1
|
de Melo Viana TC, Nakamura ET, Park A, Filardi KFXC, de Almeida Leite RM, Baltazar LFSR, Usón Junior PLS, Tustumi F. Molecular Abnormalities and Carcinogenesis in Barrett's Esophagus: Implications for Cancer Treatment and Prevention. Genes (Basel) 2025; 16:270. [PMID: 40149421 PMCID: PMC11942460 DOI: 10.3390/genes16030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Barrett's esophagus (BE) is described by the transformation of the normal squamous epithelium into metaplastic columnar epithelium, driven by chronic gastroesophageal reflux disease (GERD). BE is a recognized premalignant condition and the main precursor to esophageal adenocarcinoma (EAC). Understanding the molecular mechanisms underlying BE carcinogenesis is crucial for improving prevention, surveillance, and treatment strategies. METHODS This narrative review examines the molecular abnormalities associated with the progression of BE to EAC. RESULTS This study highlights inflammatory, genetic, epigenetic, and chromosomal alterations, emphasizing key pathways and biomarkers. BE progression follows a multistep process involving dysplasia and genetic alterations such as TP53 and CDKN2A (p16) mutations, chromosomal instability, and dysregulation of pathways like PI3K/AKT/mTOR. Epigenetic alterations, including aberrant microRNA expression or DNA methylation, further contribute to this progression. These molecular changes are stage-specific, with some alterations occurring early in BE during the transition to high-grade dysplasia or EAC. Innovations in chemoprevention, such as combining proton pump inhibitors and aspirin, and the potential of antireflux surgery to halt disease progression are promising. Incorporating molecular biomarkers into surveillance strategies and advancing precision medicine may enable earlier detection and personalized treatments. CONCLUSIONS BE is the primary preneoplastic condition for EAC. A deeper understanding of its molecular transformation can enhance surveillance protocols, optimize the management of gastroesophageal reflux inflammation, and refine prevention and therapeutic strategies, ultimately contributing to a reduction in the global burden of EAC.
Collapse
Affiliation(s)
| | | | - Amanda Park
- Department of Evidenced-Based Medicine, Centro Universitário Lusíada, Santos 11050-071, Brazil
| | | | | | | | | | - Francisco Tustumi
- Department of Gastroenterology, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
- Department of Health Sciences, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil
| |
Collapse
|
2
|
Yan S, Xie LY, Duan XX, Tan JX, Yang S, Meng L, Zhong QH, Lin WD, Yang JN, Xiao YY, Jiang X. Electroacupuncture improves apoptosis of nucleus pulposus cells via the IL-22/JAK2-STAT3 signaling pathway in a rat model of cervical intervertebral disk degeneration. Acupunct Med 2024; 42:146-154. [PMID: 38702866 DOI: 10.1177/09645284241248465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
BACKGROUND Cervical spondylosis (CS) is a prevalent disorder that can have a major negative impact on quality of life. Traditional conservative treatment has limited efficacy, and electroacupuncture (EA) is a novel treatment option. We investigated the application and molecular mechanism of EA treatment in a rat model of cervical intervertebral disk degeneration (CIDD). METHODS The CIDD rat model was established, following which rats in the electroacupuncture (EA) group received EA. For overexpression of IL-22 or inhibition of JAK2-STAT3 signaling, the rats were injected intraperitoneally with recombinant IL-22 protein (p-IL-22) or the JAK2-STAT3 (Janus kinase 2-signal transducer and activator of transcription protein 3) inhibitor AG490 after model establishment. Rat nucleus pulposus (NP) cells were isolated and cultured. Cell counting kit-8 and flow cytometry were used to analyze the viability and apoptosis of the NP cells. Expression of IL-22, JAK2 and STAT3 was determined using RT-qPCR. Expression of IL-22/JAK2-STAT3 pathway and apoptosis related proteins was detected by Western blotting (WB). RESULTS EA protected the NP tissues of CIDD rats by regulating the IL-22/JAK2-STAT3 pathway. Overexpression of IL-22 significantly promoted the expression of tumor necrosis factor (TNF)-α, IL-6, IL-1β, matrix metalloproteinase (MMP)3 and MMP13 compared with the EA group. WB demonstrated that the expression of IL-22, p-JAK2, p-STAT3, caspase-3 and Bax in NP cells of the EA group was significantly reduced and Bcl-2 elevated compared with the model group. EA regulated cytokines and MMP through activation of IL-22/JAK2-STAT3 signaling in CIDD rat NP cells. CONCLUSION We demonstrated that EA affected apoptosis by regulating the IL-22/JAK2-STAT3 pathway in NP cells and reducing inflammatory factors in the CIDD rat model. The results extend our knowledge of the mechanisms of action underlying the effects of EA as a potential treatment approach for CS in clinical practice.
Collapse
Affiliation(s)
- Sen Yan
- Acupuncture Department II, Yueyang Hospital of Traditional Chinese Medicine, Yueyang, China
| | - Ling-Yao Xie
- Acupuncture Department II, Yueyang Hospital of Traditional Chinese Medicine, Yueyang, China
| | - Xia-Xia Duan
- Acupuncture Department II, Yueyang Hospital of Traditional Chinese Medicine, Yueyang, China
| | - Jia-Xuan Tan
- Acupuncture Department II, Yueyang Hospital of Traditional Chinese Medicine, Yueyang, China
| | - Song Yang
- Acupuncture Department II, Yueyang Hospital of Traditional Chinese Medicine, Yueyang, China
| | - Ling Meng
- Acupuncture Department II, Yueyang Hospital of Traditional Chinese Medicine, Yueyang, China
| | - Qing-Hua Zhong
- Acupuncture Department II, Yueyang Hospital of Traditional Chinese Medicine, Yueyang, China
| | - Wei-Di Lin
- Acupuncture Department II, Yueyang Hospital of Traditional Chinese Medicine, Yueyang, China
| | - Jia-Ni Yang
- Acupuncture Department II, Yueyang Hospital of Traditional Chinese Medicine, Yueyang, China
| | - Yao-Yao Xiao
- Acupuncture Department II, Yueyang Hospital of Traditional Chinese Medicine, Yueyang, China
| | - Xueyu Jiang
- Acupuncture Department II, Yueyang Hospital of Traditional Chinese Medicine, Yueyang, China
| |
Collapse
|
3
|
Guan X, Ning J, Fu W, Wang Y, Zhang J, Ding S. Helicobacter pylori with trx1 high expression promotes gastric diseases via upregulating the IL23A/NF-κB/IL8 pathway. Helicobacter 2024; 29:e13072. [PMID: 38686467 DOI: 10.1111/hel.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Helicobacter pylori infection is one of the main causes of gastric cancer. thioredoxin-1 (Trx1) and arginase (RocF) expressed by H. pylori were found to be closely related to its pathogenicity. However, whether Trx1 and RocF can be used in clinical screening of highly pathogenic H. pylori and the pathogenesis of trx1 high expressing H. pylori remain still unknown. MATERIALS AND METHODS We investigated the expression level of H. pylori trx1 and H. pylori rocF in human gastric antrum tissues using reverse transcription and quantitative real-time PCR (RT-qPCR) and clarified the clinical application value of trx1 and rocF for screening highly pathogenic H. pylori. The pathogenic mechanism of Trx1 were further explored by RNA-seq of GES-1 cells co-cultured with trx1 high or low expressing H. pylori. Differentially expressed genes and signaling pathways were validated by RT-qPCR, Enzyme-linked immunosorbent assay (ELISA), western blot, immunohistochemistry and immunofluorescence. We also assessed the adherence of trx1 high and low expressing H. pylori to GES-1 cells. RESULTS We found that H. pylori trx1 and H. pylori rocF were more significantly expressed in the gastric cancer and peptic ulcer group than that in the gastritis group and the parallel diagnosis of H. pylori trx1 and H. pylori rocF had high sensitivity. The trx1 high expressing H. pylori had stronger adhesion ability to GES-1 cells and upregulated the interleukin (IL) 23A/nuclear factor κappaB (NF-κB)/IL17A, IL6, IL8 pathway. CONCLUSIONS H. pylori trx1 and H. pylori rocF can be used in clinical screening of highly pathogenic H. pylori and predicting the outcome of H. pylori infection. The trx1 high expressing H. pylori has stronger adhesion capacity and promotes the development of gastric diseases by upregulating the activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xin Guan
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Jing Ning
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Weiwei Fu
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Ye Wang
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Shigang Ding
- Beijing Key Laboratory for Helicobacter pylori Infection and Upper Gastrointestinal Diseases, Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
4
|
Xu ZH, Zhang H, Zhang CJ, Yu SJ, Yuan J, Jin K, Jin ZB. REG1A protects retinal photoreceptors from blue light damage. Ann N Y Acad Sci 2023; 1527:60-74. [PMID: 37531162 DOI: 10.1111/nyas.15045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
With the increased use of artificial light and the prolonged use of optoelectronic products, light damage (LD) to the human retina has been identified as a global vision-threatening problem. While there is evidence of a significant correlation between light-induced retinal damage and age-related vision impairment in age-related macular degeneration, it is unclear how light-induced retinal degeneration manifests itself and whether there are agents capable of preventing the development of LD in the retina. This study investigated a mechanism by which blue light leads to photoreceptor death. By observing blue light exposure in retinal organoids and photoreceptor cells, we concluded that there could be significant apoptosis of the photoreceptors. We demonstrate that regenerating islet-derived 1 alpha (REG1A) prevents photoreceptors from undergoing this LD-induced apoptosis by increasing expression of the anti-apoptotic gene Bcl2 and downregulating expression of the pro-apoptotic gene Bax, resulting in reduced mitochondrial damage and improved aerobic capacity in photoreceptor cells. For the first time, REG1A has been shown to restore mitochondrial function and cell apoptosis after LD-induced damage, suggesting its potential application in the prevention and treatment of retinal vision loss.
Collapse
Affiliation(s)
- Ze-Hua Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Hang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Chang-Jun Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Si-Jian Yu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Jing Yuan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China
| |
Collapse
|
5
|
Upregulation of Reg IV and Hgf mRNAs by Intermittent Hypoxia via Downregulation of microRNA-499 in Cardiomyocytes. Int J Mol Sci 2022; 23:ijms232012414. [PMID: 36293268 PMCID: PMC9603944 DOI: 10.3390/ijms232012414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Sleep apnea syndrome (SAS) is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia [IH]), and is a risk factor for cardiovascular disease (CVD) and insulin resistance/Type 2 diabetes. However, the mechanisms linking IH stress and CVD remain elusive. We exposed rat H9c2 and mouse P19.CL6 cardiomyocytes to experimental IH or normoxia for 24 h to analyze the mRNA expression of several cardiomyokines. We found that the mRNA levels of regenerating gene IV (Reg IV) and hepatocyte growth factor (Hgf) in H9c2 and P19.CL6 cardiomyocytes were significantly increased by IH, whereas the promoter activities of the genes were not increased. A target mRNA search of microRNA (miR)s revealed that rat and mouse mRNAs have a potential target sequence for miR-499. The miR-499 level of IH-treated cells was significantly decreased compared to normoxia-treated cells. MiR-499 mimic and non-specific control RNA (miR-499 mimic NC) were introduced into P19.CL6 cells, and the IH-induced upregulation of the genes was abolished by introduction of the miR-499 mimic, but not by the miR-499 mimic NC. These results indicate that IH stress downregulates the miR-499 in cardiomyocytes, resulting in increased levels of Reg IV and Hgf mRNAs, leading to the protection of cardiomyocytes in SAS patients.
Collapse
|
6
|
Helicobacter pylori Thioredoxin1 May Play a Highly Pathogenic Role via the IL6/STAT3 Pathway. Gastroenterol Res Pract 2022; 2022:3175935. [PMID: 35958524 PMCID: PMC9359846 DOI: 10.1155/2022/3175935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 01/10/2023] Open
Abstract
Background Recent studies have shown that CagA is considered highly pathogenic to helicobacter pylori (HP) in Western populations. However, in East Asia, CagA positive HP can be up to 90%, but not all patients will lead to gastric cancer. Our research group has found that HP thioredoxin1 (Trx1) may be a marker of high pathogenicity. Here, we investigate whether HP Trx1 exerts high pathogenicity and its internal molecular mechanism. Materials and Methods We constructed the coculture system of high-Trx1 HP and low-Trx1 HP strains with gastric epithelial cell lines separately and detected the influence of HP strains. The cells were stained by AM/PI, and the cell's mortality was assessed by fluorescence microscope. The cell's supernatants or precipitates were collected to detect the expression of IL6. In addition, the cell's precipitates were collected, and the expression of p-STAT3 was detected by western blot. Furthermore, the cell's supernatants were collected for detecting the expression of 8-OHDG to investigate the extent of DNA damage. Results The high-Trx1 HP can cause higher mortality of GES-1 cells compared with the low-Trx1 HP group (high-Trx1 HP (4.53 ± 0.56) %, low-Trx1 HP (0.39 ± 0.10) %, P < 0.001). The mRNA and protein level of IL-6 in AGS and GES-1 cells were increased during HP infection, and the expression of IL-6 in the High-Trx1 HP group was much higher than the low-Trx1 HP group. Besides, the expression of p-STAT3 was higher in the HP-positive gastric mucosa. And the expression of p-STAT3 in the high-Trx1 HP group was significantly upregulated compared with the low-Trx1 HP group. Furthermore, the expression of 8-OHDG in the high-Trx1 group was much higher than the low-Trx1 group (high-Trx1 HP (5.47 ± 1.73) ng/ml, low-Trx1 HP (2.89 ± 1.72) ng/ml, P < 0.05). Conclusion HP Trx1 may play as a marker of high pathogenicity, and the high-Trx1 HP could mediate the pathogenic process of HP infection via the IL6/STAT3 pathway.
