1
|
Guo X, Jin W, Xing Y. Levels of asymmetric dimethylarginine in plasma and aqueous humor: a key risk factor for the severity of fibrovascular proliferation in proliferative diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1364609. [PMID: 38933824 PMCID: PMC11200173 DOI: 10.3389/fendo.2024.1364609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Proliferative diabetic retinopathy (PDR) is a common diabetes complication, significantly impacting vision and quality of life. Previous studies have suggested a potential link between arginine pathway metabolites and diabetic retinopathy (DR). Connective tissue growth factor (CTGF) plays a role in the occurrence and development of fibrovascular proliferation (FVP) in PDR patients. However, the relationship between arginine pathway metabolites and FVP in PDR remains undefined. This study aimed to explore the correlation between four arginine pathway metabolites (arginine, asymmetric dimethylarginine[ADMA], ornithine, and citrulline) and the severity of FVP in PDR patients. Methods In this study, plasma and aqueous humor samples were respectively collected from 30 patients with age-related cataracts without diabetes mellitus (DM) and from 85 PDR patients. The PDR patients were categorized as mild-to-moderate or severe based on the severity of fundal FVP. The study used Kruskal-Wallis test to compare arginine, ADMA, ornithine, and citrulline levels across three groups. Binary logistic regression identified risk factors for severe PDR. Spearman correlation analysis assessed associations between plasma and aqueous humor metabolite levels, and between ADMA and CTGF levels in aqueous humor among PDR patients. Results ADMA levels in the aqueous humor were significantly greater in patients with severe PDR than in those with mild-to-moderate PDR(P=0.0004). However, the plasma and aqueous humor levels of arginine, ornithine, and citrulline did not significantly differ between mild-to-moderate PDR patients and severe PDR patients (P>0.05). Binary logistic regression analysis indicated that the plasma (P=0.01) and aqueous humor (P=0.006) ADMA levels in PDR patients were risk factors for severe PDR. Furthermore, significant correlations were found between plasma and aqueous humor ADMA levels (r=0.263, P=0.015) and between aqueous humor ADMA and CTGF levels (r=0.837, P<0.001). Conclusion Elevated ADMA levels in plasma and aqueous humor positively correlate with the severity of FVP in PDR, indicating ADMA as a risk factor for severe PDR.
Collapse
Affiliation(s)
| | - Wei Jin
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Yakupova EI, Abramicheva PA, Bocharnikov AD, Andrianova NV, Plotnikov EY. Biomarkers of the End-Stage Renal Disease Progression: Beyond the GFR. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1622-1644. [PMID: 38105029 DOI: 10.1134/s0006297923100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/20/2023] [Accepted: 08/20/2023] [Indexed: 12/19/2023]
Abstract
Chronic kidney disease can progress to the end-stage renal disease (ESRD) characterized by a high risk of morbidity and mortality. ESRD requires immediate therapy or even dialysis or kidney transplantation, therefore, its timely diagnostics is critical for many patients. ESRD is associated with pathological changes, such as inflammation, fibrosis, endocrine disorders, and epigenetic changes in various cells, which could serve as ESRD markers. The review summarizes information on conventional and new ESRD biomarkers that can be assessed in kidney tissue, blood, and urine. Some biomarkers are specific to a particular pathology, while others are more universal. Here, we suggest several universal inflammatory, fibrotic, hormonal, and epigenetic markers indicative of severe deterioration of renal function and ESRD progression for improvement of ESRD diagnostics.
Collapse
Affiliation(s)
- Elmira I Yakupova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Polina A Abramicheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey D Bocharnikov
- International School of Medicine of the Future, Sechenov First Moscow State Medical University, Moscow, 119992, Russia
| | - Nadezda V Andrianova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
3
|
Nakayama T, Azegami T, Hayashi K, Hishikawa A, Yoshimoto N, Nakamichi R, Sugita E, Itoh H. Vaccination against connective tissue growth factor attenuates the development of renal fibrosis. Sci Rep 2022; 12:10933. [PMID: 35768626 PMCID: PMC9243061 DOI: 10.1038/s41598-022-15118-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
There is a critical need for efficient treatment of chronic kidney disease (CKD). Renal fibrosis is a final common pathway to end-stage renal disease independent of the underlying etiology, and connective tissue growth factor (CTGF) is a well-recognized profibrotic factor in fibrosis of various organ systems. Here, we developed a novel peptide vaccine against CTGF to attenuate the development of renal fibrosis. Three inoculations with this CTGF vaccine at 2-week intervals elicited antibodies specifically binding to human full-length CTGF, and the antigen-specific serum IgG antibody titers were maintained for > 30 weeks. The efficacy of the CTGF vaccine on renal fibrosis was evaluated in adenine-induced CKD and unilateral ureteral obstruction (UUO) murine models. In adenine-induced CKD model, immunization with the CTGF vaccine attenuated renal interstitial fibrosis. Vaccinated mice showed low levels of serum creatinine and urea nitrogen and low urine albumin–creatinine ratio compared with vehicle-treated mice. In UUO model, the CTGF vaccination also suppressed the onset of renal fibrosis. In an in vitro study, CTGF vaccine-elicited IgG antibodies efficiently suppressed CTGF-induced- and transforming growth factor-β-induced α-smooth muscle actin expression in kidney fibroblasts. These results demonstrate that the CTGF vaccine is a promising strategy to attenuate the development of renal fibrosis.
