- Servicio de Nefrología, Complejo Hospitalario A Coruña, A Coruña, España
| | - Ramón Vilalta
- Servicio de Nefrología Pediátrica, Hospital Universitari Materno-Infantil Vall d'Hebrón, Universidad Autónoma de Barcelona, Barcelona, España
| | | |
Collapse
|
14
|
|
15
|
Abstract
Hemolytic uremic syndrome (HUS) is a triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. The atypical form of HUS is a disease characterized by complement overactivation. Inherited defects in complement genes and acquired autoantibodies against complement regulatory proteins have been described. Incomplete penetrance of mutations in all predisposing genes is reported, suggesting that a precipitating event or trigger is required to unmask the complement regulatory deficiency. The underlying genetic defect predicts the prognosis both in native kidneys and after renal transplantation. The successful trials of the complement inhibitor eculizumab in the treatment of atypical HUS will revolutionize disease management.
Collapse
Affiliation(s)
- David Kavanagh
- The Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | | | | |
Collapse
|
16
|
Anti-C5 as Prophylactic Therapy in Atypical Hemolytic Uremic Syndrome in Living-Related Kidney Transplantation. Transplantation 2013; 96:e26-9. [DOI: 10.1097/tp.0b013e31829d388d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Sprangers B, Kuypers DR. Recurrence of glomerulonephritis after renal transplantation. Transplant Rev (Orlando) 2013; 27:126-34. [PMID: 23954034 DOI: 10.1016/j.trre.2013.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
Abstract
Recurrence of glomerulonephritis following renal transplantation is considered an important cause of allograft failure. The incidence of recurrence of glomerulonephritis varies widely depending on the definition of recurrence (pathologic recurrence or clinicopathologic recurrence) and the original glomerular disease. Moreover the impact of recurrence of glomerular disease on allograft outcome varies widely between different forms of glomerulonephritis. Whereas IgA nephritis recurs in up to one third of transplanted patients, this is not associated with adverse effects on graft survival. In contrast, recurrent focal segmental glomerulosclerosis and membranoproliferative glomerulopathy have an unfavorable prognosis. Overall, long-term graft survival in patients transplanted for glomerulonephritis is comparable to survival in patients with other causes of ESRD. In recent years, several mechanisms for recurrent disease after transplantation (e.g. PLA2R antibodies in membranous nephropathy and suPAR in FSGS) have been identified, and these findings have helped to elucidate the pathogenesis of glomerular diseases. Although renal transplantation is the treatment of choice for end-stage renal disease as a consequence of glomerulonephritis, further studies are required to develop optimal strategies to prevent, diagnose and treat recurrent glomerular diseases.
Collapse
Affiliation(s)
- Ben Sprangers
- Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
18
|
Salvadori M, Bertoni E. Update on hemolytic uremic syndrome: Diagnostic and therapeutic recommendations. World J Nephrol 2013; 2:56-76. [PMID: 24255888 PMCID: PMC3832913 DOI: 10.5527/wjn.v2.i3.56] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/26/2013] [Accepted: 08/02/2013] [Indexed: 02/06/2023] Open
Abstract
Hemolytic uremic syndrome (HUS) is a rare disease. In this work the authors review the recent findings on HUS, considering the different etiologic and pathogenetic classifications. New findings in genetics and, in particular, mutations of genes that encode the complement-regulatory proteins have improved our understanding of atypical HUS. Similarly, the complement proteins are clearly involved in all types of thrombotic microangiopathy: typical HUS, atypical HUS and thrombotic thrombocytopenic purpura (TTP). Furthermore, several secondary HUS appear to be related to abnormalities in complement genes in predisposed patients. The authors highlight the therapeutic aspects of this rare disease, examining both "traditional therapy" (including plasma therapy, kidney and kidney-liver transplantation) and "new therapies". The latter include anti-Shiga-toxin antibodies and anti-C5 monoclonal antibody "eculizumab". Eculizumab has been recently launched for the treatment of the atypical HUS, but it appears to be effective in the treatment of typical HUS and in TTP. Future therapies are in phases I and II. They include anti-C5 antibodies, which are more purified, less immunogenic and absorbed orally and, anti-C3 antibodies, which are more powerful, but potentially less safe. Additionally, infusions of recombinant complement-regulatory proteins are a potential future therapy.
Collapse
|
19
|
Pabst WL, Neuhaus TJ, Nef S, Bresin E, Zingg-Schenk A, Spartà G. Successful long-term outcome after renal transplantation in a patient with atypical haemolytic uremic syndrome with combined membrane cofactor protein CD46 and complement factor I mutations. Pediatr Nephrol 2013; 28:1141-4. [PMID: 23519521 DOI: 10.1007/s00467-013-2450-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/18/2013] [Accepted: 02/22/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND Atypical haemolytic uremic syndrome (aHUS) is often associated with a high risk of disease recurrence and subsequent graft loss after isolated renal transplantation. Evidence-based recommendations for a mutation-based management after renal transplantation in aHUS caused by a combined mutation with complement factor I (CFI) and membrane cofactor protein CD46 (MCP) are limited. CASE-DIAGNOSIS/TREATMENT We describe a 9-year-old boy with a first manifestation of aHUS at the age of 9 months carrying combined heterozygous mutations in the CFI and MCP genes. At the age of 5 years, he underwent isolated cadaveric renal transplantation. Fresh frozen plasma was administered during and after transplantation, tapered and finally stopped after 3 years. CONCLUSIONS During the 5-year follow-up after transplantation there have been no signs of aHUS recurrence and graft function has remained good. The combination of heterozygous MCP and CFI mutations with aHUS might have a positive impact on the post-transplant course, possibly predicting a lower risk of aHUS recurrence after an isolated cadaveric renal transplantation.
