1
|
Zheng LF, Ji T, Guo ZH, Wang T, Xiu XL, Liu XY, Li SC, Sun L, Xue H, Zhang Y, Zhu JX. Na+-K+-2Cl- cotransporter 2 located in the human and murine gastric mucosa is involved in secretagogue-induced gastric acid secretion and is downregulated in lipopolysaccharide-treated mice. Eur J Pharmacol 2020; 880:173162. [DOI: 10.1016/j.ejphar.2020.173162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/18/2020] [Accepted: 04/29/2020] [Indexed: 01/07/2023]
|
2
|
Li DT, Habtemichael EN, Julca O, Sales CI, Westergaard XO, DeVries SG, Ruiz D, Sayal B, Bogan JS. GLUT4 Storage Vesicles: Specialized Organelles for Regulated Trafficking. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:453-470. [PMID: 31543708 PMCID: PMC6747935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Fat and muscle cells contain a specialized, intracellular organelle known as the GLUT4 storage vesicle (GSV). Insulin stimulation mobilizes GSVs, so that these vesicles fuse at the cell surface and insert GLUT4 glucose transporters into the plasma membrane. This example is likely one instance of a broader paradigm for regulated, non-secretory exocytosis, in which intracellular vesicles are translocated in response to diverse extracellular stimuli. GSVs have been studied extensively, yet these vesicles remain enigmatic. Data support the view that in unstimulated cells, GSVs are present as a pool of preformed small vesicles, which are distinct from endosomes and other membrane-bound organelles. In adipocytes, GSVs contain specific cargoes including GLUT4, IRAP, LRP1, and sortilin. They are formed by membrane budding, involving sortilin and probably CHC22 clathrin in humans, but the donor compartment from which these vesicles form remains uncertain. In unstimulated cells, GSVs are trapped by TUG proteins near the endoplasmic reticulum - Golgi intermediate compartment (ERGIC). Insulin signals through two main pathways to mobilize these vesicles. Signaling by the Akt kinase modulates Rab GTPases to target the GSVs to the cell surface. Signaling by the Rho-family GTPase TC10α stimulates Usp25m-mediated TUG cleavage to liberate the vesicles from the Golgi. Cleavage produces a ubiquitin-like protein modifier, TUGUL, that links the GSVs to KIF5B kinesin motors to promote their movement to the cell surface. In obesity, attenuation of these processes results in insulin resistance and contributes to type 2 diabetes and may simultaneously contribute to hypertension and dyslipidemia in the metabolic syndrome.
Collapse
Affiliation(s)
- Don T. Li
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT,Department of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT
| | - Estifanos N. Habtemichael
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Omar Julca
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Chloe I. Sales
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Xavier O. Westergaard
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Stephen G. DeVries
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Diana Ruiz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Bhavesh Sayal
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT
| | - Jonathan S. Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, Yale University, New Haven, CT,Department of Cell Biology, Yale University School of Medicine, Yale University, New Haven, CT,To whom all correspondence should be addressed: Jonathan S. Bogan, Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 208020, New Haven, CT 06520-8020; Tel: 203-785-6319; Fax: 203-785-6462;
| |
Collapse
|
3
|
Yao X, Smolka AJ. Gastric Parietal Cell Physiology and Helicobacter pylori-Induced Disease. Gastroenterology 2019; 156:2158-2173. [PMID: 30831083 PMCID: PMC6715393 DOI: 10.1053/j.gastro.2019.02.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
Acidification of the gastric lumen poses a barrier to transit of potentially pathogenic bacteria and enables activation of pepsin to complement nutrient proteolysis initiated by salivary proteases. Histamine-induced activation of the PKA signaling pathway in gastric corpus parietal cells causes insertion of proton pumps into their apical plasma membranes. Parietal cell secretion and homeostasis are regulated by signaling pathways that control cytoskeletal changes required for apical membrane remodeling and organelle and proton pump activities. Helicobacter pylori colonization of human gastric mucosa affects gastric epithelial cell plasticity and homeostasis, promoting epithelial progression to neoplasia. By intervening in proton pump expression, H pylori regulates the abundance and diversity of microbiota that populate the intestinal lumen. We review stimulation-secretion coupling and renewal mechanisms in parietal cells and the mechanisms by which H pylori toxins and effectors alter cell secretory pathways (constitutive and regulated) and organelles to establish and maintain their inter- and intracellular niches. Studies of bacterial toxins and their effector proteins have provided insights into parietal cell physiology and the mechanisms by which pathogens gain control of cell activities, increasing our understanding of gastrointestinal physiology, microbial infectious disease, and immunology.
Collapse
Affiliation(s)
- Xuebiao Yao
- MOE Key Laboratory of Cellular Dynamics, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China; Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia.
| | - Adam J. Smolka
- Gastroenterology and Hepatology Division, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
4
|
Okamoto CT. Regulation of Transporters and Channels by Membrane-Trafficking Complexes in Epithelial Cells. Cold Spring Harb Perspect Biol 2017; 9:a027839. [PMID: 28246186 PMCID: PMC5666629 DOI: 10.1101/cshperspect.a027839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The vectorial secretion and absorption of fluid and solutes by epithelial cells is dependent on the polarized expression of membrane solute transporters and channels at the apical and basolateral membranes. The establishment and maintenance of this polarized expression of transporters and channels are affected by divers protein-trafficking complexes. Moreover, regulation of the magnitude of transport is often under control of physiological stimuli, again through the interaction of transporters and channels with protein-trafficking complexes. This review highlights the value in utilizing transporters and channels as cargo to characterize core trafficking machinery by which epithelial cells establish and maintain their polarized expression, and how this machinery regulates fluid and solute transport in response to physiological stimuli.
