1
|
Zhang Y, Wang C, Chen J, Bai C, Sun D, Qiu Y, Teng M, Dong Y. Efficacy, safety, and therapeutic drug monitoring of polymyxin B sulfate and colistin sulfate in critically ill patients: a real-world retrospective study. Front Pharmacol 2025; 15:1466888. [PMID: 39830357 PMCID: PMC11739331 DOI: 10.3389/fphar.2024.1466888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Background Polymyxin B sulfate (PBS) and colistin sulfate (CS) are the last-line treatments for infections caused by multidrug-resistant Gram-negative bacteria, but their efficacy and safety have not been validated. The aims of the current study were to (1) determine their efficacy and safety among critically ill patients and the influencing factors, and (2) determine the relationships of drug exposure with efficacy and safety, to provide evidence for the precision dosing. Method This retrospective study included 100 critically ill patients treated with PBS and 80 treated with CS. The efficacy outcomes were clinical efficacy and 30-day mortality, while the safety indicator was acute kidney injury (AKI) incidence. Result There was no significant difference between the two drugs in clinical efficacy, 30-day mortality, or overall AKI incidence, but the incidence of stage 3 AKI was significantly higher in the PBS cohort than the CS cohort. Therapeutic drug monitoring (TDM) and trough concentration (Cmin) were significantly associated with clinical efficacy and AKI in both cohorts. Classification and regression tree analysis revealed that Cmin values of ≥0.91 mg/L for PBS and Cmin ≥ 0.53 mg/L for CS were associated with higher clinical efficacy. Conclusion There is basically no significant difference in the efficacy and safety of PBS and CS. TDM can significantly improve the clinical efficacy of both drugs and reduce the incidence of AKI. TDM is therefore recommended to improve the clinical efficacy while reducing the adverse reactions.
Collapse
Affiliation(s)
- Yijing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chuhui Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiaojiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chuqi Bai
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Dan Sun
- Department of Pharmacy, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi, China
| | - Yulan Qiu
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Mengmeng Teng
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Khamlek S, Lucksiri A, Sunkonkit K, Oberdorfer P, Sukwuttichai P. Treatment Outcomes and Associated Factors of Intravenous Colistin for Nosocomial Infections in Pediatric Patients: A Retrospective Study in a University Hospital in Thailand. Pediatr Infect Dis J 2024; 43:1054-1060. [PMID: 38916921 DOI: 10.1097/inf.0000000000004450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND This study aimed to investigate the efficacy and safety of intravenous colistin in pediatric patients with nosocomial Gram-negative bacteria infections and to determine factors associated with treatment outcomes. METHODS This retrospective study recruited patients <18 years of age receiving intravenous colistin between January 2014 and December 2018. Clinical data and treatment outcomes were reviewed, and factors associated with treatment outcomes were assessed. RESULTS This study included 178 patients with a median age of 3.4 years (range, 0.1-17.8). The mean ± SD dose of colistin prescribed to patients without renal impairment was 5.1 ± 0.6 mg/kg/day. The clinical response rate was 70.8% in patients receiving colistin for specific treatment. Infection-related mortality and crude mortality were 17.5% and 19.7%, respectively. The nephrotoxicity rate was 29.8%; approximately 70% of the episodes occurred between the 3rd and 7th day of treatment. The presence of at least 2 organ dysfunctions [adjusted hazard ratio (aHR): 7.17; 95% CI: 1.64-31.40], septic shock (aHR: 2.69; 95% CI: 1.36-5.32) and receiving chemotherapy/immunosuppressants (aHR: 2.68; 95% CI: 1.36-5.25) were observed to be associated with clinical failure. The factors observed to be associated with nephrotoxicity included hypoalbuminemia (aHR: 2.93; 95% CI: 1.26-6.78), receiving amphotericin B (aHR: 2.29; 95% CI: 1.16-4.52), vancomycin (aHR: 3.36; 95% CI: 1.50-7.56) and vasopressors (aHR: 2.57; 95% CI: 1.27-5.21). CONCLUSION Colistin is generally effective in the treatment of nosocomial Gram-negative bacteria infections in pediatric patients. Close monitoring of renal function should be considered, especially in high-risk patients. Optimal dosage regimens for pediatric populations to promote more favorable clinical outcomes and minimize nephrotoxicity require further investigation.
Collapse
Affiliation(s)
- Sunisa Khamlek
- From the PhD's Degree Program in Pharmacy, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Division of Clinical Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | | | - Kanokkarn Sunkonkit
- Division of Pulmonary and Critical Care, Department of Pediatrics, Faculty of Medicine
| | - Peninnah Oberdorfer
- Division of Infectious Diseases, Department of Pediatrics, Faculty of Medicine
| | - Pattarapan Sukwuttichai
- Pharmaceutical Care Training Center, Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Xu M, Yao Z, Kong J, Tang M, Liu Q, Zhang X, Shi S, Zheng X, Cao J, Zhou T, Wang Z. Antiparasitic nitazoxanide potentiates colistin against colistin-resistant Acinetobacter baumannii and Escherichia coli in vitro and in vivo. Microbiol Spectr 2024; 12:e0229523. [PMID: 38032179 PMCID: PMC10783142 DOI: 10.1128/spectrum.02295-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Colistin is used as a last resort in many infections caused by multidrug-resistant Gram-negative bacteria; however, colistin-resistant (COL-R) is on the rise. Hence, it is critical to develop new antimicrobial strategies to overcome COL-R. We found that nitazoxanide (NTZ) combined with colistin showed notable synergetic antibacterial activity. These findings suggest that the NTZ/colistin combination may provide an effective alternative route to combat COL-R A. baumannii and COL-R Escherichia coli infections.