Collapse
|
7
|
Yamaguchi T, Iijima H, Yoshihara T, Tani M, Otake Y, Iwatani S, Amano T, Tashiro T, Kurahashi T, Inoue T, Tsujii Y, Hayashi Y, Inoue T, Motooka D, Nakamura S, Shinzaki S, Takehara T. Exacerbation of non-steroidal anti-inflammatory drug-induced enteropathy in C-C chemokine receptor type 7-deficient mice. J Gastroenterol Hepatol 2022; 37:1561-1570. [PMID: 35435994 DOI: 10.1111/jgh.15868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 02/10/2022] [Accepted: 04/08/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Non-steroidal anti-inflammatory drugs (NSAIDs) induce intestinal enteropathy and the pathophysiology is related to immune-mediated mechanisms. We aimed to investigate the role of C-C chemokine receptor type 7 (CCR7) which regulates immune cell migration in NSAID-induced enteropathy. METHODS Injury of the small intestine was evaluated 24 h after the subcutaneous injection of indomethacin in CCR7-deficient (Ccr7-/- ) and wild-type (WT) mice. The cellular profile and cytokine production in intestinal cells were analyzed. Indomethacin-induced enteropathy was evaluated in mice adoptively transferred with CD103+ dendritic cells (DCs) from Ccr7-/- or WT mice. RESULTS Indomethacin induced more severe intestinal injury in Ccr7-/- mice than in WT mice. The major inflammatory cytokines were not increased and the proportion of regulatory T cells following indomethacin injection was not decreased in Ccr7-/- mice compared with WT mice. The expression of interleukin (IL)-22 binding protein (IL-22BP), which inhibits IL-22 activity, was significantly higher in CD103+ DCs from Ccr7-/- mice than those from WT mice. Mice adoptively transferred with CD103+ DCs isolated from Ccr7-/- mice exhibited more severe intestinal injury following indomethacin injection compared with those adoptively transferred with CD103+ DCs of WT mice. Ccr7-/- mice injected with indomethacin showed a significant reduction in regenerating islet-derived 1 (Reg1) mRNA expression, which is regulated by IL-22, in intestinal epithelial cells. CONCLUSIONS C-C chemokine receptor type 7 deficiency exacerbated NSAID-induced enteropathy in association with an altered phenotype of CD103+ DCs that produces IL-22BP. CCR7 contributes to protect the small intestine from NSAID-induced mucosal injury.
Collapse
Affiliation(s)
- Toshio Yamaguchi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Gastroenterology, Osaka Rosai Hospital, Osaka, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeo Yoshihara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mizuki Tani
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuriko Otake
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shuko Iwatani
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Amano
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taku Tashiro
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohide Kurahashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takanori Inoue
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Inoue
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Mesa F, Mesa-López MJ, Egea-Valenzuela J, Benavides-Reyes C, Nibali L, Ide M, Mainas G, Rizzo M, Magan-Fernandez A. A New Comorbidity in Periodontitis: Fusobacterium nucleatum and Colorectal Cancer. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58040546. [PMID: 35454384 PMCID: PMC9029306 DOI: 10.3390/medicina58040546] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Abstract
There is very recent and strong evidence relating Fusobacterium nucleatum to colorectal cancer. In this narrative review, we update the knowledge about gingival dysbiosis and the characteristics of Fusobacterium nucleatum as one of the main bacteria related to periodontitis. We provide data on microbiome, epidemiology, risk factors, prognosis, and treatment of colorectal cancer, one of the most frequent tumours diagnosed and whose incidence increases every year. We describe, from its recent origin, the relationship between this bacterium and this type of cancer and the knowledge and emerging mechanisms that scientific evidence reveals in an updated way. A diagram provided synthesizes the pathogenic mechanisms of this relationship in a comprehensive manner. Finally, the main questions and further research perspectives are presented.
Collapse
Affiliation(s)
- Francisco Mesa
- Department of Periodontics, School of Dentistry, University of Granada, 18071 Granada, Spain;
| | - Maria José Mesa-López
- Gastroenterology Service, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain; (M.J.M.-L.); (J.E.-V.)
| | - Juan Egea-Valenzuela
- Gastroenterology Service, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain; (M.J.M.-L.); (J.E.-V.)
| | - Cristina Benavides-Reyes
- Department of Operative Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain;
| | - Luigi Nibali
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (L.N.); (M.I.); (G.M.)
| | - Mark Ide
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (L.N.); (M.I.); (G.M.)
| | - Giuseppe Mainas
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (L.N.); (M.I.); (G.M.)
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, 90133 Palermo, Italy;
| | - Antonio Magan-Fernandez
- Department of Periodontics, School of Dentistry, University of Granada, 18071 Granada, Spain;
- Correspondence:
| |
Collapse
|
9
|
The Potential Role of REG Family Proteins in Inflammatory and Inflammation-Associated Diseases of the Gastrointestinal Tract. Int J Mol Sci 2021; 22:ijms22137196. [PMID: 34281249 PMCID: PMC8268738 DOI: 10.3390/ijms22137196] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerating gene (REG) family proteins serve as multifunctional secretory molecules with trophic, antiapoptotic, anti-inflammatory, antimicrobial and probably immuno-regulatory effects. Since their discovery, accumulating evidence has clarified the potential roles of the REG family in the occurrence, progression and development of a wide range of inflammatory and inflammation-associated diseases of the gastrointestinal (GI) tract. However, significant gaps still exist due to the undefined nature of certain receptors, regulatory signaling pathways and possible interactions among distinct Reg members. In this narrative review, we first describe the structural features, distribution pattern and purported regulatory mechanisms of REG family proteins. Furthermore, we summarize the established and proposed roles of REG proteins in the pathogenesis of various inflammation-associated pathologies of the GI tract and the body as a whole, focusing particularly on carcinogenesis in the ulcerative colitis—colitic cancer sequence and gastric cancer. Finally, the clinical relevance of REG products in the context of diagnosis, treatment and prognostication are also discussed in detail. The current evidence suggests a need to better understanding the versatile roles of Reg family proteins in the pathogenesis of inflammatory-associated diseases, and their broadened future usage as therapeutic targets and prognostic biomarkers is anticipated.
Collapse
|
10
|
Nishimura H, Fukui H, Wang X, Ebisutani N, Nakanishi T, Tomita T, Oshima T, Hirota S, Miwa H. Role of the β-Catenin/REG Iα Axis in the Proliferation of Sessile Serrated Adenoma/Polyps Associated with Fusobacterium nucleatum. Pathogens 2021; 10:pathogens10040434. [PMID: 33917384 PMCID: PMC8067346 DOI: 10.3390/pathogens10040434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/24/2022] Open
Abstract
Although sessile serrated adenoma/polyps (SSA/Ps) may arise through a pathway different from the traditional adenoma–carcinoma sequence, details of SSA/P tumorigenesis still remain unclear. Fusobacterium nucleatum (Fn) is frequently detected in colorectal cancer (CRC) tissues and may play a pivotal role in colorectal carcinogenesis. Here, we investigated the relationship between Fn and the β-catenin/REG Iα axis in SSA/Ps and their involvement in the proliferation of these lesions. Fn was detected in SSA/Ps by fluorescence in situ hybridization using a Fn-targeted probe, and expression of β-catenin, REG Iα and Ki67 was examined using immunohistochemistry. Sixteen of 30 SSA/P lesions (53.3%) were positive for Fn. Eighteen SSA/P lesions (60%) showed β-catenin immunoreactivity in the tumor cell nuclei. A significant majority of Fn-positive lesions showed nuclear expression of β-catenin (87.5%) and higher REG Iα scores and Ki67 labeling indices relative to Fn-negative lesions. The SSA/P lesions expressing β-catenin in nuclei had significantly higher REG Iα scores and Ki67 labeling indices than those expressing β-catenin on cytomembranes. The REG Iα score was positively correlated with the Ki67 labeling index in SSA/P lesions. The treatment with Wnt agonist SKL2001 promoted nuclear β-catenin translocation and enhanced REG Ia expression in Caco2 cells. Fn may play a role in the proliferation of SSA/P lesions through promotion of β-catenin nuclear translocation and REG Iα expression.
Collapse
Affiliation(s)
- Heihachiro Nishimura
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Hirokazu Fukui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
- Correspondence: ; Tel.: +81-798-456-662
| | - Xuan Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Nobuhiko Ebisutani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Takashi Nakanishi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Toshihiko Tomita
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Tadayuki Oshima
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan;
| | - Hiroto Miwa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hyogo College of Medicine 1-1, Mukogawa, Nishinomiya 663-8501, Japan; (H.N.); (X.W.); (N.E.); (T.N.); (T.T.); (T.O.); (H.M.)
| |
Collapse
|
11
|
Protective and anti-inflammatory role of REG1A in inflammatory bowel disease induced by JAK/STAT3 signaling axis. Int Immunopharmacol 2021; 92:107304. [PMID: 33513463 DOI: 10.1016/j.intimp.2020.107304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 01/05/2023]
Abstract
Regenerating islet-derived protein 1-alpha (REG1A) was abnormally upregulated in a series of gastrointestinal inflammatory disorders. However, the potential biological function and underlying regulatory mechanisms of the increased REG1A in inflammatory bowel disease (IBD) pathogenesis remain to be fully elucidated. In this study, we uncovered that REG1A was substantially increased in the inflamed colorectal tissues of IBD patients. And the aberrantly expressed REG1A in intestinal epithelial cells (IEC) prominently inhibited inflammatory responses, promoted cell proliferation and suppressed epithelial apoptosis. Mechanically, IL-6 and IL-22 markedly activated REG1A transcription through triggering JAK/STAT3 signaling pathway. In addition, overexpression of REG1A in mice by systematic delivery of REG1A lentivirus remarkably alleviated DSS-induced inflammatory injury and maintained the integrity of intestinal mucosal barrier. Taken together, our data demonstrated that the novel proliferative factor REG1A controlled by IL-6/IL-22-JAK-STAT3 signaling may provide a promising therapeutic target for patients with IBD.
Collapse
|
12
|
OKAMOTO H, TAKASAWA S. Okamoto model for necrosis and its expansions, CD38-cyclic ADP-ribose signal system for intracellular Ca 2+ mobilization and Reg (Regenerating gene protein)-Reg receptor system for cell regeneration. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:423-461. [PMID: 34629354 PMCID: PMC8553518 DOI: 10.2183/pjab.97.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
In pancreatic islet cell culture models and animal models, we studied the molecular mechanisms involved in the development of insulin-dependent diabetes. The diabetogenic agents, alloxan and streptozotocin, caused DNA strand breaks, which in turn activated poly(ADP-ribose) polymerase/synthetase (PARP) to deplete NAD+, thereby inhibiting islet β-cell functions such as proinsulin synthesis and ultimately leading to β-cell necrosis. Radical scavengers protected against the formation of DNA strand breaks and inhibition of proinsulin synthesis. Inhibitors of PARP prevented the NAD+ depletion, inhibition of proinsulin synthesis and β-cell death. These findings led to the proposed unifying concept for β-cell damage and its prevention (the Okamoto model). The model met one proof with PARP knockout animals and was further extended by the discovery of cyclic ADP-ribose as the second messenger for Ca2+ mobilization in glucose-induced insulin secretion and by the identification of Reg (Regenerating gene) for β-cell regeneration. Physiological and pathological events found in pancreatic β-cells have been observed in other cells and tissues.
