1
|
Zhu X, Zhang X, Qin Y, Chen Y, Feng X, Deng S, Hu F, Yuan Y, Luo X, Du K, Chang S, Fan X, Ashktorab H, Smoot D, Jin Z, Peng Y. Circular RNA circATM binds PARP1 to suppress Wnt/β-catenin signaling and induce cell cycle arrest in gastric cancer cells. J Adv Res 2025:S2090-1232(25)00277-2. [PMID: 40288674 DOI: 10.1016/j.jare.2025.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/08/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
INTRODUCTION Gastric cancer (GC) is a common malignancy, which is associated with high rates of morbidity and mortality. Despite therapeutic advancements, there is an overall lack of effective treatment options for patients with GC, particularly those with advanced and metastatic disease. The roles of circular (circ)RNAs in tumorigenesis are being increasingly recognized, among which circRNAs are defined as miRNA/protein sponges, scaffolds, or protein coding templates. OBJECTIVES The aim of the present study is to investigate the functions of circATM in GC and elucidate the underlying molecular mechanism. METHODS By circRNA sequencing in GC tissues, we identified a novel 526 nt circRNA, circATM, generating from exons 3-6 of the ATM gene. Through circRNA pull-down and RNA immunoprecipitation assays, we identified PARP1 as one of circATM binding proteins. The EdU, colony formation, wound healing, dual-luciferase reporter, cell cycle assays were employed to evaluated circATM functions in vitro. The GC xenograft model was used to determine the role of circATM in vivo. RESULTS Knocking down circATM promoted GC cells growth in vivo and in vitro. Meanwhile, the overexpression of circATM increased the levels of p16, p21, and p27, and decreased those of β-catenin and c-Myc. Furthermore, we identified PARP1 as a circATM-interacting partner. Mechanistically, circATM bound to the zinc finger motif of Ⅱ-Ⅲ domains of PARP1 to block its recruitment to sites of DNA damage, triggering cell cycle arrest and sequestering β-catenin from the PARP1/β-catenin/TCF4 complex, leading to the suppression of Wnt/β-catenin signaling. Additionally, circATM facilitated the ubiquitin-proteasome degradation of PARP1, further jeopardizing its ability to mediate DNA damage repair. CONCLUSION Taken together, we defined circATM as a novel gastric tumor suppressor via interacting with PARP1, which indicate that circATM may be a promising biomarker for the diagnosis and therapy of GC.
Collapse
Affiliation(s)
- Xiaohui Zhu
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Department of Pathology, School of Basic Medical Science, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Xiaojing Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Department of Pathology, School of Basic Medical Science, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Department of Pathology, School of Basic Medical Science, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xianling Feng
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Department of Pathology, School of Basic Medical Science, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Shiqi Deng
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Department of Pathology, School of Basic Medical Science, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Fan Hu
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Department of Pathology, School of Basic Medical Science, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yuan Yuan
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Department of Pathology, School of Basic Medical Science, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiaonuan Luo
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Department of Pathology, School of Basic Medical Science, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Kaining Du
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Department of Pathology, School of Basic Medical Science, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Chang
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Department of Pathology, School of Basic Medical Science, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xinmin Fan
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Department of Pathology, School of Basic Medical Science, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, College of Medicine, Washington, DC 20060, USA
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208, USA
| | - Zhe Jin
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Department of Pathology, School of Basic Medical Science, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| | - Yin Peng
- Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Department of Pathology, School of Basic Medical Science, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Nadin SB, Cuello-Carrión FD, Cayado-Gutiérrez N, Fanelli MA. Overview of Wnt/β-Catenin Pathway and DNA Damage/Repair in Cancer. BIOLOGY 2025; 14:185. [PMID: 40001953 PMCID: PMC11851563 DOI: 10.3390/biology14020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
The Wnt/β-catenin pathway takes part in important cellular processes in tumor cells, such as gene expression, adhesion, and survival. The canonical pathway is activated in several tumors, and β-catenin is its major effector. The union of Wnt to the co-receptor complex causes the inhibition of GSK3β activity, thus preventing the phosphorylation and degradation of β-catenin, which accumulates in the cytoplasm, to subsequently be transported to the nucleus to associate with transcription factors. The relationship between Wnt/β-catenin and DNA damage/repair mechanisms has been a focus for the last few years. Studying the Wnt/β-catenin network interactions with DNA damage/repair proteins has become a successful research field. This review provides an overview of the participation of Wnt/β-catenin in DNA damage/repair mechanisms and their future implications as targets for cancer therapy.
Collapse
Affiliation(s)
- Silvina B. Nadin
- Laboratorio de Biología Tumoral, Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico (CCT), Mendoza 5500, Argentina
| | - F. Darío Cuello-Carrión
- Laboratorio de Oncología, IMBECU, CONICET, CCT, Mendoza 5500, Argentina; (F.D.C.-C.); (N.C.-G.); (M.A.F.)
| | - Niubys Cayado-Gutiérrez
- Laboratorio de Oncología, IMBECU, CONICET, CCT, Mendoza 5500, Argentina; (F.D.C.-C.); (N.C.-G.); (M.A.F.)
- Cátedra de Bioquímica e Inmunidad, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Mariel A. Fanelli
- Laboratorio de Oncología, IMBECU, CONICET, CCT, Mendoza 5500, Argentina; (F.D.C.-C.); (N.C.-G.); (M.A.F.)
| |
Collapse
|
3
|
Lu Y, Fu W, Xing W, Wu H, Zhang C, Xu D. Transcriptional regulation mechanism of PARP1 and its application in disease treatment. Epigenetics Chromatin 2024; 17:26. [PMID: 39118189 PMCID: PMC11308664 DOI: 10.1186/s13072-024-00550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a multifunctional nuclear enzyme that catalyzes poly-ADP ribosylation in eukaryotic cells. In addition to maintaining genomic integrity, this nuclear enzyme is also involved in transcriptional regulation. PARP1 can trigger and maintain changes in the chromatin structure and directly recruit transcription factors. PARP1 also prevents DNA methylation. However, most previous reviews on PARP1 have focused on its involvement in maintaining genome integrity, with less focus on its transcriptional regulatory function. This article comprehensively reviews the transcriptional regulatory function of PARP1 and its application in disease treatment, providing new ideas for targeting PARP1 for the treatment of diseases other than cancer.
Collapse
Affiliation(s)
- Yu Lu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China
- Hebei University, Baoding, Hebei, P.R. China
| | - Wenliang Fu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China
| | - Weiwei Xing
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China
| | - Haowei Wu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China
| | - Chao Zhang
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China.
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, No. 27 Taiping Road, Beijing, 100850, P.R. China.
| |
Collapse
|
4
|
Isaguliants MG, Ivanov AV, Buonaguro FM. Chronic Viral Infections and Cancer, Openings for Therapies and Vaccines. Cancers (Basel) 2024; 16:818. [PMID: 38398209 PMCID: PMC10886681 DOI: 10.3390/cancers16040818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 02/25/2024] Open
Abstract
Infections are responsible for approximately one out of six cases of cancer worldwide [...].
Collapse
Affiliation(s)
- Maria G. Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy;
| |
Collapse
|
5
|
Jang HJ, Park E, Jung HJ, Kwon TH. Poly(ADP-ribose) polymerase-1 affects vasopressin-mediated AQP2 expression in collecting duct cells of the kidney. Am J Physiol Renal Physiol 2024; 326:F69-F85. [PMID: 37855039 PMCID: PMC11194055 DOI: 10.1152/ajprenal.00144.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023] Open
Abstract
Poly(ADP-ribosyl)ation (PARylation), as a posttranslational modification mediated by poly(ADP-ribose) polymerases (PARPs) catalyzing the transfer of ADP-ribose from NAD+ molecules to acceptor proteins, involves a number of cellular processes. As mice lacking the PARP-1 gene (Parp1) produce more urine, we investigated the role of PARP-1, the most prevalent member of the PARP family, in the vasopressin-responsive expression of aquaporin-2 (AQP2). In biotin-conjugated nicotinamide adenine dinucleotide (biotin-NAD+) pulldown and immunoprecipitation assays of poly(ADP)-ribose in mpkCCDc14 cells, immunoblots demonstrated that 1-deamino-8-D-arginine vasopressin (dDAVP) induced the PARylation of total proteins, associated with an increase in the cleavage of PARP-1 and cleaved caspase-3 expression. By inhibiting PARP-1 with siRNA, the abundance of dDAVP-induced AQP2 mRNA and protein was significantly diminished. In contrast, despite a substantial decrease in PARylation, the PARP-1 inhibitor (PJ34) had no effect on the dDAVP-induced regulation of AQP2 expression. The findings suggest that PARP-1 protein expression itself, and not PARP-1-mediated PARylation, is necessary for dDAVP-regulated AQP2 expression. Bioinformatic analysis revealed that 408 proteins interact with PARP-1 in the collecting duct (CD) cells of the kidney. Among them, the signaling pathway of the vasopressin V2 receptor was identified for 49 proteins. In particular, β-catenin, which is phosphorylated at Ser552 by dDAVP, was identified as the PARP-1-interacting protein. A significant decrease of β-catenin phosphorylation (Ser552) in response to dDAVP was associated with siRNA-mediated PARP-1 knockdown. Taken together, PARP-1 is likely to play a role in vasopressin-induced AQP2 expression by interacting with β-catenin in renal CD cells.NEW & NOTEWORTHY The poly(ADP-ribose) polymerase (PARP) family catalyzes poly(ADP-ribosylation) (PARylation), which is one of the posttranslational modifications of largely undetermined physiological significance. This study investigated the role of PARP-1, the most prevalent member of the PARP family, in the vasopressin-responsive expression of aquaporin-2 (AQP2). The results demonstrated that PARP-1 protein expression itself, and not PARP-1-mediated PARylation, is necessary for dDAVP-regulated AQP2 expression. β-Catenin, which is phosphorylated at Ser552 by dDAVP, was identified as the PARP-1-interacting protein.
Collapse
Affiliation(s)
- Hyo-Ju Jang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Euijung Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
- Epithelial Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea
- BK21 FOUR KNU Convergence Educational Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| |
Collapse
|
6
|
Schuhwerk H, Brabletz T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol 2023; 97:86-103. [PMID: 38029866 DOI: 10.1016/j.semcancer.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
TGFβ signaling and the DNA damage response (DDR) are two cellular toolboxes with a strong impact on cancer biology. While TGFβ as a pleiotropic cytokine affects essentially all hallmarks of cancer, the multifunctional DDR mostly orchestrates cell cycle progression, DNA repair, chromatin remodeling and cell death. One oncogenic effect of TGFβ is the partial activation of epithelial-to-mesenchymal transition (EMT), conferring invasiveness, cellular plasticity and resistance to various noxae. Several reports show that both individual networks as well as their interface affect chemo-/radiotherapies. However, the underlying mechanisms remain poorly resolved. EMT often correlates with TGFβ-induced slowing of proliferation, yet numerous studies demonstrate that particularly the co-activated EMT transcription factors counteract anti-proliferative signaling in a partially non-redundant manner. Collectively, evidence piled up over decades underscore a multifaceted, reciprocal inter-connection of TGFβ signaling / EMT with the DDR / cell cycle progression, which we will discuss here. Altogether, we conclude that full cell cycle arrest is barely compatible with the propagation of oncogenic EMT traits and further propose that 'EMT-linked DDR plasticity' is a crucial, yet intricate facet of malignancy, decisively affecting metastasis formation and therapy resistance.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
7
|
Niu L, Li W, Chen X, Su X, Dong J, Liao Q, Zhou X, Shi S, Sun R. 1-Monopalmitin promotes lung cancer cells apoptosis through PI3K/Akt pathway in vitro. ENVIRONMENTAL TOXICOLOGY 2023; 38:2621-2631. [PMID: 37466199 DOI: 10.1002/tox.23897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/13/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide and non-small cell lung cancer (NSCLC) represents 85%. Mougeotia nummuloides and Spirulina major have been reported to possess anticancer properties. 1-Monopalmitin (1-Mono) is the principle active constituent in these natural plants. It is debating whether 1-Mono exerts antitumor effects. Therefore, we explored the role of 1-Mono in lung cancer in vitro. Results showed that 1-Mono significantly inhibited A549 and SPC-A1 cell proliferation, induced G2/M arrest and caspase-dependent apoptosis. Moreover, it suppressed the protein expression of inhibitors of apoptosis proteins (IAPs). It was further demonstrated that 1-Mono activated the PI3K/Akt pathway, suppression of PI3K/Akt activities with LY294002 and Wortmannin partially attenuated 1-Mono-mediated anticancer activities, indicating that 1-Mono-induced antitumor effects is dependent on PI3K/Akt pathway. 1-Mono induced cytoprotective autophagy since autophagy inhibitor Chloroquine dramatically enhanced 1-Mono-induced cytotoxicity. In summary, our results showed 1-Mono kills lung cancer through PI3K/Akt pathway, providing novel options for lung cancer administration.