Collapse
Affiliation(s)
- Curtis T Okamoto
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|
5
|
Yuan X, Yao PY, Jiang J, Zhang Y, Su Z, Yao W, Wang X, Gui P, Mullen M, Henry C, Ward T, Wang W, Brako L, Tian R, Zhao X, Wang F, Cao X, Wang D, Liu X, Ding X, Yao X. MST4 kinase phosphorylates ACAP4 protein to orchestrate apical membrane remodeling during gastric acid secretion. J Biol Chem 2017; 292:16174-16187. [PMID: 28808054 DOI: 10.1074/jbc.m117.808212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 12/18/2022] Open
Abstract
Digestion in the stomach depends on acidification of the lumen. Histamine-elicited acid secretion is triggered by activation of the PKA cascade, which ultimately results in the insertion of gastric H,K-ATPases into the apical plasma membranes of parietal cells. Our recent study revealed the functional role of PKA-MST4-ezrin signaling axis in histamine-elicited acid secretion. However, it remains uncharacterized how the PKA-MST4-ezrin signaling axis operates the insertion of H,K-ATPases into the apical plasma membranes of gastric parietal cells. Here we show that MST4 phosphorylates ACAP4, an ARF6 GTPase-activating protein, at Thr545 Histamine stimulation activates MST4 and promotes MST4 interaction with ACAP4. ACAP4 physically interacts with MST4 and is a cognate substrate of MST4 during parietal cell activation. The phosphorylation site of ACAP4 by MST4 was mapped to Thr545 by mass spectrometric analyses. Importantly, phosphorylation of Thr545 is essential for acid secretion in parietal cells because either suppression of ACAP4 or overexpression of non-phosphorylatable ACAP4 prevents the apical membrane reorganization and proton pump translocation elicited by histamine stimulation. In addition, persistent overexpression of MST4 phosphorylation-deficient ACAP4 results in inhibition of gastric acid secretion and blockage of tubulovesicle fusion to the apical membranes. Significantly, phosphorylation of Thr545 enables ACAP4 to interact with ezrin. Given the location of Thr545 between the GTPase-activating protein domain and the first ankyrin repeat, we reason that MST4 phosphorylation elicits a conformational change that enables ezrin-ACAP4 interaction. Taken together, these results define a novel molecular mechanism linking the PKA-MST4-ACAP4 signaling cascade to polarized acid secretion in gastric parietal cells.
Collapse
Affiliation(s)
- Xiao Yuan
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China
| | - Phil Y Yao
- the Beijing University of Chinese Medicine, Beijing 100029, China.,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Jiying Jiang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China
| | - Yin Zhang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zeqi Su
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wendy Yao
- the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Xueying Wang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China
| | - Ping Gui
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China
| | - McKay Mullen
- the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Calmour Henry
- the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Tarsha Ward
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Wenwen Wang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Larry Brako
- the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Ruijun Tian
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuannv Zhao
- the Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fengsong Wang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China.,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310.,the Department of Biochemistry, Anhui Medical University, Hefei 230027, China, and
| | - Xinwang Cao
- the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310.,the Department of Biochemistry, Anhui Medical University, Hefei 230027, China, and
| | - Dongmei Wang
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China
| | - Xing Liu
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China, .,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Xia Ding
- the Beijing University of Chinese Medicine, Beijing 100029, China,
| | - Xuebiao Yao
- From the BUCM-USTC Collaborative Center for Parietal Cell Research, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, China, .,the Keck Center for Cellular Dynamics, Morehouse School of Medicine, Atlanta, Georgia 30310
| |
Collapse
|
6
|
Jiang H, Wang W, Zhang Y, Yao WW, Jiang J, Qin B, Yao WY, Liu F, Wu H, Ward TL, Chen CW, Liu L, Ding X, Liu X, Yao X. Cell Polarity Kinase MST4 Cooperates with cAMP-dependent Kinase to Orchestrate Histamine-stimulated Acid Secretion in Gastric Parietal Cells. J Biol Chem 2015; 290:28272-28285. [PMID: 26405038 DOI: 10.1074/jbc.m115.668855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 01/13/2023] Open
Abstract
The digestive function of the stomach depends on acidification of the gastric lumen. Acid secretion into the lumen is triggered by activation of the PKA cascade, which ultimately results in the insertion of gastric H,K-ATPases into the apical plasma membranes of parietal cells. A coupling protein is ezrin, whose phosphorylation at Ser-66 by PKA is required for parietal cell activation. However, little is known regarding the molecular mechanism(s) by which this signaling pathway operates in gastric acid secretion. Here we show that PKA cooperates with MST4 to orchestrate histamine-elicited acid secretion by phosphorylating ezrin at Ser-66 and Thr-567. Histamine stimulation activates PKA, which phosphorylates MST4 at Thr-178 and then promotes MST4 kinase activity. Interestingly, activated MST4 then phosphorylates ezrin prephosphorylated by PKA. Importantly, MST4 is important for acid secretion in parietal cells because either suppression of MST4 or overexpression of non-phosphorylatable MST4 prevents the apical membrane reorganization and proton pump translocation elicited by histamine stimulation. In addition, overexpressing MST4 phosphorylation-deficient ezrin results in an inhibition of gastric acid secretion. Taken together, these results define a novel molecular mechanism linking the PKA-MST4-ezrin signaling cascade to polarized epithelial secretion in gastric parietal cells.