Collapse
Affiliation(s)
- Werner Lukas Pabst
- Pediatric Nephrology Unit, University Children's Hospital of Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
20
|
Barbour T, Johnson S, Cohney S, Hughes P. Thrombotic microangiopathy and associated renal disorders. Nephrol Dial Transplant 2012; 27:2673-85. [PMID: 22802583 PMCID: PMC3398067 DOI: 10.1093/ndt/gfs279] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 04/07/2012] [Indexed: 12/17/2022] Open
Abstract
Thrombotic microangiopathy (TMA) is a pathological process involving thrombocytopenia, microangiopathic haemolytic anaemia and microvascular occlusion. TMA is common to haemolytic uraemic syndrome (HUS) associated with shiga toxin or invasive pneumococcal infection, atypical HUS (aHUS), thrombotic thrombocytopenic purpura (TTP) and other disorders including malignant hypertension. HUS complicating infection with shiga toxin-producing Escherichia coli (STEC) is a significant cause of acute renal failure in children worldwide, occurring sporadically or in epidemics. Studies in aHUS have revealed genetic and acquired factors leading to dysregulation of the alternative complement pathway. TTP has been linked to reduced activity of the ADAMTS13 cleaving protease (typically with an autoantibody to ADAMTS13) with consequent disruption of von Willebrand factor multimer processing. However, the convergence of pathogenic pathways and clinical overlap create diagnostic uncertainty, especially at initial presentation. Furthermore, recent developments are challenging established management protocols. This review addresses the current understanding of molecular mechanisms underlying TMA, relating these to clinical presentation with an emphasis on renal manifestations. A diagnostic and therapeutic approach is presented, based on international guidelines, disease registries and published trials. Early treatment remains largely empirical, consisting of plasma replacement/exchange with the exception of childhood STEC-HUS or pneumococcal sepsis. Emerging therapies such as the complement C5 inhibitor eculizumab for aHUS and rituximab for TTP are discussed, as is renal transplantation for those patients who become dialysis-dependent as a result of aHUS.
Collapse
Affiliation(s)
- Thomas Barbour
- Imperial College, Centre for Complement and Inflammation Research, London, UK.
| | | | | | | |
Collapse
|
21
|
Nester C, Stewart Z, Myers D, Jetton J, Nair R, Reed A, Thomas C, Smith R, Brophy P. Pre-emptive eculizumab and plasmapheresis for renal transplant in atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol 2011; 6:1488-94. [PMID: 21617085 PMCID: PMC3109948 DOI: 10.2215/cjn.10181110] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 02/22/2011] [Indexed: 12/12/2022]
Abstract
The case of a 12-year-old with a hybrid CFH/CFHL1 gene and atypical hemolytic uremic syndrome (aHUS) that had previously developed native kidney and then renal allograft loss is reported. This case illustrates the relatively common occurrence of renal loss from the late presentation of aHUS. Also presented is a protocol for the pre-emptive use of eculizumab and plasmapheresis as part of a renal transplant plan for the treatment of aHUS in patients deemed at high risk for recurrent disease. This protocol was a result of a multidisciplinary approach including adult and pediatric nephrology, transplant surgery, transfusion medicine, and infectious disease specialists. This protocol and the justifications and components of it can function as a guideline for the treatment of a group of children that have waited in limbo for the first U.S. transplant to open the door to this type of definitive care for this devastating disease.
Collapse
Affiliation(s)
- Carla Nester
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Waters AM, Licht C. aHUS caused by complement dysregulation: new therapies on the horizon. Pediatr Nephrol 2011; 26:41-57. [PMID: 20556434 PMCID: PMC2991208 DOI: 10.1007/s00467-010-1556-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/23/2010] [Accepted: 04/26/2010] [Indexed: 12/19/2022]
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a heterogeneous disease that is caused by defective complement regulation in over 50% of cases. Mutations have been identified in genes encoding both complement regulators [complement factor H (CFH), complement factor I (CFI), complement factor H-related proteins (CFHR), and membrane cofactor protein (MCP)], as well as complement activators [complement factor B (CFB) and C3]. More recently, mutations have also been identified in thrombomodulin (THBD), an anticoagulant glycoprotein that plays a role in the inactivation of C3a and C5a. Inhibitory autoantibodies to CFH account for an additional 5-10% of cases and can occur in isolation or in association with mutations in CFH, CFI, CFHR 1, 3, 4, and MCP. Plasma therapies are considered the mainstay of therapy in aHUS secondary to defective complement regulation and may be administered as plasma infusions or plasma exchange. However, in certain cases, despite initiation of plasma therapy, renal function continues to deteriorate with progression to end-stage renal disease and renal transplantation. Recently, eculizumab, a humanized monoclonal antibody against C5, has been described as an effective therapeutic strategy in the management of refractory aHUS that has failed to respond to plasma therapy. Clinical trials are now underway to further evaluate the efficacy of eculizumab in the management of both plasma-sensitive and plasma-resistant aHUS.