Collapse
Affiliation(s)
- Lulu Niu
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Wenwen Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Xin Chen
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Xiaosan Su
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Jingjing Dong
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Quanyang Liao
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Xuhong Zhou
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| | - Shaoqing Shi
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, People's Republic of China
| | - Ruifen Sun
- Center for Scientific Research, Yunnan University of Chinese Traditional Medicine, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
8
|
Cacciola NA, Venneri T, Salzano A, D'Onofrio N, Martano M, Saggese A, Vinale F, Neglia G, Campanile C, Baccigalupi L, Maiolino P, Cuozzo M, Russo R, Balestrieri ML, D'Occhio MJ, Ricca E, Borrelli F, Campanile G. Chemopreventive effect of a milk whey by-product derived from Buffalo (Bubalus bubalis) in protecting from colorectal carcinogenesis. Cell Commun Signal 2023; 21:245. [PMID: 37730576 PMCID: PMC10510155 DOI: 10.1186/s12964-023-01271-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/13/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Several studies show that natural foods are a source of compounds with anticancer properties that affect the gut microbiota and its metabolites. In the present study, we investigate the effect of a delactosed buffalo milk whey by-product (DMW) on colorectal carcinogenesis. METHODS The effect of DMW on colorectal carcinoma (CRC) was investigated in the established mouse model of azoxymethane (AOM)-induced colon carcinoma, which closely resembles the human clinical condition of CRC. The effect of DMW on CRC immortalized cell lines was also evaluated to further identify the antineoplastic mechanism of action. RESULTS Pretreatment of AOM-treated mice with DMW significantly (P < 0.05) reduced the percentage of mice bearing both aberrant crypt foci with more than four crypts (which are early precancerous lesions that progress to CRC) and tumors. In addition, DMW completely counteracted the effect of AOM on protein expression of caspase-9, cleaved caspase-3 and poly ADP-ribose polymerase in colonic tissue. Administration of DMW alone (i.e. without AOM) resulted in changes in the composition of the gut microbiota, leading to enrichment or depletion of genera associated with health and disease, respectively. DMW was also able to restore AOM-induced changes in specific genera of the gut microbiota. Specifically, DMW reduced the genera Atopobiaceae, Ruminococcus 1 and Lachnospiraceae XPB1014 and increased the genera Parabacteroides and Candidatus Saccharimonas, which were increased and reduced, respectively, by AOM. Blood levels of butyric acid and cancer diagnostic markers (5-methylcytidine and glycerophosphocholine), which were increased by AOM treatment, were reduced by DMW. Furthermore, DMW exerted cytotoxic effects on two human CRC cell lines (HCT116 and HT29) and these effects were associated with the induction of apoptotic signaling. CONCLUSIONS Our results suggest that DMW exerts chemopreventive effects and restores the gut microbiota in AOM-induced CRC, and induces cytotoxic effect on CRC cells. DMW could be an important dietary supplement to support a healthy gut microbiota and reduce the prevalence of CRC in humans. Video Abstract.
Collapse
Affiliation(s)
- Nunzio Antonio Cacciola
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1, Naples, 80137, Italy
| | - Tommaso Venneri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, Naples, 80131, Italy
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1, Naples, 80137, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio, 7, Naples, 80138, Italy
| | - Manuela Martano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1, Naples, 80137, Italy
| | - Anella Saggese
- Department of Biology, University of Naples Federico II, Via V. Cupa Cintia, 21, Naples, 80126, Italy
| | - Francesco Vinale
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1, Naples, 80137, Italy
| | - Gianluca Neglia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1, Naples, 80137, Italy
| | - Ciro Campanile
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", National Research Council (CNR-IGB), Via P. Castellino 111, Naples, 80131, Italy
| | - Loredana Baccigalupi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini, 5, Naples, 80131, Italy
| | - Paola Maiolino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1, Naples, 80137, Italy
| | - Mariarosaria Cuozzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, Naples, 80131, Italy
| | - Roberto Russo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, Naples, 80131, Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio, 7, Naples, 80138, Italy
| | - Michael John D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, New South Wales, 2006, Australia
| | - Ezio Ricca
- Department of Biology, University of Naples Federico II, Via V. Cupa Cintia, 21, Naples, 80126, Italy
| | - Francesca Borrelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, Naples, 80131, Italy.
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via F. Delpino, 1, Naples, 80137, Italy
| |
Collapse
|
9
|
Zhang X, Yu X. Crosstalk between Wnt/β-catenin signaling pathway and DNA damage response in cancer: a new direction for overcoming therapy resistance. Front Pharmacol 2023; 14:1230822. [PMID: 37601042 PMCID: PMC10433774 DOI: 10.3389/fphar.2023.1230822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Wnt signaling plays an important role in regulating the biological behavior of cancers, and many drugs targeting this signaling have been developed. Recently, a series of research have revealed that Wnt signaling could regulate DNA damage response (DDR) which is crucial for maintaining the genomic integrity in cells and closely related to cancer genome instability. Many drugs have been developed to target DNA damage response in cancers. Notably, different components of the Wnt and DDR pathways are involved in crosstalk, forming a complex regulatory network and providing new opportunities for cancer therapy. Here, we provide a brief overview of Wnt signaling and DDR in the field of cancer research and review the interactions between these two pathways. Finally, we also discuss the possibility of therapeutic agents targeting Wnt and DDR as potential cancer treatment strategies.
Collapse
Affiliation(s)
| | - Xiaofeng Yu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Rajawat J, Awasthi P, Banerjee M. PARP inhibitor olaparib induced differential protein expression in cervical cancer cells. J Proteomics 2023; 275:104823. [PMID: 36646275 DOI: 10.1016/j.jprot.2023.104823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
PARP inhibitors are a potential class of chemotherapeutic drugs but PARP inhibitor response has not been explored systematically. We lack a specific understanding of the subset of the proteome preferentially modified in various cancers by PARP inhibitors. Implications of PARP inhibitor and PARP1 in cervical cancer treatment and resistance are not fully elucidated. We conducted a mass spectrometry-based proteomic analysis of cervical cancer Hela cells treated with olaparib. We aimed to identify the alteration in the protein signaling pathway induced by PARP inhibitors beyond the DNA damage response pathway. Our data demonstrate a significant reduction in PARP activity and enhanced cell death after olaparib treatment. We further observed articulated proteomic changes with a significant enrichment of proteins in diverse cellular processes. The differentially expressed proteins were predominantly associated with RNA metabolism, mRNA splicing, processing, and RNA binding. Our data also identified proteins that could probably contribute to survival mechanisms resulting in resistance to PARP inhibitors. Hence, we put forth the overview of proteomic changes induced by PARP inhibitor olaparib in cervical cancer cells. This study highlights the significant proteins modified during PARP inhibition and thus could be a probable target for combination therapies with PARP inhibitors in cervical cancer. SIGNIFICANCE.
Collapse
Affiliation(s)
- Jyotika Rajawat
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, U.P, India
| | - Poorwa Awasthi
- CSIR-Indian Institute of Toxicology Research, Lucknow 226001, U.P, India
| | - Monisha Banerjee
- Molecular & Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, U.P, India..
| |
Collapse
|
11
|
Enhanced Cytotoxicity on Cancer Cells by Combinational Treatment of PARP Inhibitor and 5-Azadeoxycytidine Accompanying Distinct Transcriptional Profiles. Cancers (Basel) 2022; 14:cancers14174171. [PMID: 36077707 PMCID: PMC9454563 DOI: 10.3390/cancers14174171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary We investigated the effect of combinational use of PARP inhibitors on cytotoxicity of 5-aza-dC in human cancer cell lines. The combinational treatment of 5-aza-dC and PARP inhibitor PJ-34 exhibited a stronger cytotoxicity compared with their treatment alone in blood cancer HL-60, U937, and colon cancer HCT116 and RKO cells. In microarray analysis, combinational treatment with PJ-34 and 5-aza-dC caused different broad changes in gene expression profiles compared with their single treatments in both HCT116 and RKO cells. The profiles of reactivation of silenced genes were also different in combination of PJ-34 and 5-aza-dC and their single treatments. The results suggest that a combination of 5-aza-dC and PARP inhibitor may be useful by inducing distinct transcriptional profile changes. Abstract Poly(ADP-ribose) polymerase (PARP) is involved in DNA repair and chromatin regulation. 5-Aza-2′-deoxycytidine (5-aza-dC) inhibits DNA methyltransferases, induces hypomethylation, blocks DNA replication, and causes DNA single strand breaks (SSBs). As the PARP inhibitor is expected to affect both DNA repair and transcriptional regulations, we investigated the effect of combinational use of PARP inhibitors on cytotoxicity of 5-aza-dC in human cancer cell lines. The combinational treatment of 5-aza-dC and PARP inhibitor PJ-34 exhibited a stronger cytotoxicity compared with their treatment alone in blood cancer HL-60, U937, and colon cancer HCT116 and RKO cells. Treatment with 5-aza-dC but not PJ-34 caused SSBs in HCT116 cell lines. Global genome DNA demethylation was observed after treatment with 5-aza-dC but not with PJ-34. Notably, in microarray analysis, combinational treatment with PJ-34 and 5-aza-dC caused dissimilar broad changes in gene expression profiles compared with their single treatments in both HCT116 and RKO cells. The profiles of reactivation of silenced genes were also different in combination of PJ-34 and 5-aza-dC and their single treatments. The results suggest that the combinational use of 5-aza-dC and PARP inhibitor may be useful by causing distinct transcriptional profile changes.
Collapse
|
12
|
Paturel A, Hall J, Chemin I. Poly(ADP-Ribose) Polymerase Inhibition as a Promising Approach for Hepatocellular Carcinoma Therapy. Cancers (Basel) 2022; 14:3806. [PMID: 35954469 PMCID: PMC9367559 DOI: 10.3390/cancers14153806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Primary liver cancer is the sixth most common cancer in men and seventh in women, with hepatocellular carcinoma (HCC) being the most common form (75-85% of primary liver cancer cases) and the most frequent etiology being viral infections (HBV and HCV). In 2020, mortality represented 92% of the incidence-830,180 deaths for 905,677 new cases. Few treatment options exist for advanced or terminal-stage HCC, which will receive systemic therapy or palliative care. Although radiotherapy is used in the treatment of many cancers, it is currently not the treatment of choice for HCC, except in the palliative setting. However, as radiosensitizing drugs, such as inhibitors of DNA repair enzymes, could potentiate the effects of RT in HCC by exploiting the modulation of DNA repair processes found in this tumour type, RT and such drugs could provide a treatment option for HCC. In this review, we provide an overview of PARP1 involvement in DNA damage repair pathway and discuss its potential implication in HCC. In addition, the use of PARP inhibitors and PARP decoys is described for the treatment of HCC and, in particular, in HBV-related HCC.
