1
|
Huber S, Fitzner T, Feichtinger RG, Kraus T, Gaisbauer S, Hochmann S, Sotlar K, Kofler B, Varga M. Spexin expression in the human bile duct and perihilar cholangiocarcinoma. Peptides 2025; 188:171405. [PMID: 40194702 DOI: 10.1016/j.peptides.2025.171405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/19/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
The bile duct transports bile fluid from the liver to the gallbladder and small intestine. It contains bioactive peptides, including galanin (GAL) and its receptors (GAL1-3-R). Spexin (SPX), a member of the GAL peptide family, activates GAL2-R and GAL3-R. Its expression in perihilar bile ducts or in perihilar cholangiocarcinoma (pCCA), the most common biliary cancer, is largely unknown. This study investigated SPX expression in healthy, cholestatic, and malignant bile duct tissues. Immunohistochemistry was used to evaluate SPX in healthy (n = 4), peritumoral (PIT) (n = 23) and pCCA (n = 34) tissues. Score values of SPX expression were calculated and statistically analyzed. In healthy and PIT tissues with or without cholestasis, SPX expression was predominantly observed in cholangiocytes and nerve fibers. In pCCA, tumor cells also expressed SPX. SPX levels were similar across healthy, peritumoral, and cholangiocytes/tumor cells. In a small pCCA patient cohort (n = 19), SPX expression did not correlate with tumor grade or patient survival (p = 0.0838). The substantial expression of SPX in cholangiocytes and nerve fibers in the bile duct indicates that SPX contributes via galaninergic signaling to gall bladder function. The presence of SPX in submucosal nerve fibers suggests a neuromodulatory role, possibly involving bile duct motility. SPX expression did not correlate with survival in pCCA, whereas previous findings on GAL suggest a prognostic value. This highlights the need for joint studies of SPX and GAL in larger cohorts.
Collapse
Affiliation(s)
- Sara Huber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
| | - Theresia Fitzner
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
| | - René G Feichtinger
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
| | - Theo Kraus
- Department of Pathology, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
| | - Stefanie Gaisbauer
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
| | - Sarah Hochmann
- Institute for Experimental and Clinical Cell Therapy, Paracelsus Medical University, Salzburg, Austria.
| | - Karl Sotlar
- Department of Pathology, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
| | - Martin Varga
- Department of Surgery, University Hospital of the Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
2
|
Fu Y, Liu S, Rodrigues RM, Han Y, Guo C, Zhu Z, He Y, Mackowiak B, Feng D, Gao B, Zeng S, Shen H. Activation of VIPR1 suppresses hepatocellular carcinoma progression by regulating arginine and pyrimidine metabolism. Int J Biol Sci 2022; 18:4341-4356. [PMID: 35864952 PMCID: PMC9295067 DOI: 10.7150/ijbs.71134] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/27/2022] [Indexed: 12/09/2022] Open
Abstract
Background and aims: Vasoactive intestinal polypeptide type-I receptor (VIPR1) overexpression has been reported in numerous types of malignancies and utilized to develop novel target therapeutics and radiolabeled VIP analogue-based tumor imaging technology, but its role in liver carcinogenesis has not been explored. In the current study, we investigated the role of the VIP/VIPR1 signaling in controlling hepatocellular carcinoma (HCC) progression. Approach and results: By analyzing clinical samples, we found the expression level of VIPR1 was downregulated in human HCC tissues, which was correlated with advanced clinical stages, tumor growth, recurrence, and poor outcomes of HCC clinically. In vitro and in vivo studies revealed that activation of VIPR1 by VIP markedly inhibited HCC growth and metastasis. Intriguingly, transcriptome sequencing analyses revealed that activation of VIPR1 by VIP regulated arginine biosynthesis. Mechanistical studies in cultured HCC cells demonstrated that VIP treatment partially restored the expression of arginine anabolic key enzyme argininosuccinate synthase (ASS1), and to some extent, inhibited de novo pyrimidine synthetic pathway by downregulating the activation of CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase). VIP treatment upregulated ASS1 and subsequently suppressed CAD phosphorylation in an mTOR/p70S6K signaling dependent manner. Clinically, we found human HCC samples were associated with downregulation of ASS1 but upregulation of CAD phosphorylation, and that VIPR1 levels positively correlated with ASS1 levels and serum levels of urea, the end product of the urea cycle and arginine metabolism in HCC. Conclusions: Loss of VIPR1 expression in HCC facilitates CAD phosphorylation and tumor progression, and restoration of VIPR1 and treatment with the VIPR1 agonist may be a promising approach for HCC treatment.
Collapse
Affiliation(s)
- Yaojie Fu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shanshan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Robim M Rodrigues
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cao Guo
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhanwei Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yong He
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| |
Collapse
|
3
|
Zarei K, Stroik MR, Gansemer ND, Thurman AL, Ostedgaard LS, Ernst SE, Thornell IM, Powers LS, Pezzulo AA, Meyerholz DK, Stoltz DA. Early pathogenesis of cystic fibrosis gallbladder disease in a porcine model. J Transl Med 2020; 100:1388-1399. [PMID: 32719544 PMCID: PMC7578062 DOI: 10.1038/s41374-020-0474-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatobiliary disease causes significant morbidity in people with cystic fibrosis (CF), yet this problem remains understudied. We previously found that newborn CF pigs have microgallbladders with significant luminal obstruction in the absence of infection and consistent inflammation. In this study, we sought to better understand the early pathogenesis of CF pig gallbladder disease. We hypothesized that loss of CFTR would impair gallbladder epithelium anion/liquid secretion and increase mucin production. CFTR was expressed apically in non-CF pig gallbladder epithelium but was absent in CF. CF pig gallbladders lacked cAMP-stimulated anion transport. Using a novel gallbladder epithelial organoid model, we found that Cl- or HCO3- was sufficient for non-CF organoid swelling. This response was absent for non-CF organoids in Cl-/HCO3--free conditions and in CF. Single-cell RNA-sequencing revealed a single epithelial cell type in non-CF gallbladders that coexpressed CFTR, MUC5AC, and MUC5B. Despite CF gallbladders having increased luminal MUC5AC and MUC5B accumulation, there was no significant difference in the epithelial expression of gel-forming mucins between non-CF and CF pig gallbladders. In conclusion, these data suggest that loss of CFTR-mediated anion transport and fluid secretion contribute to microgallbladder development and luminal mucus accumulation in CF.
