1
|
Peltomäki P, Nyström M, Mecklin JP, Seppälä TT. Lynch Syndrome Genetics and Clinical Implications. Gastroenterology 2023; 164:783-799. [PMID: 36706841 DOI: 10.1053/j.gastro.2022.08.058] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/29/2023]
Abstract
Lynch syndrome (LS) is one of the most prevalent hereditary cancer syndromes in humans and accounts for some 3% of unselected patients with colorectal or endometrial cancer and 10%-15% of those with DNA mismatch repair-deficient tumors. Previous studies have established the genetic basis of LS predisposition, but there have been significant advances recently in the understanding of the molecular pathogenesis of LS tumors, which has important implications in clinical management. At the same time, immunotherapy has revolutionized the treatment of advanced cancers with DNA mismatch repair defects. We aim to review the recent progress in the LS field and discuss how the accumulating epidemiologic, clinical, and molecular information has contributed to a more accurate and complete picture of LS, resulting in genotype- and immunologic subtype-specific strategies for surveillance, cancer prevention, and treatment.
Collapse
Affiliation(s)
- Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
| | - Minna Nyström
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Science, Nova Hospital, Central Finland Health Care District, Jyväskylä, Finland; Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Toni T Seppälä
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland; Applied Tumor Genomics Research Programs Unit, University of Helsinki, Helsinki, Finland; Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
2
|
Singh S, Sharma S, Baranwal M. Identification of SNPs in hMSH3/MSH6 interaction domain affecting the structure and function of MSH2 protein. Biotechnol Appl Biochem 2022; 69:2454-2465. [PMID: 34837403 DOI: 10.1002/bab.2295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
MutS homolog 2 (MSH2) is a mismatch repair gene that plays a critical role in DNA repair pathways, and its mutations are associated with different cancers. The present study aimed to find out the single nucleotide polymorphisms (SNPs) of MSH2 protein associated with causing structural and functional changes leading to the development of cancer with the help of computational tools. Four different tools for predicting deleterious SNPs (SIFT, PROVEAN, PANTHER, and PolyPhen), two tools each for identifying disease association (PhD-SNP and SNP&GO) and estimating stability (I-mutant and MUPro) were employed. Homology modeling, energy minimization, and root mean square deviation calculation were used to estimate structural variations. Twenty-seven SNPs and five SNPs (double amino acid change) were identified based on a consensus approach that might be associated with the structural and functional change in MSH2 protein. Molecular docking reveals that six SNPs affect the interaction of MSH2 and MSH6. Twelve identified SNPs were reported to be linked with hereditary nonpolyposis, colorectal cancer, and Lynch syndrome. Further, selected SNPs need to be validated in an in vitro system for their precise association with cancer predisposition.
Collapse
Affiliation(s)
- Sidhartha Singh
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| |
Collapse
|
3
|
Dong L, Zou S, Jin X, Lu H, Zhang Y, Guo L, Cai J, Ying J. Cytoplasmic MSH2 Related to Genomic Deletions in the MSH2/EPCAM Genes in Colorectal Cancer Patients With Suspected Lynch Syndrome. Front Oncol 2021; 11:627460. [PMID: 34055602 PMCID: PMC8162378 DOI: 10.3389/fonc.2021.627460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background A large proportion of patients with Lynch syndrome (LS) have MSH2 abnormalities, but genotype-phenotype studies of MSH2 mutations in LS are still lacking. The aim of this study was to comprehensively analyze the clinicopathological characteristics and molecular basis of colorectal cancer (CRC) in patients with uncommon MSH2 cytoplasmic expression. Methods We retrospectively reviewed 4195 consecutive cases of CRC patients diagnosed between January 2015 and December 2017 at the Cancer Hospital Chinese Academy of Medical Sciences. Of the 4195 patients with CRC, 69 were indicated to have abnormal MSH2 expression through tumor immunohistochemical staining. Genetic tests, such as next-generation sequencing, large genomic rearrangement (LGR) analysis, microsatellite instability status analysis and genomic breakpoint analysis, were performed. Clinicopathological and molecular characteristics and clinical immunotherapy response were analyzed. Results Forty-five of 69 patients were identified to have LS with pathogenic germline mutations in MSH2 and/or EPCAM. Of these LS patients, 26.7% were confirmed to harbor large genomic rearrangements (LGRs). Of note, three tumors from two unrelated family pedigrees exhibited a rare cytoplasmic MSH2 staining pattern that was found in LS patients with EPCAM/MSH2 deletions. RNA analysis showed that two novel mRNA fusions of EPCAM and MSH2 resulted in the predicted protein fusion with MSH2 cytoplasmic localization. Analyses of genomic breakpoints indicated that two novel deletions of EPCAM and MSH2 originated from Alu repeat-mediated recombination events. Our study also provides clinical evidence for the beneficial effect of the PD-1 inhibitor pembrolizumab for CRC patients that exhibit cytoplasmic MSH2 staining. Conclusion Our study demonstrates that the rare cytoplasmic MSH2 staining pattern should be fully recognized by pathologists and geneticists. Given the specific genotype-phenotype correlation in LS screening, we advocate that all CRC patients with cytoplasmic MSH2 staining in histology should be screened for LGRs of EPCAM and MSH2.
