1
|
Aalinkeel R, Quigg RJ, Alexander J. The complement system and kidney cancer: pathogenesis to clinical applications. J Clin Invest 2025; 135:e188351. [PMID: 40309765 PMCID: PMC12043091 DOI: 10.1172/jci188351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Kidney cancer poses unique clinical challenges because of its resistance to conventional treatments and its tendency to metastasize. The kidney is particularly susceptible to dysfunction of the complement system, an immune network that tumors often exploit. Recent discoveries have highlighted that the complement system not only plays a crucial role in immune surveillance and defense in the circulatory system, but also functions intracellularly and autonomously. This concept has shifted the focus of investigation toward understanding how complement proteins influence cancer progression by regulating the tumor microenvironment (TME), cell signaling, proliferation, metabolism, and the immune response. With the complement system and its inhibitors emerging as a promising new class of immunotherapeutics and potential complement-targeted treatments advancing through development pipelines and clinical trials, this Review provides a timely examination of how harnessing the complement system could lead to effective tumor treatments and how to strategically combine complement inhibitors with other cancer treatments, offering renewed hope in the fight against kidney cancer.
Collapse
|
2
|
Hirose T, Hotta K, Otsuka R, Seino KI. Mechanism and regulation of the complement activity in kidney xenotransplantation. Transplant Rev (Orlando) 2025; 39:100931. [PMID: 40233672 DOI: 10.1016/j.trre.2025.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025]
Abstract
Xenotransplantation is emerging as one of several potential solutions for addressing organ donor shortages, with significant progress bringing it closer to clinical application. However, challenges remain, particularly concerning complement system dysregulation caused by species differences, as well as xenoantigens and coagulopathy. Complement regulatory proteins expressed on endothelial cells of donor xenografts are less compatible with complement components in recipients. These difficulties contribute to hyperacute rejection, characterized by antibody-mediated complement activation that destroys the graft within 24 h. Moreover, because molecules are incompatible across different species, ischemia-reperfusion injury or infection can easily elicit complement activity via all three pathways, resulting in xenograft loss via complement-mediated vascular injury. Complement activity also stimulate innate and adaptive immune cells. To address this issue, genetic modifications in donor pigs and the development of novel medicines have been tested in preclinical models with promising results. Pigs modified to express human complement-regulating molecules such as CD46, CD55, and CD59 have shown longer kidney xenograft survivals over years in preclinical models with nonhuman primates, paving the way for clinical trials. Anti-complement component agents such as C1 esterase and C5 inhibitors have also been shown to increase xenograft survivals. This review examines the role of the complement system in kidney xenotransplantation, emphasizing new research and clinical trial advancements.
Collapse
Affiliation(s)
- Takayuki Hirose
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan.
| | - Kiyohiko Hotta
- Department of Urology, Hokkaido University Hospital, Sapporo, Japan
| | - Ryo Otsuka
- Massachusetts General Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Ken-Ichiro Seino
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
Hoefele J, Eble J, Hermle T, Wuttke M, Schultheiss UT. Extrarenal manifestations in inherited kidney diseases. Nephrol Dial Transplant 2025; 40:227-233. [PMID: 39096159 PMCID: PMC11792654 DOI: 10.1093/ndt/gfae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Indexed: 08/05/2024] Open
Abstract
Monogenic kidney diseases result from an abundance of potential genes carrying pathogenic variants. These conditions are primarily recognized for manifesting as kidney disorders, defined as an impairment of the structure and/or function of the kidneys. However, the impact of these genetic disorders extends far beyond the kidneys, giving rise to a diverse spectrum of extrarenal manifestations. These manifestations can affect any organ system throughout the body, leading to a complex clinical presentation that demands a comprehensive understanding and interdisciplinary management of affected persons. The intricate interplay between genetic variants, molecular pathways, and systemic interactions underscores the importance of exploring the extrarenal aspects of inherited kidney diseases. This exploration not only deepens our comprehension of the diseases themselves but also opens avenues for more holistic diagnostics, treatment strategies, and improved interdisciplinary patient care. This article delves into the intricate realm of extrarenal manifestations in inherited kidney diseases, shedding light on the far-reaching effects that these genetic conditions can exert beyond the confines of the kidney system.
Collapse
Affiliation(s)
- Julia Hoefele
- Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, Munich, Germany
| | - Julian Eble
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Tobias Hermle
- Department of Medicine IV, Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Medicine IV, Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Department of Data Driven Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Medicine IV, Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Synlab, MVZ Humangenetik Freiburg GmbH, Freiburg, Germany
| |
Collapse
|
4
|
Gentile M, Manenti L. Targeted Complement Treatments in Glomerulopathies: A Comprehensive Review. J Clin Med 2025; 14:702. [PMID: 39941374 PMCID: PMC11818541 DOI: 10.3390/jcm14030702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
The complement system includes soluble and cell surface proteins and is an important arm of the innate immune system. Once activated, the complement system rapidly generates proteins with inflammatory and vasoactive activities. Although complement is crucial to host defense and homeostasis, its inappropriate or uncontrolled activation can also drive tissue injury. Glomerulopathy encompasses a spectrum of diseases with diverse etiologies, clinical presentations, and outcomes. Among the intricate web of factors contributing to glomerulopathies pathogenesis, the role of complement activation has emerged as a focal point of research interest and therapeutic intervention. The pioneer drug was eculizumab, which made it possible to drastically change the prognosis of atypical hemolytic uremic syndrome, an otherwise fatal disease. This comprehensive review aims to elucidate the multifaceted interplay between complement pathways and glomerulopathies, shedding light on potential pathways for targeted therapies and improved patient care.
Collapse
Affiliation(s)
- Micaela Gentile
- UO Nefrologia, Dipartimento di Medicina e Chirurgia, Università di Parma, 43126 Parma, Italy;
| | - Lucio Manenti
- Nephrology Unit, Azienda Sociosanitaria Liguria 5, 19121 La Spezia, Italy
| |
Collapse
|
5
|
Kakuta Y, Miyagawa S, Matsumura S, Higa-Maegawa Y, Fukae S, Tanaka R, Nakazawa S, Yamanaka K, Kawamura T, Saito S, Miyagawa S, Nonomura N. Complement and complement regulatory protein in allogeneic and xenogeneic kidney transplantation. Transplant Rev (Orlando) 2025; 39:100885. [PMID: 39536474 DOI: 10.1016/j.trre.2024.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Kidney transplantation is the most optimal treatment for patients with end-stage renal disease, offering significant improvements in patient outcomes over dialysis. However, the potential for immune rejection, where the recipient's immune system attacks the transplanted kidney, can compromise transplant success. The complement system, a key component of the immune response, plays a crucial role in both acute and chronic rejection, including T-cell- and antibody-mediated rejection. Understanding and controlling the complement system is essential for managing rejection and enhancing graft survival and overall success of kidney transplantation. In allogeneic transplantation, complement activation through various pathways contributes to graft damage and failure. Recent advancements in genetic engineering enable the development of transgenic pigs expressing human complement regulatory proteins, which display potential for reducing rejection in xenotransplantation. Despite these advances, the complex mechanisms of complement activation and regulation are not fully understood, necessitating further research. This review examines the role of the complement system in kidney transplantation, explores the latest developments in complement regulatory strategies, and discusses potential therapeutic approaches to improve transplant outcomes.