Collapse
Affiliation(s)
- Keyan Zarei
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA
| | - Mallory R Stroik
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nick D Gansemer
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew L Thurman
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Lynda S Ostedgaard
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Sarah E Ernst
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Ian M Thornell
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Linda S Powers
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Alejandro A Pezzulo
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| | - David A Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
4
|
Sato A, Kakinuma S, Miyoshi M, Kamiya A, Tsunoda T, Kaneko S, Tsuchiya J, Shimizu T, Takeichi E, Nitta S, Kawai-Kitahata F, Murakawa M, Itsui Y, Nakagawa M, Azuma S, Koshikawa N, Seiki M, Nakauchi H, Asahina Y, Watanabe M. Vasoactive Intestinal Peptide Derived From Liver Mesenchymal Cells Mediates Tight Junction Assembly in Mouse Intrahepatic Bile Ducts. Hepatol Commun 2019; 4:235-254. [PMID: 32025608 PMCID: PMC6996346 DOI: 10.1002/hep4.1459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/23/2019] [Indexed: 01/20/2023] Open
Abstract
Formation of intrahepatic bile ducts (IHBDs) proceeds in accordance with their microenvironment. Particularly, mesenchymal cells around portal veins regulate the differentiation and ductular morphogenesis of cholangiocytes in the developing liver; however, further studies are needed to fully understand the arrangement of IHBDs into a continuous hierarchical network. This study aims to clarify the interaction between biliary and liver mesenchymal cells during IHBD formation. To identify candidate factors contributing to this cell–cell interaction, mesenchymal cells were isolated from embryonic day 16.5 matrix metalloproteinase 14 (MMP14)‐deficient (knockout [KO]) mice livers, in which IHBD formation is retarded, and compared with those of the wild type (WT). WT mesenchymal cells significantly facilitated the formation of luminal structures comprised of hepatoblast‐derived cholangiocytes (cholangiocytic cysts), whereas MMP14‐KO mesenchymal cells failed to promote cyst formation. Comprehensive analysis revealed that expression of vasoactive intestinal peptide (VIP) was significantly suppressed in MMP14‐KO mesenchymal cells. VIP and VIP receptor 1 (VIPR1) were mainly expressed in periportal mesenchymal cells and cholangiocytic progenitors during IHBD development, respectively, in vivo. VIP/VIPR1 signaling significantly encouraged cholangiocytic cyst formation and up‐regulated tight junction protein 1, cystic fibrosis transmembrane conductance regulator, and aquaporin 1, in vitro. VIP antagonist significantly suppressed the tight junction assembly and the up‐regulation of ion/water transporters during IHBD development in vivo. In a cholestatic injury model of adult mice, exogenous VIP administration promoted the restoration of damaged tight junctions in bile ducts and improved hyperbilirubinemia. Conclusion: VIP is produced by periportal mesenchymal cells during the perinatal stage. It supports bile duct development by establishing tight junctions and up‐regulating ion/water transporters in cholangiocytes. VIP contributes to prompt recovery from cholestatic damage through the establishment of tight junctions in the bile ducts.
Collapse
Affiliation(s)
- Ayako Sato
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Sei Kakinuma
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan.,Department of Liver Disease Control Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Masato Miyoshi
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences School of Medicine Tokai University Isehara Japan
| | - Tomoyuki Tsunoda
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Shun Kaneko
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Jun Tsuchiya
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Taro Shimizu
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Eiko Takeichi
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Sayuri Nitta
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Fukiko Kawai-Kitahata
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Miyako Murakawa
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Yasuhiro Itsui
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Mina Nakagawa
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Seishin Azuma
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan
| | - Naohiko Koshikawa
- Division of Cancer Cell Research Institute of Medical Science University of Tokyo Tokyo Japan
| | - Motoharu Seiki
- Division of Cancer Cell Research Institute of Medical Science University of Tokyo Tokyo Japan
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine Stanford University School of Medicine Stanford CA.,Division of Stem Cell Therapy Institute of Medical Science University of Tokyo Tokyo Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan.,Department of Liver Disease Control Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology Tokyo Medical and Dental University Tokyo Japan.,Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| |
Collapse
|
5
|
Abstract
Vasoactive intestinal peptide-secreting tumors (VIPomas) are a group of rare neuroendocrine tumors, which cause a typical syndrome of watery diarrhea. Most of these tumors are found in the pancreas and are usually detected at a later stage. Although curative resection is not possible in most of these tumors, both symptom and tumor control can be achieved by a multidimensional approach, to enable a long survival of most patients. There are no clear-cut guidelines for the management of VIPomas because of the rarity of this neoplasm and lack of prospective data. In this review, we discuss the available evidence on the clinical features and management of these rare tumors.
Collapse
|
6
|
Makowska K. Chemically induced inflammation and nerve damage affect the distribution of vasoactive intestinal polypeptide-like immunoreactive (VIP-LI) nervous structures in the descending colon of the domestic pig. Neurogastroenterol Motil 2018; 30:e13439. [PMID: 30109906 DOI: 10.1111/nmo.13439] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The enteric nervous system (ENS), situated in the wall of the gastrointestinal tract, regulates the majority of intestinal activities in physiological conditions and during pathological processes. Enteric neurons are diversified in terms of active substance expression. One of the most important neuropeptides within the ENS is vasoactive intestinal polypeptide (VIP). It seems to be one among the important inhibitory peptides in addition to neuropeptide Y (NPY), nitric oxide (NO), and adenosine triphosphate (ATP) of the intestinal motility and secretion, however, many issues connected with distribution and roles of VIP in the large intestine, especially during pathological states, still remain unknown. METHODS Changes in the VIP-like immunoreactivity of the enteric nervous structures under experimental pathological states, including chemically induced inflammation and nerve damage was examined using the double immunofluorescence technique with commercial antibodies. KEY RESULTS Generally, both pathological factors studied caused an increase in the number of VIP-like immunoreactive (VIP-LI) neurons and nerve fibers, but the intensity of fluctuations depended on both the acting factor and the part of the ENS studied. CONCLUSIONS AND INFERENCES The obtained results suggest that VIP participates in pathological processes concerning the digestive tract, and its exact functions probably depend on the type of damaging factor acting on the intestine.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
7
|
Abstract
Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (∼1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions.
Collapse
Affiliation(s)
- James L Boyer
- Department of Medicine and Liver Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
8
|
Abstract
Cholestatic liver diseases encompass a wide spectrum of disorders with different causes, resulting in impaired bile flow and accumulation of bile acids and other potentially hepatotoxic cholephils. The understanding of the molecular mechanisms of bile formation and cholestasis has recently improved significantly through new insights into nuclear receptor (patho)biology. Nuclear receptors are ligand-activated transcription factors, which act as central players in the regulation of genes responsible for elimination and detoxification of biliary constituents accumulating in cholestasis. They also control other pathophysiologic processes such as inflammation, fibrogenesis, and carcinogenesis involved in the pathogenesis and disease progression of cholestasis liver diseases.
Collapse
Affiliation(s)
- Emina Halilbasic
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Anna Baghdasaryan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Laboratory of Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Corresponding author. Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Abstract
Cholangiocytes are epithelial cells that line the intra- and extrahepatic ducts of the biliary tree. The main physiologic function of cholangiocytes is modification of hepatocyte-derived bile, an intricate process regulated by hormones, peptides, nucleotides, neurotransmitters, and other molecules through intracellular signaling pathways and cascades. The mechanisms and regulation of bile modification are reviewed herein.