Collapse
Affiliation(s)
- Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuangmei Zou
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianglan Jin
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Haizhen Lu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Zhang
- Beijing Microread Genetics, Beijing, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Singh AK, Talseth-Palmer B, McPhillips M, Lavik LAS, Xavier A, Drabløs F, Sjursen W. Targeted sequencing of genes associated with the mismatch repair pathway in patients with endometrial cancer. PLoS One 2020; 15:e0235613. [PMID: 32634176 PMCID: PMC7340288 DOI: 10.1371/journal.pone.0235613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/19/2020] [Indexed: 01/28/2023] Open
Abstract
Germline variants inactivating the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause Lynch syndrome that implies an increased cancer risk, where colon and endometrial cancer are the most frequent. Identification of these pathogenic variants is important to identify endometrial cancer patients with inherited increased risk of new cancers, in order to offer them lifesaving surveillance. However, several other genes are also part of the MMR pathway. It is therefore relevant to search for variants in additional genes that may be associated with cancer risk by including all known genes involved in the MMR pathway. Next-generation sequencing was used to screen 22 genes involved in the MMR pathway in constitutional DNA extracted from full blood from 199 unselected endometrial cancer patients. Bioinformatic pipelines were developed for identification and functional annotation of variants, using several different software tools and custom programs. This facilitated identification of 22 exonic, 4 UTR and 9 intronic variants that could be classified according to pathogenicity. This study has identified several germline variants in genes of the MMR pathway that potentially may be associated with an increased risk for cancer, in particular endometrial cancer, and therefore are relevant for further investigation. We have also developed bioinformatics strategies to analyse targeted sequencing data, including low quality data and genomic regions outside of the protein coding exons of the relevant genes.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU—Norwegian University of Science and Technology, Trondheim, Norway
| | - Bente Talseth-Palmer
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Department of Research and Development, Møre og Romsdal Hospital Trust, Molde, Norway
| | - Mary McPhillips
- NSW Health Pathology, Molecular Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | | | - Alexandre Xavier
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Finn Drabløs
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU—Norwegian University of Science and Technology, Trondheim, Norway
| | - Wenche Sjursen
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU—Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
5
|
González-Acosta M, Hinrichsen I, Fernández A, Lázaro C, Pineda M, Plotz G, Capellá G. Validation of an in Vitro Mismatch Repair Assay Used in the Functional Characterization of Mismatch Repair Variants. J Mol Diagn 2019; 22:376-385. [PMID: 31881334 DOI: 10.1016/j.jmoldx.2019.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/27/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022] Open
Abstract
A significant proportion of DNA-mismatch repair (MMR) variants are classified as of unknown significance, precluding diagnosis. The in vitro MMR assay is used to assess their MMR capability, likely the most important function of an MMR protein. However, the robustness of the assay, crucial for its use in the clinical setting, has been rarely evaluated. The aim of the present work was to validate an in vitro MMR assay approach to the functional characterization of MMR variants, as a first step to meeting quality standards of diagnostic laboratories. The MMR assay was optimized by testing a variety of reagents and experimental conditions. Reference materials and standard operating procedures were established. To determine the intra- and interexperimental variability of the assay and its reproducibility among centers, independent transfections of six previously characterized MLH1 variants were performed in two independent laboratories. Reagents and conditions optimal for performing the in vitro MMR assay were determined. The validated assay demonstrated no significant intra- or interexperimental variability and good reproducibility between centers. We set up a robust in vitro MMR assay that can provide relevant in vitro functional evidence for MMR variant pathogenicity assessment, eventually improving the molecular diagnosis of hereditary cancer syndromes associated with MMR deficiency.
Collapse
Affiliation(s)
- Maribel González-Acosta
- Hereditary Cancer Program, the Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Ciber Oncología (CIBERONC) Instituto Salud Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Inga Hinrichsen
- Biomedical Research Laboratory, Department of Internal Medicine 1, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Anna Fernández
- Hereditary Cancer Program, the Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Ciber Oncología (CIBERONC) Instituto Salud Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, the Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Ciber Oncología (CIBERONC) Instituto Salud Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marta Pineda
- Hereditary Cancer Program, the Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Ciber Oncología (CIBERONC) Instituto Salud Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Guido Plotz
- Biomedical Research Laboratory, Department of Internal Medicine 1, Universitätsklinikum Frankfurt, Frankfurt, Germany
| | - Gabriel Capellá
- Hereditary Cancer Program, the Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Ciber Oncología (CIBERONC) Instituto Salud Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
6
|
Novel Genetic Markers for Early Detection of Elevated Breast Cancer Risk in Women. Int J Mol Sci 2019; 20:ijms20194828. [PMID: 31569399 PMCID: PMC6801521 DOI: 10.3390/ijms20194828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/25/2022] Open
Abstract
This study suggests that two newly discovered variants in the MSH2 gene, which codes for a DNA mismatch repair (MMR) protein, can be associated with a high risk of breast cancer. While variants in the MSH2 gene are known to be linked with an elevated cancer risk, the MSH2 gene is not a part of the standard kit for testing patients for elevated breast cancer risk. Here we used the results of genetic testing of women diagnosed with breast cancer, but who did not have variants in BRCA1 and BRCA2 genes. Instead, the test identified four variants with unknown significance (VUS) in the MSH2 gene. Here, we carried in silico analysis to develop a classifier that can distinguish pathogenic from benign mutations in MSH2 genes taken from ClinVar. The classifier was then used to classify VUS in MSH2 genes, and two of them, p.Ala272Val and p.Met592Val, were predicted to be pathogenic mutations. These two mutations were found in women with breast cancer who did not have mutations in BRCA1 and BRCA2 genes, and thus they are suggested to be considered as new bio-markers for the early detection of elevated breast cancer risk. However, before this is done, an in vitro validation of mutation pathogenicity is needed and, moreover, the presence of these mutations should be demonstrated in a higher number of patients or in families with breast cancer history.
Collapse
|
7
|
Vermaut C, Leclerc J, Vasseur F, Wacrenier A, Lovecchio T, Boidin D, Rebergue MH, Cattan S, Manouvrier S, Lejeune S, Buisine MP. MSH2 c.1022T>C, p.Leu341Pro is a founder pathogenic variation and a major cause of Lynch syndrome in the North of France. Genes Chromosomes Cancer 2019; 59:111-118. [PMID: 31433521 DOI: 10.1002/gcc.22804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 11/10/2022] Open
Abstract
Interpretation of missense variants remains a major challenge for genetic diagnosis, even in well-known genes such as the DNA-mismatch repair (MMR) genes involved in Lynch syndrome. We report the characterization of a variant in MSH2: c.1022T>C, which was identified in 20 apparently unrelated families living in the North of France. A total of 150 patients from 20 families were included in this study. Family segregation studies, tumor analyses and functional analyses at both the RNA and protein levels were performed. Founder effect was evaluated by haplotype analysis.We show that MSH2 c.1022T>C is a missense variant (p.Leu341Pro) that affects protein stability. This variant is frequent in the North of France (7.7% of pathogenic variations identified in MMR genes), and is located on an ancestral haplotype. It is associated with a high risk of a broad tumor spectrum including brain and cutaneous cancers. The MSH2 c.1022T>C variant is a pathogenic founder variation associated with a high risk of cancer. These findings have important implications for genetic counseling and management of variant carriers.