Collapse
Affiliation(s)
- Hiroshi OKAMOTO
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Shin TAKASAWA
- Department of Biochemistry, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
13
|
Amano Y, Ishimura N, Ishihara S. Is Malignant Potential of Barrett's Esophagus Predictable by Endoscopy Findings? Life (Basel) 2020; 10:E244. [PMID: 33081277 PMCID: PMC7602941 DOI: 10.3390/life10100244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Given that endoscopic findings can be used to predict the potential of neoplastic progression in Barrett's esophagus (BE) cases, the detection rate of dysplastic Barrett's lesions may become higher even in laborious endoscopic surveillance because a special attention is consequently paid. However, endoscopic findings for effective detection of the risk of neoplastic progression to esophageal adenocarcinoma (EAC) have not been confirmed, though some typical appearances are suggestive. In the present review, endoscopic findings that can be used predict malignant potential to EAC in BE cases are discussed. Conventional results obtained with white light endoscopy, such as length of BE, presence of esophagitis, ulceration, hiatal hernia, and nodularity, are used as indicators of a higher risk of neoplastic progression. However, there are controversies in some of those findings. Absence of palisade vessels may be also a new candidate predictor, as that reveals degree of intense inflammation and of cyclooxygenase-2 protein expression with accelerated cellular proliferation. Furthermore, an open type of mucosal pattern and enriched stromal blood vessels, which can be observed by image-enhanced endoscopy, including narrow band imaging, have been confirmed as factors useful for prediction of neoplastic progression of BE because they indicate more frequent cyclooxygenase-2 protein expression along with accelerated cellular proliferation. Should the malignant potential of BE be shown predictable by these endoscopic findings, that would simplify methods used for an effective surveillance, because patients requiring careful monitoring would be more easily identified. Development in the near future of a comprehensive scoring system for BE based on clinical factors, biomarkers and endoscopic predictors is required.
Collapse
Affiliation(s)
- Yuji Amano
- Department of Endoscopy, New Tokyo Hospital, 1271 Wanagaya, Matsudo, Chiba 270-2232, Japan
| | - Norihisa Ishimura
- Department of Internal Medicine II, Faculty of Medicine, Shimane University, Shimane 693-8501, Japan; (N.I.); (S.I.)
| | - Shunji Ishihara
- Department of Internal Medicine II, Faculty of Medicine, Shimane University, Shimane 693-8501, Japan; (N.I.); (S.I.)
| |
Collapse
|
14
|
Li Y, Gao X, Wei C, Guo R, Xu H, Bai Z, Zhou J, Zhu J, Wang W, Wu Y, Li J, Zhang Z, Xie X. Modification of Mcl-1 alternative splicing induces apoptosis and suppresses tumor proliferation in gastric cancer. Aging (Albany NY) 2020; 12:19293-19315. [PMID: 33052877 PMCID: PMC7732305 DOI: 10.18632/aging.103766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/07/2020] [Indexed: 01/24/2023]
Abstract
Splicing dysregulation, which leads to apoptosis resistance, has been recognized as a major hallmark for tumorigenesis and cancer progression. Targeting alternative splicing by either increasing pro-apoptotic proteins or inhibiting anti-apoptotic proteins in tumor cells may be an effective approach for gastric cancer (GC) therapy. However, the role of modulation of alternative splicing in GC remains poorly understood. In this study, to the best of our knowledge, the unbalanced expression of the myeloid cell leukemia-1 (Mcl-1) splicing variants, Mcl-1L and Mcl-1S, was identified in GC patients for the first time. Increasing anti-apoptotic Mcl-1L and decreasing pro-apoptotic Mcl-1S expression levels were correlated with tumor proliferation and poor survival. In vitro data showed that a shift in splicing from Mcl-1L to Mcl-1S induced by treatment with Mcl-1-specific steric-blocking oligonucleotides (SBOs) efficiently decreased Mcl-1L expression, increased Mcl-1S expression, and accelerated tumor cell apoptosis in a dose-dependent manner. Additionally, mouse xenotransplant models confirmed that modification of Mcl-1 alternative splicing increased tumor cell death and suppressed tumor proliferation. This study demonstrated that the modification of Mcl-1 splicing might stimulate the pro-apoptotic factor and inhibit the anti-apoptotic protein to induce significant apoptosis. Thus, this finding provided a strategy for cancer therapy, according to which SBOs could be used to change the Mcl-1 splicing pattern, thereby inducing apoptosis.
Collapse
Affiliation(s)
- Yonghong Li
- Key Laboratory of Preclinical Study for New Drug of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Xiaoling Gao
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Chaojun Wei
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Rui Guo
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Hui Xu
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Zhongtian Bai
- The Second Department of General Surgery, Lanzhou University First Hospital, Lanzhou 730000, China
| | - Jianye Zhou
- Key Lab of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou 730030, China
| | - Jun Zhu
- Pathology Department, Lanzhou University First Hospital, Lanzhou 730000, China
| | - Wanxia Wang
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Yu Wu
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China
| | - Jingzhe Li
- Oncology Department, The First Hospital of Lanzhou, Lanzhou 730050, China
| | - Zhongliang Zhang
- Oncology Department, The First Hospital of Lanzhou, Lanzhou 730050, China
| | - Xiaodong Xie
- Key Laboratory of Preclinical Study for New Drug of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China,NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, China
| |
Collapse
|
15
|
Xu X, Fukui H, Ran Y, Wang X, Inoue Y, Ebisudani N, Nishimura H, Tomita T, Oshima T, Watari J, Kiyama H, Miwa H. The Link between Type III Reg and STAT3-Associated Cytokines in Inflamed Colonic Tissues. Mediators Inflamm 2019; 2019:7859460. [PMID: 31780871 PMCID: PMC6875322 DOI: 10.1155/2019/7859460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/10/2019] [Accepted: 09/25/2019] [Indexed: 02/08/2023] Open
Abstract
Reg (regenerating gene) family proteins are known to be overexpressed in gastrointestinal (GI) tissues under conditions of inflammation. However, the pathophysiological significance of Reg family protein overexpression and its regulation is still unclear. In the present study, we investigated the profile of Reg family gene expression in a colitis model and focused on the regulation of Reg IIIβ and IIIγ, which are overexpressed in inflamed colonic mucosa. C57BL/6 mice were administered 2% dextran sulfate sodium (DSS) in drinking water for five days, and their colonic tissues were investigated histopathologically at interval for up to 12 weeks. Gene expression of the Reg family and cytokines (IL-6, IL-17, and IL-22) was evaluated by real-time RT-PCR, and Reg IIIβ/γ expression was examined by immunohistochemistry. The effects of cytokines on STAT3 phosphorylation and HIP/PAP (type III REG) expression in Caco2 and HCT116 cells were examined by Western blot analysis. Among Reg family genes, Reg IIIβ and IIIγ were alternatively overexpressed in the colonic tissues of mice with DSS-induced colitis. The expression of STAT3-associated cytokines (IL-6, IL-17, and IL-22) was also significantly increased in those tissues, being significantly correlated with that of Reg IIIβ/γ. STAT3 phosphorylation and HIP/PAP expression were significantly enhanced in Caco2 cells upon stimulation with IL-6, IL-17, and IL-22. In HCT116 cells, those enhancements were also observed by IL-6 and IL-22 stimulations but not IL-17. The link between type III Reg and STAT3-associated cytokines appears to play a pivotal role in the pathophysiology of DSS-induced colitis.
Collapse
Affiliation(s)
- Xin Xu
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Hirokazu Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Ying Ran
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuan Wang
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yoshihito Inoue
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Nobuhiko Ebisudani
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Heihachiro Nishimura
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshihiko Tomita
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Jiro Watari
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroto Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
16
|
Chen Z, Downing S, Tzanakakis ES. Four Decades After the Discovery of Regenerating Islet-Derived (Reg) Proteins: Current Understanding and Challenges. Front Cell Dev Biol 2019; 7:235. [PMID: 31696115 PMCID: PMC6817481 DOI: 10.3389/fcell.2019.00235] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Regenerating islet-derived (Reg) proteins have emerged as multifunctional agents with pro-proliferative, anti-apoptotic, differentiation-inducing and bactericidal properties. Over the last 40 years since first discovered, Reg proteins have been implicated in a gamut of maladies including diabetes, various types of cancer of the digestive tract, and Alzheimer disease. Surprisingly though, a consensus is still absent on the regulation of their expression, and molecular underpinning of their function. Here, we provide a critical appraisal of recent findings in the field of Reg protein biology. Specifically, the structural characteristics are reviewed particularly in connection with established or purported functions of different members of the Reg family. Moreover, Reg expression patterns in different tissues both under normal and pathophysiological conditions are summarized. Putative receptors and cascades reported to relay Reg signaling inciting cellular responses are presented aiming at a better appreciation of the biological activities of the distinct Reg moieties. Challenges are also discussed that have hampered thus far the rapid progress in this field such as the use of non-standard nomenclature for Reg molecules among various research groups, the existence of multiple Reg members with significant degree of homology and possibly compensatory modes of action, and the need for common assays with robust readouts of Reg activity. Coordinated research is warranted going forward, given that several research groups have independently linked Reg proteins to diseased states and raised the possibility that these biomolecules can serve as therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Zijing Chen
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States
| | - Shawna Downing
- Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| | - Emmanuel S Tzanakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, United States.,Clinical and Translational Science Institute, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
17
|
Wang Y, Liu X, Liu J, Zhang T. Knockdown of REG Iα Enhances the Sensitivity to 5-Fluorouracil of Colorectal Cancer Cells via Cyclin D1/CDK4 Pathway and BAX/BCL-2 Pathways. Cancer Biother Radiopharm 2019; 34:362-370. [PMID: 30973271 DOI: 10.1089/cbr.2018.2746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective: The reverse of chemoresistance and the improvement of sensitivity to chemotherapeutic agents of colorectal cancer cells have great clinical significance and the mechanism underlying the drug resistance is still unclear. REG Iα was reported to be upregulated in colorectal cancer tissues, but the roles of chemoresistance are still unclear. Materials and Methods: The expression of REG Iα in colorectal cancer cell lines was assessed by quantitative real-time polymerase chain reaction (Q-PCR). The expression of REG Iα in HCT116 and LOVO cells was knockdown by siRNA. The cell viability and IC50 (half maximal inhibitory concentration) values were analyzed by the CCK8 assay. The proportion of apoptosis and cell cycles were analyzed by flow cytometry. The migration potency of HCT116 and LOVO cells was analyzed by cell migration assay. The protein level of Cyclin D1, CDK4 (cyclin-dependent kinase 4), Bax and Bcl-2 were analyzed by western blot. Results: Knockdown of REG Iα enhances the sensitivity to 5-Fu of colorectal cancer cells. REG Iα knockdown promoted the cell apoptosis of HCT116 and LOVO under the 5-Fu treatment. The cell migration and cycle of colorectal cancer cells was also inhibited by REG Iα knockdown. We also found that REG Iα knockdown induced cell cycle arrest and cell apoptosis by Cyclin D1/CDK4 pathway and BAX/BCL-2 pathways. Conclusions: Knockdown of REG Iα enhances the sensitivity to 5-Fu of colorectal cancer cells via cyclin D1/CDK4 pathway and BAX/BCL-2 pathways.
Collapse
Affiliation(s)
- Yuwei Wang
- 1Department of Oncology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Liu
- 2Department of General Surgery, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Jingshu Liu
- 2Department of General Surgery, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Tao Zhang
- 1Department of Oncology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Zhou Y, Zang Y, Yang Y, Xiang J, Chen Z. Candidate genes involved in metastasis of colon cancer identified by integrated analysis. Cancer Med 2019; 8:2338-2347. [PMID: 30884206 PMCID: PMC6536975 DOI: 10.1002/cam4.2071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Colon cancer is one of the most malignant cancers worldwide. Nearly 20% of all colon cancer patients are diagnosed at stage IV (metastasis). However, further study of colon cancer is difficult due to a lack of understanding of its pathogenesis. In this study, we acquired high–throughput sequence data from TCGA datasets and performed integrated bioinformatic analysis including differential gene expression analysis, gene ontology and KEGG pathways analysis, protein–protein analysis, survival analysis, and multivariate Cox proportional hazards regression analysis in order to identify a panel of key candidate genes involved in the metastasis of colon cancer. We then constructed a prognostic signature based on the expression of REG1B, TGM6, NTF4, PNMA5, and HOXC13 which could provide significant prognostic value for colon cancer.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiwen Zang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Yang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianbin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zongyou Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Cheung KS, Leung WK. Long-term use of proton-pump inhibitors and risk of gastric cancer: a review of the current evidence. Therap Adv Gastroenterol 2019; 12:1756284819834511. [PMID: 30886648 PMCID: PMC6415482 DOI: 10.1177/1756284819834511] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/06/2019] [Indexed: 02/04/2023] Open
Abstract
Gastric cancer remains one of the leading cancers in the world with a high mortality, particularly in East Asia. Helicobacter pylori infection accounts for the majority of the noncardia gastric cancers by triggering gastric inflammation and subsequent neoplastic progression. Eradication of H. pylori can reduce, but not totally eliminate, subsequent risk of developing gastric cancer. Proton-pump inhibitors (PPIs) are one of the most widely prescribed medications worldwide. With their profound gastric-acid suppression, there are concerns about a possible carcinogenic role in gastric cancer, due to induced hypergastrinemia, gastric atrophy and bacterial overgrowth in the stomach. While randomized clinical trials to establish causality between long-term PPI use and gastric cancer are lacking, current evidence based on observational studies suggests PPIs are associated with an increased gastric cancer risk. However, opinions on causality remain divergent due to unmeasured and possible residual confounding in various studies. Our recent study has showed that even after H. pylori eradication, long-term PPI use is still associated with an increased risk of gastric cancer by more than twofold. Hence, long-term PPIs should be used judiciously after considering individual's risk-benefit profile, particularly among those with history of H. pylori infection. Further well-designed prospective studies are warranted to confirm the potential role of PPIs in gastric cancer according to baseline gastric histology and its interaction with other chemopreventive agents like aspirin, statins and metformin.