Collapse
Affiliation(s)
- Hao Jiang
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
| | - Wenwen Wang
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China,; Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Atlanta, Georgia 30310
| | - Yin Zhang
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China,; Beijing University of Chinese Medicine, Beijing 100029, China
| | - William W Yao
- Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Atlanta, Georgia 30310
| | - Jiying Jiang
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
| | - Bo Qin
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China,; Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Atlanta, Georgia 30310
| | - Wendy Y Yao
- Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Atlanta, Georgia 30310
| | - Fusheng Liu
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China,; Beijing University of Chinese Medicine, Beijing 100029, China; Airforce General Hospital, Beijing 100036, China
| | - Huihui Wu
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China,; Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Atlanta, Georgia 30310
| | - Tarsha L Ward
- Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Atlanta, Georgia 30310
| | - Chun Wei Chen
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China
| | - Lifang Liu
- Airforce General Hospital, Beijing 100036, China
| | - Xia Ding
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China,; Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Xing Liu
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China,; Molecular Imaging Center, Atlanta Clinical and Translational Science Institute, Atlanta, Georgia 30310.
| | - Xuebiao Yao
- BUCM-USTC Joint Program in Cellular Dynamics and Anhui Key Laboratory for Cellular Dynamics, University of Science and Technology of China, Hefei 230027, China,.
| |
Collapse
|
7
|
Yu H, Zhou J, Takahashi H, Yao W, Suzuki Y, Yuan X, Yoshimura SH, Zhang Y, Liu Y, Emmett N, Bond V, Wang D, Ding X, Takeyasu K, Yao X. Spatial control of proton pump H,K-ATPase docking at the apical membrane by phosphorylation-coupled ezrin-syntaxin 3 interaction. J Biol Chem 2014; 289:33333-42. [PMID: 25301939 PMCID: PMC4246090 DOI: 10.1074/jbc.m114.581280] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 10/08/2014] [Indexed: 11/06/2022] Open
Abstract
The digestive function of the stomach depends on acidification of the gastric lumen. Acid secretion into the lumen is triggered by activation of a cAMP-dependent protein kinase (PKA) cascade, which ultimately results in the insertion of gastric H,K-ATPases into the apical plasma membranes of parietal cells. A coupling protein is ezrin whose phosphorylation at Ser-66 by PKA is required for parietal cell activation. However, little is known regarding the molecular mechanism(s) by which ezrin operates in gastric acid secretion. Here we show that phosphorylation of Ser-66 induces a conformational change of ezrin that enables its association with syntaxin 3 (Stx3) and provides a spatial cue for H,K-ATPase trafficking. This conformation-dependent association is specific for Stx3, and the binding interface is mapped to the N-terminal region. Biochemical analyses show that inhibition of ezrin phosphorylation at Ser-66 prevents ezrin-Stx3 association and insertion of H,K-ATPase into the apical plasma membrane of parietal cells. Using atomic force microscopic analyses, our study revealed that phosphorylation of Ser-66 induces unfolding of ezrin molecule to allow Stx3 binding to its N terminus. Given the essential role of Stx3 in polarized secretion, our study presents the first evidence in which phosphorylation-induced conformational rearrangement of the ezrin molecule provides a spatial cue for polarized membrane trafficking in epithelial cells.
Collapse
Affiliation(s)
- Huijuan Yu
- From the Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China School of Life Science, Hefei, China 230027
| | - Jiajia Zhou
- From the Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China School of Life Science, Hefei, China 230027, Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Hirohide Takahashi
- Laboratory of Plasma Membrane, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - William Yao
- Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Yuki Suzuki
- Laboratory of Plasma Membrane, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Xiao Yuan
- From the Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China School of Life Science, Hefei, China 230027
| | - Shige H Yoshimura
- Laboratory of Plasma Membrane, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yin Zhang
- From the Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China School of Life Science, Hefei, China 230027, Graduate School, Beijing University of Chinese Medicine, Beijing 100086, China
| | - Ya Liu
- From the Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China School of Life Science, Hefei, China 230027
| | | | - Vincent Bond
- Morehouse School of Medicine, Atlanta, Georgia 30310, and
| | - Dongmei Wang
- From the Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China School of Life Science, Hefei, China 230027
| | - Xia Ding
- Graduate School, Beijing University of Chinese Medicine, Beijing 100086, China
| | - Kunio Takeyasu
- Laboratory of Plasma Membrane, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan,
| | - Xuebiao Yao
- From the Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, University of Science and Technology of China School of Life Science, Hefei, China 230027,
| |
Collapse
|
8
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
9
|
Kasai H, Takahashi N, Tokumaru H. Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis. Physiol Rev 2012; 92:1915-64. [DOI: 10.1152/physrev.00007.2012] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The dynamics of exocytosis are diverse and have been optimized for the functions of synapses and a wide variety of cell types. For example, the kinetics of exocytosis varies by more than five orders of magnitude between ultrafast exocytosis in synaptic vesicles and slow exocytosis in large dense-core vesicles. However, in all cases, exocytosis is mediated by the same fundamental mechanism, i.e., the assembly of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins. It is often assumed that vesicles need to be docked at the plasma membrane and SNARE proteins must be preassembled before exocytosis is triggered. However, this model cannot account for the dynamics of exocytosis recently reported in synapses and other cells. For example, vesicles undergo exocytosis without prestimulus docking during tonic exocytosis of synaptic vesicles in the active zone. In addition, epithelial and hematopoietic cells utilize cAMP and kinases to trigger slow exocytosis of nondocked vesicles. In this review, we summarize the manner in which the diversity of exocytosis reflects the initial configurations of SNARE assembly, including trans-SNARE, binary-SNARE, unitary-SNARE, and cis-SNARE configurations. The initial SNARE configurations depend on the particular SNARE subtype (syntaxin, SNAP25, or VAMP), priming proteins (Munc18, Munc13, CAPS, complexin, or snapin), triggering proteins (synaptotagmins, Doc2, and various protein kinases), and the submembraneous cytomatrix, and they are the key to determining the kinetics of subsequent exocytosis. These distinct initial configurations will help us clarify the common SNARE assembly processes underlying exocytosis and membrane trafficking in eukaryotic cells.