Collapse
Affiliation(s)
- Catherine Vermaut
- Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France
| | - Julie Leclerc
- Department of Biochemistry and Molecular Biology, Inserm UMR-S1172 - Jean-Pierre Aubert Research Center, Lille University, and Lille University Hospital, Lille, France
| | - Francis Vasseur
- Department of Biostatistics, Lille University and Lille University Hospital, Lille, France
| | - Agnes Wacrenier
- Department of Pathology, Lille University Hospital, Lille, France
| | - Tonio Lovecchio
- Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France
| | - Denis Boidin
- Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille, France
| | | | - Stephane Cattan
- Department of Gastroenterology, Lille University Hospital, Lille, France
| | - Sylvie Manouvrier
- Department of Clinical Genetics, Lille University Hospital, Lille, France.,Department of Clinical Genetics, Lille University EA 7364 - RADEME (Maladies RAres du Développement et du Métabolisme), and Lille University Hospital, Lille, France
| | - Sophie Lejeune
- Department of Clinical Genetics, Lille University Hospital, Lille, France
| | - Marie-Pierre Buisine
- Department of Biochemistry and Molecular Biology, Inserm UMR-S1172 - Jean-Pierre Aubert Research Center, Lille University, and Lille University Hospital, Lille, France
| |
Collapse
|
8
|
Vaisfeld A, Calicchia M, Pomponi MG, Lucci-Cordisco E, Reggiani-Bonetti L, Genuardi M. Lynch syndrome with exclusive skin involvement: time to consider a molecular definition? Fam Cancer 2019; 18:421-427. [PMID: 31292797 DOI: 10.1007/s10689-019-00139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Muir-Torre syndrome (MTS) is clinically characterized by the occurrence of skin, usually sebaceous, and visceral tumors in the same individual. The most common underlying mechanism is a constitutional defect of the mismatch repair (MMR) genes that cause Lynch syndrome (LS). Herewithin we report on a 76 years-old male patient heterozygous for a pathogenic MSH2 missense substitution who presented with a striking cutaneous phenotype in the absence of typical LS visceral tumors. The patient developed 20 skin tumors, including sebaceous adenomas/carcinomas and keratoacanthomas. Two skin tumors showed immunohistochemical loss of MSH2 and MSH6 expression. There was no apparent family history of neoplasia. Based on the variable involvement of the skin and internal organs, we suggest that the definition of tumor associations that are often observed as variants of inherited tumor syndromes, such as MTS, should be guided by the underlying molecular bases. In addition, the presence of multiple sebaceous tumors, especially if showing MMR deficiency, appears to be a very strong indicator of a constitutional MMR gene defect. The reasons underlying the high phenotypic variability of cutaneous phenotypes associated with constitutional MMR defects are yet to be determined.
Collapse
Affiliation(s)
- Alessandro Vaisfeld
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Genetica Medica, Rome, Italy.,Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Martina Calicchia
- Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Grazia Pomponi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Genetica Medica, Rome, Italy
| | - Emanuela Lucci-Cordisco
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Genetica Medica, Rome, Italy.,Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Reggiani-Bonetti
- Dipartimento di Medicina di Laboratorio e Anatomia Patologica, Università di Modena e Reggio Emilia, Modena, Italy
| | - Maurizio Genuardi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Genetica Medica, Rome, Italy. .,Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
9
|
A functional assay-based procedure to classify mismatch repair gene variants in Lynch syndrome. Genet Med 2018; 21:1486-1496. [PMID: 30504929 DOI: 10.1038/s41436-018-0372-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023] Open
Abstract
PURPOSE To enhance classification of variants of uncertain significance (VUS) in the DNA mismatch repair (MMR) genes in the cancer predisposition Lynch syndrome, we developed the cell-free in vitro MMR activity (CIMRA) assay. Here, we calibrate and validate the assay, enabling its integration with in silico and clinical data. METHODS Two sets of previously classified MLH1 and MSH2 variants were selected from a curated MMR gene database, and their biochemical activity determined by the CIMRA assay. The assay was calibrated by regression analysis followed by symmetric cross-validation and Bayesian integration with in silico predictions of pathogenicity. CIMRA assay reproducibility was assessed in four laboratories. RESULTS Concordance between the training runs met our prespecified validation criterion. The CIMRA assay alone correctly classified 65% of variants, with only 3% discordant classification. Bayesian integration with in silico predictions of pathogenicity increased the proportion of correctly classified variants to 87%, without changing the discordance rate. Interlaboratory results were highly reproducible. CONCLUSION The CIMRA assay accurately predicts pathogenic and benign MMR gene variants. Quantitative combination of assay results with in silico analysis correctly classified the majority of variants. Using this calibration, CIMRA assay results can be integrated into the diagnostic algorithm for MMR gene variants.