Collapse
Affiliation(s)
- Ka Shing Cheung
- Department of Medicine, The University of Hong Kong, Hong Kong
| | | |
Collapse
|
20
|
Qiu YS, Liao GJ, Jiang NN. DNA Methylation-Mediated Silencing of Regenerating Protein 1 Alpha (REG1A) Affects Gastric Cancer Prognosis. Med Sci Monit 2017; 23:5834-5843. [PMID: 29222406 PMCID: PMC5737223 DOI: 10.12659/msm.904706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common cause of cancer-related deaths. The clinical trials still lack the effective methods to treat or monitor the disease progression. In this research, the biological function and the underlying molecular mechanism of regenerating protein 1 alpha (REG1A) in GC were investigated. Material/Methods Gene expression omnibus (GEO), KMplot datasets and GC tissue microarray (n=164) were used to analyze the expression of REG1A and related patient prognoses in GC. Transwell matrigel assay, flow cytometry analysis and CCK8 cell viability assay were performed to detect the biological functions of REG1A. Western blotting and real-time PCR were used to detect the REG1A expression and PI3K/Akt related signaling. Results It was found that the expression of REG1A was significantly downregulated in GC and closely related with clinicopathological findings or patient prognoses. REG1A overexpression could suppress the invasion, cell viability and promote the apoptosis of GC cells. Moreover, we found that the epigenetic methylation suppressed the expression level of REG1A in GC, and REG1A overexpression could suppress the phosphorylation of Akt or GSK3β signaling. Conclusions Taken together, REG1A regulates cell invasion, apoptosis and viability in GC through activating PI3K/Akt-GSK3β signaling. REG1A may serve as a promising therapeutic strategy for GC.
Collapse
Affiliation(s)
- Yan-Song Qiu
- Department of General Surgery, Yantai Mountain Hospital, Yantai, Shandong, China (mainland)
| | - Guang-Jun Liao
- Department of Bone Tumor, Yantai Mountain Hospital, Yantai, Shandong, China (mainland)
| | - Ning-Ning Jiang
- Department of Bone Tumor, Yantai Mountain Hospital, Yantai, Shandong, China (mainland)
| |
Collapse
|
21
|
Reg Gene Expression in Periosteum after Fracture and Its In Vitro Induction Triggered by IL-6. Int J Mol Sci 2017; 18:ijms18112257. [PMID: 29077068 PMCID: PMC5713227 DOI: 10.3390/ijms18112257] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/26/2022] Open
Abstract
The periosteum is a thin membrane that surrounds the outer surface of bones and participates in fracture healing. However, the molecular signals that trigger/initiate the periosteal reaction are not well established. We fractured the rat femoral bone at the diaphysis and fixed it with an intramedullary inserted wire, and the expression of regenerating gene (Reg) I, which encodes a tissue regeneration/growth factor, was analyzed. Neither bone/marrow nor muscle showed RegI gene expression before or after the fracture. By contrast, the periosteum showed an elevated expression after the fracture, thereby confirming the localization of Reg I expression exclusively in the periosteum around the fractured areas. Expression of the Reg family increased after the fracture, followed by a decrease to basal levels by six weeks, when the fracture had almost healed. In vitro cultures of periosteal cells showed no Reg I expression, but the addition of IL-6 significantly induced Reg I gene expression. The addition of IL-6 also increased the cell number and reduced pro-apoptotic gene expression of Bim. The increased cell proliferation and reduction in Bim gene expression were abolished by transfection with Reg I siRNA, indicating that these IL-6-dependent effects require the Reg I gene expression. These results indicate the involvement of the IL-6/Reg pathway in the osteogenic response of the periosteum, which leads to fracture repair.
Collapse
|
22
|
Tsuchida C, Sakuramoto-Tsuchida S, Taked M, Itaya-Hironaka A, Yamauchi A, Misu M, Shobatake R, Uchiyama T, Makino M, Pujol-Autonell I, Vives-Pi M, Ohbayashi C, Takasawa S. Expression of REG family genes in human inflammatory bowel diseases and its regulation. Biochem Biophys Rep 2017; 12:198-205. [PMID: 29090282 PMCID: PMC5655384 DOI: 10.1016/j.bbrep.2017.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 12/23/2022] Open
Abstract
The pathophysiology of inflammatory bowel disease (IBD) reflects a balance between mucosal injury and reparative mechanisms. Some regenerating gene (Reg) family members have been reported to be expressed in Crohn's disease (CD) and ulcerative colitis (UC) and to be involved as proliferative mucosal factors in IBD. However, expression of all REG family genes in IBD is still unclear. Here, we analyzed expression of all REG family genes (REG Iα, REG Iβ, REG III, HIP/PAP, and REG IV) in biopsy specimens of UC and CD by real-time RT-PCR. REG Iα, REG Iβ, and REG IV genes were overexpressed in CD samples. REG IV gene was also overexpressed in UC samples. We further analyzed the expression mechanisms of REG Iα, REG Iβ, and REG IV genes in human colon cells. The expression of REG Iα was significantly induced by IL-6 or IL-22, and REG Iβ was induced by IL-22. Deletion analyses revealed that three regions (- 220 to - 211, - 179 to - 156, and - 146 to - 130) in REG Iα and the region (- 274 to- 260) in REG Iβ promoter were responsible for the activation by IL-22/IL-6. The promoters contain consensus transcription factor binding sequences for MZF1, RTEF1/TEAD4, and STAT3 in REG Iα, and HLTF/FOXN2F in REG Iβ, respectively. The introduction of siRNAs for MZF1, RTEF1/TEAD4, STAT3, and HLTF/FOXN2F abolished the transcription of REG Iα and REG Iβ. The gene activation mechanisms of REG Iα/REG Iβ may play a role in colon mucosal regeneration in IBD.
Collapse
Key Words
- CD, Crohn's disease
- CDX2, caudal-type homeobox transcription factor 2
- Celiac disease
- Crohn's disease
- FOXN2, forkhead box protein N2
- GATA6, GATA DNA-binding protein 6
- HLTF, helicase-like transcription factor
- IBD, inflammatory bowel disease
- IL, interleukin
- MZF1, myeloid zinc finger 1
- REG family genes
- REG, regenerating gene
- RTEF1, related transcriptional enhancer factor-1
- SOCS3, suppressors of the cytokine signaling 3
- STAT3, signal transducer and activator of transcription 3
- TEAD4, TEA Domain transcription Factor 4
- Transcription
- UC, ulcerative colitis
- Ulcerative colitis
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Chikatsugu Tsuchida
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan.,Saiseikai Nara Hospital, Nara 630-8145, Japan
| | | | - Maiko Taked
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan.,Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8522, Japan.,Department of Laboratory Medicine and Pathology, National Hospital Organization Kinki-chuo Chest Medical Center, Sakai 591-8025, Japan
| | | | - Akiyo Yamauchi
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Masayasu Misu
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Ryogo Shobatake
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Tomoko Uchiyama
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan.,Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8522, Japan
| | - Mai Makino
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Irma Pujol-Autonell
- Immunology Division, Germans Trias i Pujol Health Sciences Research Institute, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Marta Vives-Pi
- Immunology Division, Germans Trias i Pujol Health Sciences Research Institute, Autonomous University of Barcelona, 08916 Badalona, Spain.,CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain
| | - Chiho Ohbayashi
- Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8522, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
23
|
Geng J, Fan J, Wang Q, Zhang XP, Kang L, Li QY, Xu YF, Peng B, Zheng JH, Yao XD. Decreased REG1α expression suppresses growth, invasion and angiogenesis of bladder cancer. Eur J Surg Oncol 2017; 43:837-846. [PMID: 28209239 DOI: 10.1016/j.ejso.2017.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/19/2016] [Accepted: 01/17/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Previous study has indicated association between REG1α and bladder cancer. The aim of this study was to investigate the role of Regenerating gene I alpha (REG1α) in bladder cancer. METHODS The role of REG1α in bladder cancer cell proliferation, migration and VEGF-induced angiogenesis was explored in vitro and in vivo. Immunohistochemistry (IHC) analysis was assessed to determine the expression of REG1α in ten paired bladder cancer and adjacent non-cancerous tissues, and in 296 bladder cancer samples. RESULTS Down-regulation of REG1α expression significantly reduced the proliferation, migration, invasion and VEGF-induced angiogenesis in vitro and the growth of xenograft tumors in vivo. VEGF expression in bladder cancer is associated with REG1α expression and recurrence. REG1α was overexpressed in bladder cancer tissues compared with adjacent normal samples. Patients with elevated REG1α exhibited shorter recurrence times and poor survival. CONCLUSION Downregulation of REG1α expression can reduce tumor growth, migration, invasion and angiogenesis. Our study demonstrates that REG1α can be used as a marker of recurrence and prognosis in bladder cancer. Therefore, REG1α targeting in bladder cancer patients represents a promising therapeutic strategy.
Collapse
Affiliation(s)
- J Geng
- Department of Urology, Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| | - J Fan
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, China; Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Q Wang
- Department of Urology, Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - X-P Zhang
- Department of Urology, Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - L Kang
- Department of Urology, Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Q-Y Li
- Department of Pathology, Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Y-F Xu
- Department of Urology, Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - B Peng
- Department of Urology, Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - J-H Zheng
- Department of Urology, Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - X-D Yao
- Department of Urology, Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
24
|
Gao L, Han Y, Deng H, Hu W, Zhen H, Li N, Qin N, Yan M, Wu W, Liu B, Zhao B, Pang Q. The role of a novel C-type lectin-like protein from planarian in innate immunity and regeneration. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:413-426. [PMID: 27565408 DOI: 10.1016/j.dci.2016.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 06/06/2023]
Abstract
Planarian, a representative of platyhelminthes, has strong regeneration ability and less complicated innate immune system. However, planarian immune system remains poorly understood. In this paper, a novel C-type lectin-like protein, namely, DjCTL was identified and characterized in Dugesia japonica. DjCTL was mainly expressed in the pharyngeal and epidermis and up-regulated upon the induction of lipopolysaccharide (LPS), peptidoglycan (PGN), Gram-positive and Gram-negative bacteria indicating that DjCTL may be involved in the immune responses. Recombination DjCTL protein agglomerated rabbit red blood cells and interacted with LPS, PGN, mannose and galactose as well as both Gram-positive and Gram-negative bacteria, but it can only cause the agglutination of Gram-negative bacteria. Importantly, in the early periods of regeneration, DjCTL had a significantly high expression and was mainly expressed in early blastemas. RNA interference of DjCTL by dsRNA-DjCTL led to a slow wound healing during regeneration. These findings suggest that DjCTL participates in the innate immune response and plays an important role in early stages of regeneration.
Collapse
Affiliation(s)
- Lili Gao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Yu Han
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Hongkuan Deng
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Wenjing Hu
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Hui Zhen
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Na Li
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Nianci Qin
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Meihui Yan
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Weiwei Wu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China
| | - Baohua Liu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Shenzhen University of Health Science Center, District Shenzhen, 518060, PR China.
| | - Bosheng Zhao
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China.
| | - Qiuxiang Pang
- Laboratory of Developmental and Evolutionary Biology, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China; Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo, 255049, PR China.
| |
Collapse
|
25
|
Miyamoto S, Kato M, Matsuda K, Abiko S, Tsuda M, Mizushima T, Yamamoto K, Ono S, Kudo T, Shimizu Y, Hatanaka KC, Tsunematsu I, Sakamoto N. Gastric Hyperplastic Polyps Associated with Proton Pump Inhibitor Use in a Case without a History of Helicobacter pylori Infection. Intern Med 2017; 56:1825-1829. [PMID: 28717077 PMCID: PMC5548674 DOI: 10.2169/internalmedicine.56.8040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A 56-year-old man with gastroesophageal reflux disease (GERD) was referred to our hospital. Esophagogastroduodenoscopy (EGD) revealed no evidence of any polypoid lesions in the stomach, and the patient had no history of Helicobacter pylori infection. He received omeprazole (20 mg) once daily for the GERD. EGD was performed at 1 year after the start of omeprazole administration, and this time, gastric hyperplastic polyps (GHPs) were detected. The GHPs increased in size as the omeprazole treatment continued, but they markedly decreased in size following omeprazole discontinuation. Thus, the administration of proton pump inhibitors may be a risk factor for the development of GHP independent of H. pylori infection.