Collapse
Affiliation(s)
- Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| | - Hiroshi Tokumaru
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; and Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa, Japan
| |
Collapse
|
10
|
|
11
|
Volume density, distribution, and ultrastructure of secretory and basolateral membranes and mitochondria predict parietal cell secretory (dys)function. J Biomed Biotechnol 2010; 2010:394198. [PMID: 20339514 PMCID: PMC2842899 DOI: 10.1155/2010/394198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/03/2009] [Accepted: 12/07/2009] [Indexed: 11/24/2022] Open
Abstract
Acid secretion in gastric parietal cells requires highly coordinated membrane transport and vesicle trafficking. Histologically, consensus defines acid secretion as the ratio of the volume density (Vd) of canalicular and apical membranes (CAMs) to tubulovesicular (TV) membranes, a value which varies widely under normal conditions. Examination of numerous achlorhydric mice made it clear that this paradigm is discrepant when used to assess most mice with genetic mutations affecting acid secretion. Vd of organelles in parietal cells of 6 genetically engineered mouse strains was obtained to identify a stable histological phenotype of acid secretion. We confirmed that CAM to TV ratio fairly represented secretory activity in untreated and secretion-inhibited wild-type (WT) mice and in NHE2−/− mice as well, though the response was significantly attenuated in the latter. However, high CAM to TV ratios wrongly posed as active acid secretion in AE2−/−, GHKAα−/−, and NHE4−/− mice. Achlorhydric genotypes also had a significantly higher Vd of basolateral membrane than WT mice, and reduced Vd of mitochondria and canaliculi. The Vd of mitochondria, and ratio of the Vd of basolateral membranes/Vd of mitochondria were preferred predictors of the level of acid secretion. Alterations in acid secretion, then, cause significant changes not only in the Vd of secretory membranes but also in mitochondria and basolateral membranes.
Collapse
|
12
|
Affiliation(s)
- John G. Forte
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720;
| | - Lixin Zhu
- Department of Pediatrics, Digestive Disease and Nutrition Center, The State University of New York, Buffalo, New York 14214;
| |
Collapse
|
13
|
Schubert ML, D. Kaunitz J. Gastric Secretion. SLEISENGER AND FORDTRAN'S GASTROINTESTINAL AND LIVER DISEASE 2010:817-832.e7. [DOI: 10.1016/b978-1-4160-6189-2.00049-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Gliddon BL, Nguyen NV, Gunn PA, Gleeson PA, van Driel IR. Isolation, culture and adenoviral transduction of parietal cells from mouse gastric mucosa. Biomed Mater 2008; 3:034117. [DOI: 10.1088/1748-6041/3/3/034117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Schubert ML, Peura DA. Control of gastric acid secretion in health and disease. Gastroenterology 2008; 134:1842-60. [PMID: 18474247 DOI: 10.1053/j.gastro.2008.05.021] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 04/28/2008] [Indexed: 12/16/2022]
Abstract
Recent milestones in the understanding of gastric acid secretion and treatment of acid-peptic disorders include the (1) discovery of histamine H(2)-receptors and development of histamine H(2)-receptor antagonists, (2) identification of H(+)K(+)-ATPase as the parietal cell proton pump and development of proton pump inhibitors, and (3) identification of Helicobacter pylori as the major cause of duodenal ulcer and development of effective eradication regimens. This review emphasizes the importance and relevance of gastric acid secretion and its regulation in health and disease. We review the physiology and pathophysiology of acid secretion as well as evidence regarding its inhibition in the management of acid-related clinical conditions.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Department of Medicine, Division of Gastroenterology, Virginia Commonwealth University's Medical College of Virginia, McGuire Veterans Affairs Medical Center, Richmond, Virginia 23249, USA.
| | | |
Collapse
|
16
|
Liu Y, Wang D, Ding X, Deng H, Feng M, Yu X, Jiang K, Ward T, Guo Z, Forte J, Yao X. A mechanism of Munc18b-syntaxin 3-SNAP25 complex assembly in regulated epithelial secretion. FEBS Lett 2007; 581:4318-24. [PMID: 17716669 PMCID: PMC3690314 DOI: 10.1016/j.febslet.2007.07.083] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 07/01/2007] [Accepted: 07/31/2007] [Indexed: 01/14/2023]
Abstract
Syntaxin and Munc18 are essential for regulated exocytosis in all eukaryotes. It was shown that Munc18 inhibition of neuronal syntaxin 1 can be overcome by CDK5 phosphorylation, indicating that structural change disrupts the syntaxin-Munc18 interaction. Here, we show that this phosphorylation promotes the assembly of Munc18b-syntaxin 3-SNAP25 tripartite complex and membrane fusion machinery SNARE. Using siRNAs to screen for genes required for regulated epithelial secretion, we identified the requirements of CDK5 and Munc18b in cAMP-dependent gastric acid secretion. Biochemical characterization revealed that Munc18b bears a syntaxin 3-selective binding site located at its most C-terminal 53 amino acids. Significantly, the phosphorylation of Thr572 by CDK5 attenuates Munc18b-syntaxin 3 interaction and promotes formation of Munc18b-syntaxin 3-SNAP25 tripartite complex, leading to an assembly of functional Munc18b-syntaxin 3-SNAP25-VAMP2 membrane fusion machinery. Thus, our studies suggest a novel regulatory mechanism in which phosphorylation of Munc18b operates vesicle docking and fusion in regulated exocytosis.