Collapse
Affiliation(s)
- Yoichi Kakuta
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Shuji Miyagawa
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Japan.
| | - Soichi Matsumura
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Yoko Higa-Maegawa
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Shota Fukae
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Ryo Tanaka
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Shigeaki Nakazawa
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Kazuaki Yamanaka
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Japan
| | - Shunsuke Saito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Japan
| |
Collapse
|
6
|
Li J, Wu Z, Wu Y, Hu X, Yang J, Zhu D, Wu M, Li X, Bentum-Ennin L, Wanglai H. IL-22, a vital cytokine in autoimmune diseases. Clin Exp Immunol 2024; 218:242-263. [PMID: 38651179 PMCID: PMC11557150 DOI: 10.1093/cei/uxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Interleukin-22 (IL-22) is a vital cytokine that is dysregulated in various autoimmune conditions including rheumatoid arthritis (RA), multiple sclerosis (MS), and Alzheimer's disease (AD). As the starting point for the activation of numerous signaling pathways, IL-22 plays an important role in the initiation and development of autoimmune diseases. Specifically, imbalances in IL-22 signaling can interfere with other signaling pathways, causing cross-regulation of target genes which ultimately leads to the development of immune disorders. This review delineates the various connections between the IL-22 signaling pathway and autoimmune disease, focusing on the latest understanding of the cellular sources of IL-22 and its effects on various cell types. We further explore progress with pharmacological interventions related to targeting IL-22, describing how such therapeutic strategies promise to usher in a new era in the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jiajin Li
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Yuxin Wu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - XinYu Hu
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Jun Yang
- The Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- The First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Mingyue Wu
- The School of pharmacy, Anhui Medical University, Hefei, China
| | - Xin Li
- The School of pharmacy, Anhui Medical University, Hefei, China
| | | | - Hu Wanglai
- The School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Ding S, Guo J, Chen H, Petretto E. Multi-scalar data integration decoding risk genes for chronic kidney disease. BMC Nephrol 2024; 25:364. [PMID: 39425076 PMCID: PMC11489995 DOI: 10.1186/s12882-024-03798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Chronic Kidney Disease (CKD) impacts over 10% of the global population, and recent advancements in high-throughput analytical technologies are uncovering the complex physiology underlying this condition. By integrating Genome-Wide Association Studies (GWAS), RNA sequencing (RNA-seq/RNA array), and single-cell RNA sequencing (scRNA-seq) data, our study aimed to explore the genes and cell types relevant to CKD traits. METHODS GWAS summary data for end-stage renal failure (ESRD) and decreased eGFR (CKD) with or without diabetes and (micro)proteinuria were obtained from the GWAS Catalog and the UK Biobank (UKB) database. Two gene Expression Omnibus (GEO) transcriptome datasets were used to establish glomerular and tubular gene expression differences between CKD patients and healthy individuals. Two scRNA-seq datasets were utilized to obtain the expression of key genes at the single-cell level. The expression profile, differentially expressed genes (DEGs), gene-gene interaction, and pathway enrichment were analysed for these CKD risk genes. RESULTS A total of 779 distinct SNPs were identified from GWAS across different CKD traits, involving 681 genes. While many of these risk genes are specific to the CKD traits of renal failure, decreased eGFR, and (micro)proteinuria, they share common pathways, including extracellular matrix (ECM). ECM modeling was enriched in upregulated glomerular and tubular DEGs from CKD kidneys compared to healthy controls, with the expression of relevant collagen genes, such as COL1A2, prevalent in fibroblasts/myofibroblasts. Additionally, immune responses, including T cell differentiation, were dysregulated in CKD kidneys. The late podocyte signature gene THSD7A was enriched in podocytes but downregulated in CKD. We also highlighted that the regulated risk genes of CKD are mainly expressed in tubular cells and immune cells in the kidney. CONCLUSIONS Our integrated analysis highlight the genes, pathways, and relevant cell types associational with the pathogenesis of kidney traits, as a basis for further mechanistic studies to understand the pathogenesis of CKD.
Collapse
Affiliation(s)
- Shiqi Ding
- The NUS High School of Mathematics and Science , NUSH, 20 Clementi Ave 1, Singapore, Singapore
| | - Jing Guo
- Programme in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| | - Huimei Chen
- Programme in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Duke-NUS Medical School, 8 College Road, Singapore, Singapore.
| | - Enrico Petretto
- Programme in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| |
Collapse
|
8
|
Vivarelli M, Barratt J, Beck LH, Fakhouri F, Gale DP, Goicoechea de Jorge E, Mosca M, Noris M, Pickering MC, Susztak K, Thurman JM, Cheung M, King JM, Jadoul M, Winkelmayer WC, Smith RJH. The role of complement in kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2024; 106:369-391. [PMID: 38844295 DOI: 10.1016/j.kint.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Uncontrolled complement activation can cause or contribute to glomerular injury in multiple kidney diseases. Although complement activation plays a causal role in atypical hemolytic uremic syndrome and C3 glomerulopathy, over the past decade, a rapidly accumulating body of evidence has shown a role for complement activation in multiple other kidney diseases, including diabetic nephropathy and several glomerulonephritides. The number of available complement inhibitor therapies has also increased during the same period. In 2022, Kidney Diseases: Improving Global Outcomes (KDIGO) convened a Controversies Conference, "The Role of Complement in Kidney Disease," to address the expanding role of complement dysregulation in the pathophysiology, diagnosis, and management of various glomerular diseases, diabetic nephropathy, and other forms of hemolytic uremic syndrome. Conference participants reviewed the evidence for complement playing a primary causal or secondary role in progression for several disease states and considered how evidence of complement involvement might inform management. Participating patients with various complement-mediated diseases and caregivers described concerns related to life planning, implications surrounding genetic testing, and the need for inclusive implementation of effective novel therapies into clinical practice. The value of biomarkers in monitoring disease course and the role of the glomerular microenvironment in complement response were examined, and key gaps in knowledge and research priorities were identified.
Collapse
Affiliation(s)
- Marina Vivarelli
- Laboratory of Nephrology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Laurence H Beck
- Section of Nephrology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Fadi Fakhouri
- Department of Nephrology, Centre Hospitalier Universitaire, Nantes, France; INSERM UMR S1064, Nantes, France
| | - Daniel P Gale
- Centre for Kidney and Bladder Health, University College London, UK
| | - Elena Goicoechea de Jorge
- Department of Immunology, Ophthalmology and ORL, Complutense University, Madrid, Spain; Area of Chronic Diseases and Transplantation, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Marta Mosca
- Department of Clinical and Experimental Medicine-Rheumatology Unit, University of Pisa, Pisa, Italy
| | - Marina Noris
- Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Ranica, Italy
| | - Matthew C Pickering
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College, Hammersmith Campus, London, UK
| | - Katalin Susztak
- Division of Nephrology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joshua M Thurman
- Division of Nephrology and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | - Michel Jadoul
- Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Wolfgang C Winkelmayer
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; Department of Internal Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; Department of Pediatrics, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
9
|
Pandey SP, Bhaskar R, Han SS, Narayanan KB. Autoimmune Responses and Therapeutic Interventions for Systemic Lupus Erythematosus: A Comprehensive Review. Endocr Metab Immune Disord Drug Targets 2024; 24:499-518. [PMID: 37718519 DOI: 10.2174/1871530323666230915112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/05/2023] [Accepted: 07/22/2023] [Indexed: 09/19/2023]
Abstract
Systemic Lupus Erythematosus (SLE) or Lupus is a multifactorial autoimmune disease of multiorgan malfunctioning of extremely heterogeneous and unclear etiology that affects multiple organs and physiological systems. Some racial groups and women of childbearing age are more susceptible to SLE pathogenesis. Impressive progress has been made towards a better understanding of different immune components contributing to SLE pathogenesis. Recent investigations have uncovered the detailed mechanisms of inflammatory responses and organ damage. Various environmental factors, pathogens, and toxicants, including ultraviolet light, drugs, viral pathogens, gut microbiome metabolites, and sex hormones trigger the onset of SLE pathogenesis in genetically susceptible individuals and result in the disruption of immune homeostasis of cytokines, macrophages, T cells, and B cells. Diagnosis and clinical investigations of SLE remain challenging due to its clinical heterogeneity and hitherto only a few approved antimalarials, glucocorticoids, immunosuppressants, and some nonsteroidal anti-inflammatory drugs (NSAIDs) are available for treatment. However, the adverse effects of renal and neuropsychiatric lupus and late diagnosis make therapy challenging. Additionally, SLE is also linked to an increased risk of cardiovascular diseases due to inflammatory responses and the risk of infection from immunosuppressive treatment. Due to the diversity of symptoms and treatment-resistant diseases, SLE management remains a challenging issue. Nevertheless, the use of next-generation therapeutics with stem cell and gene therapy may bring better outcomes to SLE treatment in the future. This review highlights the autoimmune responses as well as potential therapeutic interventions for SLE particularly focusing on the recent therapeutic advancements and challenges.