Collapse
Affiliation(s)
- Takashin Nakayama
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tatsuhiko Azegami
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan. .,Keio University Health Center, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama-shi, Kanagawa, 223-8521, Japan.
| | - Kaori Hayashi
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Akihito Hishikawa
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Norifumi Yoshimoto
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ran Nakamichi
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Erina Sugita
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
4
|
Rayego-Mateos S, Morgado-Pascual JL, Lavoz C, Rodrigues-Díez RR, Márquez-Expósito L, Tejera-Muñoz A, Tejedor-Santamaría L, Rubio-Soto I, Marchant V, Ruiz-Ortega M. CCN2 Binds to Tubular Epithelial Cells in the Kidney. Biomolecules 2022; 12:biom12020252. [PMID: 35204752 PMCID: PMC8869303 DOI: 10.3390/biom12020252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), is considered a fibrotic biomarker and has been suggested as a potential therapeutic target for kidney pathologies. CCN2 is a matricellular protein with four distinct structural modules that can exert a dual function as a matricellular protein and as a growth factor. Previous experiments using surface plasmon resonance and cultured renal cells have demonstrated that the C-terminal module of CCN2 (CCN2(IV)) interacts with the epidermal growth factor receptor (EGFR). Moreover, CCN2(IV) activates proinflammatory and profibrotic responses in the mouse kidney. The aim of this paper was to locate the in vivo cellular CCN2/EGFR binding sites in the kidney. To this aim, the C-terminal module CCN2(IV) was labeled with a fluorophore (Cy5), and two different administration routes were employed. Both intraperitoneal and direct intra-renal injection of Cy5-CCN2(IV) in mice demonstrated that CCN2(IV) preferentially binds to the tubular epithelial cells, while no signal was detected in glomeruli. Moreover, co-localization of Cy5-CCN2(IV) binding and activated EGFR was found in tubules. In cultured tubular epithelial cells, live-cell confocal microscopy experiments showed that EGFR gene silencing blocked Cy5-CCN2(IV) binding to tubuloepithelial cells. These data clearly show the existence of CCN2/EGFR binding sites in the kidney, mainly in tubular epithelial cells. In conclusion, these studies show that circulating CCN2(IV) can directly bind and activate tubular cells, supporting the role of CCN2 as a growth factor involved in kidney damage progression.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - José Luis Morgado-Pascual
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Cordoba, Spain;
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14071 Cordoba, Spain
| | - Carolina Lavoz
- Division of Nephrology, School of Medicine, Universidad Austral Chile, Valdivia 5090000, Chile;
| | - Raúl R. Rodrigues-Díez
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Laura Márquez-Expósito
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Lucía Tejedor-Santamaría
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Irene Rubio-Soto
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Vanessa Marchant
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (A.T.-M.); (L.T.-S.); (I.R.-S.); (V.M.)
- Red de Investigación Renal (REDinREN), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Correspondence:
| |
Collapse
|
5
|
Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021; 135:1999-2029. [PMID: 34427291 DOI: 10.1042/cs20201016] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Chronic kidney disease (CKD) is characterized by pathological accumulation of extracellular matrix (ECM) proteins in renal structures. Tubulointerstitial fibrosis is observed in glomerular diseases as well as in the regeneration failure of acute kidney injury (AKI). Therefore, finding antifibrotic therapies comprises an intensive research field in Nephrology. Nowadays, ECM is not only considered as a cellular scaffold, but also exerts important cellular functions. In this review, we describe the cellular and molecular mechanisms involved in kidney fibrosis, paying particular attention to ECM components, profibrotic factors and cell-matrix interactions. In response to kidney damage, activation of glomerular and/or tubular cells may induce aberrant phenotypes characterized by overproduction of proinflammatory and profibrotic factors, and thus contribute to CKD progression. Among ECM components, matricellular proteins can regulate cell-ECM interactions, as well as cellular phenotype changes. Regarding kidney fibrosis, one of the most studied matricellular proteins is cellular communication network-2 (CCN2), also called connective tissue growth factor (CTGF), currently considered as a fibrotic marker and a potential therapeutic target. Integrins connect the ECM proteins to the actin cytoskeleton and several downstream signaling pathways that enable cells to respond to external stimuli in a coordinated manner and maintain optimal tissue stiffness. In kidney fibrosis, there is an increase in ECM deposition, lower ECM degradation and ECM proteins cross-linking, leading to an alteration in the tissue mechanical properties and their responses to injurious stimuli. A better understanding of these complex cellular and molecular events could help us to improve the antifibrotic therapies for CKD.