Collapse
|
10
|
Tarantola E, Bertone V, Milanesi G, Capelli E, Ferrigno A, Neri D, Vairetti M, Barni S, Freitas I. Dipeptidylpeptidase--IV, a key enzyme for the degradation of incretins and neuropeptides: activity and expression in the liver of lean and obese rats. Eur J Histochem 2012; 56:e41. [PMID: 23361237 PMCID: PMC3567760 DOI: 10.4081/ejh.2012.e41] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 07/02/2012] [Accepted: 07/26/2012] [Indexed: 01/19/2023] Open
Abstract
Given the scarcity of donors, moderately fatty livers (FLs) are currently being considered as possible grafts for orthotopic liver transplantation (OLT), notwithstanding their poor tolerance to conventional cold preservation. The behaviour of parenchymal and sinusoidal liver cells during transplantation is being studied worldwide. Much less attention has been paid to the biliary tree, although this is considered the Achille's heel even of normal liver transplantation. To evaluate the response of the biliary compartment of FLs to the various phases of OLT reliable markers are necessary. Previously we demonstrated that Alkaline Phosphatase was scarcely active in bile canaliculi of FLs and thus ruled it out as a marker. As an alternative, dipeptidylpeptidase-IV (DPP-IV), was investigated. This ecto-peptidase plays an important role in glucose metabolism, rapidly inactivating insulin secreting hormones (incretins) that are important regulators of glucose metabolism. DPP-IV inhibitors are indeed used to treat Type II diabetes. Neuropeptides regulating bile transport and composition are further important substrates of DPP-IV in the enterohepatic axis. DPP-IV activity was investigated with an azo-coupling method in the liver of fatty Zucker rats (fa/fa), using as controls lean Zucker (fa/+) and normal Wistar rats. Protein expression was studied by immunofluorescence with the monoclonal antibody (clone 5E8). In Wistar rat liver, DPP-IV activity and expression were high in the whole biliary tree, and moderate in sinusoid endothelial cells, in agreement with the literature. Main substrates of DPP-IV in hepatocytes and cholangiocytes could be incretins GLP-1 and GIP, and neuropeptides such as vasoactive intestinal peptide (VIP) and substance P, suggesting that these substances are inactivated or modified through the biliary route. In lean Zucker rat liver the enzyme reaction and protein expression patterns were similar to those of Wistar rat. In obese rat liver the patterns of DPP-IV activity and expression in hepatocytes reflected the morphological alterations induced by steatosis as lipid-rich hepatocytes had scarce activity, located either in deformed bile canaliculi or in the sinusoidal and lateral domains of the plasma membrane. These findings suggest that bile canaliculi in steatotic cells have an impaired capacity to inactivate incretins and neuropeptides. Incretin and/or neuropeptide deregulation is indeed thought to play important roles in obesity and insulin-resistance. No alteration in enzyme activity and expression was found in the upper segments of the biliary tree of obese respect to lean Zucker and Wistar rats. In conclusion, this research demonstrates that DPP-IV is a promising in situ marker of biliary functionality not only of normal but also of fatty rats. The approach, initially devised to investigate the behaviour of the liver during the various phases of transplantation, appears to have a much higher potentiality as it could be further exploited to investigate any pathological or stressful conditions involving the biliary tract (i.e., metabolic syndrome and cholestasis) and the response of the biliary tract to therapy and/or to surgery.
Collapse
Affiliation(s)
- E Tarantola
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Onori P, Gaudio E, Franchitto A, Alpini G, Francis H. Histamine regulation of hyperplastic and neoplastic cell growth in cholangiocytes. World J Gastrointest Pathophysiol 2010; 1:38-49. [PMID: 21607141 PMCID: PMC3097946 DOI: 10.4291/wjgp.v1.i2.38] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/03/2010] [Accepted: 04/10/2010] [Indexed: 02/06/2023] Open
Abstract
Histamine has long been known to be involved in inflammatory events. The discovery of antihistamines dates back to the first half of the 20th century when a Swiss-Italian pharmacologist, Daniel Bovet began his work. In 1957 he was awarded a Nobel Prize for his production of antihistamines for allergy relief. Since that time, histamine has been found to play a role in other events besides allergic reaction. Possibly unbelievable to Bovet and his peers, histamine has now been marked as playing a role in liver pathologies including hepatobiliary diseases.
Collapse
|
13
|
Affiliation(s)
- James L Boyer
- Department of Medicine, Liver Center, Yale University School of Medicine, New Haven, CT 06520-8019, USA
| |
Collapse
|
14
|
Marzioni M, Fava G, Alvaro D, Alpini G, Benedetti A. Control of cholangiocyte adaptive responses by visceral hormones and neuropeptides. Clin Rev Allergy Immunol 2009; 36:13-22. [PMID: 18548352 PMCID: PMC2628969 DOI: 10.1007/s12016-008-8090-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cholangiocytes, the epithelial cells lining the biliary tree, are the target cells in several liver diseases, termed cholangiopathies. Cholangiopathies are a challenge for clinicians and an enigma for scientists, as the pathogenetic mechanisms by which they develop, and the therapeutic tools for these diseases are still undefined. Several studies demonstrate that many visceral hormones, neuropeptides, and neurotransmitters modulate the adaptive changes of cholangiocytes to chronic cholestatic injury. The aim of this review is to present the recent findings that contributed to clarify the role of visceral hormones and neuropeptides in the regulation of the pathophysiology of cholestasis. These studies helped to shed light on some aspects of cholangiocyte pathophysiology, revealing novel perspectives for the clinical managements of cholangiopathies.
Collapse
Affiliation(s)
- Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Miarche, Nuovo Polo Didattico, III piano, Via Tronto 10, 60020, Ancona, Italy.
| | | | | | | | | |
Collapse
|
15
|
Abstract
The biliary tree is a complex network of conduits that begins with the canals of Hering and progressively merges into a system of interlobular, septal, and major ducts which then coalesce to form the extrahepatic bile ducts, which finally deliver bile to the gallbladder and to the intestine. The biliary epithelium shows a morphological heterogeneity that is strictly associated with a variety of functions performed at the different levels of the biliary tree. In addition to funneling bile into the intestine, cholangiocytes (the epithelial cells lining the bile ducts) are actively involved in bile production by performing both absorbitive and secretory functions. More recently, other important biological properties restricted to cholangiocytes lining the smaller bile ducts have been outlined, with regard to their plasticity (i.e., the ability to undergo limited phenotypic changes), reactivity (i.e., the ability to participate in the inflammatory reaction to liver damage), and ability to behave as liver progenitor cells. Functional interactions with other branching systems, such as nerve and vascular structures, are crucial in the modulation of the different cholangiocyte functions.