Collapse
Affiliation(s)
- Shuichi Miyamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Japan
| | | | - Kana Matsuda
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Japan
| | - Satoshi Abiko
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Japan
| | - Momoko Tsuda
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Japan
| | - Takeshi Mizushima
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Japan
| | - Keiko Yamamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Japan
| | - Shoko Ono
- Division of Endoscopy, Hokkaido University Hospital, Japan
| | - Takahiko Kudo
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Japan
| | - Yuichi Shimizu
- Division of Endoscopy, Hokkaido University Hospital, Japan
| | - Kanako C Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Japan
| | | | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Japan
| |
Collapse
|
26
|
Aboshanif M, Kawasaki Y, Omori Y, Suzuki S, Honda K, Motoyama S, Ishikawa K. Prognostic role of regenerating gene-I in patients with stage-IV head and neck squamous cell carcinoma. Diagn Pathol 2016; 11:79. [PMID: 27539087 PMCID: PMC4989335 DOI: 10.1186/s13000-016-0526-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 08/04/2016] [Indexed: 01/22/2023] Open
Abstract
Background Regenerating gene (REG) family is composed of antiapoptotic factors and growth factors that affect epithelial cells within the digestive system. Regenerating gene-I has been studied in different cancers. However, it has never been studied in head and neck cancer. We investigated the expression of REG-I in head and neck SCC and its relevance to patient survival rates. Methods Untreated biopsy specimens of 60 patients with stage IV head and neck SCC were collected, and the expression of REG-I was evaluated using immunohistochemistry. The association between REG-I expression and clinico-pathological features or survival status of the patients was assessed by Chi-square test, Fisher’s exact test and Kaplan-Meier method. Cox proportional hazard model was used to identify the independent prognostic factors. Results Incidence of lymphatic permeation, vascular invasion and pathological lymph nodes was significantly higher in REG-I negative group (p = 0.008, 0.030 and 0.015, respectively). Overall and cancer-free survival rates were significantly higher in REG-I positive group (p = 0.000434 and 1.0847E-8, respectively). Univariate analysis showed that REG-I was an independent prognostic factor for predicting long-term overall survival (p = 0.002), and multivariate analysis showed that REG-I and lymphatic permeation were independent prognostic factors for predicting long-term disease-free survival (p = 0.001 and 0.022, respectively). Conclusion Our results showed for the first time that, REG-I is expressed in head and neck SCC. REG-I expression is associated with a longer survival status. We conclude that, REG-I might be a prognostic marker in head and neck SSC and should be further investigated.
Collapse
Affiliation(s)
- Mohamed Aboshanif
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita Graduate School of Medicine, Akita, Japan
| | - Yohei Kawasaki
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita Graduate School of Medicine, Akita, Japan
| | - Yasufumi Omori
- Department of Molecular Pathology and Tumor Pathology, Akita Graduate School of Medicine, Akita, Japan
| | - Shinsuke Suzuki
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita Graduate School of Medicine, Akita, Japan
| | - Kohei Honda
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita Graduate School of Medicine, Akita, Japan
| | - Satoru Motoyama
- Department of Comprehensive Cancer Control, Akita Graduate School of Medicine, Akita, Japan
| | - Kazuo Ishikawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Akita Graduate School of Medicine, Akita, Japan. .,Department of Otolaryngology Head and Neck Surgery, Akita University, Graduate School of Medicine, 1-1-1, Hondo, Akita, 010-8543, Japan.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Environmental enteropathy has long been recognized as an important intermediary condition leading to chronic malnutrition in children in developing countries. Interest has lately renewed in this topic because of increased focus on improving the quality of lives as opposed to just saving them. Here, we provide an overview of recent scientific literature and our perspective about this disorder. RECENT FINDINGS Current understanding of the disorder of environmental enteropathy is based on studies conducted decades ago. Results of some new studies on histopathologic characterization of environmental enteropathy are currently awaited. Given the challenges of diagnosing environmental enteropathy using the gold standard test of intestinal biopsy, different biomarkers have been tested as proxies of environmental enteropathy and eventually, chronic malnutrition. Available data fail to point toward a single ideal biomarker, though considerable work is still ongoing. A few interventional studies have also been conducted with improvement in environmental enteropathy as outcome. SUMMARY The basic histopathology of environmental enteropathy has been defined previously, and more advanced analysis to study the pathophysiology of this disorder is currently being carried out. Many biomarkers, which represent the different mechanisms involved in environmental enteropathy, have been tested as proxies of environmental enteropathy. Although no single biomarker fits the description of an ideal biomarker yet, a few of the more promising biomarkers are being validated in different studies. Finally, the few interventions which have been tried to treat environmental enteropathy, thus far, are summarized.
Collapse
|
28
|
Abstract
INTRODUCTION The regenerating gene (Reg) was identified in regenerating islets and its related genes were revealed to constitute the Reg gene family. Reg family proteins act as growth factors for several cells. Recently, autoimmunity against the Reg family proteins has been reported in several diseases. In addition, the Reg family genes were found to be expressed in a large number of cancers and to influence prognosis. AREAS COVERED The historical background and current view of the structure, function, and expression of Reg family genes/proteins and their physiological/pathological significance in several diseases are described. Based on the findings, the diagnostic/therapeutic potential of Reg family genes/proteins is also discussed. EXPERT OPINION Autoimmunity against Reg family proteins may be a new diagnostic marker and/or therapeutic target for immune-mediated diseases. Treatment aimed at the expansion of the β-cell mass by the Reg genes/proteins, combined with the abrogation of autoimmunity, constitutes a potential approach for the treatment of diabetes. Conversely, some cancer cells have gained the ability to overexpress the Reg genes/proteins, thereby enhancing their proliferative capacities, resulting in these cells having a considerable growth advantage. Thus, the Reg genes/proteins are expected to be a new prognostic marker in cancer and/or a future therapeutic target.
Collapse
Affiliation(s)
- Shin Takasawa
- a Department of Biochemistry , Nara Medical University , Kashihara , Japan
| |
Collapse
|
29
|
Common beans and cowpeas as complementary foods to reduce environmental enteric dysfunction and stunting in Malawian children: study protocol for two randomized controlled trials. Trials 2015; 16:520. [PMID: 26578308 PMCID: PMC4650393 DOI: 10.1186/s13063-015-1027-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022] Open
Abstract
Background Interventions to decrease the burden of childhood malnutrition are urgently needed, as millions of children die annually owing to undernutrition and hundreds of millions more are left cognitively and physically stunted. Environmental enteric dysfunction (EED), a pervasive chronic subclinical inflammatory condition among children that develops when complementary foods are introduced, places them at high risk of stunting, malabsorption, and poor oral vaccine efficacy. Improved interventions to reduce the burden of EED and stunting are expected to markedly improve the nutritional status and survival of children throughout resource-limited settings. Methods/Design We will conduct, in parallel, two prospective randomized controlled clinical trials to determine whether common beans or cowpeas improve growth, ameliorate EED, and alter the intestinal microbiome during a high-risk period in the lives of rural Malawian children. Study 1 will enroll children at 6 months of age and randomize them to receive common beans, cowpeas, or a standard complementary food for 6 months. Anthropometry will be compared among the three groups; EED will be assessed using a dual-sugar absorption test and by quantifying human intestinal mRNA for inflammatory messages; and the intestinal microbiota will be characterized by deep sequencing of fecal DNA, to enumerate host microbial populations and their metabolic capacity. Study 2 will enroll children 12–23 months old and follow them for 12 months, with similar interventions and assessments as Study 1. Discussion By amalgamating the power of rigorous clinical trials and advanced biological analysis, we aim to elucidate the potential of two grain legumes to reduce stunting and EED in a high-risk population. Legumes have potential as an affordable and effective complementary food intervention, given their cultural acceptability, nutritional content, and agricultural feasibility in sub-Saharan Africa. Trial registration Clinicaltrials.gov NCT02472262 and NCT02472301.
Collapse
|
30
|
Abstract
Helicobacter pylori infection plays a crucial role in gastric carcinogenesis. H pylori exerts oncogenic effects on gastric mucosa through complex interaction between bacterial virulence factors and host inflammatory responses. On the other hand, gastric cancer develops via stepwise accumulation of genetic and epigenetic alterations in H pylori-infected gastric mucosa. Recent comprehensive analyses of gastric cancer genomes indicate a multistep process of genetic alterations as well as possible molecular mechanisms of gastric carcinogenesis. Both genetic processes of gastric cancer development and molecular oncogenic pathways related to H pylori infection are important to completely understand the pathogenesis of H pylori-related gastric cancer.
Collapse
|
31
|
The role of Reg IV in colorectal cancer, as a potential therapeutic target. Contemp Oncol (Pozn) 2015; 19:261-4. [PMID: 26557771 PMCID: PMC4631303 DOI: 10.5114/wo.2015.54385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/05/2013] [Accepted: 11/22/2013] [Indexed: 01/28/2023] Open
Abstract
Regenerating islet-derived family, member 4 (Reg IV), a member of the Reg gene family, has been reported to be overexpressed in gastrointestinal tract cancers. Reg IV overexpression in tumor cells has been associated with carcinogenesis, tissue regeneration, proliferation and resistance to apoptosis. Reg IV activates the epidermal growth factor receptor (EGFR) signaling pathway in colon cancer and increases expression of B-cell lymphoma-2 (Bcl-2) and B-cell lymphoma-extra large (Bcl-xl), which are associated with the inhibition of apoptosis, results in mitogenic signaling in colon cancer cells, increase cell proliferation, metastasis and decreased apoptosis. Reg IV treatment inhibits 5-fluorouracil induced apoptosis, at least two mechanisms are involved in inhibition of apoptosis by Reg IV, including Bcl-2 and dihydropyrimidine dehydrogenase (DPD). These studies may lead to novel therapeutic strategies for cancers expressing Reg IV. Recently, one proteoglycan was confirmed to disrupt this signaling pathway to perform antitumor effect. This review summaries current knowledge of the expression and roles of Reg IV in human colorectal cancer, describes the possible signaling pathway which Reg IV activates, and discusses the relevance of Reg IV as a potential therapeutic target for cancer treatment.
Collapse
|
32
|
Waldum HL, Hauso Ø, Sørdal ØF, Fossmark R. Gastrin May Mediate the Carcinogenic Effect of Helicobacter pylori Infection of the Stomach. Dig Dis Sci 2015; 60:1522-7. [PMID: 25480404 DOI: 10.1007/s10620-014-3468-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/26/2014] [Indexed: 12/14/2022]
Abstract
Gastric cancer occurs almost exclusively in patients with gastritis. Since Helicobacter pylori (Hp) was proved to cause gastritis, Hp was also expected to play a role in gastric carcinogenesis. Despite extensive studies, the mechanisms by which Hp cause gastric cancer are still poorly understood. However, there is evidence that the anatomical site of Hp infection is of major importance. Infection confined to the antral mucosa protects against gastric cancer but predisposes to duodenal ulcer, whereas Hp infection of the oxyntic mucosa increases the risk of gastric cancer. Hp infection does not predispose to cancers in the gastric cardia. In patients with atrophic gastritis of the oxyntic mucosa, the intragastric pH is elevated and the concentration of microorganisms in the stomach is increased. This does not lead to increased risk of gastric cancer at all anatomical sites. The site specificity of Hp infection in relation to cancer risk indicates that neither Hp nor the changes in gastric microflora due to gastric hypoacidity are carcinogenic per se. However, reduced gastric acidity also leads to hypergastrinemia, which stimulates the function and proliferation of enterochromaffin-like (ECL) cells located in the oxyntic mucosa. The ECL cell may be more important in human gastric carcinogenesis than previously realized, as every condition causing long-term hypergastrinemia in animals results in the development of neoplasia in the oxyntic mucosa. Patients with hypergastrinemia will far more often develop carcinomas in the gastric corpus. In conclusion, hypergastrinemia may explain the carcinogenic effect of Hp.