Collapse
Affiliation(s)
- Surya Prakash Pandey
- Aarogya Institute of Healthcare and Research, Jaipur, Rajasthan, 302033, India
- Department of Zoology, School of Science, IFTM University, Moradabad, Uttar Pradesh, 244102, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| |
Collapse
|
10
|
Lasorsa F, Rutigliano M, Milella M, Ferro M, Pandolfo SD, Crocetto F, Simone S, Gesualdo L, Battaglia M, Ditonno P, Lucarelli G. Complement System and the Kidney: Its Role in Renal Diseases, Kidney Transplantation and Renal Cell Carcinoma. Int J Mol Sci 2023; 24:16515. [PMID: 38003705 PMCID: PMC10671650 DOI: 10.3390/ijms242216515] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
The crosstalk among the complement system, immune cells, and mediators of inflammation provides an efficient mechanism to protect the organism against infections and support the repair of damaged tissues. Alterations in this complex machinery play a role in the pathogenesis of different diseases. Core complement proteins C3 and C5, their activation fragments, their receptors, and their regulators have been shown to be active intracellularly as the complosome. The kidney is particularly vulnerable to complement-induced damage, and emerging findings have revealed the role of complement system dysregulation in a wide range of kidney disorders, including glomerulopathies and ischemia-reperfusion injury during kidney transplantation. Different studies have shown that activation of the complement system is an important component of tumorigenesis and its elements have been proved to be present in the TME of various human malignancies. The role of the complement system in renal cell carcinoma (RCC) has been recently explored. Clear cell and papillary RCC upregulate most of the complement genes relative to normal kidney tissue. The aim of this narrative review is to provide novel insights into the role of complement in kidney disorders.
Collapse
Affiliation(s)
- Francesco Lasorsa
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Monica Rutigliano
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Martina Milella
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Matteo Ferro
- Division of Urology, European Institute of Oncology, IRCCS, 71013 Milan, Italy
| | - Savio Domenico Pandolfo
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simona Simone
- Department of Precision and Regenerative Medicine and Ionian Area-Nephrology, Dialysis and Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area-Nephrology, Dialysis and Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Michele Battaglia
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Pasquale Ditonno
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppe Lucarelli
- Department of Precision and Regenerative Medicine and Ionian Area-Urology, Andrology and Kidney Transplantation Unit, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
11
|
Heurich M, McCluskey G. Complement and coagulation crosstalk - Factor H in the spotlight. Immunobiology 2023; 228:152707. [PMID: 37633063 DOI: 10.1016/j.imbio.2023.152707] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 08/28/2023]
Abstract
The immune complement and the coagulation systems are blood-based proteolytic cascades that are activated by pathway-specific triggers, based on protein-protein interactions and enzymatic cleavage reactions. Activation of these systems is finely balanced and controlled through specific regulatory mechanisms. The complement and coagulation systems are generally viewed as distinct, but have common evolutionary origins, and several interactions between these homologous systems have been reported. This complement and coagulation crosstalk can affect activation, amplification and regulatory functions in both systems. In this review, we summarize the literature on coagulation factors contributing to complement alternative pathway activation and regulation and highlight molecular interactions of the complement alternative pathway regulator factor H with several coagulation factors. We propose a mechanism where factor H interactions with coagulation factors may contribute to both complement and coagulation activation and regulation within the haemostatic system and fibrin clot microenvironment and introduce the emerging role of factor H as a modulator of coagulation. Finally, we discuss the potential impact of these protein interactions in diseases associated with factor H dysregulation or deficiency as well as evidence of coagulation dysfunction.
Collapse
Affiliation(s)
- Meike Heurich
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, United Kingdom.
| | - Geneviève McCluskey
- Université Paris-Saclay, INSERM, Hémostase, Inflammation, Thrombose HITH U1176, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
12
|
Lim JH, Shin SW, Kim MS, Han MH, Kim YJ, Jung HY, Choi JY, Cho JH, Park SH, Kim YL, Hwang D, Yun WS, Kim HK, Huh S, Yoo ES, Won DI, Kim CD. Recurrent C3 Glomerulonephritis along with BK-Virus-Associated Nephropathy after Kidney Transplantation: A Case Report. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1308. [PMID: 37512118 PMCID: PMC10383463 DOI: 10.3390/medicina59071308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
C3 glomerulonephritis (C3GN) is a rare cause of end-stage kidney disease and frequently recurrent in allografts following kidney transplantation (KT). Herein, we describe the case of a kidney transplant recipient who developed recurrent C3GN along with BK-virus-associated nephropathy (BKVAN) following KT. A 33-year-old man diagnosed with membranoproliferative glomerulonephritis 17 years ago underwent preemptive KT with a donor kidney from his aunt. Proteinuria gradually increased after 3 months following KT, and graft biopsy was performed 30 months after KT. Histopathological examination revealed recurrent C3GN. The dosages of triple immunosuppressive maintenance therapy agents were increased. Subsequently, serum C3 levels recovered to normal levels. However, at 33 months following KT, the BK viral load increased and graft function gradually deteriorated; a second graft biopsy was performed at 46 months following KT, which revealed BKVAN and decreased C3GN activity. The dosages of immunosuppressive agents were decreased; subsequently, BKVAN improved and graft function was maintained with normal serum C3 levels at 49 months following KT. This case indicates that C3GN is highly prone to recurrence following KT and that immunosuppressive therapy for C3GN increases the risk of BKVAN.