Collapse
Affiliation(s)
- Mengxin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhuocheng Yao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Jingchun Kong
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Miran Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Qi Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Shiyi Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Xiangkuo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| | - Zhongyong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, China
| |
Collapse
|
4
|
Han R, Xing J, Sun H, Guo Z, Yi K, Hu G, Zhai Y, Velkov T, Wu H. The antihelminth drug rafoxanide reverses chromosomal-mediated colistin-resistance in Klebsiella pneumoniae. mSphere 2023; 8:e0023423. [PMID: 37747188 PMCID: PMC10597454 DOI: 10.1128/msphere.00234-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/03/2023] [Indexed: 09/26/2023] Open
Abstract
The emergence and rapid spread of multi-drug-resistant (MDR) bacteria pose a serious threat to global healthcare. Although the synergistic effect of rafoxanide and colistin was reported, little is known regarding the potential mechanism of this synergy, particularly against chromosomal-mediated colistin-resistant Klebsiella pneumoniae. In the present study, we elucidated the synergistic effect of rafoxanide and colistin against chromosomal-mediated colistin-resistant Klebsiella pneumoniae isolates from human (KP-9) and swine (KP-1) infections. Treatment with 1 mg/L rafoxanide overtly reversed the MIC max to 512-fold. Time-kill assays indicated that rafoxanide acted synergistically with colistin against the growth of KP-1 and KP-9. Mechanistically, we unexpectedly found that the combination destroys the inner-membrane integrity, and ATP synthesis was also quenched, albeit, not via F1F0-ATPase; thereby also inhibiting the activity of efflux pumps. Excessive production of reactive oxygen species (ROS) was also an underlying factor contributing to the bacterial-killing effect of the combination. Transcriptomic analysis unraveled overt heterogeneous expression as treated with both administrations compared with monotherapy. Functional analysis of these differentially expressed genes (DEGs) targeted to the plasma membrane and ATP-binding corroborated phenotypic screening results. These novel findings highlight the synergistic mechanism of rafoxanide in combination with colistin which effectively eradicates chromosomal-mediated colistin-resistant Klebsiella pneumoniae. IMPORTANCE The antimicrobial resistance of Klebsiella pneumoniae caused by the abuse of colistin has increased the difficulty of clinical treatment. A promising combination (i.e., rafoxanide+ colistin) has successfully rescued the antibacterial effect of colistin. However, we still failed to know the potential effect of this combination on chromosome-mediated Klebsiella pneumoniae. Through a series of in vitro experiments, as well as transcriptomic profiling, we confirmed that the MIC of colistin was reduced by rafoxanide by destroying the inner-membrane integrity, quenching ATP synthesis, inhibiting the activity of the efflux pump, and increasing the production of reactive oxygen species. In turn, the expression of relevant colistin resistance genes was down-regulated. Collectively, our study revealed rafoxanide as a promising colistin adjuvant against chromosome-mediated Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Rongjia Han
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jiabao Xing
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huarun Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zeyu Guo
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Kaifang Yi
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gongzheng Hu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yajun Zhai
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University, Clayton, Victoria, Australia
| | - Hua Wu
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
- Department of Pharmacology, Biodiscovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Wang Q, Fan X, Sheng Q, Yang M, Zhou P, Lu S, Gao Y, Kong Z, Shen N, Lv Z, Wang R. N6-methyladenosine methylation in kidney injury. Clin Epigenetics 2023; 15:170. [PMID: 37865763 PMCID: PMC10590532 DOI: 10.1186/s13148-023-01586-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Multiple mechanisms are involved in kidney damage, among which the role of epigenetic modifications in the occurrence and development of kidney diseases is constantly being revealed. However, N6-methyladenosine (M6A), a well-known post-transcriptional modification, has been regarded as the most prevalent epigenetic modifications in higher eukaryotic, which is involved in various biological processes of cells such as maintaining the stability of mRNA. The role of M6A modification in the mechanism of kidney damage has attracted widespread attention. In this review, we mainly summarize the role of M6A modification in the progression of kidney diseases from the following aspects: the regulatory pattern of N6-methyladenosine, the critical roles of N6-methyladenosine in chronic kidney disease, acute kidney injury and renal cell carcinoma, and then reveal its potential significance in the diagnosis and treatment of various kidney diseases. A better understanding of this field will be helpful for future research and clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- Qimeng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ping Zhou
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
6
|
Colistin-Induced Neurotoxicity in a Multidrug-Resistant UTI Patient with Cervical Cancer: A Case Report. Nephrourol Mon 2022. [DOI: 10.5812/numonthly-127122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: There has been a rise in the reappearance of multidrug-resistant Gram-negative bacteria in recent years. Using polymyxins, such as colistin, as a last-line treatment for these infections has led to renewed interest in the toxic effects of this drug. Case Presentation: In this case report, we present neurological signs and symptoms developed in a patient with a history of cervical cancer four to five hours after receiving colistin for treating a urinary tract infection caused by MDR Pseudomonas aeruginosa with a colony count of > 100,000/L. These signs and symptoms included lower limb hemiparesis, facial paresthesia, decreased deep tendon reflexes, and tinnitus, which were resolved on their own 24 hours after discontinuation of the drug. Antibiotic therapy was continued with pipractate and ciprofloxacin instead. The patient got discharged in stable condition after negative urine culture results.
Collapse
|
7
|
Gao J, Hu X, Xu C, Guo M, Li S, Yang F, Pan X, Zhou F, Jin Y, Bai F, Cheng Z, Wu Z, Chen S, Huang X, Wu W. Neutrophil-mediated delivery of the combination of colistin and azithromycin for the treatment of bacterial infection. iScience 2022; 25:105035. [PMID: 36117992 PMCID: PMC9474925 DOI: 10.1016/j.isci.2022.105035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Novel treatment strategies are in urgent need to deal with the rapid development of antibiotic-resistant superbugs. Combination therapies and targeted drug delivery have been exploited to promote treatment efficacies. In this study, we loaded neutrophils with azithromycin and colistin to combine the advantages of antibiotic combinations, targeted delivery, and immunomodulatory effect of azithromycin to treat infections caused by Gram-negative pathogens. Delivery of colistin into neutrophils was mediated by fusogenic liposome, while azithromycin was directly taken up by neutrophils. Neutrophils loaded with the drugs maintained the abilitity to generate reactive oxygen species and migrate. In vitro assays demonstrated enhanced bactericidal activity against multidrug-resistant pathogens and reduced inflammatory cytokine production by the drug-loaded neutrophils. A single intravenous administration of the drug-loaded neutrophils effectively protected mice from Pseudomonas aeruginosa infection in an acute pneumonia model. This study provides a potential effective therapeutic approach for the treatment of bacterial infections. Neutrophils are loaded with colistin and azithromycin in vitro The loaded drugs enhance the bactericidal effect and reduce the inflammatory response Drug-loaded neutrophils conferred effective protection against bacterial infection
Collapse
Affiliation(s)
- Jiacong Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xueyan Hu
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingming Guo
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shouyi Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fan Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fangyu Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhenzhou Wu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuiping Chen
- Department of Laboratory Medicine, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xinglu Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.,Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
8
|
Xu M, Yao Z, Zhao Y, Shi S, Sun Y, Feng L, Zhou C, Zhang X, Cao J, Zhou T. Naringenin restores colistin activation against colistin-resistant gram-negative bacteria in vitro and in vivo. Front Microbiol 2022; 13:916587. [PMID: 35992710 PMCID: PMC9382302 DOI: 10.3389/fmicb.2022.916587] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/04/2022] [Indexed: 01/09/2023] Open
Abstract
Colistin is used as the “last line of defense” against multidrug-resistant (MDR) Gram-negative bacteria (GNB). However, improper use of colistin may further lead to an increasing number of colistin-resistant (Col-R) strains worldwide, which greatly limits antibiotic treatment options. In this study, we investigated the antibacterial and antibiofilm activities of naringenin (NG) combined with colistin against Col-R GNB in vitro and in vivo. The checkerboard method and time-kill test showed that NG combined with colistin has better antibacterial activity (FICI < 0.5) compared with NG and colistin alone. Biofilm formation inhibition tests demonstrated that combining the two drugs could inhibit biofilm formation; scanning electron microscopy (SEM) confirmed that the combination of the two significantly reduces the number of cells in the biofilm compared with the drug alone. The in vivo experiment showed that the combination of NG and colistin can improve the survival rate of the Galleria mellonella (G. mellonella) and reduce the microbial load in the mouse thigh infection model. Mechanistically, the combination of NG and colistin synergistically enhances the antibacterial activity and changes the permeability of the bacterial outer membrane. More importantly, cytotoxicity tests showed no cell cytotoxicity of NG in combination with colistin. In conclusion, our data revealed that NG combined with colistin exhibited good synergistic effects in vivo and in vitro, thus providing a new therapeutic option for clinical Col-R GNB infections.