Collapse
|
10
|
Suerink M, Ripperger T, Messiaen L, Menko FH, Bourdeaut F, Colas C, Jongmans M, Goldberg Y, Nielsen M, Muleris M, van Kouwen M, Slavc I, Kratz C, Vasen HF, Brugiѐres L, Legius E, Wimmer K. Constitutional mismatch repair deficiency as a differential diagnosis of neurofibromatosis type 1: consensus guidelines for testing a child without malignancy. J Med Genet 2018; 56:53-62. [PMID: 30415209 DOI: 10.1136/jmedgenet-2018-105664] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022]
Abstract
Constitutional mismatch repair deficiency (CMMRD) is a rare childhood cancer predisposition syndrome caused by biallelic germline mutations in one of four mismatch-repair genes. Besides very high tumour risks, CMMRD phenotypes are often characterised by the presence of signs reminiscent of neurofibromatosis type 1 (NF1). Because NF1 signs may be present prior to tumour onset, CMMRD is a legitimate differential diagnosis in an otherwise healthy child suspected to have NF1/Legius syndrome without a detectable underlying NF1/SPRED1 germline mutation. However, no guidelines indicate when to counsel and test for CMMRD in this setting. Assuming that CMMRD is rare in these patients and that expected benefits of identifying CMMRD prior to tumour onset should outweigh potential harms associated with CMMRD counselling and testing in this setting, we aimed at elaborating a strategy to preselect, among children suspected to have NF1/Legius syndrome without a causative NF1/SPRED1 mutation and no overt malignancy, those children who have a higher probability of having CMMRD. At an interdisciplinary workshop, we discussed estimations of the frequency of CMMRD as a differential diagnosis of NF1 and potential benefits and harms of CMMRD counselling and testing in a healthy child with no malignancy. Preselection criteria and strategies for counselling and testing were developed and reviewed in two rounds of critical revisions. Existing diagnostic CMMRD criteria were adapted to serve as a guideline as to when to consider CMMRD as differential diagnosis of NF1/Legius syndrome. In addition, counselling and testing strategies are suggested to minimise potential harms.
Collapse
Affiliation(s)
- Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Ludwine Messiaen
- Department of Genetics, University of Alabama, Birmingham, Alabama, USA
| | - Fred H Menko
- Family Cancer Clinic, Antoni van Leeuwenhoek Hospital and The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Franck Bourdeaut
- Département d'Oncologie Pédiatrique et d'Adolescents Jeunes Adultes, Institut Curie, Paris, France
| | - Chrystelle Colas
- Department of Genetics, Institut Curie, Paris Sciences Lettres Research University, Paris, France.,Centre de Recherche Saint-Antoine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
| | - Marjolijn Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yael Goldberg
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Martine Muleris
- Centre de Recherche Saint-Antoine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
| | - Mariëtte van Kouwen
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Irene Slavc
- Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Christian Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Hans F Vasen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Laurence Brugiѐres
- Children and Adolescent Oncology Department, Gustave Roussy Cancer Institute, Villejuif, France
| | - Eric Legius
- Department of Human Genetics, University Hospital Leuven and KU Leuven, Leuven, Belgium
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Shirts BH, Konnick EQ, Upham S, Walsh T, Ranola JMO, Jacobson AL, King MC, Pearlman R, Hampel H, Pritchard CC. Using Somatic Mutations from Tumors to Classify Variants in Mismatch Repair Genes. Am J Hum Genet 2018; 103:19-29. [PMID: 29887214 DOI: 10.1016/j.ajhg.2018.05.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/01/2018] [Indexed: 01/28/2023] Open
Abstract
Present guidelines for classification of constitutional variants do not incorporate inferences from mutations seen in tumors, even when these are associated with a specific molecular phenotype. When somatic mutations and constitutional mutations lead to the same molecular phenotype, as for the mismatch repair genes, information from somatic mutations may enable interpretation of previously unclassified variants. To test this idea, we first estimated likelihoods that somatic variants in MLH1, MSH2, MSH6, and PMS2 drive microsatellite instability and characteristic IHC staining patterns by calculating likelihoods of high versus low normalized variant read fractions of 153 mutations known to be pathogenic versus those of 760 intronic passenger mutations from 174 paired tumor-normal samples. Mutations that explained the tumor mismatch repair phenotype had likelihood ratio for high variant read fraction of 1.56 (95% CI 1.42-1.71) at sites with no loss of heterozygosity and of 26.5 (95% CI 13.2-53.0) at sites with loss of heterozygosity. Next, we applied these ratios to 165 missense, synonymous, and splice variants observed in tumors, combining in a Bayesian analysis the likelihood ratio corresponding with the adjusted variant read fraction with pretest probabilities derived from published analyses and public databases. We suggest classifications for 86 of 165 variants: 7 benign, 31 likely benign, 22 likely pathogenic, and 26 pathogenic. These results illustrate that for mismatch repair genes, characterization of tumor mutations permits tumor mutation data to inform constitutional variant classification. We suggest modifications to incorporate molecular phenotype in future variant classification guidelines.
Collapse
Affiliation(s)
- Brian H Shirts
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Eric Q Konnick
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sarah Upham
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Tom Walsh
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | - Angela L Jacobson
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mary-Claire King
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Rachel Pearlman
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43221, USA
| | - Heather Hampel
- Department of Internal Medicine, Division of Human Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43221, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Bianchi F, Maccaroni E, Belvederesi L, Brugiati C, Giampieri R, Bini F, Bracci R, Pagliaretta S, Del Prete M, Piva F, Mandolesi A, Scarpelli M, Berardi R. A germline missense mutation in exon 3 of the MSH2 gene in a Lynch syndrome family: correlation with phenotype and localization assay. Fam Cancer 2018; 17:215-224. [PMID: 28785832 DOI: 10.1007/s10689-017-0030-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lynch syndrome is caused by germline mutations in any of the MisMatch Repair (MMR) genes. About 37% of MSH2 variants are missense variants causing single amino-acid substitutions. Whether missense variants affect the normal function of MMR proteins is crucial both to provide affected families a more accurate risk assessment and to offer predictive testing to family members. Here we report one family, fulfilling both Amsterdam I and II criteria and Bethesda guidelines, referred to our center for genetic counselling. The proband and some of her relatives have been investigated for microsatellite instability (MSI), immunohistochemical MMR protein staining, direct sequencing and Multiplex Ligation-dependent Probe Amplification (MLPA). Also Subcellular Localization Assay and Splice site predictions analyses were used. A germline missense variant of uncertain significance (exon 3, p.Val161Asp) was found in MSH2 gene in proband and in some relatives. The variant was associated with lack of expression of MSH2 protein (DMMR) and MSI-High status in tumour tissues. The localization assay of the MSH2 protein showed an abnormal subcellular localization pattern of the corresponding protein. Finally, splice-site prediction analysis ruled out a potential role of new splice sites as the cause behind the lack of expression of MSH2 protein and we suppose a potential correlation with other forms of post-transcriptional regulation (circular RNAs). The variant here reported shows a high correlation with phenotype and is located in an evolutionary conserved domain. The localization assay also suggest a potential pathogenic role, thus supporting further research on this matter.