Collapse
Affiliation(s)
- Jeong-Hoon Lim
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Seong-Won Shin
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Mee-Seon Kim
- Department of Pathology, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Man-Hoon Han
- Department of Pathology, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yong-Jin Kim
- Department of Pathology, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Hee-Yeon Jung
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ji-Young Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Jang-Hee Cho
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Sun-Hee Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Yong-Lim Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Deokbi Hwang
- Department of Surgery, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Woo-Sung Yun
- Department of Surgery, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Hyung-Kee Kim
- Department of Surgery, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Seung Huh
- Department of Surgery, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Eun Sang Yoo
- Department of Urology, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Dong Il Won
- Department of Clinical Pathology, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Chan-Duck Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
13
|
Wang X, Fu S, Yu J, Tang D, Wu H, Xu Z. Renal C4d is a potential biomarker of disease activity and severity in pediatric lupus nephritis patients. Front Pediatr 2023; 11:1193917. [PMID: 37325343 PMCID: PMC10268246 DOI: 10.3389/fped.2023.1193917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE), a multisystemic autoimmune disease, is very aggressive in pediatric-onset patients as they are prone to develop lupus nephritis (LN). Although renal C4d positivity is correlated with the activity of renal disease and SLE in adult-onset LN patients, available information for pediatric-onset patients is limited. Methods To evaluate the potential diagnostic significance of renal C4d staining in pediatric LN patients, we retrospectively detected C4d staining by immunohistochemistry on renal biopsy specimens from 58 pediatric LN patients. The clinical and laboratory data at the time of the kidney biopsy and the renal disease activity of histological injury were analyzed according to the C4d staining status. Results Glomerular C4d (G-C4d)-positive staining was detected in all 58 cases of LN. Patients with a G-C4d score of 2 displayed more severe proteinuria than those with a G-C4d score of 1 (24-h urinary protein: 3.40 ± 3.55 g vs. 1.36 ± 1.24 g, P < 0.05). Peritubular capillary C4d (PTC-C4d) positivity was found in 34 of 58 LN patients (58.62%). The PTC-C4d-positive patient groups (patients with a PTC-C4d score of 1 or 2) had higher serum creatinine and blood urea nitrogen levels as well as renal pathological activity index (AI) and SLE disease activity index (SLEDAI) scores; however, they had lower serum complement C3 and C4 levels compared to PTC-C4d-negative patients (P < 0.05). In addition, there was positive tubular basement membrane C4d (TBM-C4d) staining in 11 of 58 LN patients (18.96%), and a higher proportion of TBM-C4d-positive patients than TBM-C4d-negative patients (63.63% vs. 21.27%) had hypertension. Conclusion Our study revealed that G-C4d, PTC-C4d, and TMB-C4d were positively correlated with proteinuria, disease activity and severity, and hypertension, respectively, in pediatric LN patients. These data suggest that renal C4d is a potential biomarker for disease activity and severity in pediatric LN patients, providing insights into the development of novel identification and therapeutic approaches for pediatric-onset SLE with LN.
Collapse
Affiliation(s)
- Xueyao Wang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Shaojie Fu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Jinyu Yu
- Department of Renal Pathology, The First Hospital of Jilin University, Changchun, China
| | - Daru Tang
- Medical Student, Bethune Medical College, Jilin University, Changchun, China
| | - Hao Wu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Trambas IA, Coughlan MT, Tan SM. Therapeutic Potential of Targeting Complement C5a Receptors in Diabetic Kidney Disease. Int J Mol Sci 2023; 24:ijms24108758. [PMID: 37240105 DOI: 10.3390/ijms24108758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) affects 30-40% of patients with diabetes and is currently the leading cause of end-stage renal disease (ESRD). The activation of the complement cascade, a highly conserved element of the innate immune system, has been implicated in the pathogenesis of diabetes and its complications. The potent anaphylatoxin C5a is a critical effector of complement-mediated inflammation. Excessive activation of the C5a-signalling axis promotes a potent inflammatory environment and is associated with mitochondrial dysfunction, inflammasome activation, and the production of reactive oxygen species. Conventional renoprotective agents used in the treatment of diabetes do not target the complement system. Mounting preclinical evidence indicates that inhibition of the complement system may prove protective in DKD by reducing inflammation and fibrosis. Targeting the C5a-receptor signaling axis is of particular interest, as inhibition at this level attenuates inflammation while preserving the critical immunological defense functions of the complement system. In this review, the important role of the C5a/C5a-receptor axis in the pathogenesis of diabetes and kidney injuries will be discussed, and an overview of the status and mechanisms of action of current complement therapeutics in development will be provided.
Collapse
Affiliation(s)
- Inez A Trambas
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Sih Min Tan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| |
Collapse
|
15
|
Tomaszewski K, Herlitz L. Complement detection in kidney biopsies - utility and challenges. Curr Opin Nephrol Hypertens 2023; 32:241-248. [PMID: 36811623 DOI: 10.1097/mnh.0000000000000872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW This review discusses the important role of staining for components of the complement cascade in both native and transplant kidney biopsies. The use of complement staining as a marker of prognosis, disease activity, and as a potential future tool in identifying patients who may benefit from complement-targeted therapies is discussed. RECENT FINDINGS While staining for C3, C1q and C4d can yield valuable information about complement activation in kidney biopsies, to adequately assess complement activation and potential therapeutic targets, expanded staining panels looking at multiple split products and complement regulatory proteins are needed. Recent progress has been made in identifying markers of disease severity in C3 glomerulonephritis and IgA nephropathy, such as Factor H-related Protein-5, which may serve as future tissue biomarkers. In the transplant setting, the limitation of relying on C4d staining to identify antibody mediated rejection is giving way to molecular diagnostics, including The Banff Human Organ Transplant (B-HOT) panel, which includes numerous complement complement-related transcripts, with the classical, lectin, alternative, and common pathways. SUMMARY Staining for complement components in kidney biopsies to understand how complement is activated in individual cases may help to identify patients who may benefit from complement-targeted therapies.
Collapse
|
16
|
West EE, Kemper C. Complosome - the intracellular complement system. Nat Rev Nephrol 2023:10.1038/s41581-023-00704-1. [PMID: 37055581 PMCID: PMC10100629 DOI: 10.1038/s41581-023-00704-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
The complement system is a recognized pillar of host defence against infection and noxious self-derived antigens. Complement is traditionally known as a serum-effective system, whereby the liver expresses and secretes most complement components, which participate in the detection of bloodborne pathogens and drive an inflammatory reaction to safely remove the microbial or antigenic threat. However, perturbations in normal complement function can cause severe disease and, for reasons that are currently not fully understood, the kidney is particularly vulnerable to dysregulated complement activity. Novel insights into complement biology have identified cell-autonomous and intracellularly active complement - the complosome - as an unexpected central orchestrator of normal cell physiology. For example, the complosome controls mitochondrial activity, glycolysis, oxidative phosphorylation, cell survival and gene regulation in innate and adaptive immune cells, and in non-immune cells, such as fibroblasts and endothelial and epithelial cells. These unanticipated complosome contributions to basic cell physiological pathways make it a novel and central player in the control of cell homeostasis and effector responses. This discovery, together with the realization that an increasing number of human diseases involve complement perturbations, has renewed interest in the complement system and its therapeutic targeting. Here, we summarize the current knowledge about the complosome across healthy cells and tissues, highlight contributions from dysregulated complosome activities to human disease and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Erin E West
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA.
| |
Collapse
|
17
|
Mocanu A, Bogos RA, Lazaruc TI, Cianga AL, Lupu VV, Ioniuc I, Alecsa M, Lupu A, Ivanov AV, Miron IC, Starcea IM. Pitfalls of Thrombotic Microangiopathies in Children: Two Case Reports and Literature Review. Diagnostics (Basel) 2023; 13:diagnostics13071228. [PMID: 37046448 PMCID: PMC10093431 DOI: 10.3390/diagnostics13071228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Thrombotic microangiopathy can present itself in the form of several clinical entities, representing a real challenge for diagnosis and treatment in pediatric practice. Our article aims to explore the evolution of two rare cases of pediatric thrombotic thrombocytopenic purpura (TTP) and atypical hemolytic uremic syndrome (aHUS) with extremely similar clinical pictures, which, coincidentally, presented at approximately the same time in our hospital. These cases and our literature review demonstrate the multiple facets of thrombotic microangiopathy, which can produce various determinations and salient manifestations even among the pediatric population. TTP and aHUS may represent genuine diagnostic pitfalls through the overlap of their clinical and biological findings, although they develop through fundamentally different mechanisms that require different therapeutic approaches. As a novelty, we underline that COVID-19 infection cannot be excluded as potential trigger for TTP and aHUS in our patients and we predict that other reports of such an association will follow, raising a complex question of COVID-19's implication in the occurrence and evolution of thrombotic microangiopathies. On this matter, we conducted literature research that resulted in 15 cases of COVID-19 pediatric infections associated with either TTP or aHUS. Taking into consideration the morbidity associated with TTP and aHUS, an elaborate differential diagnosis and prompt intervention are of the essence.