Collapse
Affiliation(s)
- Ya Liu
- Cellular Dynamics, Hefei National Laboratory & University of Science & Technology of China, Hefei, CHINA 230027
| | - Dongmei Wang
- Cellular Dynamics, Hefei National Laboratory & University of Science & Technology of China, Hefei, CHINA 230027
- Department of Medicine, Beijing University of Chinese Medicine, Beijing, China 100029
| | - Xia Ding
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310
| | - Hui Deng
- Cellular Dynamics, Hefei National Laboratory & University of Science & Technology of China, Hefei, CHINA 230027
| | - Mingye Feng
- Cellular Dynamics, Hefei National Laboratory & University of Science & Technology of China, Hefei, CHINA 230027
| | - Xue Yu
- Cellular Dynamics, Hefei National Laboratory & University of Science & Technology of China, Hefei, CHINA 230027
| | - Kai Jiang
- Cellular Dynamics, Hefei National Laboratory & University of Science & Technology of China, Hefei, CHINA 230027
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310
| | - Tarsha Ward
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310
| | - Zhen Guo
- Cellular Dynamics, Hefei National Laboratory & University of Science & Technology of China, Hefei, CHINA 230027
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310
| | - John Forte
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Xuebiao Yao
- Cellular Dynamics, Hefei National Laboratory & University of Science & Technology of China, Hefei, CHINA 230027
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310
- All correspondence addressed to: Xuebiao Yao,
| |
Collapse
|
17
|
Wojtal KA, de Vries E, Hoekstra D, van IJzendoorn SC. Efficient trafficking of MDR1/P-glycoprotein to apical canalicular plasma membranes in HepG2 cells requires PKA-RIIalpha anchoring and glucosylceramide. Mol Biol Cell 2006; 17:3638-50. [PMID: 16723498 PMCID: PMC1525225 DOI: 10.1091/mbc.e06-03-0230] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In hepatocytes, cAMP/PKA activity stimulates the exocytic insertion of apical proteins and lipids and the biogenesis of bile canalicular plasma membranes. Here, we show that the displacement of PKA-RIIalpha from the Golgi apparatus severely delays the trafficking of the bile canalicular protein MDR1 (P-glycoprotein), but not that of MRP2 (cMOAT), DPP IV and 5'NT, to newly formed apical surfaces. In addition, the direct trafficking of de novo synthesized glycosphingolipid analogues from the Golgi apparatus to the apical surface is inhibited. Instead, newly synthesized glucosylceramide analogues are rerouted to the basolateral surface via a vesicular pathway, from where they are subsequently endocytosed and delivered to the apical surface via transcytosis. Treatment of HepG2 cells with the glucosylceramide synthase inhibitor PDMP delays the appearance of MDR1, but not MRP2, DPP IV, and 5'NT at newly formed apical surfaces, implicating glucosylceramide synthesis as an important parameter for the efficient Golgi-to-apical surface transport of MDR1. Neither PKA-RIIalpha displacement nor PDMP inhibited (cAMP-stimulated) apical plasma membrane biogenesis per se, suggesting that other cAMP effectors may play a role in canalicular development. Taken together, our data implicate the involvement of PKA-RIIalpha anchoring in the efficient direct apical targeting of distinct proteins and glycosphingolipids to newly formed apical plasma membrane domains and suggest that rerouting of Golgi-derived glycosphingolipids may underlie the delayed Golgi-to-apical surface transport of MDR1.
Collapse
Affiliation(s)
- Kacper A. Wojtal
- Section of Membrane Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Erik de Vries
- Section of Membrane Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Dick Hoekstra
- Section of Membrane Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Sven C.D. van IJzendoorn
- Section of Membrane Cell Biology, Department of Cell Biology, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
18
|
Ortiz PA. cAMP increases surface expression of NKCC2 in rat thick ascending limbs: role of VAMP. Am J Physiol Renal Physiol 2005; 290:F608-16. [PMID: 16144963 DOI: 10.1152/ajprenal.00248.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
NaCl absorption by the thick ascending limb of Henle's loop (TAL) is mediated by the apical Na-K-2Cl cotransporter NKCC2. cAMP increases NaCl absorption in the TAL by stimulating NKCC2. In oocytes, cAMP increases NKCC2 activity by regulating its trafficking. However, the mechanism by which cAMP stimulates NKCC2 in TALs is not clear. We hypothesized that cAMP increases surface expression of NKCC2 and NaCl absorption in TALs and that vesicle-associated membrane protein (VAMP) is involved in this mechanism. We used surface biotinylation of rat medullary TALs (mTAL) to examine surface and total NKCC2 levels. When mTAL suspensions were treated with dibutyryl cAMP (db-cAMP) or forskolin plus IBMX for 20 min, surface NKCC2 expression increased by 126 +/- 23 and 92 +/- 17% above basal, respectively (P < 0.03). No changes in total NKCC2 expression were observed, suggesting that cAMP increased translocation of NKCC2. We studied the role of VAMP in NKCC2 translocation and found that incubating mTALs with tetanus toxin (30 nM), which inhibits vesicle trafficking by inactivating VAMP-2 and -3, completely blocked the stimulatory effect of db-cAMP on surface NKCC2 expression (tetanus toxin = 100% vs. tetanus toxin + db-cAMP = 102 +/- 21% of control; not significant). We studied VAMP-2 and -3 expression and localization in isolated perfused TALs by confocal microscopy and found that both of them were located in the subapical space of the TAL. Finally, in isolated perfused mTALs, db-cAMP increased net Cl absorption by 95.0 +/- 34.8% (P < 0.03), and pretreatment of TALs with tetanus toxin blocked the stimulation of Cl absorption (from 110.9 +/- 15.9 to 109.7 +/- 15.6 pmol.min(-1).mm(-1); not significant). We concluded that cAMP increases NKCC2 surface expression by a mechanism involving VAMP and that NKCC2 trafficking to the apical membrane is involved in the stimulation of TAL NaCl absorption by cAMP.