Collapse
Affiliation(s)
- Mengxin Xu
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuocheng Yao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yining Zhao
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shiyi Shi
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yao Sun
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luozhu Feng
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Cui Zhou
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Zhang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianming Cao,
| | - Tieli Zhou
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianming Cao,
| |
Collapse
|
9
|
Bian X, Qu X, Zhang J, Nang SC, Bergen PJ, Tony Zhou Q, Chan HK, Feng M, Li J. Pharmacokinetics and pharmacodynamics of peptide antibiotics. Adv Drug Deliv Rev 2022; 183:114171. [PMID: 35189264 PMCID: PMC10019944 DOI: 10.1016/j.addr.2022.114171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023]
Abstract
Antimicrobial resistance is a major global health challenge. As few new efficacious antibiotics will become available in the near future, peptide antibiotics continue to be major therapeutic options for treating infections caused by multidrug-resistant pathogens. Rational use of antibiotics requires optimisation of the pharmacokinetics and pharmacodynamics for the treatment of different types of infections. Toxicodynamics must also be considered to improve the safety of antibiotic use and, where appropriate, to guide therapeutic drug monitoring. This review focuses on the pharmacokinetics/pharmacodynamics/toxicodynamics of peptide antibiotics against multidrug-resistant Gram-negative and Gram-positive pathogens. Optimising antibiotic exposure at the infection site is essential for improving their efficacy and minimising emergence of resistance.
Collapse
Affiliation(s)
- Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China
| | - Xingyi Qu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Meiqing Feng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia.
| |
Collapse
|
10
|
Krishnakumar RT, Asok A, Mohamed ZU, Padma UD, Sathyapalan DT, Moni M, Balachandran S, Kumar AV, Nair R, Sudhindran S, Singh SK. Colistin (Polymyxin E) Use in Abdominal Solid Organ. J Pharm Pract 2022:8971900221074967. [PMID: 35201947 DOI: 10.1177/08971900221074967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Amrita Asok
- Department of Pharmacy Practice, Amrita School of Pharmacy, Cochin, India
| | - Zubair U Mohamed
- Department of Anaesthesia and Critical Care, 29286Amrita Institute of Medical Sciences, Cochin, India
| | - Uma D Padma
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Cochin, India
| | - Dipu T Sathyapalan
- Division of Infectious Diseases, Department of General Medicine, 29286Amrita Institute of Medical Sciences, Cochin, India
| | - Merlin Moni
- Division of Infectious Diseases, Department of General Medicine, 29286Amrita Institute of Medical Sciences, Cochin, India
| | - Sabarish Balachandran
- Department of Emergency Medicine and Critical Care, 29286Amrita Institute of Medical Sciences, Cochin, India
| | - Anil V Kumar
- Department of Microbiology, 29286Amrita Institute of Medical Sciences, Cochin, India
| | - Rajesh Nair
- Department of Nephrology, 29286Amrita Institute of Medical Sciences, Cochin, India
| | - Surendran Sudhindran
- Department of Gastro-intestinal Surgery and Transplantation, 29286Amrita Institute of Medical Sciences, Cochin, India
| | - Sanjeev K Singh
- Medical Superintendent, 29286Amrita Institute of Medical Sciences, Cochin, India
| |
Collapse
|
11
|
Lin Q, Liu Y, Peng S, Liu C, Lv T, Liao L, Li Y, Wang Y, Fan Z, Wu W, Zeng J, Qiu H, He X, Dai Q. Magnolol additive improves growth performance of Linwu ducklings by modulating antioxidative status. PLoS One 2022; 16:e0259896. [PMID: 34972101 PMCID: PMC8719751 DOI: 10.1371/journal.pone.0259896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
Magnolol is a bioactive polyphenolic compound commonly found in Magnolia officinalis. The aim of this study is to clarify the contribution of the magnolol additive on the growth performance of Linwu ducklings aging from 7 to 28 d, comparing to the effects of antibiotic additive (colistin sulphate). A total of 325, 7-d-old ducklings were assigned to 5 groups. Each group had 5 cages with 13 ducklings in each cage. The ducklings in different groups were fed with diets supplemented with 0, 100, 200 and 300 mg/kg magnolol additive (MA) (Control, MA100, MA200 and MA300) and 30 mg/kg colistin sulphate (CS30) for 3 weeks, respectively. Parameters regarding to the growth performance, intestinal mucosal morphology, serum biochemical indices, antioxidant and peroxide biomarkers and the expression levels of antioxidant-related genes were evaluated by one way ANOVA analysis. The results showed that 30 mg/kg colistin sulphate, 200 and 300 mg/kg magnolol additive improved the average final weight (P = 0.045), average daily body weight gain (P = 0.038) and feed/gain ratios (P = 0.001) compared to the control group. 200 and 300 mg/kg magnolol additive significantly increased the villus height/crypt depth ratio of ileum, compared to the control and CS30 groups (P = 0.001). Increased serum level of glucose (P = 0.011) and total protein (P = 0.006) were found in MA200 or MA300 group. In addition, comparing to the control and CS30 groups, MA200 or MA300 significantly increased the levels of superoxide dismutase (P = 0.038), glutathione peroxidase (P = 0.048) and reduced glutathione (P = 0.039) in serum. Moreover, the serum and hepatic levels of 8-hydroxy-2'-deoxyguanosine (P = 0.043 and 0.007, respectively) were lower in all MA groups compared to those of the control and CS30 group. The hepatic mRNA expression levels of superoxide dismutase-1, catalase and nuclear factor erythroid-2-related factor 2/erythroid-derived CNC-homology factor were also increased significantly in MA200 and MA300 groups (P < 0.05). Taken together, these data demonstrated that MA was an effective feed additive enhancing the growth performance of Linwu ducklings at 7 to 28 d by improving the antioxidant and intestinal mucosal status. It suggested that MA could be a potential ingredient to replace the colistin sulphate in diets.