Collapse
Affiliation(s)
- Adriana Mocanu
- Mother and Child Medicine Department, Discipline of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Nephrology Division, St. Mary's Emergency Children Hospital, 700309 Iasi, Romania
| | - Roxana Alexandra Bogos
- Mother and Child Medicine Department, Discipline of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Nephrology Division, St. Mary's Emergency Children Hospital, 700309 Iasi, Romania
| | - Tudor Ilie Lazaruc
- Mother and Child Medicine Department, Discipline of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Anca Lavinia Cianga
- Mother and Child Medicine Department, Discipline of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Vasile Valeriu Lupu
- Mother and Child Medicine Department, Discipline of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ileana Ioniuc
- Mother and Child Medicine Department, Discipline of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Mirabela Alecsa
- Mother and Child Medicine Department, Discipline of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ancuta Lupu
- Mother and Child Medicine Department, Discipline of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Anca Viorica Ivanov
- Mother and Child Medicine Department, Discipline of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ingrith Crenguta Miron
- Mother and Child Medicine Department, Discipline of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Iuliana Magdalena Starcea
- Mother and Child Medicine Department, Discipline of Pediatrics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Nephrology Division, St. Mary's Emergency Children Hospital, 700309 Iasi, Romania
| |
Collapse
|
18
|
Kemper C, Ferreira VP, Paz JT, Holers VM, Lionakis MS, Alexander JJ. Complement: The Road Less Traveled. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:119-125. [PMID: 36596217 PMCID: PMC10038130 DOI: 10.4049/jimmunol.2200540] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/11/2022] [Indexed: 01/04/2023]
Abstract
The complement field has recently experienced a strong resurgence of interest because of the unexpected discovery of new complement functions extending complement's role beyond immunity and pathogen clearance, a growing list of diseases in which complement plays a role, and the proliferation of complement therapeutics. Importantly, although the majority of complement components in the circulation are generated by the liver and activated extracellularly, complement activation unexpectedly also occurs intracellularly across a broad range of cells. Such cell-autonomous complement activation can engage intracellular complement receptors, which then drive noncanonical cell-specific effector functions. Thus, much remains to be discovered about complement biology. In this brief review, we focus on novel noncanonical activities of complement in its "classic areas of operation" (kidney and brain biology, infection, and autoimmunity), with an outlook on the next generation of complement-targeted therapeutics.
Collapse
Affiliation(s)
- Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco CA
- Department of Neurology, University of California, San Francisco, San Francisco, CA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | | |
Collapse
|
19
|
Zhang B, Xing G. Thrombotic microangiopathy mediates poor prognosis among lupus nephritis via complement lectin and alternative pathway activation. Front Immunol 2022; 13:1081942. [PMID: 36582241 PMCID: PMC9792970 DOI: 10.3389/fimmu.2022.1081942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Objective The pathogenesis of thrombotic microangiopathy (TMA) in lupus nephritis (LN) remains complicated. This study aimed to detect the deposition of complement lectin pathway (LP) and alternative pathway (AP) components in renal tissues, then evaluate the clinicopathological characteristics and risk factors for renal survival between patients with or without TMA in LN cohorts. Methods We included 79 patients with biopsy-proven LN-associated TMA and matched the same number of LN patients without TMA as the control group. The deposition of mannose binding lectin (MBL), MBL-associated serine proteases 1/3 (MASP1/3), complement factor B (CFB), complement factor D (CFD), C4d, and von Willebrand factor (VWF) in renal tissue was assessed by immunohistochemistry and immunofluorescence. Besides, co-localization of C5b-9 and CD34 was detected by confocal microscopy. Results In our retrospective cohort, the incidence of acute kidney injury (30% vs. 14%, p = 0.013), acute hemodialysis (35% vs. 5%, p < 0.001), and interstitial fibrosis (43% vs. 13%, p < 0.001) is higher in the TMA, compared with the control group. Despite aggressive steroids pulse, plasma exchange, and immunosuppressive therapy among TMA group, they still had significantly inferior 3-year renal survival rates (68% vs. 89%, p = 0.002) than those in the non-TMA group. COX regression analysis identified that TMA (HR 4.807, 95% CI [2.052, 11.263], p < 0.001) is a risk factor in LN. MBL, MASP1/3, CFB, CFD, C4d, and VWF deposited along the glomerulus among LN, while TMA had stronger staining intensity and deposition. The co-localized expression of CD34 and C5b-9 in the endothelial cells was also observed in the renal tissues. Conclusions TMA is an independent risk factor for renal survival in LN patients. Moreover, LP and AP activation are involved in the pathogenesis of LN-associated TMA.