Collapse
Affiliation(s)
- Aoife M Waters
- Department of Nephrology, Great Ormond Street Hospital, London, WC1N 3JH, UK.
| | | |
Collapse
|
23
|
Living donor kidney transplantation in patients with hereditary nephropathies. Nat Rev Nephrol 2010; 6:736-43. [DOI: 10.1038/nrneph.2010.122] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Sánchez-Corral P, Melgosa M. Advances in understanding the aetiology of atypical Haemolytic Uraemic Syndrome. Br J Haematol 2010; 150:529-42. [PMID: 20629662 DOI: 10.1111/j.1365-2141.2010.08295.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Atypical Haemolytic Uraemic Syndrome (aHUS) is a thrombotic microangiopathy that often provokes irreversible renal damage and post-transplantation recurrence. Studies performed during the last decade have shown that 50-60% of aHUS patients present genetic or acquired defects in the complement system that enhance the initial endothelial damage and favour disease development. This review analyses the complement proteins and processes that are disturbed in aHUS patients, and outlines the relevance of a prompt genetic/molecular diagnosis for improving clinical management and prognosis.
Collapse
|
25
|
Noris M, Remuzzi G. Genetics and genetic testing in hemolytic uremic syndrome/thrombotic thrombocytopenic purpura. Semin Nephrol 2010; 30:395-408. [PMID: 20807612 DOI: 10.1016/j.semnephrol.2010.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenic purpura (TTP) are rare diseases that manifest with thrombocytopenia and microangiopathic hemolytic anemia accompanied by renal and neurologic dysfunction. Most childhood cases of HUS are caused by Shiga-toxin-producing bacteria and have a good prognosis. The other form, atypical HUS (aHUS), accounts for 10% of cases. Prognosis of aHUS and TTP has changed over time from fatal disorders to 60% to 80% survival in the plasma therapy era. In the past 10 years the molecular bases of aHUS and TTP have been discovered that mostly lead to uncontrolled activation of the complement system in aHUS and to abnormal von Willebrand factor processing in TTP. Identification of the underlying abnormality in an individual patient can provide prognostically significant information in predicting long-term outcome, response to therapies, and transplant outcome. It also paves the way for the use of specific new therapies in the near future.
Collapse
Affiliation(s)
- Marina Noris
- Mario Negri Institute for Pharmacological Research, Clinical Research Center for Rare Diseases, Aldo e Cele Daccò, Villa Camozzi, Ranica, Bergamo, Italy.
| | | |
Collapse
|
26
|
Atypical hemolytic uremic syndrome in the Tunisian population. Int Urol Nephrol 2010; 43:559-64. [PMID: 20499172 DOI: 10.1007/s11255-010-9754-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Hemolytic uremic syndrome consists of a triad of acquired hemolytic anemia, thrombocytopenia and renal failure. AIM Our objectives were to determine epidemiology, clinical and laboratory characteristics of patients with atypical hemolytic uremic syndrome (aHUS) to determine the relationship between the complement protein deficit and aHUS in the Tunisian population. METHODS We studied retrospectively four cases of atypical HUS in adults admitted in the Nephrology Department of Fattouma Bourguiba Universitary Hospital in Monastir between 2000 and 2008. RESULTS Three patients had renal failure that required dialysis. One of them received kidney transplantation with no further recurrence of aHUS. Three patients had normal C3, C4, CFH, and FB levels, and in all patients anti-FH autoantibodies were absent. The kidney biopsy of one patient showed in addition to lupus glomerulonephritis histological findings consistent with TMA. A decrease in C3, C4 and CFH levels in this patient was found both before and after the cure. CONCLUSION Nephrologists should be aware of autoimmune conditions and genetic abnormalities of the complement regulatory genes as possible pathogenic mechanisms in atypical HUS patients.
Collapse
|
27
|
Affiliation(s)
- Marina Noris
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | | |
Collapse
|
28
|
Taylor CM, Machin S, Wigmore SJ, Goodship THJ. Clinical practice guidelines for the management of atypical haemolytic uraemic syndrome in the United Kingdom. Br J Haematol 2009; 148:37-47. [PMID: 19821824 DOI: 10.1111/j.1365-2141.2009.07916.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Atypical haemolytic uraemic syndrome (aHUS) is associated with a poor prognosis with regard to survival at presentation, recovery of renal function and transplantation. It is now established that aHUS is a disease of complement dysregulation with mutations in the genes encoding both complement regulators and activators, and autoantibodies against the complement regulator factor H. Identification of the underlying molecular abnormality in an individual patient can now help to guide their future management. In these guidelines we make recommendations for the investigation and management of aHUS patients both at presentation and in the long-term. We particularly address the role of renal transplantation alone and combined liver-kidney transplantation.