Collapse
Affiliation(s)
- Pablo A Ortiz
- Hypertension and Vascular Research Division, Dept. of Internal Medicine, Henry Ford Hospital, 2799 W. Grand Blvd., Detroit, MI 48202, USA.
| |
Collapse
|
19
|
Karvar S, Zhu L, Crothers J, Wong W, Turkoz M, Forte JG. Cellular Localization and Stimulation-Associated Distribution Dynamics of Syntaxin-1 and Syntaxin-3 in Gastric Parietal Cells. Traffic 2005; 6:654-66. [PMID: 15998321 DOI: 10.1111/j.1600-0854.2005.00306.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Syntaxins are differentially localized in polarized cells and play an important role in vesicle trafficking and membrane fusion. These soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are believed to be involved in tubulovesicle trafficking and membrane fusion during the secretory cycle of the gastric parietal cell. We examined the cellular localization and distribution of syntaxin-1 and syntaxin-3 in rabbit parietal cells. Fractionation of gastric epithelial cell membranes showed that syntaxin-1 was more abundant in a fraction enriched in apical plasma membranes, whereas syntaxin-3 was found predominantly in the H,K-ATPase-rich tubulovesicle fraction. We also examined the cellular localization of syntaxins in cultured parietal cells. Parietal cells were infected with CFP-syntaxin-1 and CFP-syntaxin-3 adenoviral constructs. Fluorescence microscopy of live and fixed cells demonstrated that syntaxin-1 was primarily on the apical membrane vacuoles of infected cells, but there was also the expression of syntaxin-1 in a subadjacent cytoplasmic compartment. In resting, non-secreting parietal cells, syntaxin-3 was distributed throughout the cytoplasmic compartment; after stimulation, syntaxin-3 translocated to the apical membrane vacuoles, there co-localizing with H,K-ATPase, syntaxin-1 and F-actin. The differential location of these syntaxin isoforms in gastric parietal cells suggests that these proteins may be critical for maintaining membrane compartment identity and that they may play important, but somewhat different, roles in the membrane recruitment processes associated with secretory activation.
Collapse
Affiliation(s)
- Serhan Karvar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
20
|
Zhu L, Liu Y, Forte JG. Ezrin oligomers are the membrane-bound dormant form in gastric parietal cells. Am J Physiol Cell Physiol 2005; 288:C1242-54. [PMID: 15788482 DOI: 10.1152/ajpcell.00521.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ezrin is a member of ezrin, radixin, moesin (ERM) protein family that links F-actin to membranes. The NH(2)- and COOH-terminal association domains of ERM proteins, known respectively as N-ERMAD and C-ERMAD, participate in interactions with membrane proteins and F-actin, and intramolecular and intermolecular interactions within and among ERM proteins. In gastric parietal cells, ezrin is heavily represented on the apical membrane and is associated with cell activation. Ezrin-ezrin interactions are presumably involved in functional regulation of ezrin and thus became a subject of our study. Fluorescence resonance energy transfer (FRET) was examined with cyan fluorescent protein (CFP)- and yellow fluorescent protein (YFP)-tagged ezrin incorporated into HeLa cells and primary cultures of parietal cells. Constructs included YFP at the NH(2) terminus of ezrin (YFP-Ez), CFP at the COOH terminus of ezrin (Ez-CFP), and double-labeled ezrin (N-YFP-ezrin-CFP-C). FRET was probed using fluorescence microscopy and spectrofluorometry. Evidence of ezrin oligomer formation was found using FRET in cells coexpressing Ez-CFP and YFP-Ez and by performing coimmunoprecipitation of endogenous ezrin with fluorescent protein-tagged ezrin. Thus intermolecular NH(2)- and COOH-terminal association domain (N-C) binding in vivo is consistent with the findings of earlier in vitro studies. After the ezrin oligomers were separated from monomers, FRET was observed in both forms, indicating intramolecular and intermolecular N-C binding. When the distribution of native ezrin as oligomers vs. monomers was examined in resting and maximally stimulated parietal cells, a shift of ezrin oligomers to the monomeric form was correlated with stimulation, suggesting that ezrin oligomers are the membrane-bound dormant form in gastric parietal cells.