Collapse
|
20
|
Brandwijk RJMGE, Michels MAHM, van Rossum M, de Nooijer AH, Nilsson PH, de Bruin WCC, Toonen EJM. Pitfalls in complement analysis: A systematic literature review of assessing complement activation. Front Immunol 2022; 13:1007102. [PMID: 36330514 PMCID: PMC9623276 DOI: 10.3389/fimmu.2022.1007102] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background The complement system is an essential component of our innate defense and plays a vital role in the pathogenesis of many diseases. Assessment of complement activation is critical in monitoring both disease progression and response to therapy. Complement analysis requires accurate and standardized sampling and assay procedures, which has proven to be challenging. Objective We performed a systematic analysis of the current methods used to assess complement components and reviewed whether the identified studies performed their complement measurements according to the recommended practice regarding pre-analytical sample handling and assay technique. Results are supplemented with own data regarding the assessment of key complement biomarkers to illustrate the importance of accurate sampling and measuring of complement components. Methods A literature search using the Pubmed/MEDLINE database was performed focusing on studies measuring the key complement components C3, C5 and/or their split products and/or the soluble variant of the terminal C5b-9 complement complex (sTCC) in human blood samples that were published between February 2017 and February 2022. The identified studies were reviewed whether they had used the correct sample type and techniques for their analyses. Results A total of 92 out of 376 studies were selected for full-text analysis. Forty-five studies (49%) were identified as using the correct sample type and techniques for their complement analyses, while 25 studies (27%) did not use the correct sample type or technique. For 22 studies (24%), it was not specified which sample type was used. Conclusion A substantial part of the reviewed studies did not use the appropriate sample type for assessing complement activation or did not mention which sample type was used. This deviation from the standardized procedure can lead to misinterpretation of complement biomarker levels and hampers proper comparison of complement measurements between studies. Therefore, this study underlines the necessity of general guidelines for accurate and standardized complement analysis
Collapse
Affiliation(s)
| | - Marloes A. H. M. Michels
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mara van Rossum
- R&D Department, Hycult Biotechnology b.v., Uden, Netherlands
| | - Aline H. de Nooijer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Per H. Nilsson
- Department of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | | | - Erik J. M. Toonen
- R&D Department, Hycult Biotechnology b.v., Uden, Netherlands
- *Correspondence: Erik J. M. Toonen,
| |
Collapse
|
21
|
Brant Pinheiro SV, de Freitas VB, de Castro GV, Rufino Madeiro BC, de Araújo SA, Silva Ribeiro TF, Simões E Silva AC. Acute Post-Streptococcal Glomerulonephritis In Children: A Comprehensive Review. Curr Med Chem 2022; 29:5543-5559. [PMID: 35702785 DOI: 10.2174/0929867329666220613103316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/23/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Acute post-streptococcal glomerulonephritis (APSGN) is an immune-complex (ICs) mediated glomerular disease triggered by group A β-hemolytic streptococcus (GAS) or Streptococcus pyogenes infections. APSGN represents a major cause of acquired kidney injury in children. METHODS This non-systematic review summarizes recent evidence on APSGN. We discuss the epidemiology, pathogenesis, clinical and laboratory findings, histopathology, treatment and prognosis of the disease. RESULTS The median APSGN incidence in children in developing countries is estimated at 24.3/100,000 per year, compared with 6.2/100,000 per year in developed countries. Nephritis-associated plasmin receptor, identified as glyceraldehyde-3-phosphate dehydrogenase, and the cationic cysteine proteinase streptococcal pyrogenic exotoxin B are thought to be two leading streptococcal antigens involved in the pathogenesis of APSGN, which activate the complement system, mainly via the alternative but also the lectin pathway. This process is critical for the generation of inflammation by the ICs deposited in the glomerulus. The classic phenotype is an acute diffuse proliferative glomerulonephritis leading to features of the nephritic syndrome including hematuria, oliguria, hypertension and edema. The histopathology shows that the glomeruli are diffused affected, mostly presenting enlarged glomerular tuffs due to hypercellularity. Proliferative endothelial and mesangial cells and inflammation are also observed. APSGN frequently has spontaneous recovery. There is no specific therapy, but its morbidity and mortality are drastically reduced by the prevention and/or treatment of complications. CONCLUSION Despite recent advances, the pathogenesis of APSGN is not fully understood. There is no specific treatment for APSGN. The prognosis is generally good. However some cases may evolve to chronic kidney disease.
Collapse
Affiliation(s)
- Sérgio Veloso Brant Pinheiro
- Department of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Victor Buchini de Freitas
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, UFMG, Belo Horizonte, MG, Brazil
| | - Gustavo Valverde de Castro
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, UFMG, Belo Horizonte, MG, Brazil
| | | | | | - Thomas Felipe Silva Ribeiro
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, UFMG, Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões E Silva
- Department of Pediatrics, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, UFMG, Belo Horizonte, MG, Brazil
| |
Collapse
|
22
|
Liu J, Zha Y, Zhang P, He P, He L. The Association Between Serum Complement 4 and Kidney Disease Progression in Idiopathic Membranous Nephropathy: A Multicenter Retrospective Cohort Study. Front Immunol 2022; 13:896654. [PMID: 35707542 PMCID: PMC9189306 DOI: 10.3389/fimmu.2022.896654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionComplement system plays an important role in the pathogenesis of idiopathic membranous nephropathy (IMN), however, the relationship between serum complement 4 (C4) and kidney disease progression in IMN is unclear. This study aims to investigate the association of serum C4 level with the risk of kidney disease progression among patients with IMN.MethodsThe retrospective cohort assessed 1,254 participants with biopsy-proven IMN from three centers in Xi ‘an, Shaanxi Province, China. Baseline serum C4 levels were measured at renal biopsy. The association between baseline serum C4 and the risk of renal function progression, defined as a 30% decline in renal function or end stage renal disease, was evaluated in Cox proportional hazards models.ResultsA total of 328 patients with IMN and nephrotic proteinuria were eligible, and 11.3% (37/328) of them attained the renal function progression events after a median follow-up of 51 months (37-59 months). After adjustment for other confounders, a higher value of serum C4 was independently associated with a higher risk of renal function progression event with a hazard ratio (HR) of 4.76 (95% confidence interval [95% CI], 1.77-12.79) per natural log-transformed C4. In reference to the low level of C4, the adjusted HRs were 2.72 (95% CI, 1.02-7.24) and 3.65 (95% CI, 1.39-9.60), respectively, for the median and high levels of C4 (P for trend=0.008). Additionally, the results were robust and reliable in the sensitivity and subgroup analyses.ConclusionAmong patients with IMN and nephrotic proteinuria, serum C4 at renal biopsy is an independent predictor for kidney disease progression regardless of other confounders.
Collapse
Affiliation(s)
- Jing Liu
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
| | - Yang Zha
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
- Department of Postgraduate Student, Xi’an Medical University, Xi’an, China
| | - Peng Zhang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Peng He
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
- *Correspondence: Lijie He, ; Peng He,
| | - Lijie He
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
- *Correspondence: Lijie He, ; Peng He,
| |
Collapse
|
23
|
Ort M, Dingemanse J, Hsin CH, Richard M, Huehn E, Sabattini G, van de Wetering J, Kornberger R, van den Anker J, Kaufmann P. First-in-human study with ACT-1014-6470, a novel oral complement factor 5a receptor 1 (C5aR1) antagonist, supported by pharmacokinetic predictions from animals to patients. Basic Clin Pharmacol Toxicol 2022; 131:114-128. [PMID: 35596117 DOI: 10.1111/bcpt.13756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 12/28/2022]
Abstract
Aberrantly controlled activation of the complement system contributes to inflammatory diseases. Safety, tolerability, and pharmacokinetics of single-ascending doses of ACT-1014-6470, a novel orally available complement factor 5a receptor 1 antagonist, were assessed in a randomized, double-blind, placebo-controlled Phase 1 study. Six ACT-1014-6470 doses (0.5-200 mg) were selected after predictions from a Complex Dedrick plot. In each group, ACT-1014-6470 or matching placebo was administered to six and two healthy male individuals under fed conditions, respectively, including a cross-over part with 10 mg administered also under fasted conditions. Pharmacokinetic blood sampling and safety assessments (adverse events, clinical laboratory, vital signs, 12-lead electrocardiogram, and QT telemetry) were performed. ACT-1014-6470 was absorbed with a time to maximum plasma concentration (tmax ) of 3 h across dose levels and eliminated with a terminal half-life of 30-46 h at doses ≥ 2.5 mg. Exposure increased approximately dose proportionally. Under fed compared to fasted conditions, ACT-1014-6470 exposure was 2.2-fold higher and tmax delayed by 1.5 h. Pharmacokinetic modelling predicted that twice-daily oral administration is warranted in a subsequent multiple-dose study. No clinically relevant findings were observed in safety assessments. ACT-1014-6470 was well tolerated at all doses and could provide a novel therapy with more patient-friendly administration route compared to biologicals.