Collapse
Affiliation(s)
- Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yang Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Simin Peng
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Chunjie Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Tuo Lv
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Liping Liao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Yinghui Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Zhiyong Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Weiguo Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianguo Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, China
| | - Huajiao Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
- * E-mail: (QD); (XH); (HQ)
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- * E-mail: (QD); (XH); (HQ)
| | - Qiuzhong Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China
- * E-mail: (QD); (XH); (HQ)
| |
Collapse
|
12
|
Zhang X, Zhao Y, Feng L, Xu M, Ge Y, Wang L, Zhang Y, Cao J, Sun Y, Wu Q, Zhou T. Combined With Mefloquine, Resurrect Colistin Active in Colistin-Resistant Pseudomonas aeruginosa in vitro and in vivo. Front Microbiol 2021; 12:790220. [PMID: 34899672 PMCID: PMC8662342 DOI: 10.3389/fmicb.2021.790220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 11/15/2022] Open
Abstract
Colistin is a polymyxin antibiotic that is widely used for the treatment of multidrug resistant (MDR) Pseudomonas aeruginosa infections, as the last resort. Over the past few years, unreasonable use of antibiotics has resulted in an increase in MDR strains, including colistin-resistant P. aeruginosa. The present study aimed to explore the synergistic effects of mefloquine in combination with colistin for the treatment of colistin-resistant P. aeruginosa in vivo and in vitro. The synergistic effect of the combination of mefloquine and colistin was investigated in vitro using checkerboard method, time-killing assay, biofilm formation inhibition test, and biofilm eradication test. The study also explored the synergistic effects of this combination of drugs in vivo, using a Galleria mellonella infection model. The results for checkerboard method and time killing curve indicated that mefloquine in combination with colistin showed a good antibacterial activity. Furthermore, the combination of these two drugs inhibited biofilm formation and eradicated pre-formed mature biofilms. This synergistic effect was visualized using scanning electron microscopy (SEM), wherein the results showed that the combination of mefloquine and colistin reduced biofilm formation significantly. Further, the application of this combination of drugs to in vivo infection model significantly increased the survival rate of G. mellonella larvae. Altogether, the combination of mefloquine and colistin showed a good synergistic effect in vitro and in vivo, and highlighted its potential to be used as an alternative therapy for the treatment of colistin-resistant P. aeruginosa infection.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yining Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luozhu Feng
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Mengxin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiru Ge
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Yao Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qing Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Population Pharmacokinetics of Colistin Methanesulfonate Sodium and Colistin in Critically Ill Patients: A Systematic Review. Pharmaceuticals (Basel) 2021; 14:ph14090903. [PMID: 34577603 PMCID: PMC8472798 DOI: 10.3390/ph14090903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding the pharmacokinetics parameter of colistin methanesulfonate sodium (CMS) and colistin is needed to optimize the dosage regimen in critically ill patients. However, there is a scarcity of pharmacokinetics parameters in this population. This review provides a comprehensive understanding of CMS and colistin pharmacokinetics parameters in this population. The relevant studies published in English that reported on the pharmacokinetics of CMS and colistin from 2000 until 2020 were systematically searched using the PubMed and Scopus electronic databases. Reference lists of articles were reviewed to identify additional studies. A total of 252 citation titles were identified, of which 101 potentially relevant abstracts were screened, and 25 full-text articles were selected for detailed analysis. Of those, 15 studies were included for the review. This review has demonstrated vast inter-study discrepancies in colistin plasma concentration and the pharmacokinetics parameter estimates. The discrepancies might be due to complex pathophysiological changes in the population studied, differences in CMS brand used, methodology, and study protocol. Application of loading dose of CMS and an additional dose of CMS after dialysis session was recommended by some studies. In view of inter-patient and intra-patient variability in colistin plasma concentration and pharmacokinetics parameters, personalized colistin dosing for this population is recommended.
Collapse
|
14
|
Wilfred PM, Chandy SJ, Rebecca G, Satyendra S, Jasmine S. Intravenous colistin for the management of multidrug-resistant bacterial infections in Indian patients. Trop Doct 2021; 51:301-306. [PMID: 33491607 DOI: 10.1177/0049475520987777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Multidrug-resistant Gram-negative bacterial infection is a serious global concern and especially in low and middle-income countries (LMIC) such as India. Colistin, an antimicrobial once abandoned following reports of organ toxicity, has re-emerged as an essential therapeutic agent in the management of these infections. A retrospective review of 162 inpatients was done, focusing on culture-proven multidrug-resistant infections requiring colistin. The overall clinical outcome in 58% of patients was found to be good, with nephrotoxicity and neurotoxicity occurring only in 8 (5%) and 4 (2.5%) patients, respectively. Multivariate analysis revealed an elevated lactate and raised urea to be independent factors associated with poor clinical response. In conclusion, there appears to be strong evidence supporting the use of colistin in the management of multidrug-resistant Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Premila M Wilfred
- Resident, Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India
| | - Sujith J Chandy
- Resident, Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India
| | - Grace Rebecca
- Tutor, Department of Biostatistics, Christian Medical College, Vellore, India
| | - Sowmya Satyendra
- Professor, Department of Medicine, Christian Medical College, Vellore, India
| | - Sudha Jasmine
- Professor, Department of Medicine, Christian Medical College, Vellore, India
| |
Collapse
|
15
|
Heybeli C, Canaslan K, Oktan MA, Yıldız S, Arda HÜ, Çavdar C, Çelik A, Gökmen N, Cömert B. Acute kidney injury following colistin treatment in critically-ill patients: may glucocorticoids protect? J Chemother 2020; 33:85-94. [PMID: 32500843 DOI: 10.1080/1120009x.2020.1770027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nephrotoxicity following colistin administration is common and factors alleviating nephrotoxicity are yet to be determined. We retrospectively evaluated outcomes of subjects who were treated with colistin (n = 133) and with antibiotics other than colistin (control, n = 133) in intensive care units. Acute kidney injury (AKI) occurred in 69.2% and 29.3% of patients in colistin and control groups, respectively (p < 0.001). In the colistin group, glucocorticoid exposure was more common in subjects who did not develop AKI (p < 0.001). This was not the case in the control group. In the colistin cohort, older age (per 10 years, odds ratio [OR] 1.41, 95% CI 1.05-1.91; p = 0.025), PPI use (OR 3.30, 95% CI 1.18-9.23; p = 0.023) and furosemide treatment (OR 2.66, 95% CI 1.01-6.98; p = 0.047) were independently associated with the development of AKI while glucocorticoid treatment (OR 0.23, 95% CI 0.10-0.53; p = 0.001) was independently associated with reduced risk of AKI. Mortality was observed in 74 patients in the colistin cohort (55.6%). A higher APACHE-II score (OR 1.17, 95% CI 1.08-1.26; p < 0.001) was independently associated with mortality while a higher serum albumin level (per 1 g/dL increase, OR 0.20, 95% CI 0.070-0.60; p = 0.004) was associated with a lower risk of mortality. In conclusion, glucocorticoid exposure is associated with a lower risk of AKI caused by colistin therapy in critically-ill patients. Prospective studies are needed to confirm these findings and determine the optimal type, dose and duration of glucocorticoid therapy.