Collapse
Affiliation(s)
- Francesca Bianchi
- Clinica Oncologica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Via Conca 71, 60126, Ancona, Italy
| | - Elena Maccaroni
- Clinica Oncologica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Via Conca 71, 60126, Ancona, Italy.
| | - Laura Belvederesi
- Clinica Oncologica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Via Conca 71, 60126, Ancona, Italy
| | - Cristiana Brugiati
- Clinica Oncologica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Via Conca 71, 60126, Ancona, Italy
| | - Riccardo Giampieri
- Clinica Oncologica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Via Conca 71, 60126, Ancona, Italy
| | - Federica Bini
- Clinica Oncologica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Via Conca 71, 60126, Ancona, Italy
| | - Raffaella Bracci
- Clinica Oncologica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Via Conca 71, 60126, Ancona, Italy
| | - Silvia Pagliaretta
- Clinica Oncologica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Via Conca 71, 60126, Ancona, Italy
| | - Michela Del Prete
- Clinica Oncologica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Via Conca 71, 60126, Ancona, Italy
| | - Francesco Piva
- Dipartimento di Scienze Cliniche Specialistiche e Odontostomatologiche, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | - Alessandra Mandolesi
- Anatomia Patologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | - Marina Scarpelli
- Anatomia Patologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | - Rossana Berardi
- Clinica Oncologica e Centro Regionale di Genetica Oncologica, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Via Conca 71, 60126, Ancona, Italy
| |
Collapse
|
13
|
The current value of determining the mismatch repair status of colorectal cancer: A rationale for routine testing. Crit Rev Oncol Hematol 2017; 116:38-57. [PMID: 28693799 DOI: 10.1016/j.critrevonc.2017.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/02/2017] [Accepted: 05/15/2017] [Indexed: 02/08/2023] Open
Abstract
Colorectal Cancer (CRC) is the third most prevalent cancer in men and women. Up to 15% of CRCs display microsatellite instability (MSI). MSI is reflective of a deficient mismatch repair (MMR) system and is most commonly caused by hypermethylation of the MLH1 promoter. However, it may also be due to autosomal dominant constitutional mutations in DNA MMR, termed Lynch Syndrome. MSI may be diagnosed via polymerase chain reaction (PCR) or alternatively, immunohistochemistry (IHC) can identify MMR deficiency (dMMR). Many institutions now advocate universal tumor screening of CRC via either PCR for MSI or IHC for dMMR to guide Lynch Syndrome testing. The association of sporadic MSI with methylation of the MLH1 promoter and an activating BRAF mutation may offer further exclusion criteria for genetic testing. Aside from screening for Lynch syndrome, MMR testing is important because of its prognostic and therapeutic implications. Several studies have shown MSI CRCs exhibit different clinicopathological features and prognosis compared to microsatellite-stable (MSS) CRCs. For example, response to conventional chemotherapy has been reported to be less in MSI tumours. More recently, MSI tumours have been shown to be responsive to immune-checkpoint inhibition providing a novel therapeutic strategy. This provides a rationale for routine testing for MSI or dMMR in CRC.
Collapse
|
14
|
Tricarico R, Kasela M, Mareni C, Thompson BA, Drouet A, Staderini L, Gorelli G, Crucianelli F, Ingrosso V, Kantelinen J, Papi L, De Angioletti M, Berardi M, Gaildrat P, Soukarieh O, Turchetti D, Martins A, Spurdle AB, Nyström M, Genuardi M. Assessment of the InSiGHT Interpretation Criteria for the Clinical Classification of 24 MLH1 and MSH2 Gene Variants. Hum Mutat 2016; 38:64-77. [PMID: 27629256 DOI: 10.1002/humu.23117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/04/2016] [Accepted: 09/09/2016] [Indexed: 01/15/2023]
Abstract
Pathogenicity assessment of DNA variants in disease genes to explain their clinical consequences is an integral component of diagnostic molecular testing. The International Society for Gastrointestinal Hereditary Tumors (InSiGHT) has developed specific criteria for the interpretation of mismatch repair (MMR) gene variants. Here, we performed a systematic investigation of 24 MLH1 and MSH2 variants. The assessments were done by analyzing population frequency, segregation, tumor molecular characteristics, RNA effects, protein expression levels, and in vitro MMR activity. Classifications were confirmed for 15 variants and changed for three, and for the first time determined for six novel variants. Overall, based on our results, we propose the introduction of some refinements to the InSiGHT classification rules. The proposed changes have the advantage of homogenizing the InSIGHT interpretation criteria with those set out by the Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium for the BRCA1/BRCA2 genes. We also observed that the addition of only few clinical data was sufficient to obtain a more stable classification for variants considered as "likely pathogenic" or "likely nonpathogenic." This shows the importance of obtaining as many as possible points of evidence for variant interpretation, especially from the clinical setting.