Collapse
|
6
|
Vanstapel A, Goldschmeding R, Broekhuizen R, Nguyen T, Sacreas A, Kaes J, Heigl T, Verleden SE, De Zutter A, Verleden G, Weynand B, Verbeken E, Ceulemans LJ, Van Raemdonck DE, Neyrinck AP, Schoemans HM, Vanaudenaerde BM, Vos R. Connective Tissue Growth Factor Is Overexpressed in Explant Lung Tissue and Broncho-Alveolar Lavage in Transplant-Related Pulmonary Fibrosis. Front Immunol 2021; 12:661761. [PMID: 34122421 PMCID: PMC8187127 DOI: 10.3389/fimmu.2021.661761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/07/2021] [Indexed: 11/25/2022] Open
Abstract
Background Connective tissue growth factor (CTGF) is an important mediator in several fibrotic diseases, including lung fibrosis. We investigated CTGF-expression in chronic lung allograft dysfunction (CLAD) and pulmonary graft-versus-host disease (GVHD). Materials and Methods CTGF expression was assessed by quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry in end-stage CLAD explant lung tissue (bronchiolitis obliterans syndrome (BOS), n=20; restrictive allograft syndrome (RAS), n=20), pulmonary GHVD (n=9). Unused donor lungs served as control group (n=20). Next, 60 matched lung transplant recipients (BOS, n=20; RAS, n=20; stable lung transplant recipients, n=20) were included for analysis of CTGF protein levels in plasma and broncho-alveolar lavage (BAL) fluid at 3 months post-transplant, 1 year post-transplant, at CLAD diagnosis or 2 years post-transplant in stable patients. Results qPCR revealed an overall significant difference in the relative content of CTGF mRNA in BOS, RAS and pulmonary GVHD vs. controls (p=0.014). Immunohistochemistry showed a significant higher percentage and intensity of CTGF-positive respiratory epithelial cells in BOS, RAS and pulmonary GVHD patients vs. controls (p<0.0001). BAL CTGF protein levels were significantly higher at 3 months post-transplant in future RAS vs. stable or BOS (p=0.028). At CLAD diagnosis, BAL protein content was significantly increased in RAS patients vs. stable (p=0.0007) and BOS patients (p=0.042). CTGF plasma values were similar in BOS, RAS, and stable patients (p=0.74). Conclusions Lung CTGF-expression is increased in end-stage CLAD and pulmonary GVHD; and higher CTGF-levels are present in BAL of RAS patients at CLAD diagnosis. Our results suggest a potential role for CTGF in CLAD, especially RAS, and pulmonary GVHD.
Collapse
Affiliation(s)
- Arno Vanstapel
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Roel Broekhuizen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tri Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annelore Sacreas
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium
| | - Janne Kaes
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium
| | - Tobias Heigl
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium
| | - Stijn E Verleden
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium
| | - Alexandra De Zutter
- Department of Microbiology, Immunology and Transplantation, Katholieke Universiteit, Leuven, Belgium
| | - Geert Verleden
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Respiratory Diseases, Lung Transplant Unit, University Hospital Leuven, Leuven, Belgium
| | - Birgit Weynand
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Erik Verbeken
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Thoracic Surgery University Hospital Leuven, Leuven, Belgium
| | - Dirk E Van Raemdonck
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Thoracic Surgery University Hospital Leuven, Leuven, Belgium
| | - Arne P Neyrinck
- Department of Cardiovascular Sciences, Katholieke Universiteit, Leuven, Belgium.,Department of Anesthesiology, University Hospital Leuven, Leuven, Belgium
| | | | - Bart M Vanaudenaerde
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium
| | - Robin Vos
- Department of Chronic Diseases and Metabolism, Katholieke Universiteit, Leuven, Belgium.,Department of Respiratory Diseases, Lung Transplant Unit, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
7
|
High cut-off dialysis mitigates pro-calcific effects of plasma on vascular progenitor cells. Sci Rep 2021; 11:1144. [PMID: 33441772 PMCID: PMC7807056 DOI: 10.1038/s41598-020-80016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/10/2020] [Indexed: 11/08/2022] Open
Abstract
Mortality of patients with end-stage renal disease tremendously exceeds that of the general population due to excess cardiovascular morbidity. Large middle-sized molecules (LMM) including pro-inflammatory cytokines are major drivers of uremic cardiovascular toxicity and cannot be removed sufficiently by conventional high-flux (HFL) hemodialysis. We tested the ability of plasma from 19 hemodialysis patients participating in a trial comparing HFL with high cut-off (HCO) membranes facilitating removal of LMM to induce calcification in mesenchymal stromal cells (MSC) functioning as vascular progenitors. HCO dialysis favorably changed plasma composition resulting in reduced pro-calcific activity. LMM were removed more effectively by HCO dialysis including FGF23, a typical LMM we found to promote osteoblastic differentiation of MSC. Protein-bound uremic retention solutes with known cardiovascular toxicity but not LMM inhibited proliferation of MSC without direct toxicity in screening experiments. We could not attribute the effect of HCO dialysis on MSC calcification to distinct mediators. However, we found evidence of sustained reduced inflammation that might parallel other anti-calcifying mechanisms such as altered generation of extracellular vesicles. Our findings imply protection of MSC from dysfunctional differentiation by novel dialysis techniques targeted at removal of LMM. HCO dialysis might preserve their physiologic role in vascular regeneration and improve outcomes in dialysis patients.