Collapse
Affiliation(s)
- Mario Strazzabosco
- Department of Internal Medicine, Yale University, New Haven 06504, Connecticut, USA.
| | | |
Collapse
|
16
|
Hepatocellular transport in acquired cholestasis: new insights into functional, regulatory and therapeutic aspects. Clin Sci (Lond) 2008; 114:567-88. [PMID: 18377365 DOI: 10.1042/cs20070227] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The recent overwhelming advances in molecular and cell biology have added enormously to our understanding of the physiological processes involved in bile formation and, by extension, to our comprehension of the consequences of their alteration in cholestatic hepatopathies. The present review addresses in detail this new information by summarizing a number of recent experimental findings on the structural, functional and regulatory aspects of hepatocellular transporter function in acquired cholestasis. This comprises (i) a short overview of the physiological mechanisms of bile secretion, including the nature of the transporters involved and their role in bile formation; (ii) the changes induced by nuclear receptors and hepatocyte-enriched transcription factors in the constitutive expression of hepatocellular transporters in cholestasis, either explaining the primary biliary failure or resulting from a secondary adaptive response; (iii) the post-transcriptional changes in transporter function and localization in cholestasis, including a description of the subcellular structures putatively engaged in the endocytic internalization of canalicular transporters and the involvement of signalling cascades in this effect; and (iv) a discussion on how this new information has contributed to the understanding of the mechanism by which anticholestatic agents exert their beneficial effects, or the manner in which it has helped the design of new successful therapeutic approaches to cholestatic liver diseases.
Collapse
|
17
|
Francis H, LeSage G, DeMorrow S, Alvaro D, Ueno Y, Venter J, Glaser S, Mancino MG, Marucci L, Benedetti A, Alpini G. The alpha2-adrenergic receptor agonist UK 14,304 inhibits secretin-stimulated ductal secretion by downregulation of the cAMP system in bile duct-ligated rats. Am J Physiol Cell Physiol 2007; 293:C1252-62. [PMID: 17634418 DOI: 10.1152/ajpcell.00031.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Secretin stimulates ductal secretion by activation of cAMP --> PKA --> CFTR --> Cl(-)/HCO(3)(-) exchanger in cholangiocytes. We evaluated the expression of alpha(2A)-, alpha(2B)-, and alpha(2C)-adrenergic receptors in cholangiocytes and the effects of the selective alpha(2)-adrenergic agonist UK 14,304, on basal and secretin-stimulated ductal secretion. In normal rats, we evaluated the effect of UK 14,304 on bile and bicarbonate secretion. In bile duct-ligated (BDL) rats, we evaluated the effect of UK 14,304 on basal and secretin-stimulated 1) bile and bicarbonate secretion; 2) duct secretion in intrahepatic bile duct units (IBDU) in the absence or presence of 5-(N-ethyl-N-isopropyl)amiloride (EIPA), an inhibitor of the Na(+)/H(+) exchanger isoform NHE3; and 3) cAMP levels, PKA activity, Cl(-) efflux, and Cl(-)/HCO(3)(-) exchanger activity in purified cholangiocytes. alpha(2)-Adrenergic receptors were expressed by all cholangiocytes in normal and BDL liver sections. UK 14,304 did not change bile and bicarbonate secretion of normal rats. In BDL rats, UK 14,304 inhibited secretin-stimulated 1) bile and bicarbonate secretion, 2) expansion of IBDU luminal spaces, and 3) cAMP levels, PKA activity, Cl(-) efflux, and Cl(-)/HCO(3)(-) exchanger activity in cholangiocytes. There was decreased lumen size after removal of secretin in IBDU pretreated with UK 14,304. In IBDU pretreated with EIPA, there was no significant decrease in luminal space after removal of secretin in either the absence or presence of UK 14,304. The inhibitory effect of UK 14,304 on ductal secretion is not mediated by the apical cholangiocyte NHE3. alpha(2)-Adrenergic receptors play a role in counterregulating enhanced ductal secretion associated with cholangiocyte proliferation in chronic cholestatic liver diseases.
Collapse
Affiliation(s)
- Heather Francis
- Central Texas Veterans Health Care System, The Texas A & M University System Health Science Center College of Medicine, Medical Research Bldg, Temple, TX 76504, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dufour J. Biliary Epithelial Cells. TEXTBOOK OF HEPATOLOGY 2007:52-57. [DOI: 10.1002/9780470691861.ch1g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Cassiman D, Sinelli N, Bockx I, Vander Borght S, Petersen B, De Vos R, van Pelt J, Nevens F, Libbrecht L, Roskams T. Human hepatic progenitor cells express vasoactive intestinal peptide receptor type 2 and receive nerve endings. Liver Int 2007; 27:323-8. [PMID: 17355452 DOI: 10.1111/j.1478-3231.2006.01427.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND We recently showed that human hepatic progenitor cells (HPCs) express muscarinic acetylcholine (Ach) receptor subtype 3 and that--following liver transplantation--HPC numbers are significantly reduced. To further elaborate on this, we examined whether HPC also express receptors for vasoactive intestinal peptide (VIP), which, besides Ach, also is an important parasympathetic neurotransmitter. VIP expressing nerves are known to be present in the liver. METHODS We performed immunohistochemistry for VIP receptor subtypes 1 and 2 (VIPR1 and 2), on sections of normal and diseased human liver (n=17), and double staining for VIPR2 and known HPC markers. We performed RT-PCR for VIPR1 and 2 on total RNA from purified rat HPC. To document the probability of direct interaction, we also performed double immunostaining for nerve markers and HPC markers on human liver sections. RESULTS VIPR2 immunostaining was clearly positive in HPC and reactive bile ductules on paraffin-embedded and frozen tissue sections. We could not demonstrate VIPR1 protein expression in the liver, with either of two VIPR1 antibodies tested. The presence of VIPR2 mRNA in HPC was confirmed by RT-PCR. Nerve endings were shown to abut on reactive bile ductules. CONCLUSION We show here for the first time that HPC express VIPR2 and receive nerve endings. These features, and the fact that HPC numbers are influenced by the presence or absence of the autonomic innervation of the liver, suggest a direct interaction.
Collapse
Affiliation(s)
- David Cassiman
- Department of Hepatology, University Hospital Gasthuisberg, University of Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Marzioni M, Fava G, Benedetti A. Nervous and Neuroendocrine regulation of the pathophysiology of cholestasis and of biliary carcinogenesis. World J Gastroenterol 2006; 12:3471-3480. [PMID: 16773704 PMCID: PMC4087563 DOI: 10.3748/wjg.v12.i22.3471] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 02/06/2006] [Accepted: 02/18/2006] [Indexed: 02/06/2023] Open
Abstract
Cholangiocytes, the epithelial cells lining the biliary ducts, are the target cells in several liver diseases. Cholangiopathies and cholangiocarcinoma generate interest in many scientists since the genesis. The developing mechanisms, and the therapeutic tools of these diseases are still undefined. Several studies demonstrate that many hormones, neuropeptides and neurotransmitters regulate malignant and non-malignant cholangiocyte pathophysiology in the course of chronic biliary diseases. The aim of this review is to present the findings of several studies published in the recent years that contributed to clarifying the role of nervous and neuroendocrine regulation of the pathophysiologic events associated with cholestasis and cholangiocarcinoma development. This manuscript is organized into two parts. The first part offers an overview of the innervation of the liver and the origin of neuroendocrine hormones, neurotransmitters and neuropeptides affecting cholangiocyte function and metabolism. The first section also reviews the effects played by several neuroendocrine hormones and nervous system on cholangiocyte growth, survival and functional activity in the course of cholestasis. In the second section, we summarize the results of some studies describing the role of nervous system and neuroendocrine hormones in the regulation of malignant cholangiocyte growth.