Collapse
Affiliation(s)
- Cihan Heybeli
- Department of Internal Medicine, Division of Nephrology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Kübra Canaslan
- Department of Internal Medicine, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Mehmet Ası Oktan
- Department of Internal Medicine, Division of Nephrology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Serkan Yıldız
- Department of Internal Medicine, Division of Nephrology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Hayri Üstün Arda
- Department of Internal Medicine, Division of Nephrology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Caner Çavdar
- Department of Internal Medicine, Division of Nephrology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Ali Çelik
- Department of Internal Medicine, Division of Nephrology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Necati Gökmen
- Department of Anesthesiology and Reanimation, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Bilgin Cömert
- Department of Internal Medicine, Division of Intensive Care Medicine, Dokuz Eylül University School of Medicine, Izmir, Turkey
| |
Collapse
|
16
|
Matar KM, Al-Refai B. Quantification of Colistin in Plasma by Liquid Chromatography-Tandem Mass Spectrometry: Application to a Pharmacokinetic Study. Sci Rep 2020; 10:8198. [PMID: 32424292 PMCID: PMC7234998 DOI: 10.1038/s41598-020-65041-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Colistin is a polymixin antibiotic (polymixin E) that is produced by Bacillus colistinus bacteria. The aim of the present study was to develop and validate a method to quantify colistin levels in plasma using high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique and then apply it in experimental animals (rats) to investigate the pharmacokinetic profile of colistin in this species. Polymyxin B was used as an internal standard (IS) and the quantitation was carried out using ESI + interface and employing multiple reaction monitoring (MRM) mode. A mobile phase consisting of acetonitrile:water:formic acid (30:70:0.1%; v/v/v) was employed and Zorbax eclipse plus C18 (1.8 µm, 2.1 mm i.d. x 50 mm) was the optimal column for this method and utilized at a flow rate of 0.2 mL/min. The full scan mass spectra of precursor/product ions of colistin A were at m/z 585.5 > 100.8, for colistin B at m/z 578.8 > 101 and for the IS at m/z 602.8 > 101. The lower limit of quantification (LLOQ) was 0.5 µg/mL. The method demonstrated acceptable intra-run and inter-run precision and accuracy for both colistin A and colistin B. Colistin was stable when assessed for long-term stability, freeze-thaw stability and autosampler stability. However, it was not stable when stored at room temperature. The matrix effect evaluation showed minimal or no effect. Incurred sample reanalysis findings were within acceptable ranges (<20% of the nominal concentration). The pharmacokinetic parameters of colistin were investigated in rats using the present method. The developed method for colistin demonstrates that it is rapid, sensitive, specific, accurate, precise, and reliable.
Collapse
Affiliation(s)
- Kamal M Matar
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait, Kuwait.
| | - Batool Al-Refai
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
17
|
Schiffl H. Intensity of renal replacement therapy and outcomes in critically ill patients with acute kidney injury: Critical appraisal of the dosing recommendations. Ther Apher Dial 2020; 24:620-627. [PMID: 31904909 DOI: 10.1111/1744-9987.13471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/17/2019] [Accepted: 01/03/2020] [Indexed: 11/27/2022]
Abstract
The current care of critically ill patients with severe acute kidney injury requiring dialysis (AKI-D) is limited to supportive management in which renal replacement therapy (RRT) plays a central role. Renal replacement techniques are invasive bioincompatible procedures and are therefore associated with complications that may prove harmful to fragile patients. Inexperience with the standards and lacking or misinterpreted recommendations for the delivery of the RRT dose increases the risk of serious complications. Neither the optimal doses of intermittent or continuous RRTs nor the minimal or maximal effective doses are known. The Kidney Disease Improving Global outcomes (KDIGO) AKI guidelines for RRT dosing recommendations are inflexible, based on limited research, and may be at least partially outdated. High-intensity therapy may be associated with clinically relevant alterations in systemic and renal hemodynamics, profound electrolyte imbalances, the loss of nutrients or thermal energy, and underdosing of antimicrobial agents. However, higher doses of continuous renal replacement therapy (CRRT) may confer a survival benefit for certain subgroups of intensive care patients with severe AKI. Lower CRRT doses than the recommended adequate dosage may not lead to negative health outcomes, at least in Asian patients. Future research should evaluate the demand-capacity concept, recognizing that the delivery of the RRT dose is dynamic and should be modified in response to patient-related factors. There is a need for large-scale studies evaluating whether precision RRT dose modifications may improve patient-centered outcomes in subgroups of critically ill patients.
Collapse
Affiliation(s)
- Helmut Schiffl
- Department of Internal Medicine IV, Section of Nephrology, University Hospital Munich, Munich, Germany
| |
Collapse
|
18
|
Lin Q, Peng S, Li Y, Jiang G, Liao Z, Fan Z, He X, Dai Q. Magnolol additive improves carcass and meat quality of Linwu ducks by modulating antioxidative status. Anim Sci J 2019; 91:e13301. [PMID: 31729108 DOI: 10.1111/asj.13301] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 08/21/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022]
Abstract
Magnolol rich in Magnolia officinalis is a bioactive polyphenolic compound. The aim of this study was to clarify the effects of magnolol additive (MA) on carcass and meat quality, biochemical characteristics and antioxidative capacity of Linwu ducks, by comparing it to that of antibiotic additive (colistin sulphate, CS). A total of 275 49-d-old ducks were randomly assigned to 5 groups with 5 cages of 11 ducks each and fed by the diets supplemented with 0, 100, 200 and 300 mg of MA/kg and 30 mg of CS/kg for 3 weeks, respectively. The results revealed that MA administration not only increased dressed percentage (calculated as a percentage of live weight), percentage of breast muscle, leg muscle and lean meat (calculated as a percentage of eviscerated weight), but also remarkably increased a*45 min and pH45 min of leg muscle. Moreover, MA administration decreased the percentage of abdominal fat (calculated as a percentage of eviscerated weight), 45-min cooking loss, water loss rate of leg muscle, 45-min cooking loss and drip loss of breast muscle at 24 hr and 48 hr. Furthermore, MA administration enhanced the activities of superoxide dismutase and catalase in serum or liver, serum total antioxidant capacity and hepatic reduced glutathione concentration significantly, compared with the basal diet or CS group (p < .05). On the other hand, triglyceride, total cholesterol, aspartate aminotransferase, malondialdehyde, protein carbonyl and 8-hydroxy-2'-deoxyguanosine contents in serum and liver were significantly increased in Linwu ducks fed with CS, compared with MA groups (p < .05). Taken together, these data demonstrated that magnolol could effectively improve the carcass and meat quality of Linwu ducks by regulating the in vivo antioxidant status and would be a potential candidate to replace antibiotic.