Collapse
Affiliation(s)
- Helge L Waldum
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Prinsesse Kristinas Gate 1, 7006, Trondheim, Norway,
| | | | | | | |
Collapse
|
33
|
Sun C, Fukui H, Hara K, Kitayama Y, Eda H, Yang M, Yamagishi H, Tomita T, Oshima T, Watari J, Takasawa S, Chiba T, Miwa H. Expression of Reg family genes in the gastrointestinal tract of mice treated with indomethacin. Am J Physiol Gastrointest Liver Physiol 2015; 308:G736-44. [PMID: 25747353 DOI: 10.1152/ajpgi.00362.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/19/2015] [Indexed: 01/31/2023]
Abstract
Regenerating gene (Reg) family proteins, which are classified into four types, commonly act as trophic and/or antiapoptotic factors in gastrointestinal (GI) diseases. However, it remains unclear how these proteins coordinate their similar roles under such pathophysiological conditions. Here, we investigated the interrelationships of Reg family gene expression with mucosal cell proliferation and apoptosis in nonsteroidal anti-inflammatory drug (NSAID)-induced GI injury. GI injury was induced by subcutaneous injection of indomethacin into Reg I knockout (KO) and wild-type (WT) mice, and its severity was scored histopathologically. Temporal changes in the expression of Reg family genes, mucosal proliferation, and apoptosis were evaluated throughout the GI tract by real-time RT-PCR, Ki-67 immunoreactivity, and TUNEL assay, respectively. Reg I, Reg III family, and Reg IV were predominantly expressed in the upper, middle, and lower GI mucosa, respectively. Expression of Reg I and Reg III family genes was upregulated in specific portions of the GI tract after indomethacin treatment. Ki-67-positive epithelial cells were significantly decreased in the gastric and small-intestinal mucosa of Reg I KO mice under normal conditions. After treatment with indomethacin, the number of TUNEL-positive cells was significantly greater throughout the GI mucosa in Reg I KO mice than in WT mice. Expression of Reg I was independent of that of other Reg family genes in, not only normal GI tissues, but also indomethacin-induced GI lesions. Members of the Reg gene family show distinct profiles of expression in the GI tract, and Reg I independently plays a role in protecting the GI mucosa against NSAID-induced injury.
Collapse
Affiliation(s)
- Chao Sun
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; Department of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Hirokazu Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan;
| | - Ken Hara
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoshitaka Kitayama
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hirotsugu Eda
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mo Yang
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan; Department of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin, China
| | - Hidetsugu Yamagishi
- Department of Surgical and Molecular Pathology, Dokkyo University School of Medicine, Tochigi, Japan
| | - Toshihiko Tomita
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Jiro Watari
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroto Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
34
|
Hara K, Fukui H, Sun C, Kitayama Y, Eda H, Yamasaki T, Kondo T, Tomita T, Oshima T, Watari J, Fujimori T, Miwa H. Effect of REG Iα protein on angiogenesis in gastric cancer tissues. Oncol Rep 2015; 33:2183-9. [PMID: 25813126 DOI: 10.3892/or.2015.3878] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/10/2015] [Indexed: 11/06/2022] Open
Abstract
Regenerating gene (REG) Iα is not only overexpressed in a subset of gastric cancers, but also involved in tumor progression. However, the mechanism by which (REG) Iα promotes tumor growth is not fully understood. In the present study, we investigated whether REG Iα plays a role in angiogenesis during the progression of gastric cancers. Expression of REG Iα and its receptor (EXTL3; exostoses like-3) was examined using immunohistochemistry in specimens of human gastric cancer. Microvessel density (MVD) in gastric cancer tissues was evaluated using an image analysis system after CD34 immunostaining. Relationships among clinicopathological features, REG Iα expression and MVD in gastric cancer tissues were analyzed. Effects of REG Iα protein on HUVEC cells in terms of proliferation and anti-apoptosis were assessed by WST-1 assay and FACS, respectively. Furthermore, the intracellular signaling by which REG Iα exerts its biological roles was examined in vitro. REG Iα expression was significantly related to lymph node metastasis and its receptor EXTL3 was ubiquitously expressed in not only the tumor cells, but also the tumor vessel cells in the gastric cancer tissues. MVD was significantly higher in gastric cancers that were REG Iα-positive than in those that were negative. Treatment with REG Iα protein promoted growth and anti-apoptosis through activation of the ERK and Akt signaling pathways in HUVEC cells, whereas these effects were attenuated by treatment with anti-REG Iα -antibody. REG Iα protein may play a role in angiogenesis during progression of gastric cancer.
Collapse
Affiliation(s)
- Ken Hara
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hirokazu Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Chao Sun
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Yoshitaka Kitayama
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hirotsugu Eda
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takahisa Yamasaki
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takashi Kondo
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Toshihiko Tomita
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tadayuki Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Jiro Watari
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takahiro Fujimori
- Department of Surgical and Molecular Pathology, Dokkyo University School of Medicine, Tochigi, Japan
| | - Hiroto Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
35
|
Yamauchi A, Itaya-Hironaka A, Sakuramoto-Tsuchida S, Takeda M, Yoshimoto K, Miyaoka T, Fujimura T, Tsujinaka H, Tsuchida C, Ota H, Takasawa S. Synergistic activations of REG I α and REG I β promoters by IL-6 and Glucocorticoids through JAK/STAT pathway in human pancreatic β cells. J Diabetes Res 2015; 2015:173058. [PMID: 25767811 PMCID: PMC4342170 DOI: 10.1155/2015/173058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/26/2015] [Indexed: 12/31/2022] Open
Abstract
Reg (Regenerating gene) gene was originally isolated from rat regenerating islets and its encoding protein was revealed as an autocrine/paracrine growth factor for β cells. Rat Reg gene is activated in inflammatory conditions for β cell regeneration. In human, although five functional REG family genes (REG Iα, REG Iβ, REG III, HIP/PAP, and REG IV) were isolated, their expressions in β cells under inflammatory conditions remained unclear. In this study, we found that combined addition of IL-6 and dexamethasone (Dx) induced REG Iα and REG Iβ expression in human 1.1B4 β cells. Promoter assay revealed that a signal transducer and activator of transcription- (STAT-) binding site in each promoter of REG Iα (TGCCGGGAA) and REG Iβ (TGCCAGGAA) was essential for the IL-6+Dx-induced promoter activation. A Janus kinase 2 (JAK2) inhibitor significantly inhibited the IL-6+Dx-induced REG Iα and REG Iβ transcription. Electrophoretic mobility shift assay and chromatin immunoprecipitation revealed that IL-6+Dx stimulation increased STAT3 binding to the REG Iα promoter. Furthermore, small interfering RNA-mediated targeting of STAT3 blocked the IL-6+Dx-induced expression of REG Iα and REG Iβ. These results indicate that the expression of REG Iα and REG Iβ should be upregulated in human β cells under inflammatory conditions through the JAK/STAT pathway.
Collapse
Affiliation(s)
- Akiyo Yamauchi
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | | | | | - Maiko Takeda
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Kiyomi Yoshimoto
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Tomoko Miyaoka
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Takanori Fujimura
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Hiroki Tsujinaka
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Chikatsugu Tsuchida
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Hiroyo Ota
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
36
|
Ma SC, Yao JF, Guo Y, Cui DL, Yang H, Han JL. Relationship between Reg proteins and intestinal mucosa barrier damage in rats with severe acute pancreatitis. Shijie Huaren Xiaohua Zazhi 2014; 22:3744-3752. [DOI: 10.11569/wcjd.v22.i25.3744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of regenerating islet-derived proteins (Reg)Ⅰand Ⅲ in the intestinal mucosa of rats with severe acute pancreatitis (SAP), and to evaluate the relationship between the levels of RegⅠand Ⅲ and intestinal mucosal barrier damage.
METHODS: Seventy-two adult SD rats were randomly divided into three groups: a normal control (N) group, an SAP (S) group, and a pyrrolidine dithiocarbamate (PDTC, 10 mg/kg) pretreatment (P) group. Each group was further divided into two subgroups for testing at different time points (12 and 24 h), with 12 rats in each subgroup. The rats in the S group were given 20% L-arginine (L-Arg, 2.5 g/kg) by intraperitoneal injection twice at one-hour interval to induce SAP. The N group was given equal volume of normal saline. The P group was given PDTC 10 mg/kg by intraperitoneal injection 1 h before the first injection of L-Arg. All rats were killed 12 h or 24 h after L-Arg injection to collect blood, pancreatic and intestinal tissue samples. The pathological changes in pancreatic and intestinal tissues were observed and graded under an optical microscope. ELISA was used to detect the levels of serum interleukin 22 (IL-22), tumor necrosis factor-α (TNF-α) and intestinal fatty acid binding protein (I-FABP). The expression of RegⅠand Ⅲ mRNAs in intestinal tissue was evaluated by RT-PCR. The levels of RegⅠ, Ⅲ and nuclear-factor κB (NF-κB) proteins in intestinal tissue were detected by Western blot.
RESULTS: In the SAP group, the scores of pancreatic changes (12 h: 8.92 ± 1.130; 24 h: 11.31 ± 1.609) and intestinal mucosal changes (12 h: 3.79 ± 0.689, 24 h: 4.33 ± 0.354), and the levels of IL-22 (12 h: 712.46 ng/mL ± 81.549 ng/mL, 24 h: 751.02 ng/mL ± 104.054 ng/mL), TNF-α (12 h: 138.08 ng/mL ± 20.369 ng/mL, 24 h: 159.43 ng/mL ± 24.46 ng/mL), I-FABP (12 h: 338.04 IU/mL ± 61.876 IU/mL, 24 h: 395.26 IU/mL ± 58.547 IU/mL), intestinal NF-κB p65 (12 h: 0.51 ± 0.065, 24 h: 0.60 ± 0.066), RegⅠprotein (12 h: 0.45 ± 0.047, 24 h: 0.56 ± 0.033), and Reg Ⅲ protein (12 h: 0.70 ± 0.084, 24 h: 0.92 ± 0.163) were significantly higher (P < 0.05) than those in the control group. Compared with the S group, pretreatment with different doses of PDTC significantly decreased the above parameters (P < 0.05), although the levels of these parameters were still significantly higher than those in the N group (P < 0.05). There were positive correlations among RegⅠand Ⅲ protein expression, intestinal mucosal pathological score, IL-22, I-FABP, TNF-α, and NF-κB p65 expression.
CONCLUSION: RegⅠand Ⅲ protein expression is upregulated in SAP, which is possibly associated with intestinal mucosa damage and NF-κB signaling pathway activation.
Collapse
|
37
|
Sekikawa A, Fukui H, Maruo T, Tsumura T, Okabe Y, Osaki Y. Diabetes mellitus increases the risk of early gastric cancer development. Eur J Cancer 2014; 50:2065-71. [PMID: 24934410 DOI: 10.1016/j.ejca.2014.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/31/2014] [Accepted: 05/22/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND The significance of diabetes mellitus (DM) in gastric carcinogenesis still remains unclear. We investigated whether DM would be a risk factor for the development of early gastric cancer. METHODS Factors related to the presence of gastric cancer were examined in patients undergoing medical health checkups. We then investigated whether DM was related to the development of early gastric cancer during an endoscopic follow-up study. RESULTS Gastric cancer was detected in 14 (1.0%) of 1463 patients at the first endoscopic examination and was significantly associated with the severity of gastric atrophy and the presence of DM. During the follow-up period (range 36-108 months; mean 70.0 months), early gastric cancer was newly detected in 26 (1.8%) of the 1449 patients in whom gastric cancer had not been detected at the first examination. Gastric cancer was detected in 17 (1.3%) of 1301 patients without DM, and in 9 (6.1%) of 148 patients with DM (P < 0.0001). Multivariate analyses demonstrated that open-type gastric atrophy and DM were independently related to the development of early gastric cancer (P < 0.0001 and P = 0.020, respectively). Gastric cancer was identified in 14 (5.1%) of 274 patients who had open-type atrophic gastritis without DM, whereas it was identified in 8 (16.0%) of 50 patients who had both open-type atrophic gastritis and DM (P = 0.0042). CONCLUSION DM increases the risk of early gastric cancer development.