Collapse
|
8
|
Chi H, Feng H, Shang X, Jiao J, Sun L, Jiang W, Meng X, Fan Y, Lin X, Zhong J, Yang X. Circulating Connective Tissue Growth Factor Is Associated with Diastolic Dysfunction in Patients with Diastolic Heart Failure. Cardiology 2019; 143:77-84. [DOI: 10.1159/000499179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/25/2019] [Indexed: 11/19/2022]
Abstract
Background: Connective tissue growth factor (CTGF) and transforming growth factor β1 (TGF-β1) are emerging biomarkers for tissue fibrosis. The aim of this study was to investigate the association between circulating CTGF, TGF-β1 levels and cardiac diastolic dysfunction in patients with diastolic heart failure (DHF). Methods: Admitted subjects were screened for heart failure and those with left ventricular (LV) ejection fraction <45% were excluded. Diastolic dysfunction was defined as functional abnormalities that exist during LV relaxation and filling by echocardiographic criteria. Totally 114 patients with DHF and 72 controls were enrolled. Plasma levels of CTGF, TGF-β1, and B-type natriuretic peptide (BNP) were determined. Results: The plasma CTGF and TGF-β1 levels increased significantly in patients with DHF. Circulating CTGF and TGF-β1 levels were correlated with echocardiographic parameter E/e’ and diastolic dysfunction grading in DHF patients. In multivariate logistic analysis, CTGF was significantly associated with diastolic dysfunction (odds ratio: 1.027, p < 0.001). Plasma CTGF (AUC: 0.770 ± 0.036, p < 0.001) and CTGF/BNP (AUC: 0.839 ± 0.036, p < 0.001) showed good predictive power to the diagnosis of DHF. Conclusions: This finding suggested CTGF could be involved in the pathophysiology of diastolic heart failure and CTGF/BNP might have auxiliary diagnostic value on diastolic heart failure.
Collapse
|
9
|
Kinashi H, Toda N, Sun T, Nguyen TQ, Suzuki Y, Katsuno T, Yokoi H, Aten J, Mizuno M, Maruyama S, Yanagita M, Goldschmeding R, Ito Y. Connective tissue growth factor is correlated with peritoneal lymphangiogenesis. Sci Rep 2019; 9:12175. [PMID: 31434958 PMCID: PMC6704065 DOI: 10.1038/s41598-019-48699-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/07/2019] [Indexed: 12/04/2022] Open
Abstract
Lymphatic absorption in the peritoneal cavity may contribute to ultrafiltration failure in peritoneal dialysis (PD). Lymphatic vessels develop during PD-related peritoneal fibrosis. Connective tissue growth factor (CTGF, also called CCN2) is an important determinant of fibrotic tissue remodeling, but little is known about its possible involvement in lymphangiogenesis. In this study, we investigated the relationship between CTGF and peritoneal lymphangiogenesis. A positive correlation was observed between vascular endothelial growth factor-C (VEGF-C), a major lymphangiogenic growth factor, and the CTGF concentration in human PD effluents. CTGF expression was positively correlated with expression of lymphatic markers and VEGF-C in human peritoneal biopsies. We found a positive correlation between the increase in CTGF and the increase in VEGF-C in cultured human peritoneal mesothelial cells (HPMCs) treated with transforming growth factor-β1 (TGF-β1). The diaphragm is a central player in peritoneal lymphatic absorption. CTGF expression was also correlated with expression of VEGF-C and lymphatics in a rat diaphragmatic fibrosis model induced by chlorhexidine gluconate (CG). Furthermore, CTGF gene deletion reduced VEGF-C expression and peritoneal lymphangiogenesis in the mouse CG model. Inhibition of CTGF also reduced VEGF-C upregulation in HPMCs treated with TGF-β1. Our results suggest a close relationship between CTGF and PD-associated lymphangiogenesis.
Collapse
Affiliation(s)
- Hiroshi Kinashi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan.,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Naohiro Toda
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ting Sun
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yasuhiro Suzuki
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Katsuno
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jan Aten
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Masashi Mizuno
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoichi Maruyama
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan.
| |
Collapse
|
10
|
Connective Tissue Growth Factor Is Related to All-cause Mortality in Hemodialysis Patients and Is Lowered by On-line Hemodiafiltration: Results from the Convective Transport Study. Toxins (Basel) 2019; 11:toxins11050268. [PMID: 31086050 PMCID: PMC6563290 DOI: 10.3390/toxins11050268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 11/17/2022] Open
Abstract
Connective tissue growth factor (CTGF) plays a key role in the pathogenesis of tissue fibrosis. The aminoterminal fragment of CTGF is a middle molecule that accumulates in chronic kidney disease. The aims of this study are to explore determinants of plasma CTGF in hemodialysis (HD) patients, investigate whether CTGF relates to all-cause mortality in HD patients, and investigate whether online-hemodiafiltration (HDF) lowers CTGF. Data from 404 patients participating in the CONvective TRAnsport STudy (CONTRAST) were analyzed. Patients were randomized to low-flux HD or HDF. Pre-dialysis CTGF was measured by sandwich ELISA at baseline, after six and 12 months. CTGF was inversely related in multivariable analysis to glomerular filtration rate (GFR) (p < 0.001) and positively to cardiovascular disease (CVD) (p = 0.006), dialysis vintage (p < 0.001), interleukin-6 (p < 0.001), beta-2-microglobulin (p = 0.045), polycystic kidney disease (p < 0.001), tubulointerstitial nephritis (p = 0.002), and renal vascular disease (p = 0.041). Patients in the highest quartile had a higher mortality risk compared to those in the lowest quartile (HR 1.7, 95% CI: 1.02-2.88, p = 0.043). HDF lowered CTGF with 4.8% between baseline and six months, whereas during HD, CTGF increased with 4.9% (p < 0.001). In conclusion, in HD patients, CTGF is related to GFR, CVD and underlying renal disease and increased the risk of all-cause mortality. HDF reduces CTGF.