Collapse
Affiliation(s)
- Marco Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Nuovo Polo Didattico, III piano, Via Tronto 10, 60020 Ancona, Italy.
| | | | | |
Collapse
|
21
|
Glaser S, Francis H, Demorrow S, Lesage G, Fava G, Marzioni M, Venter J, Alpini G. Heterogeneity of the intrahepatic biliary epithelium. World J Gastroenterol 2006; 12:3523-3536. [PMID: 16773709 PMCID: PMC4087568 DOI: 10.3748/wjg.v12.i22.3523] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Revised: 05/10/2006] [Accepted: 05/18/2006] [Indexed: 02/06/2023] Open
Abstract
The objectives of this review are to outline the recent findings related to the morphological heterogeneity of the biliary epithelium and the heterogeneous pathophysiological responses of different sized bile ducts to liver gastrointestinal hormones and peptides and liver injury/toxins with changes in apoptotic, proliferative and secretory activities. The knowledge of biliary function is rapidly increasing because of the recognition that biliary epithelial cells (cholangiocytes) are the targets of human cholangiopathies, which are characterized by proliferation/damage of bile ducts within a small range of sizes. The unique anatomy, morphology, innervation and vascularization of the biliary epithelium are consistent with function of cholangiocytes within different regions of the biliary tree. The in vivo models [e.g., bile duct ligation (BDL), partial hepatectomy, feeding of bile acids, carbon tetrachloride (CCl4) or alpha-naphthylisothiocyanate (ANIT)] and the in vivo experimental tools [e.g., freshly isolated small and large cholangiocytes or intrahepatic bile duct units (IBDU) and primary cultures of small and large murine cholangiocytes] have allowed us to demonstrate the morphological and functional heterogeneity of the intrahepatic biliary epithelium. These models demonstrated the differential secretory activities and the heterogeneous apoptotic and proliferative responses of different sized ducts. Similar to animal models of cholangiocyte proliferation/injury restricted to specific sized ducts, in human liver diseases bile duct damage predominates specific sized bile ducts. Future studies related to the functional heterogeneity of the intrahepatic biliary epithelium may disclose new pathophysiological treatments for patients with cholangiopathies.
Collapse
Affiliation(s)
- Shannon Glaser
- Department of Medicine, Division of R&E, Scott and White Memorial Hospital and The Texas A&M University System Health Science Center College of Medicine, MRB, 702 South West H.K. Dodgen Loop, Temple, Texas 76504, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Primary canalicular bile undergoes a process of fluidization and alkalinization along the biliary tract that is influenced by several factors including hormones, innervation/neuropeptides, and biliary constituents. The excretion of bicarbonate at both the canaliculi and the bile ducts is an important contributor to the generation of the so-called bile-salt independent flow. Bicarbonate is secreted from hepatocytes and cholangiocytes through parallel mechanisms which involve chloride efflux through activation of Cl- channels, and further bicarbonate secretion via AE2/SLC4A2-mediated Cl-/HCO3- exchange. Glucagon and secretin are two relevant hormones which seem to act very similarly in their target cells (hepatocytes for the former and cholangiocytes for the latter). These hormones interact with their specific G protein-coupled receptors, causing increases in intracellular levels of cAMP and activation of cAMP-dependent Cl- and HCO3- secretory mechanisms. Both hepatocytes and cholangiocytes appear to have cAMP-responsive intracellular vesicles in which AE2/SLC4A2 colocalizes with cell specific Cl- channels (CFTR in cholangiocytes and not yet determined in hepatocytes) and aquaporins (AQP8 in hepatocytes and AQP1 in cholangiocytes). cAMP-induced coordinated trafficking of these vesicles to either canalicular or cholangiocyte lumenal membranes and further exocytosis results in increased osmotic forces and passive movement of water with net bicarbonate-rich hydrocholeresis.
Collapse
Affiliation(s)
- Jesús-M Banales
- Laboratory of Molecular Genetics, Division of Gene Therapy and Hepatology, University of Navarra School of Medicine, Clinica Universitaria and CIMA, Avda. Pio XII 55, E-31008 Pamplona, Spain
| | | | | |
Collapse
|
23
|
Chignard N, Mergey M, Barbu V, Finzi L, Tiret E, Paul A, Housset C. VPAC1 expression is regulated by FXR agonists in the human gallbladder epithelium. Hepatology 2005; 42:549-57. [PMID: 16037943 DOI: 10.1002/hep.20806] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Vasoactive intestinal peptide receptor-1 (VPAC1) is the high-affinity receptor of vasoactive intestinal peptide (VIP), a major regulator of bile secretion. To better define the level at which VPAC1 stimulates bile secretion, we examined its expression in the different cell types participating in bile formation (i.e., hepatocytes, bile duct, and gallbladder epithelial cells). Because VPAC1 expression was previously shown to be regulated by nuclear receptors, we tested the hypothesis that it may be regulated by the farnesoid X receptor (FXR). Quantitative RT-PCR and immunoblot analyses of cell isolates indicated that VPAC1 is expressed in all three cell types lining the human biliary tree, with predominant expression in the gallbladder. In primary cultures of human gallbladder epithelial cells, VIP induced cAMP production and chloride secretion. Analysis of the VPAC1 gene revealed the presence of potential FXR response element sequences, and both FXR and RXRalpha expressions were detected in gallbladder epithelial cells. In these cells, the FXR pharmacological agonist GW4064 upregulated VPAC1 expression in a dose-dependent manner, and this effect was antagonized by the RXRalpha ligand, 9-cis retinoic acid. Chenodeoxycholate activated endogenous FXR in gallbladder epithelial cells, as ascertained by electromobility shift assay and upregulation of the FXR target gene, small heterodimer partner. Chenodeoxycholate also provoked an increase in VPAC1 mRNA and protein content in these cells. In conclusion, FXR agonists may increase gallbladder fluid secretion through transcriptional activation of VPAC1, which may contribute to the regulation of bile secretion by bile salts and to a protective effect of FXR pharmacological agonists in gallstone disease.