Collapse
Affiliation(s)
| | | | - Isabelle Chemin
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM, CNRS, Centre Léon Bérard, Centre De Recherche En Cancérologie De Lyon, 69008 Lyon, France
| |
Collapse
|
13
|
Kaplan MM, Flucher BE. Counteractive and cooperative actions of muscle β-catenin and CaV1.1 during early neuromuscular synapse formation. iScience 2022; 25:104025. [PMID: 35340430 PMCID: PMC8941212 DOI: 10.1016/j.isci.2022.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Activity-dependent calcium signals in developing muscle play a crucial role in neuromuscular junction (NMJ) formation. However, its downstream effectors and interactions with other regulators of pre- and postsynaptic differentiation are poorly understood. Here, we demonstrate that the skeletal muscle calcium channel CaV1.1 and β-catenin interact in various ways to control NMJ development. They differentially regulate nerve branching and presynaptic innervation patterns during the initial phase of NMJ formation. Conversely, they cooperate in regulating postsynaptic AChR clustering, synapse formation, and the proper organization of muscle fibers in mouse diaphragm. CaV1.1 does not directly regulate β-catenin expression but differentially controls the activity of its transcriptional co-regulators TCF/Lef and YAP. These findings suggest a crosstalk between CaV1.1 and β-catenin in the activity-dependent transcriptional regulation of genes involved in specific pre- and postsynaptic aspects of NMJ formation. Neuromuscular junction formation requires either muscle calcium or β-catenin signaling Complementary actions of CaV1.1 and β-catenin control presynaptic innervation patterns Parallel actions of CaV1.1 and β-catenin are crucial for postsynaptic AChR clustering Loss of CaV1.1 differentially regulates activity of β-catenin targets TCF/Lef and YAP
Collapse
Affiliation(s)
- Mehmet Mahsum Kaplan
- Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
- Corresponding author
| | - Bernhard E. Flucher
- Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
Franz A, Coscia F, Shen C, Charaoui L, Mann M, Sander C. Molecular response to PARP1 inhibition in ovarian cancer cells as determined by mass spectrometry based proteomics. J Ovarian Res 2021; 14:140. [PMID: 34686201 PMCID: PMC8539835 DOI: 10.1186/s13048-021-00886-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Poly (ADP)-ribose polymerase (PARP) inhibitors have entered routine clinical practice for the treatment of high-grade serous ovarian cancer (HGSOC), yet the molecular mechanisms underlying treatment response to PARP1 inhibition (PARP1i) are not fully understood. METHODS Here, we used unbiased mass spectrometry based proteomics with data-driven protein network analysis to systematically characterize how HGSOC cells respond to PARP1i treatment. RESULTS We found that PARP1i leads to pronounced proteomic changes in a diverse set of cellular processes in HGSOC cancer cells, consistent with transcript changes in an independent perturbation dataset. We interpret decreases in the levels of the pro-proliferative transcription factors SP1 and β-catenin and in growth factor signaling as reflecting the anti-proliferative effect of PARP1i; and the strong activation of pro-survival processes NF-κB signaling and lipid metabolism as PARPi-induced adaptive resistance mechanisms. Based on these observations, we nominate several protein targets for therapeutic inhibition in combination with PARP1i. When tested experimentally, the combination of PARPi with an inhibitor of fatty acid synthase (TVB-2640) has a 3-fold synergistic effect and is therefore of particular pre-clinical interest. CONCLUSION Our study improves the current understanding of PARP1 function, highlights the potential that the anti-tumor efficacy of PARP1i may not only rely on DNA damage repair mechanisms and informs on the rational design of PARP1i combination therapies in ovarian cancer.
Collapse
Affiliation(s)
- Alexandra Franz
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - Fabian Coscia
- Proteomics Program, NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Ciyue Shen
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Lea Charaoui
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthias Mann
- Proteomics Program, NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Chris Sander
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
15
|
Huang YH, Yin SJ, Gong YY, Li ZR, Yang Q, Fan YX, Zhou T, Meng R, Wang P, He GH. PARP1 as a prognostic biomarker for human cancers: a meta-analysis. Biomark Med 2021; 15:1563-1578. [PMID: 34651514 DOI: 10.2217/bmm-2020-0891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: A comprehensive meta-analysis was carried out to evaluate the association between high PARP1 expression and clinical outcomes in diverse types of cancers. Materials & methods: The electronic databases for all articles about PARP1 expression and cancers were searched. Additionally, bioinformatics analysis was utilized to validate the results of the meta-analysis. Results: Fifty-two studies with a total of 7140 patients were included in the current meta-analysis. High PARP1 expression was found to be significantly associated with poor overall survival and recurrence in various cancers, which were further strengthened and complemented by the results of bioinformatic analysis. Furthermore, increased PAPR1 expression was also related to clinicopathological features. Conclusion: Our findings confirmed that PARP1 might be a promising biomarker for prognosis in human cancers.
Collapse
Affiliation(s)
- Yan-Hua Huang
- Research Center of Clinical Pharmacology, Yunnan Provincial Hospital of Traditional Chinese Medicine, 120 Guanghua Rd, Kunming, 650032, China.,Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Sun-Jun Yin
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Yuan-Yuan Gong
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Zhi-Ran Li
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Qin Yang
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Yu-Xin Fan
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Tao Zhou
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Rui Meng
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Ping Wang
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| | - Gong-Hao He
- Research Center of Clinical Pharmacology, Yunnan Provincial Hospital of Traditional Chinese Medicine, 120 Guanghua Rd, Kunming, 650032, China.,Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, 212 Daguan Rd, Kunming, 650032, China
| |
Collapse
|
16
|
Jeong KY, Park M. Poly adenosine diphosphate-ribosylation, a promising target for colorectal cancer treatment. World J Gastrointest Oncol 2021. [PMID: 34163574 DOI: 10.4251/wjgo.v13.i6.574.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of colorectal cancer (CRC) can result from changes in a variety of cellular systems within the tumor microenvironment. Particularly, it is primarily associated with genomic instability that is the gradual accumulation of genetic and epigenetic changes consisting of a characteristic set of mutations crucial for pathways in CRC progression. Based on this background, the potential to focus on poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP)-1 and poly-ADP ribosylation (PARylation) as the main causes of malignant formation of CRC may be considered. One of the important functions of PARP-1 and PARylation is its deoxyribonucleic acid (DNA) repair function, which plays a pivotal role in the DNA damage response and prevention of DNA damage maintaining the redox homeostasis involved in the regulation of oxidation and superoxide. PARP-1 and PARylation can also alter epigenetic markers and chromatin structure involved in transcriptional regulation for the oncogenes or tumor suppressor genes by remodeling histone and chromatin enzymes. Given the high importance of these processes in CRC, it can be considered that PARP-1 and PARylation are at the forefront of the pathological changes required for CRC progression. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 and PARylation in CRC related to the aforementioned roles; furthermore, it presents a summary of recent approaches with PARP-1 inhibition in non-clinical and clinical studies targeting CRC. This understanding could help embrace the importance of targeting PARP-1 and PARylation in the treatment of CRC, which may present the potential to identify various research topics that can be challenged both non-clinically and clinically.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea.
| | - Minhee Park
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| |
Collapse
|
17
|
Jeong KY, Park M. Poly adenosine diphosphate-ribosylation, a promising target for colorectal cancer treatment. World J Gastrointest Oncol 2021; 13:574-588. [PMID: 34163574 PMCID: PMC8204356 DOI: 10.4251/wjgo.v13.i6.574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
The development of colorectal cancer (CRC) can result from changes in a variety of cellular systems within the tumor microenvironment. Particularly, it is primarily associated with genomic instability that is the gradual accumulation of genetic and epigenetic changes consisting of a characteristic set of mutations crucial for pathways in CRC progression. Based on this background, the potential to focus on poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP)-1 and poly-ADP ribosylation (PARylation) as the main causes of malignant formation of CRC may be considered. One of the important functions of PARP-1 and PARylation is its deoxyribonucleic acid (DNA) repair function, which plays a pivotal role in the DNA damage response and prevention of DNA damage maintaining the redox homeostasis involved in the regulation of oxidation and superoxide. PARP-1 and PARylation can also alter epigenetic markers and chromatin structure involved in transcriptional regulation for the oncogenes or tumor suppressor genes by remodeling histone and chromatin enzymes. Given the high importance of these processes in CRC, it can be considered that PARP-1 and PARylation are at the forefront of the pathological changes required for CRC progression. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 and PARylation in CRC related to the aforementioned roles; furthermore, it presents a summary of recent approaches with PARP-1 inhibition in non-clinical and clinical studies targeting CRC. This understanding could help embrace the importance of targeting PARP-1 and PARylation in the treatment of CRC, which may present the potential to identify various research topics that can be challenged both non-clinically and clinically.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| | - Minhee Park
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| |
Collapse
|
18
|
Kupczyk P, Simiczyjew A, Marczuk J, Dratkiewicz E, Beberok A, Rok J, Pieniazek M, Biecek P, Nevozhay D, Slowikowski B, Chodaczek G, Wrzesniok D, Nowak D, Donizy P. PARP1 as a Marker of an Aggressive Clinical Phenotype in Cutaneous Melanoma-A Clinical and an In Vitro Study. Cells 2021; 10:286. [PMID: 33572647 PMCID: PMC7911865 DOI: 10.3390/cells10020286] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 01/12/2023] Open
Abstract
(1) Background: Poly(ADP-ribose) polymerase 1) (PARP1) is a pleiotropic enzyme involved in several cellular processes, e.g., DNA damage repair, regulation of mitosis, and immune response. Little is known about the role of PARP1 in melanoma development and progression. We aimed to investigate the prognostic significance of PARP1 expression in cutaneous melanoma through evaluation of mRNA and protein levels of PARP1 in normal melanocytes and melanoma cell lines, as well as in patients' tissue material from surgical resections. (2) Methods: An in vitro model was based on two types of normal human melanocytes (HEMn-DP and HEMn-LP) and four melanoma cell lines (A375, WM1341D, Hs294T, and WM9). PARP1 mRNA gene expression was estimated using real-time polymerase chain reaction (RT-PCR), whereas the protein level of PARP1 was evaluated by fluorescence confocal microscopy and then confirmed by Western Blotting analysis. The expression of PARP1 was also assessed by immunohistochemistry in formalin-fixed paraffin-embedded tissues of 128 primary cutaneous melanoma patients and correlated with follow-up and clinicopathologic features. (3) Results: The in vitro study showed that melanoma cells exhibited significantly higher PARP1 expression at mRNA and protein levels than normal melanocytes. High PARP1 expression was also associated with the invasiveness of tumor cells. Elevated nuclear PARP1 expression in patients without nodal metastases strongly correlated with significantly shorter disease-free survival (p = 0.0015) and revealed a trend with shorter cancer-specific overall survival (p = 0.05). High PARP1 immunoreactivity in the lymph node-negative group of patients was significantly associated with higher Breslow tumor thickness, presence of ulceration, and a higher mitotic index (p = 0.0016, p = 0.023, and p < 0.001, respectively). In patients with nodal metastases, high PARP1 expression significantly correlated with the presence of microsatellitosis (p = 0.034), but we did not confirm the prognostic significance of PARP1 expression in these patients. In the entire analyzed group of patients (with and without nodal metastases at the time of diagnosis), PARP1 expression was associated with a high mitotic index (p = 0.001) and the presence of ulceration (p = 0.036). Moreover, in patients with elevated PARP1 expression, melanoma was more frequently located in the skin of the head and neck region (p = 0.015). In multivariate analysis, high PARP1 expression was an independent unfavorable prognosticator in lymph node-negative cutaneous melanoma patients. (4) Conclusions: In vitro molecular biology approaches demonstrated enhanced PARP1 expression in cutaneous melanoma. These results were confirmed by the immunohistochemical study with clinical parameter analysis, which showed that a high level of PARP1 correlated with unfavorable clinical outcome. These observations raise the potential role of PARP1 inhibitor-based therapy in cutaneous melanoma.
Collapse
Affiliation(s)
- Piotr Kupczyk
- Department of Pathomorphology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Jakub Marczuk
- Department of Dermatology, Research and Development Center, Regional Specialized Hospital, 51-124 Wroclaw, Poland;
| | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (J.R.); (D.W.)