Collapse
Affiliation(s)
- Marion Ort
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland.,Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Jasper Dingemanse
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Chih-Hsuan Hsin
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Muriel Richard
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Eva Huehn
- Department of Preclinical Drug Metabolism and Pharmacokinetics, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Giancarlo Sabattini
- Department of Preclinical Drug Metabolism and Pharmacokinetics, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| | | | | | - John van den Anker
- Paediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Priska Kaufmann
- Department of Clinical Pharmacology, Idorsia Pharmaceuticals Ltd, Allschwil, Switzerland
| |
Collapse
|
24
|
Hou J, Ren KYM, Haas M. C3 Glomerulopathy: A Review with Emphasis on Ultrastructural Features. GLOMERULAR DISEASES 2022; 2:107-120. [PMID: 36751667 PMCID: PMC9710331 DOI: 10.1159/000524552] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/20/2022] [Indexed: 11/19/2022]
Abstract
C3 glomerulopathy (C3G) is a rare disease resulting from dysregulation of the alternative complement pathway, resulting in the deposition of complement component 3 (C3) in the kidney. It encompasses two major subgroups: dense deposit disease and C3 glomerulonephritis (C3GN). Although the alternative complement pathway is typically a very tightly controlled system, dysregulation can be a result of genetic mutations in the fluid phase or membrane-bound inhibitors or accelerators. In addition, de novo/acquired autoantibodies against any of the regulatory proteins can alter complement activation either by negating an inhibitor or activating an accelerator. Triggering events can be complex; however, the final pathway is characterized by the uncontrolled deposition of C3 in glomeruli and the formation of the membrane attack complex. Light microscopic findings can be quite heterogeneous with a membranoproliferative pattern most commonly encountered. Diagnostic confirmation of C3G is based on a characteristic pattern of glomerular immunofluorescence staining, with C3-dominant deposits that are at least 2 orders of intensity greater than staining for any immunoglobulin (Ig) or C1q. Electron microscopy is necessary for diagnosing DDD in particular, but can also help to distinguish C3GN from other glomerular disease mimickers.
Collapse
Affiliation(s)
- Jean Hou
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Kevin Yi Mi Ren
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, California, USA,*Mark Haas,
| |
Collapse
|
25
|
Ma Q, Luan J, Bai Y, Xu C, Liu F, Chen B, Ju D, Xu H. Interleukin-22 in Renal Protection and Its Pathological Role in Kidney Diseases. Front Immunol 2022; 13:851818. [PMID: 35432360 PMCID: PMC9008451 DOI: 10.3389/fimmu.2022.851818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney injury has gradually become a worldwide public health problem currently affecting approximately 10% of the population and can eventually progress to chronic end-stage renal disease characteristic by the result of epithelial atrophy. Interleukin-22 (IL-22) is a cytokine produced by activated immune cells, while acting mainly on epithelial cells ranging from innate immune response to tissue regeneration to maintain barrier integrity and promote wound healing. Accumulating data suggests that IL-22 has emerged as a fundamental mediator of epithelial homeostasis in the kidney through promoting tissue repair and regeneration, inhibiting oxidative stress, and producing antimicrobial peptides. Binding of IL-22 to its transmembrane receptor complex triggers janus kinase/tyrosine kinase 2 phosphorylation, which further activates a number of downstream cascades, including signal transducer and activator of transcription 3, MAP kinase, and protein kinase B, and initiates a wide array of downstream effects. However, the activation of the IL-22 signaling pathways promotes the activation of complement systems and enhances the infiltration of chemokines, which does harm to the kidney and may finally result in chronic renal failure of different autoimmune kidney diseases, including lupus nephritis, and IgA nephropathy. This review describes current knowledge of the basic features of IL-22, including structure, cellular origin and associated signaling pathways. Also, we summarize the latest progress in understanding the physiological and pathological effects of IL-22 in the kidney, suggesting the potential strategies for the specific application of this cytokine in the treatment of kidney disease.
Collapse
Affiliation(s)
- Qianqian Ma
- Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jingyun Luan
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yu Bai
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Caili Xu
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Fangyu Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bufeng Chen
- Department of Urology, Binzhou Medical University, Binzhou, China
| | - Dianwen Ju
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Hong Xu
- Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
26
|
Tao J, Ye C, Dai W, Li D, Zhou M, Li Y. Serum Level of Complement C1q is Associated with Contrast-Associated Acute Kidney Injury in Patients Undergoing Emergency Percutaneous Coronary Intervention. J Inflamm Res 2022; 14:7331-7339. [PMID: 34992420 PMCID: PMC8714012 DOI: 10.2147/jir.s343715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
Background As an inflammatory factor, complement C1q is related to the prevalence and progression of atherosclerosis; however, in patients undergoing emergency percutaneous coronary intervention (PCI), it is unclear whether C1q is related to the prevalence of contrast-associated acute kidney injury (CA-AKI). Methods From November 2018 to March 2021, 1182 patients who underwent emergency PCI were continuously recruited. Patients were divided into CA-AKI group (n = 234) and non-CA-AKI group (n = 948). CA-AKI was defined as an increase in serum creatinine from the baseline level (≥25% or ≥0.5 mg/dL) 48–72 hours after contrast exposure. All subjects were tested for serum C1q levels when they were admitted to the hospital. Results Among the 1182 patients undergoing emergency PCI, 234 patients (19.80%) developed CA-AKI. The level of preoperative serum complement C1q in the CA-AKI group was significantly higher than that in the non-CA-AKI group. Logistic regression and restricted cubic spline analyses showed that the incidence of CA-AKI was positively associated with the serum C1q level pre-PCI. Univariate and multivariate logistic regression analyses showed that C1q was an independent predictor of whether CA-AKI occurred after emergency PCI. The area under the curve (AUC) of the C1q was 0.703 [95% confidence interval (CI) 0.667–0.739] in patients receiving emergency PCI. CA-AKI model included the following three predictors: C1q, eGFR, and IABP use. The AUC of forecast probability was 0.718 [95% CI 0.682–0.754]. Conclusion In patients receiving emergency PCI procedure, a high C1q level before PCI is associated with the increased risk of CA-AKI.
Collapse
Affiliation(s)
- Jun Tao
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Chenglin Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Wen Dai
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Di Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Man Zhou
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
27
|
Zhang Y. MiR-92d-3p suppresses the progression of diabetic nephropathy renal fibrosis by inhibiting the C3/HMGB1/TGF-β1 pathway. Biosci Rep 2021; 41:BSR20203131. [PMID: 33729484 PMCID: PMC8485393 DOI: 10.1042/bsr20203131] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of diabetic nephropathy (DN) has not been fully elucidated. MicroRNAs (miRNAs) play an important role in the onset and development of DN renal fibrosis. Thus, the present study aimed to investigate the effect of miR-92d-3p on the progression of DN renal fibrosis. We used qRT-PCR to detect the expression levels of miR-92d-3p in the kidneys of patients with DN. Then, after transfecting lentiviruses containing miR-92d-3p into the kidneys of a DN mouse model and HK-2 cell line, we used qRT-PCR to detect the expression levels of miR-92d-3p, C3, HMGB1, TGF-β1, α-SMA, E-cadherin, and Col I. The expression levels of interleukin (IL) 1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) in the HK-2 cells were detected through enzyme-linked immunosorbent assay (ELISA), and Western blotting and immunofluorescence were used in detecting the expression levels of fibronectin, α-SMA, E-cadherin, and vimentin. Results showed that the expression levels of miR-92d-3p in the kidney tissues of patients with DN and DN animal model mice decreased, and C3 stimulated HK-2 cells to produce inflammatory cytokines. The C3/HMGB1/TGF-β1 pathway was activated, and epithelial-to-interstitial transition (EMT) was induced in the HK-2 cells after human recombinant C3 and TGF-β1 protein were added. miR-92d-3p inhibited inflammatory factor production by C3 in the HK-2 cells and the activation of the C3/HMGB1/TGF-β1 pathway and EMT by C3 and TGF-β1. miR-92d-3p suppressed the progression of DN renal fibrosis by inhibiting the activation of the C3/HMGB1/TGF-β1 pathway and EMT.