Collapse
Affiliation(s)
- Akira Sekikawa
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan.
| | - Hirokazu Fukui
- Division of Upper Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takanori Maruo
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Takehiko Tsumura
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Yoshihiro Okabe
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Yukio Osaki
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| |
Collapse
|
38
|
Judd LM, Menheniott TR, Ling H, Jackson CB, Howlett M, Kalantzis A, Priebe W, Giraud AS. Inhibition of the JAK2/STAT3 pathway reduces gastric cancer growth in vitro and in vivo. PLoS One 2014; 9:e95993. [PMID: 24804649 PMCID: PMC4013079 DOI: 10.1371/journal.pone.0095993] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/01/2014] [Indexed: 01/13/2023] Open
Abstract
Signal Transducer and Activator of Transcription-3 (STAT3) is constitutively activated in many cancers where it promotes growth, inflammation, angiogenesis and inhibits apoptosis. We have shown that STAT3 is constitutively activated in human gastric cancer, and that chronic IL-11-driven STAT3 transcriptional activity induces gastric tumourigenesis in the gp130757FF mouse model of gastric cancer development. Here we show that treatment of human AGS gastric cancer cells with the Janus Kinase (JAK) inhibitor WP1066 dose-, and time-dependently inhibits STAT3 phosphorylation, in conjunction with reduced JAK2 phosphorylation, reduced proliferation and increased apoptosis. In addition, application of intraperitoneal WP1066 for 2 weeks, reduced gastric tumour volume by 50% in the gp130757FF mouse coincident with reduced JAK2 and STAT3 activation compared with vehicle-treated, littermate controls. Gastric tumours from WP1066- treated mice had reduced polymorphonuclear inflammation, coincident with inhibition of numerous proinflammatory cytokines including IL-11, IL-6 and IL-1β, as well as the growth factors Reg1 and amphiregulin. These results show that WP1066 can block proliferation, reduce inflammation and induce apoptosis in gastric tumour cells by inhibiting STAT3 phosphorylation, and that many cytokines and growth factors that promote gastric tumour growth are regulated by STAT3-dependent mechanisms. WP1066 may form the basis for future therapeutics against gastric cancer.
Collapse
Affiliation(s)
- Louise M. Judd
- Infection and Immunity Division, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Treve R. Menheniott
- Infection and Immunity Division, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Hui Ling
- Department of Pathology and Cancer Research Institute, University of South China, Hengyang, Hunan, China
| | - Cameron B. Jackson
- Infection and Immunity Division, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Meegan Howlett
- Infection and Immunity Division, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Anastasia Kalantzis
- Infection and Immunity Division, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
| | - Waldemar Priebe
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Andrew S. Giraud
- Infection and Immunity Division, Murdoch Children’s Research Institute, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
39
|
Okamoto K, Fujimori T, Yamaguchi T, Ichikawa K, Tomita S, Sugai T, Imura J, Ohkura Y, Yao T, Fujii S, Kusaka T, Sekikawa A, Fukui H, Chiba T, Kato H, Mitomi H. Overexpression of regenerating gene Iα appears to reflect aberration of crypt cell compartmentalization in sessile serrated adenoma/polyps of the colon. Diagn Pathol 2013; 8:187. [PMID: 24225137 PMCID: PMC4225863 DOI: 10.1186/1746-1596-8-187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 10/29/2013] [Indexed: 12/26/2022] Open
Abstract
Background Colorectal sessile serrated adenoma/polyps (SSA/Ps) are characterized by asymmetrical distribution of Ki67-positive cells, which varies among crypts and involves the crypt length to a variable extent; the pattern has been designated as aberration of crypt cell compartmentalization. The regenerating gene (REG) Iα is a cell growth and/or anti-apoptotic factor and its overexpression might be associated with aberration of crypt cell compartmentalization in SSA/Ps. We investigated REG Iα expression in SSA/Ps in comparison to hyperplastic polyps (HPs). Methods A total of 64 cases of serrated polyps (≥10 mm in size), including 53 SSA/Ps and 11 HPs, were included in the present study. Immunostaining was performed using a labeled streptavidin-biotin method. REG Iα expression was classified as follows: (i) expression of endocrine cells: grade 0 (a few positive cells) to 3 (marked increase in positive cells); (ii) expression of goblet cells: grade 0 (negative) to 2 (positive for crypts and surface epithelial cells); (iii) staining intensity of goblet cells: grade 0 (negative) to 2 (strong); (iv) staining intensity of crypt (absorptive) cell membranes: grade 0 (negative) to 2 (strong). The presence of aberration of crypt cell compartmentalization was assessed using Ki67 immunostaining. Results With regard to the REG Iα expression of endocrine cells, 8 out of 11 HPs (73%) were grade 0, whereas 51 of 53 SSA/Ps (96%) were grade 1 or higher (p < 0.001). With regard to the distribution of REG Iα-immunoreactive goblet cells, 10 of 11 HPs (91%) were grade 1, whereas 50 of 53 SSA/Ps (94%) were grade 2 (p < 0.001). A similar trend was found in the staining intensity of goblet cells or crypt cell membranes (p = 0.011). Aberration of crypt cell compartmentalization was more frequently identified in SSA/Ps (72%) than in HPs (18%; p = 0.002). A significant association was observed between REG Iα overexpression and the aberration of crypt cell compartmentalization in serrated polyps (p = 0.037). Conclusions REG Iα overexpression is a characteristic of SSA/Ps, which appears to reflect aberration of crypt cell compartmentalization. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/7240956081100040
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Hiroyuki Mitomi
- Department of Surgical and Molecular Pathology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan.
| |
Collapse
|
40
|
Abstract
The regenerating gene (Reg) family is a group of small molecules that includes four members found in various species, although only three are found in human tissues. Their expression is stimulated by certain growth factors or cytokines. The Reg family plays different roles in proliferation, migration, and anti-apoptosis through activating different signaling pathways. Their dysexpression is closely associated with a number of human conditions and diseases such as inflammation and cancer, especially in the human digestive system. Clinically, upregulation of Reg proteins is usually demonstrated in histological sections and sera from cancer patients. Therefore, Reg proteins can predict the progression and prognosis of cancers, especially those of the digestive tract, and can also act as diagnostic markers and therapeutic targets.
Collapse
|
41
|
Kimura M, Naito H, Tojo T, Itaya-Hironaka A, Dohi Y, Yoshimura M, Nakagawara KI, Takasawa S, Taniguchi S. REG Iα gene expression is linked with the poor prognosis of lung adenocarcinoma and squamous cell carcinoma patients via discrete mechanisms. Oncol Rep 2013; 30:2625-31. [PMID: 24065141 PMCID: PMC3840002 DOI: 10.3892/or.2013.2739] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/20/2013] [Indexed: 01/19/2023] Open
Abstract
The aim of the present study was to evaluate the effects of the REG Iα and REG Iβ genes on lung cancer cell lines, and thereafter, the expression of REG family genes (REG Iα, REG Iβ, REG III, HIP/PAP and REG IV) in lung cancer in relation to patient prognosis was evaluated. Lung adenocarcinoma (AD) and squamous cell carcinoma (SCC) cell lines expressing REG Iα or REG Iβ (HLC-1 REG Iα/Iβ and EBC-1 REG Iα/Iβ) were established, and cell number, cell invasive activity, and anchorage-independent cell growth were compared with these variables in the control cells. The expression levels of REG family genes were evaluated by real-time RT-PCR in surgically resected lung cancers, and disease-specific survival (DSS) curves were generated. The HLC-1 REG Iα/Iβ cell line showed significant increases in cell number and anchorage-independent cell growth compared with the control cells. EBC-1 REG Iα/Iβ cells showed significant increases in cell invasive activity and anchorage-independent cell growth as compared with the control cells. Except for the REG Iβ gene, expression of other REG family genes was observed in the surgically resected samples; however, DSS was significantly worse only in stage I patients who were positive for REG Iα expression than in patients who were negative for REG Iα expression. The effects of REG Iα on AD and SCC cells were different in the in vitro study, and a correlation between REG Iα expression and patient prognosis was noted in the in vivo study. Therefore, overexpression of REG Iα is a risk factor for poor prognosis caused by discrete mechanisms in AD and SCC patients.
Collapse
Affiliation(s)
- Michitaka Kimura
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Makawita S, Dimitromanolakis A, Soosaipillai A, Soleas I, Chan A, Gallinger S, Haun RS, Blasutig IM, Diamandis EP. Validation of four candidate pancreatic cancer serological biomarkers that improve the performance of CA19.9. BMC Cancer 2013; 13:404. [PMID: 24007603 PMCID: PMC3847832 DOI: 10.1186/1471-2407-13-404] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/29/2013] [Indexed: 12/11/2022] Open
Abstract
Background The identification of new serum biomarkers with high sensitivity and specificity is an important priority in pancreatic cancer research. Through an extensive proteomics analysis of pancreatic cancer cell lines and pancreatic juice, we previously generated a list of candidate pancreatic cancer biomarkers. The present study details further validation of four of our previously identified candidates: regenerating islet-derived 1 beta (REG1B), syncollin (SYCN), anterior gradient homolog 2 protein (AGR2), and lysyl oxidase-like 2 (LOXL2). Methods The candidate biomarkers were validated using enzyme-linked immunosorbent assays in two sample sets of serum/plasma comprising a total of 432 samples (Sample Set A: pancreatic ductal adenocarcinoma (PDAC, n = 100), healthy (n = 92); Sample Set B: PDAC (n = 82), benign (n = 41), disease-free (n = 47), other cancers (n = 70)). Biomarker performance in distinguishing PDAC from each control group was assessed individually in the two sample sets. Subsequently, multiparametric modeling was applied to assess the ability of all possible two and three marker panels in distinguishing PDAC from disease-free controls. The models were generated using sample set B, and then validated in Sample Set A. Results Individually, all markers were significantly elevated in PDAC compared to healthy controls in at least one sample set (p ≤ 0.01). SYCN, REG1B and AGR2 were also significantly elevated in PDAC compared to benign controls (p ≤ 0.01), and AGR2 was significantly elevated in PDAC compared to other cancers (p < 0.01). CA19.9 was also assessed. Individually, CA19.9 showed the greatest area under the curve (AUC) in receiver operating characteristic (ROC) analysis when compared to the tested candidates; however when analyzed in combination, three panels (CA19.9 + REG1B (AUC of 0.88), CA19.9 + SYCN + REG1B (AUC of 0.87) and CA19.9 + AGR2 + REG1B (AUC of 0.87)) showed an AUC that was significantly greater (p < 0.05) than that of CA19.9 alone (AUC of 0.82). In a comparison of early-stage (Stage I-II) PDAC to disease free controls, the combination of SYCN + REG1B + CA19.9 showed the greatest AUC in both sample sets, (AUC of 0.87 and 0.92 in Sets A and B, respectively). Conclusions Additional serum biomarkers, particularly SYCN and REG1B, when combined with CA19.9, show promise as improved diagnostic indicators of pancreatic cancer, which therefore warrants further validation.
Collapse
Affiliation(s)
- Shalini Makawita
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
BACKGROUND Individuals with ulcerative colitis (UC) are at increased risk for colorectal cancer. The standard method of surveillance for neoplasia in UC by colonoscopy is invasive and can miss flat lesions. We sought to identify a gene expression signature in nondysplastic mucosa without active inflammation that could serve as a marker for remote neoplastic lesions. METHODS Gene expression was analyzed by complementary DNA microarray in 5 normal controls, 4 UC patients without dysplasia, and 11 UC patients harboring remote neoplasia. Common gene ontology pathways of significantly differentially expressed genes were identified. Expression of genes which were progressively and significantly upregulated from controls to UC without neoplasia, to UC with remote neoplasia were evaluated by real-time polymerase chain reaction. Several gene products were also examined by immunohistochemistry. RESULTS Four hundred and sixty-eight genes were significantly upregulated, and 541 genes were significantly downregulated in UC patients with neoplasia compared with UC patients without neoplasia. Nine genes (ACSL1, BIRC3, CLC, CREM, ELTD1, FGG, S100A9, THBD, and TPD52L1) were progressively and significantly upregulated from controls to nondysplastic UC to UC with neoplasia. Immunostaining of proteins revealed increased expression of S100A9 and REG1α in UC-associated cancer and in nondysplastic tissue from UC patients harboring remote neoplasia compared with UC patients without neoplasia and controls. CONCLUSIONS Gene expression changes occurring as a field effect in the distal colon of patients with chronic UC identify patients harboring remote neoplastic lesions. These markers may lead to a more accurate and less invasive method of detection of neoplasia in patients with inflammatory bowel disease.