Collapse
Affiliation(s)
- C Mark Taylor
- Institute of Human Genetics, Newcastle University, Central Parkway, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
29
|
Chan MR, Thomas CP, Torrealba JR, Djamali A, Fernandez LA, Nishimura CJ, Smith RJH, Samaniego MD. Recurrent atypical hemolytic uremic syndrome associated with factor I mutation in a living related renal transplant recipient. Am J Kidney Dis 2009; 53:321-6. [PMID: 18805611 PMCID: PMC2879708 DOI: 10.1053/j.ajkd.2008.06.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 06/19/2008] [Indexed: 12/12/2022]
Abstract
Atypical hemolytic uremic syndrome, or the nondiarrheal form of hemolytic uremic syndrome, is a rare disorder typically classified as familial or sporadic. Recent literature has suggested that approximately 50% of patients have mutations in factor H (CFH), factor I (CFI), or membrane cofactor protein (encoded by CD46). Importantly, results of renal transplantation in patients with mutations in either CFH or CFI are dismal, with recurrent disease leading to graft loss in the majority of cases. We describe an adult renal transplant recipient who developed recurrent hemolytic uremic syndrome 1 month after transplantation. Bidirectional sequencing of CFH, CFI, and CD46 confirmed that the patient was heterozygous for a novel missense mutation, a substitution of a serine reside for a tyrosine residue at amino acid 369, in CFI. This report reemphasizes the importance of screening patients with atypical hemolytic uremic syndrome for mutations in these genes before renal transplantation and shows the challenges in the management of these patients.
Collapse
Affiliation(s)
- Micah R Chan
- Department of Medicine, Section of Nephrology, University of Wisconsin Hospitals and Clinics, Madison, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Saland JM, Ruggenenti P, Remuzzi G. Liver-kidney transplantation to cure atypical hemolytic uremic syndrome. J Am Soc Nephrol 2008; 20:940-9. [PMID: 19092117 DOI: 10.1681/asn.2008080906] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atypical hemolytic uremic syndrome is often associated with mutations in genes encoding complement regulatory proteins and secondary disorders of complement regulation. Progression to kidney failure and recurrence with graft loss after kidney transplantation are frequent. The most common mutation is in the gene encoding complement factor H. Combined liver-kidney transplantation may correct this complement abnormality and prevent recurrence when the defect involves genes encoding circulating proteins that are synthesized in the liver, such as factor H or I. Good outcomes have been reported when surgery is associated with intensified plasma therapy. A consensus conference to establish treatment guidelines for atypical hemolytic uremic syndrome was held in Bergamo in December 2007. The recommendations in this article are the result of combined clinical experience, shared research expertise, and a review of the literature and registry information. This statement defines groups in which isolated kidney transplantation is extremely unlikely to be successful and a combined liver-kidney transplant is recommended and also defines those for whom kidney transplant remains a viable option. Although combined liver-kidney or isolated liver transplantation is the preferred therapeutic option in many cases, the gravity of risk associated with the procedure has not been eliminated completely, and assessment of risk and benefit requires careful and individual attention.
Collapse
Affiliation(s)
- Jeffrey M Saland
- Recanati/Miller, Mount Sinai Medical Center, New York, New York, USA
| | | | | | | |
Collapse
|
32
|
Abstract
About 60% of non-Stx-associated aHUS are due to the defect of protection of endothelial cells from complement activation, secondary to mutations in the genes of CFH, MCP, IF, BF, or C3. In addition, 10% of patients have anti-CFH antibodies. While the risk of post-transplant recurrence is less than 1% in Stx-HUS patients, it is approximately 80% in CFH or IF-mutated patients, 20% in MCP-mutated patients, and 30% in patients with no mutation. Patients with anti-CFH antibodies probably also are at risk of recurrence. While MCP-mutated patients can reasonably go to transplantation, recent reports suggest that plasmatherapy started before surgery and maintained life-long may prevent recurrence in CFH-mutated patients. Four successful liver-kidney transplantation utilizing plasmatherapy in CFH-mutated children have been reported recently. In summary, the risk of post-transplant recurrence can now be approached according to genotype. Therefore, aHUS patients should undergo complement determination, screening for anti-CFH antibodies, and genotyping before transplantation. Kidney or kidney + liver transplantation with concomitant plasmatherapy need to be evaluated by prospective trials in patients with hereditary complement abnormalities.
Collapse
Affiliation(s)
- Chantal Loirat
- Assistance Publique, Hôpitaux de Paris, Hôpital Robert Debré, Université Paris, Faculté de Médecine Denis Diderot, Service de Néphrologie, Paris, France.
| | | |
Collapse
|
33
|
Abstract
Hemolytic uremic syndrome is a triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. It is one of a group of conditions termed the thrombotic microangiopathies, which are characterized by prominent endothelial cell injury. It may be diarrheal-associated or atypical (aHUS). Evidence for a pathogenic role of the alternative pathway of complement was first suggested in 1974. Mutations in the complement regulatory proteins factor H, membrane cofactor protein (CD46), and factor I predispose to aHUS development. Mutations of the activating components factor B and complement C3 have also been reported. Penetrance is approximately 50%, suggesting other genetic and environmental modifiers are needed for disease expression. Identification of mutations is important owing to differences in mortality, renal survival, and outcome of renal transplantation. Current treatment is plasma infusion/exchange, but complement inhibitor therapy provides hope for the future.