Collapse
Affiliation(s)
- Nicolas Chignard
- Inserm, Paris, France, and Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The diseases of the intrahepatic biliary tree are a large group of potentially evolutive congenital and acquired liver disorders affecting both the adult and pediatric populations. They represent a relevant cause of liver-related morbidity and mortality and an important indication for liver transplantation, particularly in children. While the practical approach to patients affected by biliary tree diseases has not significantly changed yet, the conceptual approach to the pathophysiology of cholangiopathies has witnessed important advances that will be discussed. The primary cell target of the pathogenetic sequence of these disorders is the biliary epithelium. Cholangiocytes have multifaceted functions, not limited to bile production. Their capability to secrete a range of different pro-inflammatory mediators, cytokines, and chemokines indicates a major role of cholangiocytes in the inflammatory reaction. Furthermore, paracrine secretion of growth factors and peptides mediates an extensive cross-talk with other liver cell types, including hepatocytes, stellate, and endothelial and inflammatory cells. Cholangiopathies share a number of pathogenetic mechanisms, including inflammation, cholestasis, fibrosis, apoptosis, altered development, and neoplastic transformation. These basic disease mechanisms will be discussed in detail, along with the distinct features of a number of cholangiopathies. Furthermore, an increase in the biliary cell compartment is a common response to many forms of liver injury, from cholangiopathies to viral and fulminant hepatitis. Elucidation of these pathophysiologic mechanisms will likely provide clues for future therapeutic strategies. Furthermore, understanding the role of cholangiocytes in liver regeneration/repair and the mechanisms of cholangiocyte activation and their relationship with liver progenitor cell will be of further interest.
Collapse
Affiliation(s)
- Mario Strazzabosco
- Division of Gastroenterology and Center for Liver Research (CeLiveR), Ospedali Riuniti di Bergamo, Bergamo, Italy.
| | | | | |
Collapse
|
25
|
Uyama N, Geerts A, Reynaert H. Neural connections between the hypothalamus and the liver. ACTA ACUST UNITED AC 2004; 280:808-20. [PMID: 15382020 DOI: 10.1002/ar.a.20086] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
After receiving information from afferent nerves, the hypothalamus sends signals to peripheral organs, including the liver, to keep homeostasis. There are two ways for the hypothalamus to signal to the peripheral organs: by stimulating the autonomic nerves and by releasing hormones from the pituitary gland. In order to reveal the involvement of the autonomic nervous system in liver function, we focus in this study on autonomic nerves and neuroendocrine connections between the hypothalamus and the liver. The hypothalamus consists of three major areas: lateral, medial, and periventricular. Each area has some nuclei. There are two important nuclei and one area in the hypothalamus that send out the neural autonomic information to the peripheral organs: the ventromedial hypothalamic nucleus (VMH) in the medial area, the lateral hypothalamic area (LHA), and the periventricular hypothalamic nucleus (PVN) in the periventricular area. VMH sends sympathetic signals to the liver via the celiac ganglia, the LHA sends parasympathetic signals to the liver via the vagal nerve, and the PVN integrates information from other areas of the hypothalamus and sends both autonomic signals to the liver. As for the afferent nerves, there are two pathways: a vagal afferent and a dorsal afferent nerve pathway. Vagal afferent nerves are thought to play a role as sensors in the peripheral organs and to send signals to the brain, including the hypothalamus, via nodosa ganglia of the vagal nerve. On the other hand, dorsal afferent nerves are primary sensory nerves that send signals to the brain via lower thoracic dorsal root ganglia. In the liver, many nerves contain classical neurotransmitters (noradrenaline and acetylcholine) and neuropeptides (substance P, calcitonin gene-related peptide, neuropeptide Y, vasoactive intestinal polypeptide, somatostatin, glucagon, glucagon-like peptide, neurotensin, serotonin, and galanin). Their distribution in the liver is species-dependent. Some of these nerves are thought to be involved in the regulation of hepatic function as well as of hemodynamics. In addition to direct neural connections, the hypothalamus can affect metabolic functions by neuroendocrine connections: the hypothalamus-pancreas axis, the hypothalamus-adrenal axis, and the hypothalamus-pituitary axis. In the hypothalamus-pancreas axis, autonomic nerves release glucagon and insulin, which directly enter the liver and affect liver metabolism. In the hypothalamus-adrenal axis, autonomic nerves release catecholamines such as adrenaline and noradrenaline from the adrenal medulla, which also affects liver metabolism. In the hypothalamus-pituitary axis, release of glucocorticoids and thyroid hormones is stimulated by pituitary hormones. Both groups of hormones modulate hepatic metabolism. Taken together, the hypothalamus controls liver functions by neural and neuroendocrine connections.
Collapse
Affiliation(s)
- Naoki Uyama
- Laboratory for Molecular Liver Cell Biology, Vrije Universiteit Brussel, Belgium.
| | | | | |
Collapse
|
26
|
Alpini G, Ueno Y, Tadlock L, Glaser SS, LeSage G, Francis H, Taffetani S, Marzioni M, Alvaro D, Patel T. Increased susceptibility of cholangiocytes to tumor necrosis factor-alpha cytotoxicity after bile duct ligation. Am J Physiol Cell Physiol 2003; 285:C183-94. [PMID: 12637265 DOI: 10.1152/ajpcell.00497.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tumor necrosis factor (TNF)-alpha plays a critical role in epithelial cell injury. However, the role of TNF-alpha in mediating cholangiocyte injury under physiological or pathophysiological conditions is unknown. Thus we assessed the effects of TNF-alpha alone or following sensitization by actinomycin D on cell apoptosis, proliferation, and basal and secretin-stimulated ductal secretion in cholangiocytes from normal or bile duct-ligated (BDL) rats. Cholangiocytes from normal or BDL rats were highly resistant to TNF-alpha alone. However, presensitization by actinomycin D increased apoptosis in cholangiocytes following BDL and was associated with an inhibition of proliferation and secretin-stimulated ductal secretion. Thus TNF-alpha mediates cholangiocyte injury and altered ductal secretion following bile duct ligation. These observations suggest that cholestasis may enhance susceptibility to cytokine-mediated cholangiocyte injury.
Collapse
Affiliation(s)
- Gianfranco Alpini
- Department of Internal Medicine, Texas A&M University System Health Science Center, College of Medicine, Temple, TX 76502, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Glaser S, Alvaro D, Roskams T, Phinizy JL, Stoica G, Francis H, Ueno Y, Barbaro B, Marzioni M, Mauldin J, Rashid S, Mancino MG, LeSage G, Alpini G. Dopaminergic inhibition of secretin-stimulated choleresis by increased PKC-gamma expression and decrease of PKA activity. Am J Physiol Gastrointest Liver Physiol 2003; 284:G683-94. [PMID: 12505882 DOI: 10.1152/ajpgi.00302.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To determine the role and mechanisms of action by which dopaminergic innervation modulates ductal secretion in bile duct-ligated rats, we determined the expression of D1, D2, and D3 dopaminergic receptors in cholangiocytes. We evaluated whether D1, D2 (quinelorane), or D3 dopaminergic receptor agonists influence basal and secretin-stimulated choleresis and lumen expansion in intrahepatic bile duct units (IBDU) and cAMP levels in cholangiocytes in the absence or presence of BAPTA-AM, chelerythrine, 1-(5-isoquinolinylsulfonyl)-2-methyl piperazine (H7), or rottlerin. We evaluated whether 1) quinelorane effects on ductal secretion were associated with increased expression of Ca(2+)-dependent PKC isoforms and 2) increased expression of PKC causes inhibition of PKA activity. Quinelorane inhibited secretin-stimulated choleresis in vivo and IBDU lumen space, cAMP levels, and PKA activity in cholangiocytes. The inhibitory effects of quinelorane on secretin-stimulated ductal secretion and PKA activity were blocked by BAPTA-AM, chelerythrine, and H7. Quinelorane effects on ductal secretion were associated with activation of the Ca(2+)-dependent PKC-gamma but not other PKC isoforms. The dopaminergic nervous system counterregulates secretin-stimulated ductal secretion in experimental cholestasis.