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (J.R.); (D.W.)
| | - Malgorzata Pieniazek
- Department of Clinical Oncology, Tadeusz Koszarowski Regional Oncology Centre, 45-061 Opole, Poland;
| | - Przemyslaw Biecek
- Faculty of Mathemathics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland;
| | - Dmitry Nevozhay
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- School of Biomedicine, Far Eastern Federal University, 690950 Vladivostok, Russia
| | - Bartosz Slowikowski
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Grzegorz Chodaczek
- Laboratory of Bioimaging, Łukasiewicz Research Network—PORT Polish Center for Technology Development, 54-066 Wroclaw, Poland;
| | - Dorota Wrzesniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (J.R.); (D.W.)
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
19
|
Söderholm S, Cantù C. The WNT/β‐catenin dependent transcription: A tissue‐specific business. WIREs Mech Dis 2020; 13:e1511. [PMID: 33085215 PMCID: PMC9285942 DOI: 10.1002/wsbm.1511] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
β‐catenin‐mediated Wnt signaling is an ancient cell‐communication pathway in which β‐catenin drives the expression of certain genes as a consequence of the trigger given by extracellular WNT molecules. The events occurring from signal to transcription are evolutionarily conserved, and their final output orchestrates countless processes during embryonic development and tissue homeostasis. Importantly, a dysfunctional Wnt/β‐catenin pathway causes developmental malformations, and its aberrant activation is the root of several types of cancer. A rich literature describes the multitude of nuclear players that cooperate with β‐catenin to generate a transcriptional program. However, a unified theory of how β‐catenin drives target gene expression is still missing. We will discuss two types of β‐catenin interactors: transcription factors that allow β‐catenin to localize at target regions on the DNA, and transcriptional co‐factors that ultimately activate gene expression. In contrast to the presumed universality of β‐catenin's action, the ensemble of available evidence suggests a view in which β‐catenin drives a complex system of responses in different cells and tissues. A malleable armamentarium of players might interact with β‐catenin in order to activate the right “canonical” targets in each tissue, developmental stage, or disease context. Discovering the mechanism by which each tissue‐specific β‐catenin response is executed will be crucial to comprehend how a seemingly universal pathway fosters a wide spectrum of processes during development and homeostasis. Perhaps more importantly, this could ultimately inform us about which are the tumor‐specific components that need to be targeted to dampen the activity of oncogenic β‐catenin. This article is categorized under:Cancer > Molecular and Cellular Physiology Cancer > Genetics/Genomics/Epigenetics Cancer > Stem Cells and Development
Collapse
Affiliation(s)
- Simon Söderholm
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| |
Collapse
|
20
|
Abdelrahman AE, Ibrahim DA, El-Azony A, Alnagar AA, Ibrahim A. ERCC1, PARP-1, and AQP1 as predictive biomarkers in colon cancer patients receiving adjuvant chemotherapy. Cancer Biomark 2020; 27:251-264. [PMID: 31903985 DOI: 10.3233/cbm-190994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The recognition of high-risk colon cancer patients prone to chemoresistant and recurrent disease is a challenge. OBJECTIVES We aimed to assess the immunohistochemical expression of ERCC1, PARP-1, and AQP1 in 60 cases of stage II and III colon cancer who underwent curative resection and adjuvant chemotherapy. Their predictive role of tumor progression and disease-free survival (DFS) was analyzed. METHODS The immunohistochemical expression of ERCC1, PARP-1, and AQP1 in 60 cases of stage II and III colon cancer who underwent curative resection and adjuvant chemotherapy was studied. The collected data on the overall survival (OS), disease-free survival (DFS), and the response to the chemotherapy were analyzed. RESULTS Positive nuclear ERCC1 expression was identified in 58.3% of the patients, ERCC1 expression was significantly associated with left-sided tumors (P< 0.01). Moreover, its expression was significantly associated with the aggressive tumor characteristics including high grade, lymph node metastasis and advanced tumor stage (P< 0.001 for each). High nuclear PARP-1 expression was observed in 63.3% of the cases, and its expression was significantly associated with tumor grade and lymph node metastasis (P= 0.003 for each). Positive membranous AQP1 expression was identified in 41.7% of patients, and it was associated with high grade, lymph node metastasis and advanced tumor stage (P< 0.001 for each). During the follow-up period, 23 patients (38.3%) exhibited a tumor progression; this was significantly associated with positive ERCC1, high PARP-1, and negative AQP1 expression. Statistics of the survival data revealed that shorter DFS was significantly associated with positive ERCC1, high PARP-1, and positive AQP1 expression (P= 0.005, 0.016, 0.002, respectively). CONCLUSIONS ERCC1, PARP1, and AQP1 are adverse prognostic biomarkers in stage II-III colon cancer. Moreover, adjuvant chemotherapy may not be beneficial for patients with positive ERCC1, high PARP1, and AQP1-negative tumors. Therefore, we recommend that ERCC1, PARP-1, and AQP1 should be assessed during the selection of the treatment strategy for stage II-III colon cancer patients.
Collapse
Affiliation(s)
- Aziza E Abdelrahman
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Ahmed El-Azony
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed A Alnagar
- Medical Oncology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amr Ibrahim
- General Surgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
21
|
Abbott JM, Zhou Q, Esquer H, Pike L, Broneske TP, Rinaldetti S, Abraham AD, Ramirez DA, Lunghofer PJ, Pitts TM, Regan DP, Tan AC, Gustafson DL, Messersmith WA, LaBarbera DV. First-in-Class Inhibitors of Oncogenic CHD1L with Preclinical Activity against Colorectal Cancer. Mol Cancer Ther 2020; 19:1598-1612. [PMID: 32499299 DOI: 10.1158/1535-7163.mct-20-0106] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/03/2020] [Accepted: 05/21/2020] [Indexed: 12/29/2022]
Abstract
Since the discovery of CHD1L in 2008, it has emerged as an oncogene implicated in the pathology and poor prognosis of a variety of cancers, including gastrointestinal cancers. However, a mechanistic understanding of CHD1L as a driver of colorectal cancer has been limited. Until now, there have been no reported inhibitors of CHD1L, also limiting its development as a molecular target. We sought to characterize the clinicopathologic link between CHD1L and colorectal cancer, determine the mechanism(s) by which CHD1L drives malignant colorectal cancer, and discover the first inhibitors with potential for novel treatments for colorectal cancer. The clinicopathologic characteristics associated with CHD1L expression were evaluated using microarray data from 585 patients with colorectal cancer. Further analysis of microarray data indicated that CHD1L may function through the Wnt/TCF pathway. Thus, we conducted knockdown and overexpression studies with CHD1L to determine its role in Wnt/TCF-driven epithelial-to-mesenchymal transition (EMT). We performed high-throughput screening (HTS) to identify the first CHD1L inhibitors. The mechanism of action, antitumor efficacy, and drug-like properties of lead CHD1L inhibitors were determined using biochemical assays, cell models, tumor organoids, patient-derived tumor organoids, and in vivo pharmacokinetics and pharmacodynamics. Lead CHD1L inhibitors display potent in vitro antitumor activity by reversing TCF-driven EMT. The best lead CHD1L inhibitor possesses drug-like properties in pharmacokinetic/pharmacodynamic mouse models. This work validates CHD1L as a druggable target and establishes a novel therapeutic strategy for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Joshua M Abbott
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Qiong Zhou
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hector Esquer
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laura Pike
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Travis P Broneske
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sébastien Rinaldetti
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Adedoyin D Abraham
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dominique A Ramirez
- Flint Animal Cancer Center and Department of Clinical Sciences, School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
| | - Paul J Lunghofer
- Flint Animal Cancer Center and Department of Clinical Sciences, School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
| | - Todd M Pitts
- The School of Medicine, Division of Medical Oncology, The University of Colorado Anschutz Medical Campus, Aurora, Colorado.,The University of Colorado Cancer Center, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniel P Regan
- Flint Animal Cancer Center and Department of Clinical Sciences, School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
| | - Aik Choon Tan
- The School of Medicine, Division of Medical Oncology, The University of Colorado Anschutz Medical Campus, Aurora, Colorado.,The University of Colorado Cancer Center, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniel L Gustafson
- Flint Animal Cancer Center and Department of Clinical Sciences, School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado.,The University of Colorado Cancer Center, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Wells A Messersmith
- The School of Medicine, Division of Medical Oncology, The University of Colorado Anschutz Medical Campus, Aurora, Colorado.,The University of Colorado Cancer Center, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Daniel V LaBarbera
- The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, Colorado. .,The University of Colorado Cancer Center, The University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
22
|
A single nucleotide variant of human PARP1 determines response to PARP inhibitors. NPJ Precis Oncol 2020; 4:10. [PMID: 32352035 PMCID: PMC7184601 DOI: 10.1038/s41698-020-0113-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
The introduction of novel cancer drugs and innovative treatments brings great hope for cancer patients, but also an urgent need to match drugs to suitable patients, since certain drugs that benefit one patient may actually harm others. The newly developed poly-ADP ribose polymerase (PARP) inhibitors (PARPis) are a group of pharmacological enzyme inhibitors used clinically for multiple indications. Several forms of cancer tend to be PARP dependent, making PARP an attractive target for cancer therapy. Specifically, PARPis are commonly used in BRCA-associated breast cancers patients, since unrepaired single-strand breaks are converted into double-strand breaks and BRCA-associated tumors cannot repair them by homologous recombination so that PARPi leads to tumor cell death, by a mechanism called “Synthetic Lethality”. Unfortunately, not all patients respond to PARPi, and it is not currently possible to predict who will or will not respond. Here, we present a specific genomic marker, which reflects a single-nucleotide polymorphism of human PARP1 and correlates in vitro with response to PARPi, throughout all indications. In addition, we report that this SNP is associated with re-shaping mRNA, and mRNA levels, and influences the final protein structure to expose new binding sites while hiding others. The status of the SNP is therefore critical to patients’ care, as it relates responses to PARPi to the PARP1-SNP carried.
Collapse
|
23
|
The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism. Genes Dev 2020; 34:321-340. [PMID: 32029456 PMCID: PMC7050491 DOI: 10.1101/gad.334284.119] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this review, Szanto et al. summarize the metabolic regulatory roles of PARP enzymes and their associated pathologies. Poly(ADP-ribose) polymerases (PARPs or ARTDs), originally described as DNA repair factors, have metabolic regulatory roles. PARP1, PARP2, PARP7, PARP10, and PARP14 regulate central and peripheral carbohydrate and lipid metabolism and often channel pathological disruptive metabolic signals. PARP1 and PARP2 are crucial for adipocyte differentiation, including the commitment toward white, brown, or beige adipose tissue lineages, as well as the regulation of lipid accumulation. Through regulating adipocyte function and organismal energy balance, PARPs play a role in obesity and the consequences of obesity. These findings can be translated into humans, as evidenced by studies on identical twins and SNPs affecting PARP activity.
Collapse
|
24
|
Mann M, Kumar S, Sharma A, Chauhan SS, Bhatla N, Kumar S, Bakhshi S, Gupta R, Kumar L. PARP-1 inhibitor modulate β-catenin signaling to enhance cisplatin sensitivity in cancer cervix. Oncotarget 2019; 10:4262-4275. [PMID: 31303961 PMCID: PMC6611509 DOI: 10.18632/oncotarget.27008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
Cisplatin is a keystone for treatment of both recurring and locally advanced cervical cancer. However toxic side effects and acquired resistance limits its efficacy. Enhanced DNA repair is one of the mechanisms through which cancer cells acquire cisplatin resistance. Inhibitors of PARP, which is a DNA damage repair enzyme, have been approved for use in BRCA mutated cancers like breast and ovary cancer. However little is known about the therapeutic efficacy of PARP inhibitors in cervical cancer, either as a single agent or in combination with cisplatin. We hypothesized that PARP-1 inhibition might improve the sensitivity of cervical cancer cells to cisplatin by diminishing DNA repair. To ascertain this, we determined effect of PARP-1 inhibition on cisplatin cytotoxicity in HeLa and SiHa cell lines. Combination of cisplatin with PJ34, a phenanthridinone-derived PARP-1 inhibitor, augmented cisplatin toxicity in vitro by decreasing cell proliferation, enhancing cell cycle block and cell death, and decreasing invasion and metastasis, when compared with either of the single agent alone. We further show that PARP-1 inhibition inhibited β-catenin signaling and its downstream components such as c-Myc, cyclin D1 and MMPs indicating a possible link between single strand base damage repair and WNT signaling. In conclusion, PARP-1 inhibition might augment cisplatin cytotoxicity in cervical cancer cells by modulating β-catenin signaling pathway. Combining PARP-1 inhibitors with cisplatin might be a promising approach to overcome cisplatin resistance and to achieve a better therapeutic effect.