Collapse
|
11
|
Toda N, Mukoyama M, Yanagita M, Yokoi H. CTGF in kidney fibrosis and glomerulonephritis. Inflamm Regen 2018; 38:14. [PMID: 30123390 PMCID: PMC6091167 DOI: 10.1186/s41232-018-0070-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/08/2018] [Indexed: 01/27/2023] Open
Abstract
Background Glomerulonephritis, which causes inflammation in glomeruli, is a common cause of end-stage renal failure. Severe and prolonged inflammation can damage glomeruli and lead to kidney fibrosis. Connective tissue growth factor (CTGF) is a member of the CCN matricellular protein family, consisting of four domains, that regulates the signaling of other growth factors and promotes kidney fibrosis. Main body of the abstract CTGF can simultaneously interact with several factors with its four domains. The microenvironment differs depending on the types of cells and tissues and differentiation stages of these cells. The diverse biological actions of CTGF on various types of cells and tissues depend on this difference in microenvironment. In the kidney, CTGF is expressed at low levels in normal condition and its expression is upregulated by kidney fibrosis. CTGF expression is known to be upregulated in the extra-capillary and mesangial lesions of glomerulonephritis in human kidney biopsy samples. In addition to involvement in fibrosis, CTGF modulates the expression of inflammatory mediators, including cytokines and chemokines, through distinct signaling pathways, in various cell systems. In anti-glomerular basement membrane (GBM) glomerulonephritis, systemic CTGF knockout (Rosa-CTGF cKO) mice exhibit 50% reduction of proteinuria and decreased crescent formation and mesangial expansion compared with control mice. In addition to fibrotic markers, the glomerular mRNA expression of Ccl2 is increased in the control mice with anti-GBM glomerulonephritis, and this increase is reduced in Rosa-CTGF cKO mice with nephritis. Accumulation of MAC2-positive cells in glomeruli is also reduced in Rosa-CTGF cKO mice. These results suggest that CTGF may be required for the upregulation of Ccl2 expression not only in anti-GBM glomerulonephritis but also in other types of glomerulonephritis, such as IgA nephropathy; CTGF expression and accumulation of macrophages in the mesangial area have been documented in these glomerular diseases. CTGF induces the expression of inflammatory mediators and promotes cell adhesion. Short conclusion CTGF plays an important role in the development of glomerulonephritis by inducing the inflammatory process. CTGF is a potentiate target for the treatment of glomerulonephritis.
Collapse
Affiliation(s)
- Naohiro Toda
- 1Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Masashi Mukoyama
- 2Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Motoko Yanagita
- 1Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Hideki Yokoi
- 1Department of Nephrology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
12
|
Ramazani Y, Knops N, Elmonem MA, Nguyen TQ, Arcolino FO, van den Heuvel L, Levtchenko E, Kuypers D, Goldschmeding R. Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol 2018; 68-69:44-66. [DOI: 10.1016/j.matbio.2018.03.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/07/2023]
|
13
|
Vanhove T, Kinashi H, Nguyen TQ, Metalidis C, Poesen K, Naesens M, Lerut E, Goldschmeding R, Kuypers DRJ. Tubulointerstitial expression and urinary excretion of connective tissue growth factor 3 months after renal transplantation predict interstitial fibrosis and tubular atrophy at 5 years in a retrospective cohort analysis. Transpl Int 2017; 30:695-705. [PMID: 28390067 DOI: 10.1111/tri.12960] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/27/2017] [Accepted: 03/23/2017] [Indexed: 11/29/2022]
Abstract
Connective tissue growth factor (CTGF) is an important mediator of renal allograft fibrosis, and urinary CTGF (CTGFu) levels correlate with the development of human allograft interstitial fibrosis. We evaluated the predictive value of CTGF protein expression in 160 kidney transplant recipients with paired protocol biopsies at 3 months and 5 years after transplantation. At month 3 and year 1, CTGFu was measured using ELISA, and biopsies were immunohistochemically stained for CTGF, with semiquantitative scoring of tubulointerstitial CTGF-positive area (CTGFti). Predictors of interstitial fibrosis and tubular atrophy (IF/TA) severity at 5 years were donor age [OR 1.05 (1.02-1.08), P = 0.001], female donor [OR 0.40 (0.18-0.90), P = 0.026], induction therapy [OR 2.76 (1.10-6.89), P = 0.030], and CTGFti >10% at month 3 [OR 2.72 (1.20-6.15), P = 0.016]. In subgroups of patients with little histologic damage at 3 months [either ci score 0 (n = 119), IF/TA score ≤1 (n = 123), or absence of IF/TA, interstitial inflammation, and tubulitis (n = 45)], consistent predictors of progression of chronic histologic damage by 5 years were donor age, induction therapy, CTGFti >10%, and CTGFu. These results suggest that, even in patients with favorable histology at 3 months, significant CTGF expression is often present which may predict accelerated accumulation of histologic damage.