Collapse
Affiliation(s)
- David Kavanagh
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The last few years have seen the decoding of the genetic basis for atypical hemolytic uremic syndrome. RECENT FINDINGS Mutations in complement factor H were the first to be associated with atypical hemolytic uremic syndrome. These mutations cluster in the C-terminus of complement factor H. This year has seen the publication of a transgenic mouse model lacking the C-terminus of complement factor H, which spontaneously develops atypical hemolytic uremic syndrome. This mouse model regulated C3 activation in plasma but failed to bind to endothelial cells in an analogous manner to the mutations seen in atypical hemolytic uremic syndrome patients. This year has also seen the emergence of genotype-phenotype correlations in atypical hemolytic uremic syndrome. Patients with membrane cofactor protein mutations have a good prognosis and in those who do develop endstage renal disease, recurrence after transplantation is rare. By contrast, the outcome for patients with complement factor H and complement factor I mutations is poor and the rate of recurrence after transplantation is high. New complement genes associated with atypical hemolytic uremic syndrome have also been described in the past year including factor B, C3, C4b-binding protein, FHR1 and FHR3. SUMMARY Genetic screening is now providing prognostically significant information in predicting survival, renal recovery and transplant outcome. It paves the way for the use of complement inhibitors in the future.
Collapse
|
35
|
Pickering MC, Cook HT. Translational mini-review series on complement factor H: renal diseases associated with complement factor H: novel insights from humans and animals. Clin Exp Immunol 2008; 151:210-30. [PMID: 18190458 PMCID: PMC2276951 DOI: 10.1111/j.1365-2249.2007.03574.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2007] [Indexed: 01/28/2023] Open
Abstract
Factor H is the major regulatory protein of the alternative pathway of complement activation. Abnormalities in factor H have been associated with renal disease, namely glomerulonephritis with C3 deposition including membranoproliferative glomerulonephritis (MPGN) and the atypical haemolytic uraemic syndrome (aHUS). Furthermore, a common factor H polymorphism has been identified as a risk factor for the development of age-related macular degeneration. These associations suggest that alternative pathway dysregulation is a common feature in the pathogenesis of these conditions. However, with respect to factor H-associated renal disease, it is now clear that distinct molecular defects in the protein underlie the pathogenesis of glomerulonephritis and HUS. In this paper we review the associations between human factor H dysfunction and renal disease and explore how observations in both spontaneous and engineered animal models of factor H dysfunction have contributed to our understanding of the pathogenesis of factor H-related renal disease.
Collapse
Affiliation(s)
- M C Pickering
- Molecular Genetics and Rheumatology Section, Faculty of Medicine, Imperial College, Hammersmith Campus, London, UK.
| | | |
Collapse
|
36
|
Loirat C, Noris M, Fremeaux-Bacchi V. Complement and the atypical hemolytic uremic syndrome in children. Pediatr Nephrol 2008; 23:1957-72. [PMID: 18594873 PMCID: PMC6904381 DOI: 10.1007/s00467-008-0872-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 04/22/2008] [Accepted: 04/22/2008] [Indexed: 12/20/2022]
Abstract
Over the past decade, atypical hemolytic uremic syndrome (aHUS) has been demonstrated to be a disorder of the regulation of the complement alternative pathway. Among approximately 200 children with the disease, reported in the literature, 50% had mutations of the complement regulatory proteins factor H, membrane cofactor protein (MCP) or factor I. Mutations in factor B and C3 have also been reported recently. In addition, 10% of children have factor H dysfunction due to anti-factor H antibodies. Early age at onset appears as characteristic of factor H and factor I mutated patients, while MCP-associated HUS is not observed before age 1 year. Low C3 level may occur in patients with factor H and factor I mutation, while C3 level is generally normal in MCP-mutated patients. Normal plasma factor H and factor I levels do not preclude the presence of a mutation in these genes. The worst prognosis is for factor H-mutated patients, as 60% die or reach end-stage renal disease (ESRD) within the first year after onset of the disease. Patients with mutations in MCP have a relapsing course, but no patient has ever reached ESRD in the first year of the disease. Half of the patients with factor I mutations have a rapid evolution to ESRD, but half recover. Early intensive plasmatherapy appears to have a beneficial effect, except in MCP-mutated patients. There is a high risk of graft loss for HUS recurrence or thrombosis in all groups except the MCP-mutated group. Recent success of liver-kidney transplantation combined with plasmatherapy opens this option for patients with mutations of factors synthesized in the liver. New therapies such as factor H concentrate or complement inhibitors offer hope for the future.
Collapse
Affiliation(s)
- Chantal Loirat
- Hôpitaux de Paris, Université Paris 7, Hôpital Robert Debré, Pediatric Nephrology, Paris, France.
| | | | | |
Collapse
|
37
|
Noris M, Remuzzi G. Translational mini-review series on complement factor H: therapies of renal diseases associated with complement factor H abnormalities: atypical haemolytic uraemic syndrome and membranoproliferative glomerulonephritis. Clin Exp Immunol 2007; 151:199-209. [PMID: 18070148 DOI: 10.1111/j.1365-2249.2007.03558.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Genetic and acquired abnormalities in complement factor H (CFH) have been associated with two different human renal diseases: haemolytic uraemic syndrome and membrano proliferative glomerulonephritis. The new genetic and pathogenetic findings in these diseases and their clinical implications for the management and cure of patients are reviewed in this paper.