Collapse
Affiliation(s)
- Minakshi Mann
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sachin Kumar
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Shyam S Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Bhatla
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Sunesh Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Lalit Kumar
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
Razak S, Afsar T, Almajwal A, Alam I, Jahan S. Growth inhibition and apoptosis in colorectal cancer cells induced by Vitamin D-Nanoemulsion (NVD): involvement of Wnt/β-catenin and other signal transduction pathways. Cell Biosci 2019; 9:15. [PMID: 30733856 PMCID: PMC6359839 DOI: 10.1186/s13578-019-0277-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 01/23/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND More than the two decades, the question of whether vitamin D has a role in cancer frequency, development, and death has been premeditated in detail. Colorectal, breast, and prostate cancers have been a scrupulous spot of center, altogether, these three malignancies report for approximately 35% of cancer cases and 20% of cancer demises in the United States, and as such are a chief public health apprehension. The aim was to evaluate antitumor activity of Vitamin D-Nanoemulsion (NVD) in colorectal cancer cell lines and HCT116 xenograft model in a comprehensive approach. METHODS Two human colorectal cancer cell lines HCT116 and HT29 (gained from College of Pharmacy, King Saud University, KSA were grown. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazoliumbromide protocol were performed to show the impact of NVD and β-catenin inhibitor (FH535) on the viability of HCT116 and HT29 cell lines. Apoptosis/cell cycle assay was performed. Analysis was done with a FACScan (Becton-Dickinson, NJ). About 10,000 cells per sample were harvested and Histograms of DNA were analyzed with ModiFitLT software (verity Software House, ME, USA). Western blotting and RT-PCR were performed for protein and gene expression respectively in in vitro and in vivo. RESULTS We found that NVD induced cytotoxicity in colorectal cells in a dose-dependent manner and time dependent approach. Further, our data validated that NVD administration of human colorectal cancer HCT116 and HT29 cells resulted in cell growth arrest, alteration in molecules regulating cell cycle operative in the G2 phase of the cell cycle and apoptosis in a dose dependent approach. Further our results concluded that NVD administration decreases expression of β-catenin gene, AKT gene and Survivin gene and protein expression in in vitro and in vivo. CONCLUSION Our findings suggest that targeting β-catenin gene may encourage the alterations of cell cycle and cell cycle regulators. Wnt/β-catenin signaling pathway possibly takes part in the genesis and progression of colorectal cancer cells through regulating cell cycle and the expression of cell cycle regulators.
Collapse
Affiliation(s)
- Suhail Razak
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Iftikhar Alam
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Sarwat Jahan
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
26
|
Razak S, Afsar T, Ullah A, Almajwal A, Alkholief M, Alshamsan A, Jahan S. Taxifolin, a natural flavonoid interacts with cell cycle regulators causes cell cycle arrest and causes tumor regression by activating Wnt/ β -catenin signaling pathway. BMC Cancer 2018; 18:1043. [PMID: 30367624 PMCID: PMC6204009 DOI: 10.1186/s12885-018-4959-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/16/2018] [Indexed: 01/23/2023] Open
Abstract
Background New approaches for the prevention of colon cancer perseveres an essential necessity. Though, resistance to existing chemo-preventive drugs is moderately predominant in colon carcinogenesis. Taxifolin (dihydroquercetin) is a flavononol, have shown virile biological activities against few cancers. The current study was designed to investigate and equate antitumor activity of Taxifolin (TAX) in colorectal cancer cell lines and in HCT116 xenograft model in a comprehensive approach. Methods Two human colorectal cancer cell lines HCT116 and HT29, were used. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazoliumbromide (MMT) protocol was performed to elucidate the impact of TAX and β- catenin inhibitor (FH535) on the viability of HCT116 and HT29 cell lines. Apoptosis /cell cycle assay was performed. Data interpretation was done with a FACScan (Becton Dickinson, NJ). About 1 × 104 cells per sample were harvested. Histograms of DNA were analyzed with ModiFitLT software (verity Software House, ME, USA). Western blotting and RT-PCR were performed for protein and gene expression respectively in in vitro and in vivo. Results We found that TAX induced cytotoxicity in colorectal cells in a dose-dependent manner and time dependent approach. Further, our data validated that administration of TAX to human colorectal cancer HCT116 and HT29 cells resulted in cell growth arrest, variation in molecules controlling cell cycle operative in the G2 phase of the cell cycle and apoptosis in a concentration dependent approach. Further our results concluded that TAX administration decreases expression of β-catenin gene, AKT gene and Survivin gene and protein expression in in vitro and in vivo. Conclusion Our findings proposed that targeting β-catenin gene may encourage the alterations of cell cycle and cell cycle regulators. Wnt/β-catenin signaling pathway possibly takes part in the genesis and progression of colorectal cancer cells through regulating cell cycle and the expression of cell cycle regulators. Electronic supplementary material The online version of this article (10.1186/s12885-018-4959-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suhail Razak
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. .,Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Asad Ullah
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Musaed Alkholief
- Nanomedicine research unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aws Alshamsan
- Nanomedicine research unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sarwat Jahan
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
27
|
PARP-1 protects against colorectal tumor induction, but promotes inflammation-driven colorectal tumor progression. Proc Natl Acad Sci U S A 2018; 115:E4061-E4070. [PMID: 29632181 DOI: 10.1073/pnas.1712345115] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumor entities, which is causally linked to DNA repair defects and inflammatory bowel disease (IBD). Here, we studied the role of the DNA repair protein poly(ADP-ribose) polymerase-1 (PARP-1) in CRC. Tissue microarray analysis revealed PARP-1 overexpression in human CRC, correlating with disease progression. To elucidate its function in CRC, PARP-1 deficient (PARP-1-/-) and wild-type animals (WT) were subjected to azoxymethane (AOM)/ dextran sodium sulfate (DSS)-induced colorectal carcinogenesis. Miniendoscopy showed significantly more tumors in WT than in PARP-1-/- mice. Although the lack of PARP-1 moderately increased DNA damage, both genotypes exhibited comparable levels of AOM-induced autophagy and cell death. Interestingly, miniendoscopy revealed a higher AOM/DSS-triggered intestinal inflammation in WT animals, which was associated with increased levels of innate immune cells and proinflammatory cytokines. Tumors in WT animals were more aggressive, showing higher levels of STAT3 activation and cyclin D1 up-regulation. PARP-1-/- animals were then crossed with O6-methylguanine-DNA methyltransferase (MGMT)-deficient animals hypersensitive to AOM. Intriguingly, PARP-1-/-/MGMT-/- double knockout (DKO) mice developed more, but much smaller tumors than MGMT-/- animals. In contrast to MGMT-deficient mice, DKO animals showed strongly reduced AOM-dependent colonic cell death despite similar O6-methylguanine levels. Studies with PARP-1-/- cells provided evidence for increased alkylation-induced DNA strand break formation when MGMT was inhibited, suggesting a role of PARP-1 in the response to O6-methylguanine adducts. Our findings reveal PARP-1 as a double-edged sword in colorectal carcinogenesis, which suppresses tumor initiation following DNA alkylation in a MGMT-dependent manner, but promotes inflammation-driven tumor progression.
Collapse
|
28
|
Shanmugam MK, Arfuso F, Arumugam S, Chinnathambi A, Jinsong B, Warrier S, Wang LZ, Kumar AP, Ahn KS, Sethi G, Lakshmanan M. Role of novel histone modifications in cancer. Oncotarget 2018; 9:11414-11426. [PMID: 29541423 PMCID: PMC5834259 DOI: 10.18632/oncotarget.23356] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/01/2017] [Indexed: 01/02/2023] Open
Abstract
Oncogenesis is a multistep process mediated by a variety of factors including epigenetic modifications. Global epigenetic post-translational modifications have been detected in almost all cancers types. Epigenetic changes appear briefly and do not involve permanent changes to the primary DNA sequence. These epigenetic modifications occur in key oncogenes, tumor suppressor genes, and transcription factors, leading to cancer initiation and progression. The most commonly observed epigenetic changes include DNA methylation, histone lysine methylation and demethylation, histone lysine acetylation and deacetylation. However, there are several other novel post-translational modifications that have been observed in recent times such as neddylation, sumoylation, glycosylation, phosphorylation, poly-ADP ribosylation, ubiquitination as well as transcriptional regulation and these have been briefly discussed in this article. We have also highlighted the diverse epigenetic changes that occur during the process of tumorigenesis and described the role of histone modifications that can occur on tumor suppressor genes as well as oncogenes, which regulate tumorigenesis and can thus form the basis of novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Muthu K. Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Surendar Arumugam
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Bian Jinsong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, India
| | - Ling Zhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- National University Cancer Institute, National University Health System, Singapore, Singapore
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
- Department of Pathology, National University Hospital Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Xia Q, Lu S, Ostrovsky J, McCormack SE, Falk MJ, Grant SFA. PARP-1 Inhibition Rescues Short Lifespan in Hyperglycemic C. Elegans And Improves GLP-1 Secretion in Human Cells. Aging Dis 2018; 9:17-30. [PMID: 29392078 PMCID: PMC5772855 DOI: 10.14336/ad.2017.0230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/02/2017] [Indexed: 01/12/2023] Open
Abstract
TCF7L2 is located at one of the most strongly associated type 2 diabetes loci reported to date. We previously reported that the most abundant member of a specific protein complex to bind across the presumed causal variant at this locus, rs7903146, was poly [ADP-ribose] polymerase type 1 (PARP-1). We analyzed the impact of PARP-1 inhibition on C. elegans health in the setting of hyperglycemia and on glucose-stimulated GLP-1 secretion in human intestinal cells. Given that high glucose concentrations progressively shorten the lifespan of C. elegans, in part by impacting key well-conserved insulin-modulated signaling pathways, we investigated the effect of PARP-1 inhibition with Olaparib on the lifespan of C. elegans nematodes under varying hyperglycemic conditions. Subsequently, we investigated whether Olaparib treatment had any effect on glucose-stimulated GLP-1 secretion in the human NCI-H716 intestinal cell line, a model system for the investigation of enteroendocrine function. Treatment with 100uM Olaparib in nematodes exposed to high concentrations of glucose led to significant lifespan rescue. The beneficial lifespan effect of Olaparib appeared to require both PARP-1 and TCF7L2, since treatment had no effect in hyperglycemic conditions in knock-out worm strains for either of these homologs. Further investigation using the NCI-H716 cells revealed that Olaparib significantly enhanced secretion of the incretin, GLP-1, plus the gene expression of TCF7L2, GCG and PC1. These data from studies in both C. elegans and a human cell line suggest that PARP-1 inhibition offers a novel therapeutic avenue to treat type 2 diabetes.