Collapse
Affiliation(s)
- Thomas Vanhove
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Hiroshi Kinashi
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Nephrology, Nagoya University Hospital, Nagoya, Japan
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christoph Metalidis
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Poesen
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Evelyne Lerut
- Department of Imaging and Pathology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dirk R J Kuypers
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Gerritsen KGF, Bovenschen N, Nguyen TQ, Sprengers D, Koeners MP, van Koppen AN, Joles JA, Goldschmeding R, Kok RJ. Rapid hepatic clearance of full length CCN-2/CTGF: a putative role for LRP1-mediated endocytosis. J Cell Commun Signal 2016; 10:295-303. [PMID: 27644406 PMCID: PMC5143326 DOI: 10.1007/s12079-016-0354-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/08/2016] [Indexed: 01/24/2023] Open
Abstract
CCN-2 (connective tissue growth factor; CTGF) is a key factor in fibrosis. Plasma CCN-2 has biomarker potential in numerous fibrotic disorders, but it is unknown which pathophysiological factors determine plasma CCN-2 levels. The proteolytic amino-terminal fragment of CCN-2 is primarily eliminated by the kidney. Here, we investigated elimination and distribution profiles of full length CCN-2 by intravenous administration of recombinant CCN-2 to rodents. After bolus injection in mice, we observed a large initial distribution volume (454 mL/kg) and a fast initial clearance (120 mL/kg/min). Immunosorbent assay and immunostaining showed that CCN-2 distributed mainly to the liver and was taken up by hepatocytes. Steady state clearance in rats, determined by continuous infusion of CCN-2, was fast (45 mL/kg/min). Renal CCN-2 clearance, determined by arterial and renal vein sampling, accounted for only 12 % of total clearance. Co-infusion of CCN-2 with receptor-associated protein (RAP), an antagonist of LDL-receptor family proteins, showed that RAP prolonged CCN-2 half-life and completely prevented CCN-2 internalization by hepatocytes. This suggests that hepatic uptake of CCN-2 is mediated by a RAP-sensitive mechanism most likely involving LRP1, a member of the LDL-receptor family involved in hepatic clearance of various plasma proteins. Surface plasmon resonance binding studies confirmed that CCN-2 is an LRP1 ligand. Co-infusion of CCN-2 with an excess of the heparan sulphate-binding protamine lowered the large initial distribution volume of CCN-2 by 88 % and reduced interstitial staining of CCN-2, suggesting binding of CCN-2 to heparan sulphate proteoglycans (HSPGs). Protamine did not affect clearance rate, indicating that RAP-sensitive clearance of CCN-2 is HSPG independent. In conclusion, unlike its amino-terminal fragment which is cleared by the kidney, full length CCN-2 is primarily eliminated by the liver via a fast RAP-sensitive, probably LRP1-dependent pathway.
Collapse
Affiliation(s)
- K G F Gerritsen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands.,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N Bovenschen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
| | - T Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands.
| | - D Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - M P Koeners
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A N van Koppen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
| | - R J Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| |
Collapse
|
15
|
Gerritsen KG, Falke LL, van Vuuren SH, Leeuwis JW, Broekhuizen R, Nguyen TQ, de Borst GJ, Nathoe HM, Verhaar MC, Kok RJ, Goldschmeding R, Visseren FL. Plasma CTGF is independently related to an increased risk of cardiovascular events and mortality in patients with atherosclerotic disease: the SMART study. Growth Factors 2016; 34:149-58. [PMID: 27686612 DOI: 10.1080/08977194.2016.1210142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIMS Connective tissue growth factor (CTGF) plays a key role in tissue fibrogenesis and growing evidence indicates a pathogenic role in cardiovascular disease. Aim of this study is to investigate the association of connective tissue growth factor (CTGF/CCN2) with cardiovascular risk and mortality in patients with manifest vascular disease. METHODS AND RESULTS Plasma CTGF was measured by ELISA in a prospective cohort study of 1227 patients with manifest vascular disease (mean age 59.0 ± 9.9 years). Linear regression analysis was performed to quantify the association between CTGF and cardiovascular risk factors. Results are expressed as beta (β) regression coefficients with 95% confidence intervals (CI). The relation between CTGF and the occurrence of new cardiovascular events and mortality was assessed with Cox proportional hazard analysis. Adjustments were made for potential confounding factors. Plasma CTGF was positively related to total cholesterol (β 0.040;95%CI 0.013-0.067) and LDL cholesterol (β 0.031;95%CI 0.000-0.062) and inversely to glomerular filtration rate (β -0.004;95%CI -0.005 to -0.002). CTGF was significantly lower in patients with cerebrovascular disease. During a median follow-up of 6.5 years (IQR 5.3-7.4) 131 subjects died, 92 experienced an ischemic cardiac complication and 45 an ischemic stroke. CTGF was associated with an increased risk of new vascular events (HR 1.21;95%CI 1.04-1.42), ischemic cardiac events (HR 1.41;95%CI 1.18-1.67) and all-cause mortality (HR 1.18;95%CI 1.00-1.38) for every 1 nmol/L increase in CTGF. No relation was observed between CTGF and the occurrence of ischemic stroke. CONCLUSIONS In patients with manifest vascular disease, elevated plasma CTGF confers an increased risk of new cardiovascular events and all-cause mortality.