Collapse
Affiliation(s)
- M Noris
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Mario Negri Institute for Pharmacological Research, Villa Camozzi - Ranica (BG), Italy.
| | | |
Collapse
|
38
|
Recurrence of haemolytic uraemic syndrome after renal transplantation. Curr Opin Organ Transplant 2007. [DOI: 10.1097/mot.0b013e3282ef3d64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Jokiranta TS, Zipfel PF, Fremeaux-Bacchi V, Taylor CM, Goodship TJH, Noris M. Where next with atypical hemolytic uremic syndrome? Mol Immunol 2007; 44:3889-900. [PMID: 17768107 DOI: 10.1016/j.molimm.2007.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Indexed: 12/21/2022]
Abstract
Hemolytic uremic syndrome (HUS) is a systemic disease characterized by damage to endothelial cells, erythrocytes and kidney glomeruli. A "typical" form of HUS follows gastrointestinal infection with enterohemorrhagic E. coli (e.g. O157:H7). Atypical HUS (aHUS) is not associated with gastrointestinal infections but is sporadic or familial in nature. Approximately 50% of aHUS cases are associated with a mutation in one or more genes coding for proteins involved in regulation or activation of the alternative pathway of complement. The link between the disease and the mutations shows the important balance of the alternative pathway between activation and regulation on host cell surfaces. It also demonstrates the power of this pathway in destroying cellular targets in general. In this review we discuss the current knowledge on pathogenesis, classification, diagnostics and management of this disease. We indicate a comprehensive diagnostic approach for aHUS based on the latest knowledge on complement dysregulation to gain both immediate and future patient benefit by assisting in choosing more appropriate therapy for each patient. We also indicate directions in which therapy of aHUS might improve and indicate the need to re-think the terminology and categorisation of the HUS-like diseases so that any advantage in the understanding of complement regulatory problems can be applied to patients accurately.
Collapse
Affiliation(s)
- T Sakari Jokiranta
- Department of Bacteriology and Immunology, Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital, FIN-00290 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
40
|
Pickering MC, de Jorge EG, Martinez-Barricarte R, Recalde S, Garcia-Layana A, Rose KL, Moss J, Walport MJ, Cook HT, de Córdoba SR, Botto M. Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition domains. ACTA ACUST UNITED AC 2007; 204:1249-56. [PMID: 17517971 PMCID: PMC2118613 DOI: 10.1084/jem.20070301] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Factor H (FH) is an abundant serum glycoprotein that regulates the alternative pathway of complement-preventing uncontrolled plasma C3 activation and nonspecific damage to host tissues. Age-related macular degeneration (AMD), atypical hemolytic uremic syndrome (aHUS), and membranoproliferative glomerulonephritis type II (MPGN2) are associated with polymorphisms or mutations in the FH gene (Cfh), suggesting the existence of a genotype–phenotype relationship. Although AMD and MPGN2 share pathological similarities with the accumulation of complement-containing debris within the eye and kidney, respectively, aHUS is characterized by renal endothelial injury. This pathological distinction was reflected in our Cfh association analysis, which demonstrated that although AMD and MPGN2 share a Cfh at-risk haplotype, the haplotype for aHUS was unique. FH-deficient mice have uncontrolled plasma C3 activation and spontaneously develop MPGN2 but not aHUS. We show that these mice, transgenically expressing a mouse FH protein functionally equivalent to aHUS-associated human FH mutants, regulate C3 activation in plasma and spontaneously develop aHUS but not MPGN2. These animals represent the first model of aHUS and provide in vivo evidence that effective plasma C3 regulation and the defective control of complement activation on renal endothelium are the critical events in the molecular pathogenesis of FH-associated aHUS.
Collapse
Affiliation(s)
- Matthew C Pickering
- Molecular Genetics and Rheumatology Section, Faculty of Medicine, Imperial College, London W12 0NN, England, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kavanagh D, Richards A, Fremeaux-Bacchi V, Noris M, Goodship T, Remuzzi G, Atkinson JP. Screening for complement system abnormalities in patients with atypical hemolytic uremic syndrome. Clin J Am Soc Nephrol 2007; 2:591-6. [PMID: 17699467 DOI: 10.2215/cjn.03270906] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- David Kavanagh
- Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Living donor kidney transplantation is the optimum treatment for the uremic patient. Successful kidney transplantations started in 1953 in Boston and in Sweden in 1964. This article showed data on the selection of the donor, surgical techniques for the removal of the kidney, and follow-up of short-term complications. The long-term results included the number of donors who developed hypertension and the few donors who developed end-stage renal failure (ESRF) and the reasons for this. Finally, new groups of donors such as blood group-incompatible donors and anonymous donors have been accepted, each of whom have their own programs. This article also discussed our responsibilities as renal specialists or transplant surgeons for kidney donors at surgery and postsurgery.