Collapse
Affiliation(s)
- Lixin Zhu
- Department of Molecular and Cell Biology, University. of California, 245 Life Sciences Addition, MC 3200, Berkeley, CA 94720-3200, USA
| | | | | |
Collapse
|
21
|
Konturek PC, Konturek SJ, Ochmański W. Neuroendocrinology of gastric H+ and duodenal HCO3- secretion: the role of brain-gut axis. Eur J Pharmacol 2005; 499:15-27. [PMID: 15363947 DOI: 10.1016/j.ejphar.2004.06.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 06/21/2004] [Accepted: 06/30/2004] [Indexed: 01/10/2023]
Abstract
Gastric H+ and duodenal HCO3- secretions are precisely regulated by neuro-hormonal mechanisms at central and peripheral levels to match the rate of these secretions with the type of stimulation of sensory receptors in the head area (sight, smell, taste, etc.) and in the gastro-intestinal system. Two-way communication pathways operate between the brain and the gut, each comprising afferent fibers signaling sensory information from the gut to the brain and efferent fibers transmitting signals in opposite direction. Short intramural and long extramural reflexes are triggered as well as various gut hormones are released by feeding that "cooperate" with the "brain-gut axis" in the alteration of exocrine and endocrine gastro-duodenal secretion, motility and blood circulation. The malfunction of gastric or duodenal secretory mechanisms may lead to disturbances of gastric H+-pepsin or duodenal mucus-HCO3- secretion and to gastro-duodenal disorders and diseases. This review presents recent advances in pathophysiological mechanisms underlying gastro-duodenal secretory disorders.
Collapse
Affiliation(s)
- Peter C Konturek
- Department of Medicine, University Erlangen-Nuremberg, Erlangen, Germany
| | | | | |
Collapse
|
22
|
Wang L, Kolachala V, Walia B, Balasubramanian S, Hall RA, Merlin D, Sitaraman SV. Agonist-induced polarized trafficking and surface expression of the adenosine 2b receptor in intestinal epithelial cells: role of SNARE proteins. Am J Physiol Gastrointest Liver Physiol 2004; 287:G1100-7. [PMID: 15256361 DOI: 10.1152/ajpgi.00164.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adenosine, acting through the A2b receptor, induces vectorial chloride and IL-6 secretion in intestinal epithelia and may play an important role in intestinal inflammation. We have previously shown that apical or basolateral adenosine receptor stimulation results in the recruitment of the A2b receptor to the plasma membrane. In this study, we examined domain specificity of recruitment and the role of soluble N-ethylmaleimide (NEM) attachment receptor (SNARE) proteins in the agonist-mediated recruitment of the A2b receptor to the membrane. The colonic epithelial cell line T84 was used because it only expresses the A2b-subtype adenosine receptor. Cell fractionation, biotinylation, and electron microscopic studies showed that the A2b receptor is intracellular at rest and that apical or basolateral adenosine stimulation resulted in the recruitment of the receptor to the apical membrane. Upon agonist stimulation, the A2b receptor is enriched in the vesicle fraction containing vesicle-associated membrane protein (VAMP)-2. Furthermore, in cells stimulated with apical or basolateral adenosine, we demonstrate a complex consisting of VAMP-2, soluble NEM-sensitive factor attachment protein (SNAP)-23, and A2b receptor that is coimmunoprecipitated in cells stimulated with adenosine within 5 min and is no longer detected within 15 min. Inhibition of trafficking with NEM or nocodazole inhibits cAMP synthesis induced by apical or basolateral adenosine by 98 and 90%, respectively. cAMP synthesis induced by foskolin was not affected, suggesting that generalized signaling is not affected under these conditions. Collectively, our data suggest that 1) the A2b receptor is intracellular at rest; 2) apical or basolateral agonist stimulation induces recruitment of the A2b receptor to the apical membrane; 3) the SNARE proteins, VAMP-2 and SNAP-23, participate in the recruitment of the A2b receptor; and 4) the SNARE-mediated recruitment of the A2b receptor may be required for its signaling.
Collapse
Affiliation(s)
- Lixin Wang
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Gastric acid facilitates the digestion of protein and the absorption of iron, calcium, and vitamin B12. It also protects against bacterial overgrowth and enteric infection, including prion disease. When homeostatic mechanisms malfunction, the volume and concentration of acid may overwhelm mucosal defense mechanisms, leading to duodenal ulcer, gastric ulcer, and gastroesophageal reflux disease. This article reviews recent knowledge contributing to understanding of the regulation of gastric acid secretion at the central, peripheral, and intracellular levels. RECENT FINDINGS The vagus nerve contains afferent fibers that transmit sensory information from the stomach to the nucleus of the solitary tract. Input from the nucleus of the solitary tract is relayed to vagal efferent neurons that originate from two brain stem nuclei: the nucleus ambiguus and the dorsal motor nucleus of the vagus. The latter is also influenced by thyrotropin-releasing hormone neurons that act centrally to stimulate acid secretion. The main peripheral stimulants of acid secretion are the hormone gastrin and the paracrine amine histamine. Gastrin stimulates acid secretion directly and, more importantly, indirectly by releasing histamine from fundic enterochromaffin-like cells. Gastrin also exerts trophic effects on various tissues, including the gastric and intestinal mucosa. The main inhibitor of acid secretion is somatostatin. Somatostatin, acting via ssTR2 receptors, exerts a tonic paracrine inhibitory influence on the secretion of gastrin, histamine, and acid secretion. Calcitonin gene-related peptide, adrenomedullin, amylin, atrial natriuretic peptide, and pituitary adenylate cyclase-activating polypeptide all stimulate somatostatin secretion and thus inhibit acid secretion. HK-ATPase, the proton pump of the parietal cell, is stored within cytoplasmic tubulovesicles during the resting state, but during stimulation, it is shuttled to the canalicular membrane by a poorly understood mechanism that probably involves soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins. The proton pump inhibitor, pantoprazole, is unique in that it binds cysteine 822, located deep within the membrane domain of the alpha-subunit. The difficulty that reducing agents, such as glutathione, have in reaching cysteine 822 may be responsible for the longer half-time for acid recovery observed with pantoprazole. Hypergastrinemia, induced by proton pump inhibitors, enhances expression of cyclooxygenase-2 and hence prostaglandins within parietal cells, a feedback pathway that may protect the stomach against acid-induced damage. SUMMARY In the past year, significant advances have been made in understanding of the regulation of gastric acid secretion. Ultimately, these advances should lead to improved therapies to prevent and treat acid-related disorders. Gastric acid secretion must be precisely controlled at a variety of levels to prevent disease caused by hyperchlorhydria and hypochlorhydria. The mechanisms include neural (central and peripheral), hormonal, paracrine, and intracellular pathways that operate in concert to switch acid secretion on during ingestion of a meal and off during the interdigestive period. A better understanding of the physiology of acid secretion in health and disease should eventually lead to improved therapies to prevent and treat acid-related disorders.