Collapse
Affiliation(s)
- Karin G Gerritsen
- a Department of Pathology
- b Department of Nephrology and Hypertension
| | | | | | | | | | | | | | - Hendrik M Nathoe
- d Department of Cardiology , University Medical Center Utrecht , Utrecht , The Netherlands
| | | | - Robbert J Kok
- e Department of Pharmaceutics , Utrecht Institute for Pharmaceutical Sciences, Utrecht University , Utrecht , The Netherlands , and
| | | | - Frank L Visseren
- f Department of Vascular Medicine , University Medical Center Utrecht , Utrecht , The Netherlands
| | | |
Collapse
|
16
|
Hilhorst M, Kok HM, Broekhuizen R, van Paassen P, van Breda Vriesman P, Goldschmeding R, Nguyen TQ, Cohen Tervaert JW. Connective tissue growth factor and the cicatrization of cellular crescents in ANCA-associated glomerulonephritis. Nephrol Dial Transplant 2015; 30:1291-9. [DOI: 10.1093/ndt/gfv088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 03/10/2015] [Indexed: 12/22/2022] Open
|
17
|
Falke LL, Goldschmeding R, Nguyen TQ. A perspective on anti-CCN2 therapy for chronic kidney disease. Nephrol Dial Transplant 2014; 29 Suppl 1:i30-i37. [PMID: 24493868 DOI: 10.1093/ndt/gft430] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Kidney fibrosis is the common end point of chronic kidney disease independent of aetiology. Currently, no effective therapy exists to reduce kidney fibrosis. CCN2 appears to be an interesting candidate for anti-fibrotic drug targeting, because it holds a central position in the development of kidney fibrosis and interacts with a variety of factors that are involved in the fibrotic response, including transforming growth factor (TGF) β and Bone morphogenetic proteins. Although CCN2 modifies many pathways, it does not appear to have a membrane receptor of its own. Numerous experimental and clinical studies lowering CCN2 bioavailability have shown promising results with minimal adverse side effects. This review aims to provide an overview of the current state of CCN2 research with a focus on anti-fibrotic therapy.
Collapse
Affiliation(s)
- Lucas L Falke
- Department of Pathology, UMC Utrecht, Utrecht, Netherlands
| | | | | |
Collapse
|
18
|
Kok HM, Falke LL, Goldschmeding R, Nguyen TQ. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol 2014; 10:700-11. [PMID: 25311535 DOI: 10.1038/nrneph.2014.184] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a major health and economic burden with a rising incidence. During progression of CKD, the sustained release of proinflammatory and profibrotic cytokines and growth factors leads to an excessive accumulation of extracellular matrix. Transforming growth factor β (TGF-β) and angiotensin II are considered to be the two main driving forces in fibrotic development. Blockade of the renin-angiotensin-aldosterone system has become the mainstay therapy for preservation of kidney function, but this treatment is not sufficient to prevent progression of fibrosis and CKD. Several factors that induce fibrosis have been identified, not only by TGF-β-dependent mechanisms, but also by TGF-β-independent mechanisms. Among these factors are the (partially) TGF-β-independent profibrotic pathways involving connective tissue growth factor, epidermal growth factor and platelet-derived growth factor and their receptors. In this Review, we discuss the specific roles of these pathways, their interactions and preclinical evidence supporting their qualification as additional targets for novel antifibrotic therapies.
Collapse
Affiliation(s)
- Helena M Kok
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Lucas L Falke
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Roel Goldschmeding
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Tri Q Nguyen
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| |
Collapse
|
19
|
Wang FM, Yu F, Tan Y, Liu G, Zhao MH. The serum levels of connective tissue growth factor in patients with systemic lupus erythematosus and lupus nephritis. Lupus 2014; 23:655-64. [PMID: 24536044 DOI: 10.1177/0961203314524291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 01/23/2014] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The expression of connective tissue growth factor mRNA in human kidneys may serve as an early marker for lupus nephritis progression. Therefore, we speculated that connective tissue growth factor may be involved in the pathogenesis of systemic lupus erythematosus and lupus nephritis. In this study, we set out to investigate the associations between serum connective tissue growth factor levels and clinicopathological features of patients with systemic lupus erythematosus and lupus nephritis. METHODS Serum samples from patients with non-renal systemic lupus erythematosus, renal biopsy-proven lupus nephritis and healthy control subjects were detected by enzyme-linked immunosorbent assay for serum connective tissue growth factor levels. The associations between connective tissue growth factor levels and clinicopathological features of the patients were further analysed. RESULTS The levels of serum connective tissue growth factor in patients with non-renal systemic lupus erythematosus and lupus nephritis were both significantly higher than those in the normal control group (34.14 ± 12.17 ng/ml vs. 22.8 ± 3.0 ng/ml, p<0.001; 44.1 ± 46.8 ng/ml vs. 22.8 ± 3.0 ng/ml, p = 0.035, respectively). There was no significant difference of the serum connective tissue growth factor levels between non-renal systemic lupus erythematosus and lupus nephritis group (34.14 ± 12.17 ng/ml vs. 44.1 ± 46.8 ng/ml, p = 0.183). Serum connective tissue growth factor levels were significantly higher in lupus nephritis patients with the following clinical manifestations, including anaemia (51.3 ± 51.4 ng/ml vs. 23.4 ± 9.7 ng/ml, p<0.001) and acute renal failure (85.5 ± 75.0 ng/ml vs. 31.2 ± 21.8 ng/ml, p = 0.002). Serum connective tissue growth factor levels in class IV were significantly higher than that in class II, III and V (57.6 ± 57.5 ng/ml vs. 18.7 ± 6.4 ng/ml, p = 0.019; 57.6 ± 57.5 ng/ml vs. 25.2 ± 14.9 ng/ml, p = 0.006; 57.6 ± 57.5 ng/ml vs. 30.5 ± 21.3 ng/ml, p = 0.017, respectively). Serum connective tissue growth factor levels were significantly higher in those with both active/chronic lesions than those in those with active lesions only in either class IV (84.9 ± 69.6 ng/ml vs. 40.0 ± 40.2 ng/ml, p = 0.001) or in combination of class III and IV lupus nephritis (63.3 ± 63.4 ng/ml vs. 38.3 ± 37.9 ng/ml, p = 0.035, respectively). Serum connective tissue growth factor levels were negatively associated with estimated glomerular filtration rate (r = -0.46, p<0.001) and positively associated with interstitial inflammation (r = 0.309, p = 0.002) and interstitial fibrosis (r = 0.287, p = 0.004). Serum connective tissue growth factor level was a risk factor for doubling of serum creatinine in lupus nephritis (p<0.001, hazard ratio = 1.015, 95% confidence intervals 1.008-1.022) in univariate analysis. CONCLUSIONS Serum connective tissue growth factor levels were significantly higher in lupus and correlated with chronic renal interstitial injury and doubling of serum creatinine in patients with lupus nephritis.
Collapse
Affiliation(s)
- F-M Wang
- Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, PR China Key laboratory of Renal Disease, Ministry of Health of China, PR China Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education of China, PR China
| | - F Yu
- Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, PR China Key laboratory of Renal Disease, Ministry of Health of China, PR China Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education of China, PR China
| | - Y Tan
- Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, PR China Key laboratory of Renal Disease, Ministry of Health of China, PR China Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education of China, PR China
| | - G Liu
- Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, PR China Key laboratory of Renal Disease, Ministry of Health of China, PR China Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education of China, PR China
| | - M-H Zhao
- Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, PR China Key laboratory of Renal Disease, Ministry of Health of China, PR China Key Laboratory of Chronic Kidney Disease Prevention and Treatment, Peking University, Ministry of Education of China, PR China Peking-Tsinghua Center for Life Sciences, PR China
| |
Collapse
|
20
|
Behnes M, Brueckmann M, Lang S, Weiß C, Ahmad-Nejad P, Neumaier M, Borggrefe M, Hoffmann U. Connective tissue growth factor (CTGF/CCN2): diagnostic and prognostic value in acute heart failure. Clin Res Cardiol 2013; 103:107-16. [PMID: 24146089 DOI: 10.1007/s00392-013-0626-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/27/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND As a mediator of ECM homeostasis, connective tissue growth factor (CTGF) appears to be involved in adverse structural remodeling processes in the heart. However, the diagnostic and prognostic value of CTGF levels in acute heart failure (AHF) in addition to natriuretic peptide testing has not yet been evaluated. METHODS AND RESULTS A total of 212 patients presenting with acute dyspnea and/or peripheral edema to the Emergency Department were evaluated. CTGF and NT-proBNP plasma levels were measured at the initial presentation. All patients were followed up to 1 and 5 years. The first endpoint tested was the diagnostic non-inferiority of combined CTGF plus NT-proBNP compared to NT-proBNP alone for AHF diagnosis. Afterwards, the additional diagnostic value of CTGF plus NT-proBNP was tested. CTGF levels were higher in NYHA class III/IV and AHA/ACC class C/D patients compared to lower class patients (p = 0.04). Patients with HFREF revealed highest CTGF levels (median 93.3 pg/ml, IQR 18.2-972 pg/ml, n = 48) compared to patients with a normal heart function (i.e., without HFREF and HFPEF) (median 25.9, IQR <1-82.2 pg/ml, n = 37) (p < 0.05), followed by patients with HFPEF (median 82.2 pg/ml, IQR 11.5-447 pg/ml, n = 32) as assessed by echocardiography. Finally, CTGF levels were higher in patients with AHF (median 77.3 pg/ml, IQR 22.5-1012 pg/ml, n = 66) compared to those without (p = 0.002). CTGF plus NT-proBNP was non-inferior to NT-proBNP testing alone for AHF diagnosis (AUC difference 0.01, p > 0.05). CTGF plus NT-proBNP improved the diagnostic capacity for AHF (accuracy 82 %, specificity 83 %, positive predictive value 66 %, net reclassification improvement +0.11) compared to NT-proBNP alone (p = 0.0001). CTGF levels were not able to differentiate prognostic outcomes after 1 and 5 years. CONCLUSIONS Additional CTGF measurements might lead to a better discrimination of higher functional and structural heart failure stages and might identify patients of an increased risk for an acute cardiac decompensation.
Collapse
Affiliation(s)
- Michael Behnes
- First Department of Medicine, University Medical Centre Mannheim (UMM), Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany,
| | | | | | | | | | | | | | | |
Collapse
|