Collapse
Affiliation(s)
- I Fehrman-Ekholm
- Dept of Transplantation and Liver Surgery, Sahlgrenska University Hospital, Göteborg, Sweden.
| |
Collapse
|
43
|
Richards A, Kavanagh D, Atkinson JP. Inherited complement regulatory protein deficiency predisposes to human disease in acute injury and chronic inflammatory statesthe examples of vascular damage in atypical hemolytic uremic syndrome and debris accumulation in age-related macular degeneration. Adv Immunol 2007; 96:141-77. [PMID: 17981206 DOI: 10.1016/s0065-2776(07)96004-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In this chapter, we examine the role of complement regulatory activity in atypical hemolytic uremic syndrome (aHUS) and age-related macular degeneration (AMD). These diseases are representative of two distinct types of complement-mediated injury, one being acute and self-limited, the other reflecting accumulation of chronic damage. Neither condition was previously thought to have a pathologic relationship to the immune system. However, alterations in complement regulatory protein genes have now been identified as major predisposing factors for the development of both diseases. In aHUS, heterozygous mutations leading to haploinsufficiency and function-altering polymorphisms in complement regulators have been identified, while in AMD, polymorphic haplotypes in complement genes are associated with development of disease. The basic premise is that a loss of function in a plasma or membrane inhibitor of the alternative complement pathway allows for excessive activation of complement on the endothelium of the kidney in aHUS and on retinal debris in AMD. These associations have much to teach us about the host's innate immune response to acute injury and to chronic debris deposition. We all experience cellular injury and, if we live long enough, will deposit debris in blood vessel walls (atherosclerosis leading to heart attacks and strokes), the brain (amyloid proteins leading to Alzheimer's disease), and retina (lipofuscin pigments leading to AMD). These are three common causes of morbidity and mortality in the developed world. The clinical, genetic, and immunopathologic understandings derived from the two examples of aHUS and AMD may illustrate what to anticipate in related conditions. They highlight how a powerful recognition and effector system, the alternative complement pathway, reacts to altered self. A response to acute injury or chronic debris accumulation must be appropriately balanced. In either case, too much activation or too little regulation promotes undesirable tissue damage and human disease.
Collapse
Affiliation(s)
- Anna Richards
- Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
44
|
Fehrman-Ekholm I, Nordén G, Lennerling A, Rizell M, Herlitz H, Nielsen FD, Storkamp O, Deurell SI, Olausson M. Living Kidney Donors Developing End-Stage Renal Disease. Transplant Proc 2006; 38:2642-3. [PMID: 17098025 DOI: 10.1016/j.transproceed.2006.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The incidence of end-stage kidney failure (ESRF) was analyzed among the cohort of 1112 living kidney donors who underwent nephrectomy from 1965 through 2005. It was found that at least six persons had developed ESRF at 14 to 27 years (median = 20 years), following donation. Five of six were men. Five were parents and one, a sibling. The diagnoses were nephrosclerosis (n = 4), postrenal failure (n = 1), and renal carcinoma (n = 1). One donor, aged 45 years, underwent kidney transplantation.
Collapse
Affiliation(s)
- I Fehrman-Ekholm
- Department of Transplantation and Liver Surgery, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bresin E, Daina E, Noris M, Castelletti F, Stefanov R, Hill P, Goodship THJ, Remuzzi G. Outcome of renal transplantation in patients with non-Shiga toxin-associated hemolytic uremic syndrome: prognostic significance of genetic background. Clin J Am Soc Nephrol 2005; 1:88-99. [PMID: 17699195 DOI: 10.2215/cjn.00050505] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
More than 50% of patients with non-Shiga toxin-associated hemolytic uremic syndrome (non-Stx-HUS) progress to ESRD. Kidney transplant failure for disease recurrence is common; hence, whether renal transplantation is appropriate in this clinical setting remains a debated issue. The aim of this study was to identify possible prognostic factors for renal transplant outcome by focusing on specific genetic abnormalities associated with the disease. All articles in literature that describe renal transplant outcome in patients with ESRD secondary to non-Stx-HUS, genotyped for CFH, MCP, and IF mutations, were reviewed, and data of patients who were referred to the International Registry of Recurrent and Familial HUS/TTP and data from the Newcastle cohort were examined. This study confirmed that the overall outcome of kidney transplantation in patients with non-Stx-HUS is poor, with disease recurring in 60% of patients, 91.6% of whom developed graft failure. No clinical prognostic factor that could identify patients who were at high risk for graft failure was found. The presence of a factor H (CFH) mutation was associated with a high incidence of graft failure (77.8 versus 54.9% in patients without CFH mutation). Similar results were seen in patients with a factor I (IF) mutation. In contrast, graft outcome was favorable in all patients who carried a membrane co-factor protein (MCP) mutation. Patients with non-Stx-HUS should undergo genotyping before renal transplantation to help predict the risk for graft failure. It is debatable whether a kidney transplant should be recommended for patients with CFH or IF mutation. Reasonably, patients with an MCP mutation can undergo a kidney transplant without risk for recurrence.