Collapse
Affiliation(s)
- Mitchell L Schubert
- Department of Medicine, Division of Gastroenterology, Medical College of Virginia and McGuire VAMC, Richmond, Virginia, USA.
| |
Collapse
|
24
|
Abstract
Soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE) proteins have been at the fore-front of research on biological membrane fusion for some time. The subcellular localization of SNAREs and their ability to form the so-called SNARE complex may be integral to determining the specificity of intracellular fusion (the SNARE hypothesis) and/or serving as the minimal fusion machinery. Both the SNARE hypothesis and the idea of the minimal fusion machinery have been challenged by a number of experimental observations in various model systems, suggesting that SNAREs may have other functions. Considering recent advances in the SNARE literature, it appears that SNAREs may actually function as part of a complex fusion "machine." Their role in the machinery could be any one or a combination of roles, including establishing tight membrane contact, formation of a scaffolding on which to build the machine, binding of lipid surfaces, and many others. It is also possible that complexations other than the classic SNARE complex participate in membrane fusion.
Collapse
Affiliation(s)
- Joseph G Duman
- Department of Molecular and Cell Biology, Univ. of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
25
|
Abstract
Acid secretion by the gastric parietal cell is regulated by paracrine, endocrine, and neural pathways. The physiological stimuli include histamine, acetylcholine, and gastrin via their receptors located on the basolateral plasma membranes. Stimulation of acid secretion typically involves an initial elevation of intracellular calcium and/or cAMP followed by activation of a cAMP-dependent protein kinase cascade that triggers the translocation and insertion of the proton pump enzyme, H,K-ATPase, into the apical plasma membrane of parietal cells. Whereas the H,K-ATPase contains a plasma membrane targeting motif, the stimulation-mediated relocation of the H,K-ATPase from the cytoplasmic membrane compartment to the apical plasma membrane is mediated by a SNARE protein complex and its regulatory proteins. This review summarizes the progress made toward an understanding of the cell biology of gastric acid secretion. In particular we have reviewed the early signaling events following histaminergic and cholinergic activation, the identification of multiple factors participating in the trafficking and recycling of the proton pump, and the role of the cytoskeleton in supporting the apical pole remodeling, which appears to be necessary for active acid secretion by the parietal cell. Emphasis is placed on identifying protein factors that serve as effectors for the mechanistic changes associated with cellular activation and the secretory response.
Collapse
Affiliation(s)
- Xuebiao Yao
- Department of Molecular and Cell Biology University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
26
|
Karvar S, Yao X, Crothers JM, Liu Y, Forte JG. Localization and function of soluble N-ethylmaleimide-sensitive factor attachment protein-25 and vesicle-associated membrane protein-2 in functioning gastric parietal cells. J Biol Chem 2002; 277:50030-5. [PMID: 12386166 DOI: 10.1074/jbc.m207694200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor attachment protein of 25 kDa (SNAP-25) plays an important role in vesicle trafficking. Together with vesicle-associated membrane protein-2 (VAMP-2) and syntaxin, SNAP-25 forms a ternary complex implicated in docking and fusion of secretory vesicles with the plasma membrane during exocytosis. These so-called SNARE proteins are believed to regulate tubulovesicle trafficking and fusion during the secretory cycle of the gastric parietal cell. Here we examined the cellular localization and functional importance of SNAP-25 in parietal cell cultures. Adenoviral constructs were used to express SNAP-25 tagged with cyan fluorescent protein, VAMP-2 tagged with yellow fluorescent protein, and SNAP-25 in which the C-terminal 25 amino acids were deleted (SNAP-25 Delta181-206). Membrane fractionation experiments and fluorescent imaging showed that SNAP-25 is localized to the apical plasma membrane. The expression of the mutant SNAP-25 Delta181-226 inhibited the acid secretory response of parietal cells. Also, SNAP Delta181-226 bound poorly in vitro with recombinant syntaxin-1 compared with wild type SNAP-25, indicating that pairing between syntaxin-1 and SNAP-25 is required for parietal cell activation. Dual expression of SNAP-25 tagged with cyan fluorescent protein and VAMP-2 tagged with yellow fluorescent protein revealed a dynamic change in distribution associated with acid secretion. In resting cells, SNAP-25 is at the apical plasma membrane and VAMP-2 is associated with cytoplasmic H,K-ATPase-rich tubulovesicles. After stimulation, the two proteins co-localize on the apical plasma membrane. These data demonstrate the functional significance of SNAP-25 as a SNARE protein in the parietal cell and show the dynamic stimulation-associated redistribution of VAMP-2 from H,K-ATPase-rich tubulovesicles to co-localize with SNAP-25 on the apical plasma membrane.
Collapse
Affiliation(s)
- Serhan Karvar
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|