Collapse
|
44
|
Sekikawa A, Fukui H, Zhang X, Maruo T, Tsumura T, Okabe Y, Wakasa T, Osaki Y, Chiba T, Tomita T, Oshima T, Watari J, Miwa H. REG Iα is a biomarker for predicting response to chemotherapy with S-1 plus cisplatin in patients with unresectable stage IV gastric cancer. Br J Cancer 2013; 108:395-401. [PMID: 23322208 PMCID: PMC3566803 DOI: 10.1038/bjc.2012.572] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: The regenerating gene Iα (REG Iα) is involved in gastric carcinogenesis as an antiapoptotic factor. Therefore, we investigated whether REG Iα confers resistance to chemotherapeutic drugs in gastric cancer (GC) cells and whether REG Iα expression is useful for predicting the response to chemotherapy and outcome in patients with GC. Methods: A total of 70 patients with unresectable stage IV GC received first-line chemotherapy with S-1 and cisplatin (S-1/CDDP). The expression of REG Iα was evaluated immunohistochemically using biopsy samples obtained before chemotherapy, and its relationship to clinicopathological parameters was analysed statistically. The effects of REG Iα gene induction on resistance to 5-FU or CDDP treatment were examined by cell survival assay and flow cytometry. Results: Of the 70 patients with unresectable stage IV GC, 19 (27%) were positive for REG Iα expression. The expression of REG Iα was independently predictive of poorer progression-free and overall survival in such patients (hazard ratio (HR) 2.46; P=0.002 and HR 1.89; P=0.037, respectively). The gene induction of REG Iα conferred resistance to cell death induced by 5-FU or CDDP in GC cells. Conclusion: In patients with stage IV GC, REG Iα, which confers resistance to chemotherapeutic drugs in GC cells, is a potential biomarker for predicting resistance to S-1/CDDP treatment.
Collapse
Affiliation(s)
- A Sekikawa
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
HU HAOLIN, ZHANG QI, KONG BO, SHI XIN. Expression of pancreatic regenerating gene in lung and intestinal tissue correlates with the severity of disease in rats with acute necrotizing pancreatitis. Mol Med Rep 2012; 7:503-8. [DOI: 10.3892/mmr.2012.1187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 10/31/2012] [Indexed: 11/05/2022] Open
|
46
|
Nitta Y, Konishi H, Makino T, Tanaka T, Kawashima H, Iovanna JL, Nakatani T, Kiyama H. Urinary levels of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein as a diagnostic biomarker in patients with bladder cancer. BMC Urol 2012; 12:24. [PMID: 22943287 PMCID: PMC3487857 DOI: 10.1186/1471-2490-12-24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/31/2012] [Indexed: 11/26/2022] Open
Abstract
Background To assess the possibility of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP) as a biological marker for detecting Bladder cancer (BCa), we examined the expression of HIP/PAP in both BCa specimens and BCa cell lines and measured HIP/PAP levels in urine from patients with BCa. Methods HIP/PAP expression in BCa samples was evaluated by western blot analysis, and urinary levels of HIP/PAP in patients with BCa were measured by enzyme-linked immunosorbent assay. Urine samples were collected from 10 healthy volunteers and 109 with benign urological disorders as controls, and from 101 patients who were diagnosed with BCa. Results HIP/PAP was highly expressed in BCa samples as compared with control bladder. Urinary HIP/PAP concentrations were significantly higher in BCa patients than in controls (median value; 3.184 pg/mL vs. 55.200 pg/mL, P <0.0001, by Mann–Whitney U test). Urinary HIP/PAP levels in BCa patients correlated positively with pathological T stages and progression-risk groups among non-muscle invasive BCa (P = 0.0008, by Kruskal-Wallis test). Regarding the recurrence-risk classifications of non-muscle invasive BCa, the urinary levels of HIP/PAP were significantly higher in the intermediate than in the low risk group (P = 0.0002, by Mann–Whitney U test). Based on a cut-off of 8.5 pg/mL, the ability of urinary HIP/PAP levels to detect BCa had a sensitivity of 80.2%, specificity of 78.2%, positive predictive value (PPV) of 75.7%, and negative predictive value (NPV) of 82.3%. Conclusions HIP/PAP was abundantly expressed in BCa, and the urinary levels of HIP/PAP could be a novel and potent biomarker for detection of BCa, and also for predicting the risks of recurrence- and progression-risk of non-muscle invasive BCa. A large scale study will be needed to establish the usefulness of this biomarker.
Collapse
Affiliation(s)
- Yujiro Nitta
- Department of Urology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Park JY, Kim SA, Chung JW, Bang S, Park SW, Paik YK, Song SY. Proteomic analysis of pancreatic juice for the identification of biomarkers of pancreatic cancer. J Cancer Res Clin Oncol 2011; 137:1229-1238. [PMID: 21691750 DOI: 10.1007/s00432-011-0992-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/06/2011] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Protein profiles of endoscopically collected pancreatic juice from normal, chronic pancreatitis patients and pancreatic cancer patients were compared to identify diagnostic biomarkers of pancreatic cancer. METHODS Secretin was injected intravenously and pancreatic juice was collected via selective cannulation of the pancreatic duct during endoscopic retrograde cholangiopancreatography. Pancreatic juices consisting of three pooled samples for normal control, chronic pancreatitis, and pancreatic cancer patients were compared using two-dimensional gel electrophoresis, and the proteins were subsequently identified using MALDI-TOF-MS. RESULTS Thirty-five protein spots were up-regulated twofold in pancreatic cancer compared with the levels in the normal controls, and 85 protein spots were present in pancreatic cancer samples but not in normal controls. After excluding spots that were also expressed in chronic pancreatitis, 26 protein spots that were up-regulated or only expressed in pancreatic cancer samples were identified. Among the identified proteins, we confirmed the expressions of BIG2, PRDX6, and REG1α in pancreatic cancer tissue using immunohistochemistry. ELISA showed that the serum level of REG1α was significantly higher in patients with pancreatic cancer than it was in the normal controls (P = 0.023). With the best cut-off value, the sensitivity and specificity of REG1α to differentiate normal and pancreatic cancer were 82.6 and 81.8%, compared with 69.6 and 100% for CA19-9. CONCLUSIONS We have shown that pancreatic juice is a good source of pancreatic cancer tumor markers. Further studies are needed to determine the clinical implications of REG1α and other markers.
Collapse
Affiliation(s)
- Jeong Youp Park
- Division of Gastroenterology, Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
The expression of REG 1A and REG 1B is increased during acute amebic colitis. Parasitol Int 2011; 60:296-300. [PMID: 21586335 DOI: 10.1016/j.parint.2011.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/26/2011] [Accepted: 04/29/2011] [Indexed: 01/31/2023]
Abstract
Entamoeba histolytica, a protozoan parasite, is an important cause of diarrhea and colitis in the developing world. Amebic colitis is characterized by ulceration of the intestinal mucosa. We performed microarray analysis of intestinal biopsies during acute and convalescent amebiasis in order to identify genes potentially involved in tissue injury or repair. Colonic biopsy samples were obtained from 8 patients during acute E. histolytica colitis and again 60 days after recovery. Gene expression in the biopsies was evaluated using microarray, and confirmed by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). REG 1A and REG 1B were the most up-regulated of all genes in the human intestine in acute versus convalescent E. histolytica disease: as determined by microarray, the levels of induction were 7.4-fold and 10.7 fold for REG 1A and B; p=0.003 and p=0.006 respectively. Increased expression of REG 1A and REG 1B protein in the colonic crypt epithelial cells during acute amebiasis was similarly observed by immunohistochemistry. Because REG 1 protein is anti-apoptotic and pro-proliferative, and since E. histolytica induces apoptosis of the intestinal epithelium as part of its disease process, we next tested if REG 1 might be protective during amebiasis by preventing parasite-induced apoptosis. Intestinal epithelial cells from REG 1-/- mice were found to be more susceptible to spontaneous, and parasite-induced, apoptosis in vitro (p=0.03). We concluded that REG 1A and REG 1B were upregulated during amebiasis and may function to protect the intestinal epithelium from parasite-induced apoptosis.
Collapse
|
49
|
Fukui H, Sekikawa A, Tanaka H, Fujimori Y, Katake Y, Fujii S, Ichikawa K, Tomita S, Imura J, Chiba T, Fujimori T. DMBT1 is a novel gene induced by IL-22 in ulcerative colitis. Inflamm Bowel Dis 2011; 17:1177-88. [PMID: 20824812 DOI: 10.1002/ibd.21473] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Accepted: 07/30/2010] [Indexed: 01/09/2023]
Abstract
BACKGROUND Interleukin (IL)-22 is a recently identified cytokine that is suggested to play pivotal roles in various inflammatory diseases. Although the IL-22 receptor 1 (IL-22R1) is restrictively expressed in epithelial cells in the colon, the role of IL-22 in colonic diseases still remains unclear. In this study microarray analyses revealed that deleted in malignant brain tumors 1 (DMBT1) is a novel upregulated gene in IL-22-stimulated colon cancer cells. Therefore, we investigated the involvement of DMBT1 and IL-22 in ulcerative colitis (UC) tissues and examined the mechanism regulating the expression of DMBT1 in response to IL-22 stimulation. METHODS Changes of gene expression in IL-22-stimulated SW403 cells were investigated by microarray analyses. The effects of IL-22 on DMBT1 expression were examined in SW403 cells using a small interfering RNA (si)RNA for STAT3 or inhibitors for MEK, PI3K, and nuclear factor kappa B (NF-κB). The element responsible for IL-22-induced DMBT1 promoter activation was determined by a promoter deletion and electrophoretic mobility shift assay (EMSA). Expression of IL-22, IL-22R1, and DMBT1 in UC tissues was analyzed by real-time reverse-transcription polymerase chain reaction (RT-PCR) and immunohistochemistry. RESULTS IL-22 treatment enhanced the expression of DMBT1 through STAT3 tyrosine phosphorylation and NF-κB activation in colon cancer cells. The IL-22-responsive element was located between -187 and -179 in the DMBT1 promoter region. In the UC mucosa the levels of DMBT1 and IL-22 mRNA expression were significantly enhanced and positively correlated, the numbers of IL-22-positive lymphocytes were increased, and the expression of IL-22R1 and DMBT1 was enhanced in the inflamed epithelium. CONCLUSIONS The IL-22/DMBT1 axis may play a pivotal role in the pathophysiology of UC.
Collapse
Affiliation(s)
- Hirokazu Fukui
- Department of Surgical and Molecular Pathology, Dokkyo University School of Medicine, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang F, Xu L, Guo C, Ke A, Hu G, Xu X, Mo W, Yang L, Huang Y, He S, Wang X. Identification of RegIV as a novel GLI1 target gene in human pancreatic cancer. PLoS One 2011; 6:e18434. [PMID: 21494603 PMCID: PMC3073946 DOI: 10.1371/journal.pone.0018434] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Accepted: 03/04/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND AIMS GLI1 is the key transcriptional factor in the Hedgehog signaling pathway in pancreatic cancer. RegIV is associated with regeneration, and cell growth, survival, adhesion and resistance to apoptosis. We aimed to study RegIV expression in pancreatic cancer and its relationship to GLI1. METHODS GLI1 and RegIV expression were evaluated in tumor tissue and adjacent normal tissues of pancreatic cancer patients and 5 pancreatic cancer cell lines by qRT-PCR, Western blot, and immunohistochemistry (IHC), and the correlation between them. The GLI1-shRNA lentiviral vector was constructed and transfected into PANC-1, and lentiviral vector containing the GLI1 expression sequence was constructed and transfected into BxPC-3. GLI1 and RegIV expression were evaluated by qRT-PCR and Western blot. Finally we demonstrated RegIV to be the target of GLI1 by chromatin immunoprecipitation (CHIP) and electrophoretic mobility shift assays (EMSA). RESULTS The results of IHC and qRT-PCR showed that RegIV and GLI1 expression was higher in pancreatic cancer tissues versus adjacent normal tissues (p<0.001). RegIV expression correlated with GLI1 expression in these tissues (R = 0.795, p<0.0001). These results were verified for protein (R = 0.939, p = 0.018) and mRNA expression (R = 0.959, p = 0.011) in 5 pancreatic cancer cell lines. RegIV mRNA and protein expression was decreased (94.7±0.3%, 84.1±0.5%; respectively) when GLI1 was knocked down (82.1±3.2%, 76.7±2.2%; respectively) by the RNAi technique. GLI1 overexpression in mRNA and protein level (924.5±5.3%, 362.1±3.5%; respectively) induced RegIV overexpression (729.1±4.3%, 339.0±3.7%; respectively). Moreover, CHIP and EMSA assays showed GLI1 protein bound to RegIV promotor regions (GATCATCCA) in pancreatic cancer cells. CONCLUSION GLI1 promotes RegIV transcription by binding to the RegIV gene promoter in pancreatic cancer.
Collapse
Affiliation(s)
- Feng Wang
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ling Xu
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Chuanyong Guo
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Aiwu Ke
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Guoyong Hu
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Xuanfu Xu
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Wenhui Mo
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Lijuan Yang
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yinshi Huang
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Shanshan He
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| | - Xingpeng Wang
- Department of Gastroenterology, The First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Department of Gastroenterology, The Tenth People's Hospital of Shanghai, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|