Collapse
Affiliation(s)
- Rossella Tricarico
- Department of Biomedical, Experimental and Clinical Sciences, Medical Genetics Unit, University of Florence, Florence, Italy.,Cancer Epigenetics and Cancer Biology Programs, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mariann Kasela
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | | | - Bryony A Thompson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Aurélie Drouet
- Inserm-U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Lucia Staderini
- Department of Biomedical, Experimental and Clinical Sciences, Medical Genetics Unit, University of Florence, Florence, Italy.,Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Greta Gorelli
- Department of Biomedical, Experimental and Clinical Sciences, Medical Genetics Unit, University of Florence, Florence, Italy
| | - Francesca Crucianelli
- Department of Biomedical, Experimental and Clinical Sciences, Medical Genetics Unit, University of Florence, Florence, Italy
| | - Valentina Ingrosso
- Department of Biomedical, Experimental and Clinical Sciences, Medical Genetics Unit, University of Florence, Florence, Italy
| | - Jukka Kantelinen
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Laura Papi
- Department of Biomedical, Experimental and Clinical Sciences, Medical Genetics Unit, University of Florence, Florence, Italy
| | - Maria De Angioletti
- Cancer Genetics and Gene Transfer - Core Research Laboratory, Istituto Toscano Tumori, Florence, Italy.,ICCOM-CNR, Sesto Fiorentino, Italy
| | - Margherita Berardi
- Cancer Genetics and Gene Transfer - Core Research Laboratory, Istituto Toscano Tumori, Florence, Italy
| | - Pascaline Gaildrat
- Inserm-U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Omar Soukarieh
- Inserm-U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Daniela Turchetti
- Medical Genetics, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Alexandra Martins
- Inserm-U1079-IRIB, Normandy Centre for Genomic and Personalized Medicine, University of Rouen, Rouen, France
| | - Amanda B Spurdle
- Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Minna Nyström
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Maurizio Genuardi
- Department of Biomedical, Experimental and Clinical Sciences, Medical Genetics Unit, University of Florence, Florence, Italy.,Institute of Genomic Medicine, A. Gemelli School of Medicine, Medical Genetics Unit, Catholic University of the Sacred Heart, Rome, Italy
| | | |
Collapse
|
15
|
Oligonucleotide-directed mutagenesis screen to identify pathogenic Lynch syndrome-associated MSH2 DNA mismatch repair gene variants. Proc Natl Acad Sci U S A 2016; 113:4128-33. [PMID: 26951660 DOI: 10.1073/pnas.1520813113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Single-stranded DNA oligonucleotides can achieve targeted base-pair substitution with modest efficiency but high precision. We show that "oligo targeting" can be used effectively to study missense mutations in DNA mismatch repair (MMR) genes. Inherited inactivating mutations in DNA MMR genes are causative for the cancer predisposition Lynch syndrome (LS). Although overtly deleterious mutations in MMR genes can clearly be ascribed as the cause of LS, the functional implications of missense mutations are often unclear. We developed a genetic screen to determine the pathogenicity of these variants of uncertain significance (VUS), focusing on mutator S homolog 2 (MSH2). VUS were introduced into the endogenous Msh2 gene of mouse embryonic stem cells by oligo targeting. Subsequent selection for MMR-deficient cells using the guanine analog 6-thioguanine allowed the detection of MMR-abrogating VUS. The screen was able to distinguish weak and strong pathogenic variants from polymorphisms and was used to investigate 59 Msh2 VUS. Nineteen of the 59 VUS were identified as pathogenic. Functional assays revealed that 14 of the 19 detected variants fully abrogated MMR activity and that five of the detected variants attenuated MMR activity. Implementation of the screen in clinical practice allows proper counseling of mutation carriers and treatment of their tumors.
Collapse
|
16
|
Mismatch repair deficient-crypts in non-neoplastic colonic mucosa in Lynch syndrome: insights from an illustrative case. Fam Cancer 2015; 14:61-8. [PMID: 25173403 DOI: 10.1007/s10689-014-9751-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mono-allelic germline mutations in DNA mismatch repair (MMR) genes lead to Lynch syndrome (LS). Questions remain as to the timing of the inactivation of the wild-type allele in LS-associated tumorigenesis. Speculation exists that it happens after the neoplasia has been initiated. However, a recent study reported the presence of MMR-deficiency in non-neoplastic colonic crypts in LS; thus the possibility can be raised that these crypts may be tumor precursors, and as such, biallelic loss of MMR may occur prior to neoplasia. Here we report a unique case that showed findings supporting both of the two seemingly conflicting notions. The patient was a 40-year-old female with LS, MSH2 type, who underwent a segmental colectomy for an adenocarcinoma. By immunohistochemistry, the carcinoma lost MSH2/MSH6. Interestingly, there was also complete loss of MSH2/MSH6 in a distinct focus of 20 colonic crypts that were morphologically non-neoplastic, thus supporting the possibility of biallelic loss of MMR before initiation of neoplasia. However, in a separate adenoma, MMR was preserved in neoplastic glands with low grade dysplasia and lost only in glands with high grade dysplasia, i.e., MMR loss after tumor initiation. These are relevant findings with regard to the timing of MMR deficiency in LS tumorigenesis, and bring forth the possibility that varied tumorigenic pathways may exist. Additionally, we observed that the MMR-deficient non-neoplastic crypts harbored increased intraepithelial CD8-positive T-lymphocytes similar to the patient's carcinoma, providing a potential new venue for the study of the natural antitumor immune responses in LS individuals.
Collapse
|
17
|
Heinen CD. Mismatch repair defects and Lynch syndrome: The role of the basic scientist in the battle against cancer. DNA Repair (Amst) 2015; 38:127-134. [PMID: 26710976 DOI: 10.1016/j.dnarep.2015.11.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/21/2015] [Accepted: 11/30/2015] [Indexed: 12/24/2022]
Abstract
We have currently entered a genomic era of cancer research which may soon lead to a genomic era of cancer treatment. Patient DNA sequencing information may lead to a personalized approach to managing an individual's cancer as well as future cancer risk. The success of this approach, however, begins not necessarily in the clinician's office, but rather at the laboratory bench of the basic scientist. The basic scientist plays a critical role since the DNA sequencing information is of limited use unless one knows the function of the gene that is altered and the manner by which a sequence alteration affects that function. The role of basic science research in aiding the clinical management of a disease is perhaps best exemplified by considering the case of Lynch syndrome, a hereditary disease that predisposes patients to colorectal and other cancers. This review will examine how the diagnosis, treatment and even prevention of Lynch syndrome-associated cancers has benefitted from extensive basic science research on the DNA mismatch repair genes whose alteration underlies this condition.