Collapse
Affiliation(s)
- Shannon Glaser
- Department of Internal Medicine, Texas A&M University System Health Sciences Center, College of Medicine, Temple, Texas 76504, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Baiocchi L, Alpini G, Glaser S, Angelico M, Alvaro D, Francis H, Marzioni M, Phinizy JL, Barbaro B, LeSage G. Taurohyodeoxycholate- and tauroursodeoxycholate-induced hypercholeresis is augmented in bile duct ligated rats. J Hepatol 2003; 38:136-147. [PMID: 12547401 DOI: 10.1016/s0168-8278(02)00358-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Taurohyodeoxycholate (THDCA) and tauroursodeoxycholate (TUDCA) induce more bile flow per molecule excreted compared to endogenous bile acids. The aim of this study is to determine if the hypercholeretic effect of tauroursodeoxycholate or taurohyodeoxycholate in normal and bile duct ligated (BDL) rats is due to increased ductal secretion. METHODS Normal or BDL rats were infused with tauroursodeoxycholate or taurohyodeoxycholate and bile flow, bicarbonate, bile salt, cholesterol, and phospholipid secretion were measured. Cholangiocytes were stimulated with taurohyodeoxycholate or tauroursodeoxycholate, and secretin-stimulated secretion was measured. RESULTS Taurohyodeoxycholate and tauroursodeoxycholate increased bile flow more in BDL than normal rats. Tauroursodeoxycholate increased bicarbonate secretion more in BDL compared to normal rats. Taurohyodeoxycholate when infused with taurocholate increased bile flow (but not phospholipid excretion) to a greater degree in BDL compared to normal rats. Taurohyodeoxycholate and tauroursodeoxycholate decreased secretin-stimulated cholangiocyte secretion. CONCLUSIONS Consistent with a ductal origin for bile acid-induced hypercholeresis, taurohyodeoxycholate and tauroursodeoxycholate produced a greater hypercholeresis in BDL than normal rats. Tauroursodeoxycholate- (but not taurohyodeoxycholate-) stimulated hypercholeresis is associated with increased HCO(3)(-) secretion. Tauroursodeoxycholate increases biliary HCO(3)(-) secretion by a mechanism unrelated to secretin-stimulated cholangiocyte secretion. Taurohyodeoxycholate-induced hypercholeresis in BDL rats is unrelated to enhanced phospholipid excretion.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- The Texas A&M University System Health Science Center, College of Medicine, Temple, TX 76504, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mennone A, Verkman AS, Boyer JL. Unimpaired osmotic water permeability and fluid secretion in bile duct epithelia of AQP1 null mice. Am J Physiol Gastrointest Liver Physiol 2002; 283:G739-46. [PMID: 12181190 DOI: 10.1152/ajpgi.00540.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanisms by which fluid moves across the luminal membrane of cholangiocyte epithelia are uncertain. Previous studies suggested that aquaporin-1 (AQP1) is an important determinant of water movement in rat cholangiocytes and that cyclic AMP mediates the movement of these water channels from cytoplasm to apical membrane, thereby increasing the osmotic water permeability. To test this possibility we measured agonist-stimulated fluid secretion and osmotically driven water transport in isolated bile duct units (IBDUs) from AQP1 wild-type (+/+) and null (-/-) mice. AQP1 expression was confirmed in a mouse cholangiocyte cell line and +/+ liver. Forskolin-induced fluid secretion, measured from the kinetics of IBDU luminal expansion, was 0.05 fl/min and was not impaired in -/- mice. Osmotic water permeability (P(f)), measured from the initial rate of IBDU swelling in response to a 70-mosM osmotic gradient, was 11.1 x 10(-4) cm/s in +/+ mice and 11.5 x 10(-4) cm/s in -/- mice. P(f) values increased by approximately 50% in both +/+ and -/- mice following preincubation with forskolin. These findings provide direct evidence that AQP1 is not rate limiting for water movement in mouse cholangiocytes and does not appear to be regulated by cyclic AMP in this species.
Collapse
Affiliation(s)
- Albert Mennone
- Liver Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
30
|
Abstract
The morbidity and mortality from chronic biliary diseases (i.e., the cholangiopathies) remains substantial. End-stage liver disease from biliary causes of cirrhosis (e.g., primary biliary cirrhosis [PBC], and primary sclerosing cholangitis) account for approximately one third of patients referred for liver transplantation. A single-topic conference sponsored by the American Association for the Studies of Liver Diseases entitled "The Pathobiology of Biliary Epithelia" brought together investigators to review the status of the field of cholangiocyte pathobiology, identify new areas of interest, and propose future directions. This information was presented in 6 sessions: "Structural and Functional Characteristics of the Bile Duct System," "Biological Topics from Nonbiliary Epithelia," "Malignant Transformation of Cholangiocytes," "Cholangiocyte Proliferation and Death," "Transport Mechanisms in Bile Duct Epithelia," and "Pathobiology of Biliary Epithelia." In the 7 years since the first symposium on this topic, major advances have been made in our understanding of ductal bile formation, including, greater insight into the hormones, intracellular signaling mechanisms, and effector proteins responsible for bile secretion and absorption. More sophisticated imaging technologies have increased our understanding of the polarity of cholangiocytes, their embryology and ultrastructural anatomy, and in vivo human secretory responses to current medical therapy. Information on mediators of inflammation permeated many sessions, having potentially important roles in malignant transformation of cholangiocytes, cholangiocyte apoptosis, fluid and electrolyte transport, and have begun to be specifically characterized for certain biliary diseases, e.g., acquired immunodeficiency syndrome (AIDS) cholangiopathy and graft-versus-host disease (GVHD).
Collapse
Affiliation(s)
- Gianfranco Alpini
- Depaartment of Internal Medicine, Medical Physiology and Central Texas Veterans Health Care System, Temple, TX, USA
| | | | | |
Collapse
|
31
|
Abstract
The objective of this review article is to discuss the role of secretin and its receptor in the regulation of the secretory activity of intrahepatic bile duct epithelial cells (i.e., cholangiocytes). After a brief overview of cholangiocyte functions, we provide an historical background for the role of secretin and its receptor in the regulation of ductal secretion. We review the newly developed experimental in vivo and in vitro tools, which lead to understanding of the mechanisms of secretin regulation of cholangiocyte functions. After a description of the intracellular mechanisms by which secretin stimulates ductal secretion, we discuss the heterogeneous responses of different-sized intrahepatic bile ducts to gastrointestinal hormones. Furthermore, we outline the role of a number of cooperative factors (e.g., nerves, alkaline phosphatase, gastrointestinal hormones, neuropeptides, and bile acids) in the regulation of secretin-stimulated ductal secretion. Finally, we discuss other factors that may also play an important role in the regulation of secretin-stimulated ductal secretion.