Collapse
Affiliation(s)
- Qianghua Xia
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sumei Lu
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julian Ostrovsky
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shana E McCormack
- 2Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,3Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,4Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marni J Falk
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,3Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Struan F A Grant
- 1Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,2Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,3Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,4Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
30
|
Yamada T, Masuda M. Emergence of TNIK inhibitors in cancer therapeutics. Cancer Sci 2017; 108:818-823. [PMID: 28208209 PMCID: PMC5448614 DOI: 10.1111/cas.13203] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
The outcome of patients with metastatic colorectal cancer remains unsatisfactory. To improve patient prognosis, it will be necessary to identify new drug targets based on molecules that are essential for colorectal carcinogenesis, and to develop therapeutics that target such molecules. The great majority of colorectal cancers (>90%) have mutations in at least one Wnt signaling pathway gene. Aberrant activation of Wnt signaling is a major force driving colorectal carcinogenesis. Several therapeutics targeting Wnt pathway molecules, including porcupine, frizzled receptors and tankyrases, have been developed, but none of them have yet been incorporated into clinical practice. Wnt signaling is most frequently activated by loss of function of the adenomatous polyposis coli (APC) tumor suppressor gene. Restoration of APC gene function does not seem to be a realistic therapeutic approach, and, therefore, only Wnt signaling molecules downstream of the APC gene product can be considered as targets for pharmacological intervention. Traf2 and Nck‐interacting protein kinase (TNIK) was identified as a regulatory component of the β‐catenin and T‐cell factor‐4 (TCF‐4) transcriptional complex. Several small‐molecule compounds targeting this protein kinase have been shown to have anti‐tumor effects against various cancers. An anthelmintic agent, mebendazole, was recently identified as a selective inhibitor of TNIK and is under clinical evaluation. TNIK regulates Wnt signaling in the most downstream part of the pathway, and its pharmacological inhibition seems to be a promising therapeutic approach. We demonstrated the feasibility of this approach by developing a small‐molecule TNIK inhibitor, NCB‐0846.
Collapse
Affiliation(s)
- Tesshi Yamada
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Mari Masuda
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
31
|
Serebryannyy LA, Yemelyanov A, Gottardi CJ, de Lanerolle P. Nuclear α-catenin mediates the DNA damage response via β-catenin and nuclear actin. J Cell Sci 2017; 130:1717-1729. [PMID: 28348105 DOI: 10.1242/jcs.199893] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/20/2017] [Indexed: 12/29/2022] Open
Abstract
α-Catenin is an F-actin-binding protein widely recognized for its role in cell-cell adhesion. However, a growing body of literature indicates that α-catenin is also a nuclear protein. In this study, we show that α-catenin is able to modulate the sensitivity of cells to DNA damage and toxicity. Furthermore, nuclear α-catenin is actively recruited to sites of DNA damage. This recruitment occurs in a β-catenin-dependent manner and requires nuclear actin polymerization. These findings provide mechanistic insight into the WNT-mediated regulation of the DNA damage response and suggest a novel role for the α-catenin-β-catenin complex in the nucleus.
Collapse
Affiliation(s)
- Leonid A Serebryannyy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alex Yemelyanov
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Cara J Gottardi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
32
|
Jubin T, Kadam A, Gani AR, Singh M, Dwivedi M, Begum R. Poly ADP-ribose polymerase-1: Beyond transcription and towards differentiation. Semin Cell Dev Biol 2017; 63:167-179. [PMID: 27476447 DOI: 10.1016/j.semcdb.2016.07.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023]
Abstract
Gene regulation mediates the processes of cellular development and differentiation leading to the origin of different cell types each having their own signature gene expression profile. However, the compact chromatin structure and the timely recruitment of molecules involved in various signaling pathways are of prime importance for temporal and spatial gene regulation that eventually contribute towards cell type and specificity. Poly (ADP-ribose) polymerase-1 (PARP-1), a 116-kDa nuclear multitasking protein is involved in modulation of chromatin condensation leading to altered gene expression. In response to activation signals, it adds ADP-ribose units to various target proteins including itself, thus regulating various key cellular processes like DNA repair, cell death, transcription, mRNA splicing etc. This review provides insights into the role of PARP-1 in gene regulation, cell differentiation and multicellular morphogenesis. In addition, the review also explores involvement of PARP-1 in immune cells development and therapeutic possibilities to treat various human diseases.
Collapse
Affiliation(s)
- Tina Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Ashlesha Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Amina Rafath Gani
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India; Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 Telangana, India
| | - Mala Singh
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Mitesh Dwivedi
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India; C.G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Surat, Gujarat 394350, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India.
| |
Collapse
|
33
|
The crosstalk between Wnt/β-catenin signaling pathway with DNA damage response and oxidative stress: Implications in cancer therapy. DNA Repair (Amst) 2017; 51:14-19. [PMID: 28108274 DOI: 10.1016/j.dnarep.2017.01.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 01/01/2023]
Abstract
DNA repair is essential for maintaining genomic integrity in cells. The dependence of cancer cell survival on proper DNA repair provides an opportunity to treat defective tumors by DNA damaging agents. Not only Wnt signaling has important functions in controlling gene expression, as well as cell polarity, adhesion and behavior, it also highly interacts with DNA damage response (DDR) in different levels. Furthermore, oxidative stress, which is responsible for majority of DNA lesions, affects Wnt signaling in different ways. A better understanding of the cross-talk between these pathways and events could provide strategies for treatment of cancer cells with deficient DNA repair capacity. As such, we will give a brief overview of the importance of the DNA repair machinery, signaling mechanisms of Wnt/β-catenin pathway, and DDR. We will further review the interactions between Wnt signaling and DDR, and the impact of oxidative stress on Wnt signaling. Finally, Wnt signaling is discussed as a potential treatment strategy for cancer.
Collapse
|
34
|
Ma B, Hottiger MO. Crosstalk between Wnt/β-Catenin and NF-κB Signaling Pathway during Inflammation. Front Immunol 2016; 7:378. [PMID: 27713747 PMCID: PMC5031610 DOI: 10.3389/fimmu.2016.00378] [Citation(s) in RCA: 463] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022] Open
Abstract
Besides its important role in embryonic development and homeostatic self-renewal in adult tissues, Wnt/β-catenin signaling exerts both anti-inflammatory and proinflammatory functions. This is, at least partially, due to either repressing or enhancing the NF-κB pathway. Similarly, the NF-κB pathway either positively or negatively regulates Wnt/β-catenin signaling. Different components of the two pathways are involved in this crosstalk, forming a complex regulatory network. This review summarizes our current understanding of the molecular mechanisms underlying the cross-regulation between the two pathways and discusses their involvement in inflammation and inflammation-associated diseases such as cancer.
Collapse
Affiliation(s)
- Bin Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; Renji Hospital Clinical Stem Cell Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich , Zurich , Switzerland
| |
Collapse
|
35
|
Jubin T, Kadam A, Jariwala M, Bhatt S, Sutariya S, Gani AR, Gautam S, Begum R. The PARP family: insights into functional aspects of poly (ADP-ribose) polymerase-1 in cell growth and survival. Cell Prolif 2016; 49:421-37. [PMID: 27329285 DOI: 10.1111/cpr.12268] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
PARP family members can be found spread across all domains and continue to be essential molecules from lower to higher eukaryotes. Poly (ADP-ribose) polymerase 1 (PARP-1), newly termed ADP-ribosyltransferase D-type 1 (ARTD1), is a ubiquitously expressed ADP-ribosyltransferase (ART) enzyme involved in key cellular processes such as DNA repair and cell death. This review assesses current developments in PARP-1 biology and activation signals for PARP-1, other than conventional DNA damage activation. Moreover, many essential functions of PARP-1 still remain elusive. PARP-1 is found to be involved in a myriad of cellular events via conservation of genomic integrity, chromatin dynamics and transcriptional regulation. This article briefly focuses on its other equally important overlooked functions during growth, metabolic regulation, spermatogenesis, embryogenesis, epigenetics and differentiation. Understanding the role of PARP-1, its multidimensional regulatory mechanisms in the cell and its dysregulation resulting in diseased states, will help in harnessing its true therapeutic potential.
Collapse
Affiliation(s)
- T Jubin
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - A Kadam
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - M Jariwala
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Bhatt
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Sutariya
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - A R Gani
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - S Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - R Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
36
|
The prognostic and predictive significance of PARP-1 in locally advanced breast cancer of Egyptian patients receiving neoadjuvant chemotherapy. Appl Immunohistochem Mol Morphol 2016; 23:571-9. [PMID: 25611238 DOI: 10.1097/pai.0000000000000124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE PARP-1 is a chromatin-associated enzyme that has a role in DNA repair and cell death. PARP-1 inhibitors are suggested therapy specifically for BRCA deficient breast carcinoma; however, their efficacy in sporadic breast cancer is under investigations. This study aimed to evaluate the PARP-1 in locally advanced breast cancer (LABC) cases to determine its predictive significance for outcome and response to neoadjuvant chemotherapy (NCT). MATERIALS AND METHODS This retrospective study was conducted on 84 LABC cases. Immunohistochemical expression of nuclear PARP-1 (nPARP-1) and cytoplasmic PARP-1 (cPARP-1) was evaluated in pretreatment needle core biopsies (NCBs). Results were correlated with clinicopathologic features, overall survival (OS), disease-free survival (DFS), and response to NCT in postoperative specimens. RESULTS High nPARP-1expression was observed in 64/84 (76%) of cases and was significantly associated with a lower lymph node stage (P=0.04). High cPARP-1 was observed in 40/84 (48%) of cases and it was significantly associated with lower lymph node stage (P=0.022) and lower tumor grade (P=0.050). High nPARP-1 expression was significantly associated with high cPARP-1 expression (P=0.005). Low cPARP-1 expression was associated with no response to chemotherapy in tumor site (P=0.021). According to the univariate survival analysis, high nPARP-1 and high cPARP-1 were significantly associated to longer OS (P=0.017 and P=0.019, respectively). High nPARP-1 but not cPARP-1 showed trend toward improved OS in multivariate Cox-regression analysis (P=0.053). CONCLUSION PARP-1 immunohistochemical expression is a marker of good prognosis and is predictive of response to NCT in LABC.
Collapse
|
37
|
Besnier LS, Cardot P, Da Rocha B, Simon A, Loew D, Klein C, Riveau B, Lacasa M, Clair C, Rousset M, Thenet S. The cellular prion protein PrPc is a partner of the Wnt pathway in intestinal epithelial cells. Mol Biol Cell 2015. [PMID: 26224313 PMCID: PMC4569320 DOI: 10.1091/mbc.e14-11-1534] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We reported previously that the cellular prion protein (PrP(c)) is a component of desmosomes and contributes to the intestinal barrier function. We demonstrated also the presence of PrP(c) in the nucleus of proliferating intestinal epithelial cells. Here we sought to decipher the function of this nuclear pool. In human intestinal cancer cells Caco-2/TC7 and SW480 and normal crypt-like HIEC-6 cells, PrP(c) interacts, in cytoplasm and nucleus, with γ-catenin, one of its desmosomal partners, and with β-catenin and TCF7L2, effectors of the canonical Wnt pathway. PrP(c) up-regulates the transcriptional activity of the β-catenin/TCF7L2 complex, whereas γ-catenin down-regulates it. Silencing of PrP(c) results in the modulation of several Wnt target gene expressions in human cells, with different effects depending on their Wnt signaling status, and in mouse intestinal crypt cells in vivo. PrP(c) also interacts with the Hippo pathway effector YAP, suggesting that it may contribute to the regulation of gene transcription beyond the β-catenin/TCF7L2 complex. Finally, we demonstrate that PrP(c) is required for proper formation of intestinal organoids, indicating that it contributes to proliferation and survival of intestinal progenitors. In conclusion, PrP(c) must be considered as a new modulator of the Wnt signaling pathway in proliferating intestinal epithelial cells.