Collapse
Affiliation(s)
- Christopher D Heinen
- Center for Molecular Medicine and Neag Comprehensive Cancer Center, University of Connecticut Health, Farmington, CT 06030, USA.
| |
Collapse
|
18
|
NPM-ALK mediates phosphorylation of MSH2 at tyrosine 238, creating a functional deficiency in MSH2 and the loss of mismatch repair. Blood Cancer J 2015; 5:e311. [PMID: 25978431 PMCID: PMC4476014 DOI: 10.1038/bcj.2015.35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 03/16/2015] [Accepted: 04/07/2015] [Indexed: 12/22/2022] Open
Abstract
The vast majority of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (ALK+ALCL) tumors express the characteristic oncogenic fusion protein NPM-ALK, which mediates tumorigenesis by exerting its constitutive tyrosine kinase activity on various substrates. We recently identified MSH2, a protein central to DNA mismatch repair (MMR), as a novel binding partner and phosphorylation substrate of NPM-ALK. Here, using liquid chromatography–mass spectrometry, we report for the first time that MSH2 is phosphorylated by NPM-ALK at a specific residue, tyrosine 238. Using GP293 cells transfected with NPM-ALK, we confirmed that the MSH2Y238F mutant is not tyrosine phosphorylated. Furthermore, transfection of MSH2Y238F into these cells substantially decreased the tyrosine phosphorylation of endogenous MSH2. Importantly, gene transfection of MSH2Y238F abrogated the binding of NPM-ALK with endogenous MSH2, re-established the dimerization of MSH2:MSH6 and restored the sensitivity to DNA mismatch-inducing drugs, indicative of MMR return. Parallel findings were observed in two ALK+ALCL cell lines, Karpas 299 and SUP-M2. In addition, we found that enforced expression of MSH2Y238F into ALK+ALCL cells alone was sufficient to induce spontaneous apoptosis. In conclusion, our findings have identified NPM-ALK-induced phosphorylation of MSH2 at Y238 as a crucial event in suppressing MMR. Our studies have provided novel insights into the mechanism by which oncogenic tyrosine kinases disrupt MMR.
Collapse
|
19
|
Kansikas M, Kasela M, Kantelinen J, Nyström M. Assessing how reduced expression levels of the mismatch repair genes MLH1, MSH2, and MSH6 affect repair efficiency. Hum Mutat 2014; 35:1123-7. [PMID: 24924810 DOI: 10.1002/humu.22605] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/09/2014] [Indexed: 12/30/2022]
Abstract
Lynch syndrome (LS), the most common familial colon cancer, is associated with mismatch repair (MMR) malfunction. As mutation carriers inherit one normal and one defected MMR gene allele, cancer risk can be considered as limited amount of normal MMR gene product. How reductions in different MMR gene expressions affect MMR capability is, however, not known. The in vitro MMR assay is a method for the pathogenicity assessment of MMR gene variants causing functional or expressional defects and thus also suitable to evaluate the effects of reduced expression of normal mRNA. Here, the assay was applied to quantify repair efficiencies of human cells retaining varying expression levels (25%/50%/75%) of the main LS susceptibility genes MLH1, MSH2, or MSH6. Compared with the shRNA knockdown control, already a 50% reduction in mRNA levels could be detected as decreased MMR function although without statistical significance in MLH1. In MSH2 and MLH1, total loss of MMR was achieved with 25% expression, whereas in MSH6 and MSH2, the repair capability decreased significantly already with 75% expression. Our results provide a preliminary indication of relative expressions required for wild-type function and suggest that the in vitro MMR assay could be used to recognize expression levels indicative of LS.
Collapse
Affiliation(s)
- Minttu Kansikas
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
20
|
Rasmussen LJ, Heinen CD, Royer-Pokora B, Drost M, Tavtigian S, Hofstra RMW, de Wind N. Pathological assessment of mismatch repair gene variants in Lynch syndrome: past, present, and future. Hum Mutat 2012; 33:1617-25. [PMID: 22833534 DOI: 10.1002/humu.22168] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
Lynch syndrome (LS) is caused by germline mutations in DNA mismatch repair (MMR) genes and is the most prevalent hereditary colorectal cancer syndrome. A significant proportion of variants identified in MMR and other common cancer susceptibility genes are missense or noncoding changes whose consequences for pathogenicity cannot be easily interpreted. Such variants are designated as "variants of uncertain significance" (VUS). Management of LS can be significantly improved by identifying individuals who carry a pathogenic variant and thus benefit from screening, preventive, and therapeutic measures. Also, identifying family members that do not carry the variant is important so they can be released from the intensive surveillance. Determining which genetic variants are pathogenic and which are neutral is a major challenge in clinical genetics. The profound mechanistic knowledge on the genetics and biochemistry of MMR enables the development and use of targeted assays to evaluate the pathogenicity of variants found in suspected patients with LS. We describe different approaches for the functional analysis of MMR gene VUS and propose development of a validated diagnostic framework. Furthermore, we call attention to common misconceptions about functional assays and endorse development of an integrated approach comprising validated assays for diagnosis of VUS in patients suspected of LS.
Collapse
Affiliation(s)
- Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
21
|
Heinen CD, Juel Rasmussen L. Determining the functional significance of mismatch repair gene missense variants using biochemical and cellular assays. Hered Cancer Clin Pract 2012; 10:9. [PMID: 22824075 PMCID: PMC3434035 DOI: 10.1186/1897-4287-10-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/28/2012] [Indexed: 12/15/2022] Open
Abstract
With the discovery that the hereditary cancer susceptibility disease Lynch syndrome (LS) is caused by deleterious germline mutations in the DNA mismatch repair (MMR) genes nearly 20 years ago, genetic testing can now be used to diagnose this disorder in patients. A definitive diagnosis of LS can direct how clinicians manage the disease as well as prevent future cancers for the patient and their families. A challenge emerges, however, when a germline missense variant is identified in a MMR gene in a suspected LS patient. The significance of a single amino acid change in these large repair proteins is not immediately obvious resulting in them being designated variants of uncertain significance (VUS). One important strategy for resolving this uncertainty is to determine whether the variant results in a non-functional protein. The ability to reconstitute the MMR reaction in vitro has provided an important experimental tool for studying the functional consequences of VUS. However, beyond this repair assay, a number of other experimental methods have been developed that allow us to test the effect of a VUS on discrete biochemical steps or other aspects of MMR function. Here, we describe some of these assays along with the challenges of using such assays to determine the functional consequences of MMR VUS which, in turn, can provide valuable insight into their clinical significance. With increased gene sequencing in patients, the number of identified VUS has expanded dramatically exacerbating this problem for clinicians. However, basic science research laboratories around the world continue to expand our knowledge of the overall MMR molecular mechanism providing new opportunities to understand the functional significance, and therefore pathogenic significance, of VUS.