Collapse
Affiliation(s)
- Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,Department of Biological and Environmental Engineering, Changsha University, Changsha, China.,Hunan Deren Husbandry Technology Co., Ltd., Changde, China
| | - Simin Peng
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yinghui Li
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Guitao Jiang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Zhenzhang Liao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China.,College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Zhiyong Fan
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Xi He
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha, China
| | - Qiuzhong Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
19
|
Javed M, Ueltzhoeffer V, Heinrich M, Siegrist HJ, Wildermuth R, Lorenz FR, Neher RA, Willmann M. Colistin susceptibility test evaluation of multiple-resistance-level Pseudomonas aeruginosa isolates generated in a morbidostat device. J Antimicrob Chemother 2019; 73:3368-3374. [PMID: 30137346 DOI: 10.1093/jac/dky337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/25/2018] [Indexed: 11/13/2022] Open
Abstract
Objectives Colistin is a last-resort antibiotic against the critical-status pathogen Pseudomonas aeruginosa. There is still uncertainty regarding how to accurately measure colistin susceptibility in P. aeruginosa. Evaluation of antimicrobial susceptibility testing (AST) methods is largely hampered by the lack of resistant isolates and those around the susceptibility breakpoint. The aim of this study was to generate such strains in a morbidostat device for use in AST method evaluation. Methods A morbidostat device was used to cultivate susceptible clinical strains into isolates with a wide range of colistin MICs. Subsequently, five commercial AST methods were compared against the gold standard broth microdilution (BMD) method: MICRONAUT-S, SensiTest, Sensititre, Rapid Polymyxin Pseudomonas and Etest. Results A total of 131 P. aeruginosa isolates were used for colistin susceptibility test evaluation (100 colistin susceptible and 31 colistin resistant). The 31 colistin-resistant isolates evolved resistance in the morbidostat to different MIC ranges (4-512 mg/L, 100% resistance generation efficacy). The categorical agreement (CA) rates for MICRONAUT-S, SensiTest and Rapid Polymyxin Pseudomonas were 94.7%, 93.9% and 92.4%, respectively. The Sensititre achieved the highest CA score (96.9%), whereas the Etests had the lowest CA score (84%). The very major discrepancy (VMD) rates for all tests were between 3.2% and 67.7%. Conclusions The morbidostat device can efficiently provide laboratories with colistin-resistant strains for test evaluation. Although CA rates were high for commercial AST methods except for Etests, none met the ≤1.5% CLSI limit for VMD rates. Performance was generally inferior when using isolates with low-level resistance.
Collapse
Affiliation(s)
- Mumina Javed
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute of Medical Microbiology and Hygiene, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Viola Ueltzhoeffer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute of Medical Microbiology and Hygiene, Tübingen, Germany
| | - Maximilian Heinrich
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute of Medical Microbiology and Hygiene, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Hans Justus Siegrist
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute of Medical Microbiology and Hygiene, Tübingen, Germany
| | - Ronja Wildermuth
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute of Medical Microbiology and Hygiene, Tübingen, Germany
| | - Freia-Raphaella Lorenz
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute of Medical Microbiology and Hygiene, Tübingen, Germany
| | | | - Matthias Willmann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute of Medical Microbiology and Hygiene, Tübingen, Germany.,German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Basic Principles of Antibiotics Dosing in Patients with Sepsis and Acute Kidney Damage Treated with Continuous Venovenous Hemodiafiltration. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.2478/sjecr-2018-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Sepsis is the leading cause of acute kidney damage in patients in intensive care units. Pathophysiological mechanisms of the development of acute kidney damage in patients with sepsis may be hemodynamic and non-hemodynamic. Patients with severe sepsis, septic shock and acute kidney damage are treated with continuous venovenous hemodiafiltration. Sepsis, acute kidney damage, and continuous venovenous hemodiafiltration have a significant effect on the pharmacokinetics and pharmacodynamics of antibiotics. The impact dose of antibiotics is increased due to the increased volume of distribution (increased administration of crystalloids, hypoalbuminemia, increased capillary permeability syndrome toproteins). The dose of antibiotic maintenance depends on renal, non-renal and extracorporeal clearance. In the early stage of sepsis, there is an increased renal clearance of antibiotics, caused by glomerular hyperfiltration, while in the late stage of sepsis, as the consequence of the development of acute renal damage, renal clearance of antibiotics is reduced. The extracorporeal clearance of antibiotics depends on the hydrosolubility and pharmacokinetic characteristics of the antibiotic, but also on the type of continuous dialysis modality, dialysis dose, membrane type, blood flow rate, dialysis flow rate, net filtration rate, and effluent flow rate. Early detection of sepsis and acute kidney damage, early target therapy, early administration of antibiotics at an appropriate dose, and early extracorporeal therapy for kidney replacement and removal of the inflammatory mediators can improve the outcome of patients with sepsis in intensive care units.
Collapse
|
21
|
A Guide to Understanding Antimicrobial Drug Dosing in Critically Ill Patients on Renal Replacement Therapy. Antimicrob Agents Chemother 2019; 63:AAC.00583-19. [PMID: 31109983 DOI: 10.1128/aac.00583-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A careful management of antimicrobials is essential in the critically ill with acute kidney injury, especially if renal replacement therapy is required. Acute kidney injury may lead per se to clinically significant modifications of drugs' pharmacokinetic parameters, and the need for renal replacement therapy represents a further variable that should be considered to avoid inappropriate antimicrobial therapy. The most important pharmacokinetic parameters, useful to determine the significance of extracorporeal removal of a given drug, are molecular weight, protein binding, and distribution volume. In many cases, the extracorporeal removal of antimicrobials can be relevant, with a consistent risk of underdosing-related treatment failure and/or potential onset of bacterial resistance. It should also be taken into account that renal replacement therapies are often not standardized in critically ill patients, and their impact on plasma drug concentrations may substantially vary in relation to membrane characteristics, treatment modality, and delivered dialysis dose. Thus, in this clinical scenario, the knowledge of the pharmacokinetic and pharmacodynamic properties of different antimicrobial classes is crucial to tailor maintenance dose and/or time interval according to clinical needs. Finally, especially for antimicrobials known for a tight therapeutic range, therapeutic drug monitoring is strongly suggested to guide dosing adjustment in complex clinical settings, such as septic patients with acute kidney injury undergoing renal replacement therapy.
Collapse
|
22
|
Kamaruzzaman NF, Tan LP, Hamdan RH, Choong SS, Wong WK, Gibson AJ, Chivu A, Pina MDF. Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics? Int J Mol Sci 2019; 20:E2747. [PMID: 31167476 PMCID: PMC6600223 DOI: 10.3390/ijms20112747] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial resistance is now considered a major global challenge; compromising medical advancements and our ability to treat infectious disease. Increased antimicrobial resistance has resulted in increased morbidity and mortality due to infectious diseases worldwide. The lack of discovery of novel compounds from natural products or new classes of antimicrobials, encouraged us to recycle discontinued antimicrobials that were previously removed from routine use due to their toxicity, e.g., colistin. Since the discovery of new classes of compounds is extremely expensive and has very little success, one strategy to overcome this issue could be the application of synthetic compounds that possess antimicrobial activities. Polymers with innate antimicrobial properties or that have the ability to be conjugated with other antimicrobial compounds create the possibility for replacement of antimicrobials either for the direct application as medicine or implanted on medical devices to control infection. Here, we provide the latest update on research related to antimicrobial polymers in the context of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. We summarise polymer subgroups: compounds containing natural peptides, halogens, phosphor and sulfo derivatives and phenol and benzoic derivatives, organometalic polymers, metal nanoparticles incorporated into polymeric carriers, dendrimers and polymer-based guanidine. We intend to enhance understanding in the field and promote further work on the development of polymer based antimicrobial compounds.