Collapse
Affiliation(s)
- Laura S Besnier
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Philippe Cardot
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Barbara Da Rocha
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Anthony Simon
- Institut Curie, PSL Research University, Centre de Recherche, F-75005 Paris, France Centre National de la Recherche Scientifique/UMR144, F-75005 Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, F-75248 Paris, France
| | - Christophe Klein
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Béatrice Riveau
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Michel Lacasa
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Caroline Clair
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Monique Rousset
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France
| | - Sophie Thenet
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Centre de Recherche des Cordeliers, F-75006 Paris, France Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Pharmacologie Cellulaire et Moléculaire, F-75006 Paris, France
| |
Collapse
|
38
|
Jiang BH, Tseng WL, Li HY, Wang ML, Chang YL, Sung YJ, Chiou SH. Poly(ADP-Ribose) Polymerase 1: Cellular Pluripotency, Reprogramming, and Tumorogenesis. Int J Mol Sci 2015; 16:15531-45. [PMID: 26184161 PMCID: PMC4519911 DOI: 10.3390/ijms160715531] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/06/2015] [Accepted: 07/06/2015] [Indexed: 01/13/2023] Open
Abstract
Poly(ADP-ribos)ylation (PARylation) is the catalytic function of the Poly(ADP-ribose) polymerases (Parps) family for post-translational modification in cellular process. Being a major member of Parps, Parp1 is a crucial nuclear factor with biological significance in modulating DNA repair, DNA replication, transcription, DNA methylation and chromatin remodeling through PARylation of downstream proteins. In addition, high expression level and activity of Parp1 are correlated with pluripotent status, reprogramming, and cancer. Furthermore, epigenetic modulation of Parp1 is explored for regulating wide variety of gene expression. Genetic and pharmaceutical disruption of Parp1 further confirmed the importance of Parp1 in cell growth, DNA repair, and reprogramming efficiency. Taken together, the proximity toward the understanding of the modulation of Parp1 including interaction and modification in different fields will provide new insight for future studies. In this review, the biological significance of Parp1 in transcription and the epigenetic modulation of Parp1 in pluripotent status, reprogramming process and cancer will be summarized.
Collapse
Affiliation(s)
- Bo-Hua Jiang
- Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan.
| | - Wei-Lien Tseng
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Hsin-Yang Li
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Mong-Lien Wang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- VGH-YM Genomic Research Center, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yuh-Lih Chang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Yen-Jen Sung
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Shih-Hwa Chiou
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
39
|
Sistigu A, Manic G, Obrist F, Vitale I. Trial watch - inhibiting PARP enzymes for anticancer therapy. Mol Cell Oncol 2015; 3:e1053594. [PMID: 27308587 DOI: 10.1080/23723556.2015.1053594] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 12/25/2022]
Abstract
Poly(ADP-ribose) polymerases (PARPs) are a members of family of enzymes that catalyze poly(ADP-ribosyl)ation (PARylation) and/or mono(ADP-ribosyl)ation (MARylation), two post-translational protein modifications involved in crucial cellular processes including (but not limited to) the DNA damage response (DDR). PARP1, the most abundant family member, is a nuclear protein that is activated upon sensing distinct types of DNA damage and contributes to their resolution by PARylating multiple DDR players. Recent evidence suggests that, along with DDR, activated PARP1 mediates a series of prosurvival and proapoptotic processes aimed at preserving genomic stability. Despite this potential oncosuppressive role, upregulation and/or overactivation of PARP1 or other PARP enzymes has been reported in a variety of human neoplasms. Over the last few decades, several pharmacologic inhibitors of PARP1 and PARP2 have been assessed in preclinical and clinical studies showing potent antineoplastic activity, particularly against homologous recombination (HR)-deficient ovarian and breast cancers. In this Trial Watch, we describe the impact of PARP enzymes and PARylation in cancer, discuss the mechanism of cancer cell killing by PARP1 inactivation, and summarize the results of recent clinical studies aimed at evaluating the safety and therapeutic profile of PARP inhibitors in cancer patients.
Collapse
Affiliation(s)
| | - Gwenola Manic
- Regina Elena National Cancer Institute , Rome, Italy
| | - Florine Obrist
- Université Paris-Sud/Paris XI, Le Kremlin-Bicêtre, France; INSERM, UMRS1138, Paris, France; Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "TorVergata", Rome, Italy
| |
Collapse
|
40
|
Steinke FC, Xue HH. From inception to output, Tcf1 and Lef1 safeguard development of T cells and innate immune cells. Immunol Res 2015; 59:45-55. [PMID: 24847765 DOI: 10.1007/s12026-014-8545-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transcription factors have recurring roles during T cell development and activation. Tcf1 and Lef1 are known to be essential for early stages of thymocyte maturation. Recent research has revealed several novel aspects of their functionality. Tcf1 is induced at the very earliest step of specifying hematopoietic progenitors to the T cell lineage as a key target gene downstream of Notch activation. In addition to promoting maturation of T-lineage-committed thymocytes, Tcf1 functions as a tumor suppressor in developing thymocytes, and this is mediated, paradoxically, by restraining Lef1 expression. After positive selection, Tcf1 and Lef1 act together to direct CD4(+)CD8(+) double positive thymocytes to a CD4(+) T cell fate. Although not required for CD8(+) T cell differentiation, Tcf1 and Lef1 cooperate with Runx factors to achieve stable silencing of the Cd4 gene in CD8(+) T cells. Tcf1 is also found to have versatile roles in innate immune cells, which partly mirror its functions in mature T helper cells. Discrepancy in requirements of Tcf1/Lef1 and β-catenin in T cells has been a long-standing enigma. We will review other protein factors interacting with Tcf1 and Lef1 and discuss their regulatory roles independent of β-catenin.
Collapse
Affiliation(s)
- Farrah C Steinke
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | | |
Collapse
|
41
|
Dutta A, Yang C, Sengupta S, Mitra S, Hegde ML. New paradigms in the repair of oxidative damage in human genome: mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins. Cell Mol Life Sci 2015; 72:1679-98. [PMID: 25575562 DOI: 10.1007/s00018-014-1820-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
Abstract
Oxidized bases in the mammalian genome, which are invariably mutagenic due to their mispairing property, are continuously induced by endogenous reactive oxygen species and more abundantly after oxidative stress. Unlike bulky base adducts induced by UV and other environmental mutagens in the genome that block replicative DNA polymerases, oxidatively damaged bases such as 5-hydroxyuracil, produced by oxidative deamination of cytosine in the template strand, do not block replicative polymerases and thus need to be repaired prior to replication to prevent mutation. Following up our earlier studies, which showed that the Nei endonuclease VIII like 1 (NEIL1) DNA glycosylase, one of the five base excision repair (BER)-initiating enzymes in mammalian cells, has enhanced expression during the S-phase and higher affinity for replication fork-mimicking single-stranded (ss) DNA substrates, we recently provided direct experimental evidence for NEIL1's role in replicating template strand repair. The key requirement for this event, which we named as the 'cow-catcher' mechanism of pre-replicative BER, is NEIL1's non-productive binding (substrate binding without product formation) to the lesion base in ss DNA template to stall DNA synthesis, causing fork regression. Repair of the lesion in reannealed duplex is then carried out by NEIL1 in association with the DNA replication proteins. NEIL1 (and other BER-initiating enzymes) also interact with several accessory and non-canonical proteins including the heterogeneous nuclear ribonucleoprotein U and Y-box-binding protein 1 as well as high mobility group box 1 protein, whose precise roles in BER are still obscure. In this review, we have discussed the recent advances in our understanding of oxidative genome damage repair pathways with particular focus on the pre-replicative template strand repair and the role of scaffold factors like X-ray repairs cross-complementing protein 1 and poly (ADP-ribose) polymerase 1 and other accessory proteins guiding distinct BER sub-pathways.
Collapse
Affiliation(s)
- Arijit Dutta
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | | | | | | | | |
Collapse
|
42
|
Dziaman T, Ludwiczak H, Ciesla JM, Banaszkiewicz Z, Winczura A, Chmielarczyk M, Wisniewska E, Marszalek A, Tudek B, Olinski R. PARP-1 expression is increased in colon adenoma and carcinoma and correlates with OGG1. PLoS One 2014; 9:e115558. [PMID: 25526641 PMCID: PMC4272268 DOI: 10.1371/journal.pone.0115558] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/24/2014] [Indexed: 12/18/2022] Open
Abstract
The ethiology of colon cancer is largely dependent on inflammation driven oxidative stress. The analysis of 8-oxodeoxyguanosine (8-oxodGuo) level in leukocyte DNA of healthy controls (138 individuals), patients with benign adenomas (AD, 137 individuals) and with malignant carcinomas (CRC, 169 individuals) revealed a significant increase in the level of 8-oxodGuo in leukocyte DNA of AD and CRC patients in comparison to controls. The counteracting mechanism is base excision repair, in which OGG1 and PARP-1 play a key role. We investigated the level of PARP-1 and OGG1 mRNA and protein in diseased and marginal, normal tissues taken from AD and CRC patients and in leukocytes taken from the patients as well as from healthy subjects. In colon tumors the PARP-1 mRNA level was higher than in unaffected colon tissue and in polyp tissues. A high positive correlation was found between PARP-1 and OGG1 mRNA levels in all investigated tissues. This suggests reciprocal influence of PARP-1 and OGG1 on their expression and stability, and may contribute to progression of colon cancer. PARP-1 and OGG1 proteins level was several fold higher in polyps and CRC in comparison to normal colon tissues. Individuals bearing the Cys326Cys genotype of OGG1 were characterized by higher PARP-1 protein level in diseased tissues than the Ser326Cys and Ser326Ser genotypes. Aforementioned result may suggest that the diseased cells with polymorphic OGG1 recruit more PARP protein, which is necessary to remove 8-oxodGuo. Thus, patients with decreased activity of OGG1/polymorphism of the OGG1 gene and higher 8-oxodGuo level may be more susceptible to treatment with PARP-1 inhibitors.
Collapse
Affiliation(s)
- Tomasz Dziaman
- Department of Clinical Biochemistry, Collegium Medicum, Nicolaus Copernicus University, Karlowicza 24, PO-85-092 Bydgoszcz, Poland
| | - Hubert Ludwiczak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, PO-02-106 Warsaw, Poland
| | - Jaroslaw M. Ciesla
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, PO-02-106 Warsaw, Poland
| | - Zbigniew Banaszkiewicz
- Department of Surgery, Collegium Medicum, Nicolaus Copernicus University, Ujejskiego 75, Bydgoszcz, Poland
| | - Alicja Winczura
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, PO-02-106 Warsaw, Poland
| | - Mateusz Chmielarczyk
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, PO-02-106 Warsaw, Poland
| | - Ewa Wisniewska
- Department of Clinical Pathomorphology, Collegium Medicum, Nicolaus Copernicus University, Sklodowskiej-Curie 9, PO-85-092 Bydgoszcz, Poland
| | - Andrzej Marszalek
- Department of Clinical Pathomorphology, Collegium Medicum, Nicolaus Copernicus University, Sklodowskiej-Curie 9, PO-85-092 Bydgoszcz, Poland
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, PO-02-106 Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, PO-02-106 Warsaw, Poland
- * E-mail: (RO); (BT)
| | - Ryszard Olinski
- Department of Clinical Biochemistry, Collegium Medicum, Nicolaus Copernicus University, Karlowicza 24, PO-85-092 Bydgoszcz, Poland
- * E-mail: (RO); (BT)
| |
Collapse
|
43
|
Rajcevic U, Knol JC, Piersma S, Bougnaud S, Fack F, Sundlisaeter E, Søndenaa K, Myklebust R, Pham TV, Niclou SP, Jiménez CR. Colorectal cancer derived organotypic spheroids maintain essential tissue characteristics but adapt their metabolism in culture. Proteome Sci 2014; 12:39. [PMID: 25075203 PMCID: PMC4114130 DOI: 10.1186/1477-5956-12-39] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 06/09/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Organotypic tumor spheroids, a 3D in vitro model derived from patient tumor material, preserve tissue heterogeneity and retain structural tissue elements, thus replicating the in vivo tumor more closely than commonly used 2D and 3D cell line models. Such structures harbour tumorigenic cells, as revealed by xenograft implantation studies in animal models and maintain the genetic makeup of the original tumor material. The aim of our work was a morphological and proteomic characterization of organotypic spheroids derived from colorectal cancer tissue in order to get insight into their composition and associated biology. RESULTS Morphological analysis showed that spheroids were of about 250 μm in size and varied in structure, while the spheroid cells differed in shape and size and were tightly packed together by desmosomes and tight junctions. Our proteomic data revealed significant alterations in protein expression in organotypic tumor spheroids cultured as primary explants compared to primary colorectal cancer tissue. Components underlying cellular and tissue architecture were changed; nuclear DNA/ chromatin maintenance systems were up-regulated, whereas various mitochondrial components were down-regulated in spheroids. Most interestingly, the mesenchymal cells appear to be substantial component in such cellular assemblies. Thus the observed changes may partly occur in this cellular compartment. Finally, in the proteomics analysis stem cell-like characteristics were observed within the spheroid cellular assembly, reflected by accumulation of Alcam, Ctnnb1, Aldh1, Gpx2, and CD166. These findings were underlined by IHC analysis of Ctnnb1, CD24 and CD44, therefore warranting closer investigation of the tumorigenic compartment in this 3D culture model for tumor tissue. CONCLUSIONS Our analysis of organotypic CRC tumor spheroids has identified biological processes associated with a mixture of cell types and states, including protein markers for mesenchymal and stem-like cells. This 3D tumor model in which tumor heterogeneity is preserved may represent an advantageous model system to investigate novel therapeutic approaches.