Collapse
Affiliation(s)
- Elena Bresin
- Mario Negri Institute for Pharmacological Research, Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Via Camozzi, 3, 24020 RANICA (Bergamo), Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kavanagh D, Kemp EJ, Mayland E, Winney RJ, Duffield JS, Warwick G, Richards A, Ward R, Goodship JA, Goodship THJ. Mutations in complement factor I predispose to development of atypical hemolytic uremic syndrome. J Am Soc Nephrol 2005; 16:2150-5. [PMID: 15917334 DOI: 10.1681/asn.2005010103] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutations in the plasma complement regulator factor H (CFH) and the transmembrane complement regulator membrane co-factor protein (MCP) have been shown to predispose to atypical hemolytic uremic syndrome (HUS). Both of these proteins act as co-factors for complement factor I (IF). IF is a highly specific serine protease that cleaves the alpha-chains of C3b and C4b and thus downregulates activation of both the classical and the alternative complement pathways. This study looked for IF mutations in a panel of 76 patients with HUS. Mutations were detected in two patients, both of whom had reduced serum IF levels. A heterozygous bp change, c.463 G>A, which results in a premature stop codon (W127X), was found in one, and in the other, a heterozygous single base pair deletion in exon 7 (del 922C) was detected. Both patients had a history of recurrent HUS after transplantation. This is in accordance with the high rate of recurrence in patients with CFH mutations. Patients who are reported to have mutations in MCP, by contrast, do not have recurrence after transplantation. As with CFH- and MCP-associated HUS, there was incomplete penetrance in the family of one of the affected individuals. This study provides further evidence that atypical HUS is a disease of complement dysregulation.
Collapse
Affiliation(s)
- David Kavanagh
- Institute of Human Genetics, University of Newcastle upon Tyne, Tyne and Wear NE1 3BZ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Braun MC, Stablein DM, Hamiwka LA, Bell L, Bartosh SM, Strife CF. Recurrence of membranoproliferative glomerulonephritis type II in renal allografts: The North American Pediatric Renal Transplant Cooperative Study experience. J Am Soc Nephrol 2005; 16:2225-33. [PMID: 15888559 DOI: 10.1681/asn.2005020175] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Membranoproliferative glomerulonephritis type II (MPGN II) is an uncommon form of complement-dependent acquired renal disease. Although it has been recognized since the 1970s that MPGN II recurs almost universally in renal transplants, data regarding the long-term consequences of disease recurrence are limited. Therefore, a retrospective comparative analysis of 75 patients with MPGN II contained in the North American Pediatric Renal Transplant Cooperative Study transplantation database was performed. Five-year graft survival for patients with MPGN II was significantly worse (50.0 +/- 7.5%) compared with the database as a whole (74.3 +/- 0.6%; P < 0.001). Living related donor organs had a significantly better 5-yr survival (65.9 +/- 10.7%) compared with cadaveric donor organs (34.1 +/- 9.8%; P = 0.004). The primary cause of graft failure in 11 (14.7%) patients was recurrent disease. Supplemental surveys were obtained on 29 (38%) of 75 patients. Analysis of these data indicated that recurrent disease occurred in 12 (67%) of the 18 patients with posttransplantation biopsies. Although there was no correlation between pretransplantation presentation, pre- or posttransplantation C3 levels, and either disease recurrence or graft failure, there was a strong association between heavy proteinuria and disease recurrence. The presence of glomerular crescents in allograft biopsies had a significant negative correlation with graft survival. At last follow-up, patients with recurrent disease had significantly higher serum creatinine and qualitatively more proteinuria than patients without biopsy-proven disease. These data indicate that recurrent MPGN II has a significant negative impact on renal allograft function and survival.
Collapse
Affiliation(s)
- Michael C Braun
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, 2121 W. Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Marina Noris
- Transplant Research Center, Chiara Cucchi de Alessandri e Gilberto Crespi, Villa Camozzi, Via Camozzi, 3 24020, Ranica (BG), Italy.
| | | |
Collapse
|
49
|
Reynolds JC, Agodoa LY, Yuan CM, Abbott KC. Thrombotic microangiopathy after renal transplantation in the United States. Am J Kidney Dis 2004; 42:1058-68. [PMID: 14582050 DOI: 10.1016/j.ajkd.2003.07.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Analysis of the incidence, time to event, and risk factors for thrombotic microangiopathy (TMA) after renal transplantation (RT), has not been reported in a national population. METHODS This is a historical cohort study of 15,870 RT recipients in the United States Renal Data System (USRDS) with Medicare as their primary payer between January 1, 1998, and July 31, 2000, followed until December 31, 2000. Patients with Medicare claims with a diagnosis of TMA (International Classification of Diseases, 9th Revision, codes 283.11x or 446.6x) after RT were assessed by Cox regression. RESULTS Among patients with end-stage renal disease owing to hemolytic uremic syndrome (HUS), 29.2% later had TMA versus 0.8% of patients with ESRD owing to other causes. The incidence of TMA in RT recipients was 5.6 episodes per 1,000 person-years (PY; 189/1,000 PY; for recurrent TMA versus 4.9/1,000 PY for de novo TMA). The risk of TMA was highest for the first 3 months after transplant. Risk factors for de novo TMA included younger recipient age, older donor age, female recipient, and initial use of sirolimus. Patient survival rate after TMA was approximately 50% at 3 years. CONCLUSION De novo TMA is uncommon and may occur later after RT than previously reported. Risk factors for de novo TMA were also identified.
Collapse
Affiliation(s)
- Joel C Reynolds
- Nephrology Service, Walter Reed Army Medical Center, Washington, DC 20307-5001, USA
| | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Alain Bonnardeaux
- Service de néphrologie, Hôpital Maisonneuve-Rosemont, Université de Montréal, Quebec, H1T 2M4, Montréal, Canada.
| | | |
Collapse
|