Collapse
Affiliation(s)
- N Kanno
- Department of Internal Medicine, Scott & White Hospital and Texas A&M University System Health Science Center, College of Medicine, TX 76504, USA
| | | | | | | |
Collapse
|
32
|
Mennone A, Biemesderfer D, Negoianu D, Yang CL, Abbiati T, Schultheis PJ, Shull GE, Aronson PS, Boyer JL. Role of sodium/hydrogen exchanger isoform NHE3 in fluid secretion and absorption in mouse and rat cholangiocytes. Am J Physiol Gastrointest Liver Physiol 2001; 280:G247-54. [PMID: 11208547 DOI: 10.1152/ajpgi.2001.280.2.g247] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Na+/H+ exchanger (NHE) isoforms play important roles in intracellular pH regulation and in fluid absorption. The isoform NHE3 has been localized to apical surfaces of epithelia and in some tissues may facilitate the absorption of NaCl. To determine whether the apical isoform NHE3 is present in cholangiocytes and to examine whether it has a functional role in cholangiocyte fluid secretion and absorption, immunocytochemical studies were performed in rat liver with NHE3 antibodies and functional studies were obtained in isolated bile duct units from wild-type and NHE3-/- mice after stimulation with forskolin, using videomicroscopic techniques. Our results indicate that NHE3 protein is present on the apical membranes of rat cholangiocytes and on the canalicular membrane of hepatocytes. Western blots also detect NHE3 protein in rat cholangiocytes and isolated canalicular membranes. After stimulation with forskolin, duct units from NHE3-/- mice fail to absorb the secreted fluid from the cholangiocyte lumen compared with control animals. Similar findings were observed in isolated bile duct units from wild-type mice and rats in the presence of the Na+/H+ exchanger inhibitor 5-(N-ethyl-N-isopropyl)-amiloride. In contrast, we could not demonstrate absorption of fluid from the canalicular lumen of mouse or rat hepatocyte couplets after stimulation of secretion with forskolin. These findings indicate that NHE3 is located on the apical membrane of rat cholangiocytes and that this NHE isoform can function to absorb fluid from the lumens of isolated rat and mouse cholangiocyte preparations.
Collapse
Affiliation(s)
- A Mennone
- Liver Center and Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cho WK, Mennone A, Boyer JL. Isolation of functional polarized bile duct units from mouse liver. Am J Physiol Gastrointest Liver Physiol 2001; 280:G241-6. [PMID: 11208546 DOI: 10.1152/ajpgi.2001.280.2.g241] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The development of genetically altered murine animals has generated a need for in vitro systems in the mouse. We have now characterized a novel isolated bile duct unit (IBDU) preparation from the mouse to facilitate such studies. The mouse IBDU is isolated by portal perfusion of collagenase, blunt dissection, further enzymatic digestions, filtering through sized mesh, and culturing on Matrigel for 16-72 h. This mouse IBDU forms a central, enclosed lumen lined by polarized cytokeratin-19-positive cholangiocytes with numerous microvilli on the apical membrane. The IBDU responds to secretory stimuli, including secretin, vasoactive intestinal peptide, IBMX, and forskolin, resulting in expansion of the central lumen from secretion as quantified by videomicroscopy. The secretory response to secretin is dependent on Cl- and HCO3-in the perfusate. These findings indicate that mouse IBDUs are intact, polarized, functional bile duct secretory units that permit quantitative measurements of fluid secretion from mouse bile duct epithelium for the first time. This method should facilitate studies of cholangiocyte secretion in genetically altered murine animal models.
Collapse
Affiliation(s)
- W K Cho
- Division of Gastroenterology/Hepatology, Indiana University School of Medicine, and Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana 46202-5121, USA.
| | | | | |
Collapse
|
34
|
Affiliation(s)
- G LeSage
- Department of Internal Medicine, Scott & White Hospital and The Texas A&M University System Health Science Center, College of Medicine, Temple 76504, USA
| | | | | |
Collapse
|
35
|
Abstract
Cholangiocytes, the cells lining the bile ducts, are now recognized as important contributors to and modulators of bile formation. During the last few years, remarkable insights have been made into the mechanisms of fluid, electrolyte, and solute transport by biliary epithelia, as well as increasing knowledge of the complex endocrine, paracrine, and neurologic factors regulating bile formation. Advances in the past year include an increased understanding of the interaction between bile acids and cholangiocytes in the regulation of bile formation in normal and cholestatic states and greater insight into the pathogenic mechanisms of biliary diseases. References to recent comprehensive reviews of specific areas of biliary physiology are provided, and new experimental models are also described.
Collapse
Affiliation(s)
- R T Prall
- Division of Gastroenterology and Hepatology, Center for Basic Research in Gastrointestinal Disease, Mayo Medical School, Clinic, and Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
36
|
Jansen PL. The pathophysiology of cholestasis with special reference to primary biliary cirrhosis. Best Pract Res Clin Gastroenterol 2000; 14:571-83. [PMID: 10976015 DOI: 10.1053/bega.2000.0104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Cholestasis in primary biliary cirrhosis results from impairment of bile flow either by reduced transport at the level of the canaliculi or by disturbed bile flow through damaged intrahepatic bile ductules. Whatever its cause, the expression of hepatic transport proteins will be affected. In cholestatic rats: the expression of the multispecific organic anion transporter mrp2 is decreased; the bile salt export pump bsep and the phospholipid transporter mdr2 are less affected; the carrier protein for hepatic uptake of bile salts ntcp is sharply down-regulated; Mrp3, a basolateral ATP-dependent transporter for glucuronides and bile salts, is upregulated. Thus, bile salts that cannot exit the hepatocyte because of the cholestasis are effectively removed across the basolateral membrane. These may be adaptive responses in defence against overloading of hepatocytes with cytotoxic bile salts. These responses show that the expression of hepatic transporter proteins is highly regulated. This occurs by transcriptional and post-transcriptional mechanisms. Primary biliary cirrhosis starts as a disease of the small intrahepatic bile ducts and therefore the experimental evidence for 'cross-talk' between hepatocytes and cholangiocytes is of great interest for this disease and needs to be further investigated. New insights in bile physiology may enable the development of new therapies for cholestatic liver diseases as primary biliary cirrhosis.
Collapse
Affiliation(s)
- P L Jansen
- Department of Gastroenterology and Hepatology, University Hospital Groningen, The Netherlands
| |
Collapse
|