Collapse
Affiliation(s)
- Uros Rajcevic
- NorLux Neuro-Oncology Laboratory, Department of Oncology, CRP-Santé, Luxembourg, Luxembourg ; Department of Research and Development, Blood Transfusion Center of Slovenia, Ljubljana, Slovenia ; Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jaco C Knol
- OncoProteomics Laboratory, Department of Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Sander Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Sébastien Bougnaud
- NorLux Neuro-Oncology Laboratory, Department of Oncology, CRP-Santé, Luxembourg, Luxembourg
| | - Fred Fack
- NorLux Neuro-Oncology Laboratory, Department of Oncology, CRP-Santé, Luxembourg, Luxembourg
| | | | - Karl Søndenaa
- Department of Surgery, Haraldsplass Deaconal Hospital, University of Bergen, Bergen, Norway
| | | | - Thang V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, CRP-Santé, Luxembourg, Luxembourg
| | - Connie R Jiménez
- OncoProteomics Laboratory, Department of Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
44
|
Abstract
Poly (ADP-ribose) polymerase-1 (PARP1) is an abundant, ubiquitously expressed NAD(+)-dependent nuclear enzyme that has prognostic value for a multitude of human cancers. PARP1 activity serves to poly (ADP-ribose)-ylate the vast majority of known client proteins and affects a number of cellular and biologic outcomes, by mediating the DNA damage response (DDR), base-excision repair (BER), and DNA strand break (DSB) pathways. PARP1 is also critically important for the maintenance of genomic integrity, as well as chromatin dynamics and transcriptional regulation. Evidence also indicates that PARP-directed therapeutics are "synthetic lethal" in BRCA1/2-deficient model systems. Strikingly, recent studies have unearthed exciting new transcriptional-regulatory roles for PARP1, which has profound implications for human malignancies and will be reviewed herein.
Collapse
Affiliation(s)
| | - Karen E Knudsen
- Kimmel Cancer Center, Departments of Cancer Biology, Urology, and Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Xia Q, Deliard S, Yuan CX, Johnson ME, Grant SFA. Characterization of the transcriptional machinery bound across the widely presumed type 2 diabetes causal variant, rs7903146, within TCF7L2. Eur J Hum Genet 2014; 23:103-9. [PMID: 24667787 DOI: 10.1038/ejhg.2014.48] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/13/2014] [Accepted: 02/19/2014] [Indexed: 12/29/2022] Open
Abstract
Resolving the underlying functional mechanism to a given genetic association has proven extremely challenging. However, the strongest associated type 2 diabetes (T2D) locus reported to date, TCF7L2, presents an opportunity for translational analyses, as many studies in multiple ethnicities strongly point to SNP rs7903146 in intron 3 as being the causal variant within this gene. We carried out oligo pull-down combined with mass spectrophotometry (MS) to elucidate the specific transcriptional machinery across this SNP using protein extracts from HCT116 cells. We observed that poly (ADP-ribose) polymerase 1 (PARP-1) is by far the most abundant binding factor. Pursuing the possibility of a feedback mechanism, we observed that PARP-1, along with the next most abundant binding proteins, DNA topoisomerase I and ATP-dependent RNA helicase A, dimerize with the TCF7L2 protein and with each other. We uncovered further evidence of a feedback mechanism using a luciferase reporter approach, including observing expression differences between alleles for rs7903146. We also found that there was an allelic difference in the MS results for proteins with less abundant binding, namely X-ray repair cross-complementing 5 and RPA/p70. Our results point to a protein complex binding across rs7903146 within TCF7L2 and suggests a possible mechanism by which this locus confers its T2D risk.
Collapse
Affiliation(s)
- Qianghua Xia
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sandra Deliard
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chao-Xing Yuan
- Department of Proteomics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew E Johnson
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Struan F A Grant
- 1] Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA [2] Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA [3] Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Igarashi M, Hippo Y, Ochiai M, Fukuda H, Nakagama H. AKT is critically involved in cooperation between obesity and the dietary carcinogen amino-1-methyl-6-phenylimidazo [4,5-b] (PhIP) toward colon carcinogenesis in rats. Biochem Biophys Res Commun 2013; 443:852-7. [PMID: 24342614 DOI: 10.1016/j.bbrc.2013.12.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 12/12/2022]
Abstract
Obesity is highly associated with colon cancer development. Whereas it is generally attributed to pro-tumorigenic effects of high fat diet (HFD), we here show that a common genetic basis for predisposition to obesity and colon cancer might also underlie the close association. Comparison across multiple rat strains revealed that strains prone to colon tumorigenesis initiated by a dietary carcinogen amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP) tended to develop obesity. Through transcriptome and extensive immunoblotting analyses, we identified the basal level of activated AKT in colonic crypts as a biomarker for the common predisposition. Notably, PhIP induced activation of AKT, which could persist for several weeks under a low fat diet (LFD), but not under HFD. On the other hand, PhIP and HFD independently induced Wnt pathway activation and inhibited apoptosis, through distinct mechanisms involving GSK-3β, caspase 3 and poly-ADP ribose polymerase (PARP). Taken together, these observations provide mechanistic insights into how PhIP-induced activation of AKT might cooperate with HFD at multiple levels toward development of colon cancer.
Collapse
Affiliation(s)
- Maki Igarashi
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yoshitaka Hippo
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Masako Ochiai
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hirokazu Fukuda
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hitoshi Nakagama
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
47
|
Zhao M, Sun J, Zhao Z. Synergetic regulatory networks mediated by oncogene-driven microRNAs and transcription factors in serous ovarian cancer. MOLECULAR BIOSYSTEMS 2013; 9:3187-98. [PMID: 24129674 PMCID: PMC3855196 DOI: 10.1039/c3mb70172g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although high-grade serous ovarian cancer (OVC) is the most lethal gynecologic malignancy in women, little is known about the regulatory mechanisms in the cellular processes that lead to this cancer. Recently, accumulated lines of evidence have shown that the interplay between transcription factors (TFs) and microRNAs (miRNAs) is critical in cellular regulation during tumorigenesis. A comprehensive investigation of TFs and miRNAs, and their target genes, may provide a deeper understanding of the regulatory mechanisms in the pathology of OVC. In this study, we have integrated three complementary algorithms into a framework, aiming to infer the regulation by miRNAs and TFs in conjunction with gene expression profiles. We demonstrated the utility of our framework by inferring 67 OVC-specific regulatory feed-forward loops (FFL) initiated by miRNAs or TFs in high-grade serous OVC. By analyzing these regulatory behaviors, we found that all the 67 FFLs are consistent in their regulatory effects on genes that are jointly targeted by miRNAs and TFs. Remarkably, we unveiled an unbalanced distribution of FFLs with different oncogenic effects. In total, 31 of the 67 coherent FFLs were mainly initiated by oncogenes. On the contrary, only 4 of the FFLs were initiated by tumor suppressor genes. These overwhelmingly observed oncogenic genes were further detected in a sub-network with 32 FFLs centered by miRNA let-7b and TF TCF7L1 to regulate cell differentiation. Closer inspection of 32 FFLs revealed that 75% of the miRNAs reportedly play functional roles in cell differentiation, especially when enriched in epithelial-mesenchymal transitions. This study provides a comprehensive pathophysiological overview of recurring coherent circuits in OVC that are co-regulated by miRNAs and TFs. The prevalence of oncogenic coherent FFLs in serous OVC suggests that oncogene-driven regulatory motifs could cooperatively act upon critical cellular processes such as cell differentiation in a highly efficient and consistent manner.
Collapse
Affiliation(s)
- Min Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | | | | |
Collapse
|
48
|
Yamada T, Masuda M, Sawa M. Abstract A132: Development of a small-molecule inhibitor targeting the Wnt signaling pathway. Mol Cancer Ther 2013. [DOI: 10.1158/1535-7163.targ-13-a132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Wnt signaling is a major force driving colorectal carcinogenesis, but only a small number of druggable target molecules in the Wnt pathway have been found. Our recent series of proteomic studies has revealed that various classes of nuclear proteins participate in the β-catenin and T-cell factor-4 (TCF-4) complex and modulate the activity of Wnt signalling. Those included fusion/translocated in liposarcoma (FUS/TLS) (1), poly(ADP-ribose) polymerase-1 (PARP-1) (2), Ku70/Ku80 (3), DNA topoisomerase IIα (Topo IIα) (4), splicing factor-1 (SF1) (5), Ran (ras-related nuclear protein), RanBP2 (Ran binding protein-2), and RanGAP1 (Ran GTPase-activating protein-1) (6), Traf2- and Nck-interacting kinase (TNIK) (7). Among these proteins, TNIK protein kinase attracted our current interest because various small-molecule kinase inhibitors have been applied successfully to cancer treatment. TNIK was an activating kinase for TCF-4, and colorectal cancer cells are highly dependent upon the expression and catalytic activity of TNIK for proliferation (7). High-throughput screening of a kinase-focused compound library (>10,000 compounds) against recombinant TNIK identified a lead candidate that inhibited the kinase activity of TNIK with an IC50 value of 8.6 nM and the transcriptional activity of TCF-4. TNIK is a feasible drug target in the Wnt signaling pathway.
Citation Information: Mol Cancer Ther 2013;12(11 Suppl):A132.
Citation Format: Tesshi Yamada, Mari Masuda, Masaaki Sawa. Development of a small-molecule inhibitor targeting the Wnt signaling pathway. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr A132.
Collapse
Affiliation(s)
| | - Mari Masuda
- 1National Cancer Ctr. Research Inst., Tokyo, Japan
| | | |
Collapse
|
49
|
Chow JPH, Man WY, Mao M, Chen H, Cheung F, Nicholls J, Tsao SW, Li Lung M, Poon RYC. PARP1 is overexpressed in nasopharyngeal carcinoma and its inhibition enhances radiotherapy. Mol Cancer Ther 2013; 12:2517-28. [PMID: 23979918 DOI: 10.1158/1535-7163.mct-13-0010] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma is a rare but highly invasive cancer. As options of agents for effective combination chemoradiotherapy for advanced nasopharyngeal carcinoma are limited, novel therapeutic approaches are desperately needed. The ubiquitin ligase CHFR is known to target PARP1 for degradation and is epigenetically inactivated in nasopharyngeal carcinoma. We present evidence that PARP1 protein is indeed overexpressed in nasopharyngeal carcinoma cells in comparison with immortalized normal nasopharyngeal epithelial cells. Tissue microarray analysis also indicated that PARP1 protein is significantly elevated in primary nasopharyngeal carcinoma tissues, with strong correlation with all stages of nasopharyngeal carcinoma development. We found that the PARP inhibitor AZD2281 (olaparib) increased DNA damage, cell-cycle arrest, and apoptosis in nasopharyngeal carcinoma cells challenged with ionizing radiation or temozolomide. Isobologram analysis confirmed that the cytotoxicity triggered by AZD2281 and DNA-damaging agents was synergistic. Finally, AZD2281 also enhanced the tumor-inhibitory effects of ionizing radiation in animal xenograft models. These observations implicate that PARP1 overexpression is an early event in nasopharyngeal carcinoma development and provide a molecular basis of using PARP inhibitors to potentiate treatment of nasopharyngeal carcinoma with radio- and chemotherapy.
Collapse
Affiliation(s)
- Jeremy P H Chow
- Corresponding Author: Randy Y.C. Poon, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|