Collapse
Affiliation(s)
- Nor Fadhilah Kamaruzzaman
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Li Peng Tan
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Ruhil Hayati Hamdan
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Siew Shean Choong
- Faculty of Veterinary Medicine, Locked bag 36, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Weng Kin Wong
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
| | - Amanda Jane Gibson
- Royal Veterinary College, Pathobiology and Population Sciences, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK.
| | - Alexandru Chivu
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK.
| | - Maria de Fatima Pina
- Medicines and Healthcare Regulatory Products Agency, 10 South Colonnade, Canary Wharf, London E14 4PU, UK.
| |
Collapse
|
23
|
Rat models of colistin nephrotoxicity: previous experimental researches and future perspectives. Eur J Clin Microbiol Infect Dis 2019; 38:1387-1393. [PMID: 30949899 DOI: 10.1007/s10096-019-03546-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/25/2019] [Indexed: 01/12/2023]
Abstract
Colistin is an old antibiotic, which is abandoned decades ago because of high nephrotoxicity rates. However, it is reintroduced to clinical medicine due to lack of newly discovered antibiotics and is still widely used for the treatment of resistant gram-negative infections. Discovering mechanisms to reduce nephrotoxicity risk is of significant importance since exposed patients may have many other factors that alter kidney functions. Several agents were evaluated in animal models of colistin nephrotoxicity as a means to prevent kidney injury. Considerable heterogeneity exists in terms of reporting colistin dosing and experimental designs. This issue leads clinicians to face difficulties in designing studies and sometimes may lead to report dosing strategies inadequately. Here, we present a review according to animal models of colistin nephrotoxicity using data gathered from previous experiments to draw attention on possible complexities that researchers may encounter.
Collapse
|
24
|
Pharmacokinetic Characteristics and Limited Sampling Strategies for Therapeutic Drug Monitoring of Colistin in Patients With Multidrug-Resistant Gram-Negative Bacterial Infections. Ther Drug Monit 2019; 41:102-106. [PMID: 30299430 DOI: 10.1097/ftd.0000000000000572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Colistin is increasingly used as the last therapeutic option for the treatment of multidrug-resistant, Gram-negative bacterial infections. To ensure safe and efficacious use of colistin, therapeutic drug monitoring (TDM) is needed due to its narrow therapeutic window. This study aimed to evaluate the pharmacokinetic (PK) characteristics of colistin and to guide TDM in colistin-treated patients in Korea. METHODS In a prospective study, we analyzed PK characteristics in 15 patients who intravenously received colistin methanesulfonate twice per day. Colistin methanesulfonate doses were adjusted based on renal function of the subjects. The appropriate blood sampling points for TDM were evaluated by analyzing the correlations between the PK parameters and the plasma concentrations at each time point. RESULTS The mean values for the minimum, maximum, and average concentrations (Cmin, Cmax, and Caverage) of colistin at steady state were 2.29, 5.5, and 3.38 mg/L, respectively. The dose-normalized Cmin, Cmax, Caverage, and area under the plasma concentration-time curve from 0 to the last measurable concentration (AUClast) showed negative correlations with the creatinine clearance. The combination of the 0- and 2-hour post-dose plasma concentrations was evaluated as the appropriate sampling point for TDM. Two patients reported nephrotoxic adverse events during colistin administration. CONCLUSIONS Our study clarifies the PK characteristics of successful colistin treatment using TDM. Further evaluations in a larger patient population are needed to confirm the clinical usefulness of colistin TDM.
Collapse
|
25
|
Kamaruzzaman NF, Tan LP, Mat Yazid KA, Saeed SI, Hamdan RH, Choong SS, Wong WK, Chivu A, Gibson AJ. Targeting the Bacterial Protective Armour; Challenges and Novel Strategies in the Treatment of Microbial Biofilm. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1705. [PMID: 30217006 PMCID: PMC6164881 DOI: 10.3390/ma11091705] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
Abstract
Infectious disease caused by pathogenic bacteria continues to be the primary challenge to humanity. Antimicrobial resistance and microbial biofilm formation in part, lead to treatment failures. The formation of biofilms by nosocomial pathogens such as Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), and Klebsiella pneumoniae (K. pneumoniae) on medical devices and on the surfaces of infected sites bring additional hurdles to existing therapies. In this review, we discuss the challenges encountered by conventional treatment strategies in the clinic. We also provide updates on current on-going research related to the development of novel anti-biofilm technologies. We intend for this review to provide understanding to readers on the current problem in health-care settings and propose new ideas for new intervention strategies to reduce the burden related to microbial infections.
Collapse
Affiliation(s)
- Nor Fadhilah Kamaruzzaman
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Li Peng Tan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Khairun Anisa Mat Yazid
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Shamsaldeen Ibrahim Saeed
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Ruhil Hayati Hamdan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Siew Shean Choong
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Weng Kin Wong
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
| | - Alexandru Chivu
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK.
| | - Amanda Jane Gibson
- Royal Veterinary College, Pathobiology and Population Sciences, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK.
| |
Collapse
|
26
|
Rapid and Consistent Evolution of Colistin Resistance in Extensively Drug-Resistant Pseudomonas aeruginosa during Morbidostat Culture. Antimicrob Agents Chemother 2017. [PMID: 28630206 DOI: 10.1128/aac.00043-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Colistin is a last-resort antibiotic commonly used against multidrug-resistant strains of Pseudomonas aeruginosa To investigate the potential for in situ evolution of resistance against colistin and to map the molecular targets of colistin resistance, we exposed two P. aeruginosa isolates to colistin using a continuous-culture device known as a morbidostat. As a result, colistin resistance reproducibly increased 10-fold within 10 days and 100-fold within 20 days, along with highly stereotypic yet strain-specific mutation patterns. The majority of mutations hit the pmrAB two-component signaling system and genes involved in lipopolysaccharide (LPS) synthesis, including lpxC, pmrE, and migA We tracked the frequencies of all arising mutations by whole-genome deep sequencing every 3 to 4 days to obtain a detailed picture of the dynamics of resistance evolution, including competition and displacement among multiple resistant subpopulations. In 7 out of 18 cultures, we observed mutations in mutS along with a mutator phenotype that seemed to facilitate resistance evolution.