Collapse
Affiliation(s)
- Yuhua Zhang
- College of Medicine, Jiangxi University of Technology, Nanchang 330098, Jiangxi, China
| |
Collapse
|
28
|
Garred P, Tenner AJ, Mollnes TE. Therapeutic Targeting of the Complement System: From Rare Diseases to Pandemics. Pharmacol Rev 2021; 73:792-827. [PMID: 33687995 PMCID: PMC7956994 DOI: 10.1124/pharmrev.120.000072] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complement system was discovered at the end of the 19th century as a heat-labile plasma component that "complemented" the antibodies in killing microbes, hence the name "complement." Complement is also part of the innate immune system, protecting the host by recognition of pathogen-associated molecular patterns. However, complement is multifunctional far beyond infectious defense. It contributes to organ development, such as sculpting neuron synapses, promoting tissue regeneration and repair, and rapidly engaging and synergizing with a number of processes, including hemostasis leading to thromboinflammation. Complement is a double-edged sword. Although it usually protects the host, it may cause tissue damage when dysregulated or overactivated, such as in the systemic inflammatory reaction seen in trauma and sepsis and severe coronavirus disease 2019 (COVID-19). Damage-associated molecular patterns generated during ischemia-reperfusion injuries (myocardial infarction, stroke, and transplant dysfunction) and in chronic neurologic and rheumatic disease activate complement, thereby increasing damaging inflammation. Despite the long list of diseases with potential for ameliorating complement modulation, only a few rare diseases are approved for clinical treatment targeting complement. Those currently being efficiently treated include paroxysmal nocturnal hemoglobinuria, atypical hemolytic-uremic syndrome, myasthenia gravis, and neuromyelitis optica spectrum disorders. Rare diseases, unfortunately, preclude robust clinical trials. The increasing evidence for complement as a pathogenetic driver in many more common diseases suggests an opportunity for future complement therapy, which, however, requires robust clinical trials; one ongoing example is COVID-19 disease. The current review aims to discuss complement in disease pathogenesis and discuss future pharmacological strategies to treat these diseases with complement-targeted therapies. SIGNIFICANCE STATEMENT: The complement system is the host's defense friend by protecting it from invading pathogens, promoting tissue repair, and maintaining homeostasis. Complement is a double-edged sword, since when dysregulated or overactivated it becomes the host's enemy, leading to tissue damage, organ failure, and, in worst case, death. A number of acute and chronic diseases are candidates for pharmacological treatment to avoid complement-dependent damage, ranging from the well established treatment for rare diseases to possible future treatment of large patient groups like the pandemic coronavirus disease 2019.
Collapse
Affiliation(s)
- Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Andrea J Tenner
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Tom E Mollnes
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| |
Collapse
|
29
|
Detsika MG, Lianos EA. Regulation of Complement Activation by Heme Oxygenase-1 (HO-1) in Kidney Injury. Antioxidants (Basel) 2021; 10:antiox10010060. [PMID: 33418934 PMCID: PMC7825075 DOI: 10.3390/antiox10010060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/20/2022] Open
Abstract
Heme oxygenase is a cytoprotective enzyme with strong antioxidant and anti-apoptotic properties. Its cytoprotective role is mainly attributed to its enzymatic activity, which involves the degradation of heme to biliverdin with simultaneous release of carbon monoxide (CO). Recent studies uncovered a new cytoprotective role for heme oxygenase-1 (HO-1) by identifying a regulatory role on the complement control protein decay-accelerating factor. This is a key complement regulatory protein preventing dysregulation or overactivation of complement cascades that can cause kidney injury. Cell-specific targeting of HO-1 induction may, therefore, be a novel approach to attenuate complement-dependent forms of kidney disease.
Collapse
Affiliation(s)
- Maria G. Detsika
- First Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M. Simou Laboratories, National & Kapodistrian University of Athens, Medical School, Evangelismos Hospital, 10675 Athens, Greece
- Correspondence: ; Tel.: +30-210-723552; Fax: +30-210-7239127
| | - Elias A. Lianos
- Thorax Foundation, Research Center of Intensive Care and Emergency Thoracic Medicine, 10675 Athens, Greece;
- Veterans Affairs Medical Center and Virginia Tech, Carilion School of Medicine, 1970 Roanoke Blvd, Salem, VA 24153, USA
| |
Collapse
|
30
|
Treatment of C3 Glomerulopathy in Adult Kidney Transplant Recipients: A Systematic Review. Med Sci (Basel) 2020; 8:medsci8040044. [PMID: 33096866 PMCID: PMC7712822 DOI: 10.3390/medsci8040044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND C3 glomerulopathy (C3G), a rare glomerular disease mediated by alternative complement pathway dysregulation, is associated with a high rate of recurrence and graft loss after kidney transplantation (KTx). We aimed to assess the efficacy of different treatments for C3G recurrence after KTx. METHODS Databases (MEDLINE, EMBASE, and Cochrane Database) were searched from inception through 3 May, 2019. Studies were included that reported outcomes of adult KTx recipients with C3G. Effect estimates from individual studies were combined using the random-effects, generic inverse variance method of DerSimonian and Laird., The protocol for this meta-analysis is registered with PROSPERO (no. CRD42019125718). RESULTS Twelve studies (7 cohort studies and 5 case series) consisting of 122 KTx patients with C3G (73 C3 glomerulonephritis (C3GN) and 49 dense deposit disease (DDD)) were included. The pooled estimated rates of allograft loss among KTx patients with C3G were 33% (95% CI: 12-57%) after eculizumab, 42% (95% CI: 2-89%) after therapeutic plasma exchange (TPE), and 81% (95% CI: 50-100%) after rituximab. Subgroup analysis based on type of C3G was performed. Pooled estimated rates of allograft loss in C3GN KTx patients were 22% (95% CI: 5-46%) after eculizumab, 56% (95% CI: 6-100%) after TPE, and 70% (95% CI: 24-100%) after rituximab. Pooled estimated rates of allograft loss in DDD KTx patients were 53% (95% CI: 0-100%) after eculizumab. Data on allograft loss in DDD after TPE (1 case series, 0/2 (0%) allograft loss at 6 months) and rituximab (1 cohort, 3/3 (100%) allograft loss) were limited. Among 66 patients (38 C3GN, 28 DDD) who received no treatment (due to stable allograft function at presentation and/or clinical judgment of physicians), pooled estimated rates of allograft loss were 32% (95% CI: 7-64%) and 53% (95% CI: 28-77%) for C3GN and DDD, respectively. Among treated C3G patients, data on soluble membrane attack complex of complement (sMAC) were limited to patients treated with eculizumab (N = 7). 80% of patients with elevated sMAC before eculizumab responded to treatment. In addition, all patients who responded to eculizumab had normal sMAC levels after post-eculizumab. CONCLUSIONS Our study suggests that the lowest incidence of allograft loss (33%) among KTX patients with C3G are those treated with eculizumab. Among those who received no treatment for C3G due to stable allograft function, there is a high incidence of allograft loss of 32% in C3GN and 53% in DDD. sMAC level may help to select good responders to eculizumab.
Collapse
|