Collapse
|
27
|
Abstract
While we are confronted with the major increase in antibiotic resistance, the preservation of existing antibiotics has become an absolute necessity both to achieve therapeutic success and to limit the risks of the emergence of resistance. The optimization of antibiotic use and dosages must have a threefold objective: guarantee antibacterial efficacy, limit toxicities and limit emergence of resistant strains. However, with the increase in the number of multipathological patients, particularly those with renal or hepatic impairment, the increase in the number of patients with extreme weights and the use of antibiotics with narrower therapeutic margins, the adaptation of antibiotic dosages is becoming increasingly important. By reminding some principles of pharmacokinetics and pharmacodynamics of antibiotics (PK/PD), the necessary objectives for clinical effectiveness of most antibiotic classes are reviewed and several examples of situations where dosage adjustments are necessary will be given. In particular, adjustment of antibiotic dosages in obese patients will be discussed. Adaptation is not limited to the adaptation of the total daily dose. The PK/PD parameters also tell us that the mode of administration (intermittent versus continuous, number of injections per day, etc.) is also an essential point to consider. By taking examples concerning some molecules, infections and difficult clinical situations, we review situations in which dosage adjustments appear necessary.
Collapse
|
28
|
Grégoire N, Aranzana-Climent V, Magréault S, Marchand S, Couet W. Clinical Pharmacokinetics and Pharmacodynamics of Colistin. Clin Pharmacokinet 2017; 56:1441-1460. [DOI: 10.1007/s40262-017-0561-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Abstract
Patients with chronic kidney disease (CKD) are at risk for complications both inherent to the disease and as a consequence of its treatment. The dangers that CKD patients face change across the spectrum of the disease. Providers who are well-versed in these safety threats are best poised to safeguard patients as their CKD progresses.
Collapse
Affiliation(s)
- Lee-Ann Wagner
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Jeffrey C Fink
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD.
| |
Collapse
|
30
|
Nephrotoxicity in Patients with or without Cystic Fibrosis Treated with Polymyxin B Compared to Colistin. Antimicrob Agents Chemother 2017; 61:AAC.02329-16. [PMID: 28167560 DOI: 10.1128/aac.02329-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
Nephrotoxicity is the primary adverse effect of the polymyxins. The relative rates of toxicity of polymyxin B and colistin have not been fully elucidated, especially in patients with cystic fibrosis (CF). A retrospective cohort study of adults treated with polymyxin B or colistin for at least 48 h was conducted. The primary endpoint was the incidence of kidney injury assessed by RIFLE (i.e., risk, injury, failure, loss, end-stage renal disease) criteria. Risk factors for kidney injury were evaluated using multivariate Cox regression. A total of 414 patients were evaluated, 220 of whom had CF. In patients without CF, there was no difference in kidney injury with polymyxin B and colistin (42.9% versus 50.3%, P = 0.46). Loop diuretic exposure was a risk factor for kidney injury (adjusted hazard ratio [aHR], 1.82; 95% confidence interval [CI], 1.16 to 2.83) in this population. In patients with CF, polymyxin B and colistin were associated with similar rates of kidney injury (34.5% versus 29.8%, P = 0.77). Diabetes (aHR, 2.68; 95% CI, 1.01 to 7.11), loop diuretics (aHR, 3.02; 95% CI, 1.36 to 6.73), and progressive care unit admission (aHR, 8.21; 95% CI, 2.55 to 26.46) were risk factors for kidney injury, while higher baseline serum creatinine levels (per 1 mg/dl) were protective (aHR, 0.08; 95% CI, 0.01 to 0.48). Total unadjusted kidney injury in polymyxin-treated patients was less frequent in those who had CF (30.5% versus 48.5%, P < 0.001). Polymyxin B and colistin are associated with a high incidence of kidney injury; cystic fibrosis may be protective against polymyxin nephrotoxicity, but further investigation is needed to confirm this conjecture.
Collapse
|
31
|
Shields RK, Anand R, Clarke LG, Paronish JA, Weirich M, Perone H, Kieserman J, Freedy H, Andrzejewski C, Bonilla H. Defining the incidence and risk factors of colistin-induced acute kidney injury by KDIGO criteria. PLoS One 2017; 12:e0173286. [PMID: 28267779 PMCID: PMC5340380 DOI: 10.1371/journal.pone.0173286] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/07/2017] [Indexed: 01/05/2023] Open
Abstract
Background Acute kidney injury (AKI) remains a treatment-limiting toxicity of colistin. Recently developed clinical practice guidelines from the Kidney Disease: Improving Global Outcomes (KDIGO) group have harmonized definitions of AKI, but have not been widely applied to patients receiving colistin. Methods We retrospectively defined AKI by KDIGO definitions among adult patients receiving intravenous colistin for ≥ 3 days. Risk factors for AKI within 48 hours and 7 days of initiating colistin were determined by multivariable logistic regression. Results Among 249 patients treated with colistin, rates of AKI were 12% and 29% at 48 hours and 7 days, respectively. At 48 hours, patients in the intensive care unit were at increased risk for AKI. Within 7 days, colistin daily doses >5mg/kg, chronic liver disease, and concomitant vancomycin were independent predictors. Seven percent of patients required renal replacement therapy at a median of 5 days (range: 3–7) following colistin initiation. Conclusion Safe use of colistin is promoted by early detection of AKI with KDIGO criteria, avoiding nephrotoxins, and limiting duration of therapy.
Collapse
Affiliation(s)
- Ryan K. Shields
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Rohit Anand
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lloyd G. Clarke
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Julie A. Paronish
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew Weirich
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Hanna Perone
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jake Kieserman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Henry Freedy
- UPMC Mercy Hospital, Pittsburgh, Pennsylvania, United States of America
| | | | - Hector Bonilla
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- UPMC Mercy Hospital, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
32
|
Mas-Font S, Ros-Martinez J, Pérez-Calvo C, Villa-Díaz P, Aldunate-Calvo S, Moreno-Clari E. Prevention of acute kidney injury in Intensive Care Units. Med Intensiva 2017; 41:116-126. [PMID: 28190602 DOI: 10.1016/j.medin.2016.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) is a growing concern in Intensive Care Units. The advanced age of our patients, with the increase in associated morbidity and the complexity of the treatments provided favor the development of AKI. Since no effective treatment for AKI is available, all efforts are aimed at prevention and early detection of the disorder in order to establish secondary preventive measures to impede AKI progression. In critical patients, the most frequent causes are sepsis and situations that result in renal hypoperfusion; preventive measures are therefore directed at securing hydration and correct hemodynamics through fluid perfusion and the use of inotropic or vasoactive drugs, according to the underlying disease condition. Apart from these circumstances, a number of situations could lead to AKI, related to the administration of nephrotoxic drugs, intra-tubular deposits, the administration of iodinated contrast media, liver failure and major surgery (mainly heart surgery). In these cases, in addition to hydration, there are other specific preventive measures adapted to each condition.
Collapse
Affiliation(s)
- S Mas-Font
- Intensive Care Medicine, Hospital General Universitario de Castellón, Spain.
| | - J Ros-Martinez
- Intensive Care Medicine, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - C Pérez-Calvo
- Intensive Care Medicine, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - P Villa-Díaz
- Intensive Care Medicine, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - S Aldunate-Calvo
- Intensive Care Medicine, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - E Moreno-Clari
- Intensive Care Medicine, Hospital General Universitario de Castellón, Spain
| | | |
Collapse
|