Collapse
Affiliation(s)
- Christopher D Heinen
- Neag Comprehensive Cancer Center and Center for Molecular Medicine, University of Connecticut Health Center, 233 Farmington Avenue, ML3101 Farmington, CT, USA.
| | | |
Collapse
|
22
|
Borràs E, Pineda M, Brieger A, Hinrichsen I, Gómez C, Navarro M, Balmaña J, Ramón y Cajal T, Torres A, Brunet J, Blanco I, Plotz G, Lázaro C, Capellá G. Comprehensive functional assessment of MLH1 variants of unknown significance. Hum Mutat 2012; 33:1576-88. [PMID: 22736432 DOI: 10.1002/humu.22142] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/29/2012] [Indexed: 12/15/2022]
Abstract
Lynch syndrome is associated with germline mutations in DNA mismatch repair (MMR) genes. Up to 30% of DNA changes found are variants of unknown significance (VUS). Our aim was to assess the pathogenicity of eight MLH1 VUS identified in patients suspected of Lynch syndrome. All of them are novel or not previously characterized. For their classification, we followed a strategy that integrates family history, tumor pathology, and control frequency data with a variety of in silico and in vitro analyses at RNA and protein level, such as MMR assay, MLH1 and PMS2 expression, and subcellular localization. Five MLH1 VUS were classified as pathogenic: c.[248G>T(;)306G>C], c.[780C>G;788A>C], and c.791-7T>A affected mRNA processing, whereas c.218T>C (p.L73P) and c.244A>G [corrected] (p.T82A) impaired MMR activity. Two other VUS were considered likely neutral: the silent c.702G>A variant did not affect mRNA processing or stability, and c.974G>A (p.R325Q) did not influence MMR function. In contrast, variant c.25C>T (p.R9W) could not be classified, as it associated with intermediate levels of MMR activity. Comprehensive functional assessment of MLH1 variants was useful in their classification and became relevant in the diagnosis and genetic counseling of carrier families.
Collapse
Affiliation(s)
- Ester Borràs
- Hereditary Cancer Program, Catalan Institute of Oncology, ICO-IDIBELL, Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ali H, Olatubosun A, Vihinen M. Classification of mismatch repair gene missense variants with PON-MMR. Hum Mutat 2012; 33:642-50. [PMID: 22290698 DOI: 10.1002/humu.22038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Numerous mismatch repair (MMR) gene variants have been identified in Lynch syndrome and other cancer patients, but knowledge about their pathogenicity is frequently missing. The diagnosis and treatment of patients would benefit from knowing which variants are disease related. Bioinformatic approaches are well suited to the problem and can handle large numbers of cases. Functional effects were revealed based on literature for 168 MMR missense variants. Performance of numerous prediction methods was tested with this dataset. Among the tested tools, only the results of tolerance prediction methods correlated to functional information, however, with poor performance. Therefore, a novel consensus-based predictor was developed. The novel prediction method, pathogenic-or-not mismatch repair (PON-MMR), achieved accuracy of 0.87 and Matthews correlation coefficient of 0.77 on the experimentally verified variants. When applied to 616 MMR cases with unknown effects, 81 missense variants were predicted to be pathogenic and 167 neutral. With PON-MMR, the number of MMR missense variants with unknown effect was reduced by classifying a large number of cases as likely pathogenic or benign. The results can be used, for example, to prioritize cases for experimental studies and assist in the classification of cases.
Collapse
Affiliation(s)
- Heidi Ali
- Institute of Biomedical Technology, FI-33014 University of Tampere, Finland
| | | | | |
Collapse
|
24
|
Kantelinen J, Kansikas M, Candelin S, Hampel H, Smith B, Holm L, Kariola R, Nyström M. Mismatch repair analysis of inherited MSH2 and/or MSH6 variation pairs found in cancer patients. Hum Mutat 2012; 33:1294-301. [PMID: 22581703 DOI: 10.1002/humu.22119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 04/19/2012] [Indexed: 12/24/2022]
Abstract
Mismatch repair (MMR) malfunction causes the accumulation of mismatches in the genome leading to genomic instability and cancer. The inactivation of an MMR gene (MSH2, MSH6, MLH1, or PMS2) with an inherited mutation causes Lynch syndrome (LS), a dominant susceptibility to cancer. MMR gene variants of uncertain significance (VUS) may be pathogenic mutations, which cause LS, may result in moderately increased cancer risks, or may be harmless polymorphisms. Our study suggests that an inherited MMR VUS individually assessed as proficient may, however, in a pair with another MMR VUS found in the same colorectal cancer (CRC) patient have a concomitant contribution to the MMR deficiency. Here, eight pairs of MMR gene variants found in cancer patients were functionally analyzed in an in vitro MMR assay. Although the other pairs do not suggest a compound deficiency, the MSH2 VUS pair c.380A>G/c.982G>C (p.Asn127Ser/p.Ala328Pro), which nearly halves the repair capability of the wild-type MSH2 protein, is presumed to increase the cancer risk considerably. Moreover, two MSH6 variants, c.1304T>C (p.Leu435Pro) and c.1754T>C (p.Leu585Pro), were shown to be MMR deficient. The role of one of the most frequently reported MMR gene VUS, MSH2 c.380A>G (p.Asn127Ser), is especially interesting because its concomitant defect with another variant could finally explain its recurrent occurrence in CRC patients.
Collapse
Affiliation(s)
- Jukka Kantelinen
- Division of Genetics, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
A putative Lynch syndrome family carrying MSH2 and MSH6 variants of uncertain significance-functional analysis reveals the pathogenic one. Fam Cancer 2012; 10:515-20. [PMID: 21431882 DOI: 10.1007/s10689-011-9436-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Inherited pathogenic mutations in the mismatch repair (MMR) genes, MSH2, MLH1, MSH6, and PMS2 predispose to Lynch syndrome (LS). However, the finding of a variant or variants of uncertain significance (VUS) in affected family members complicates the risk assessment. Here, we describe a putative LS family carrying VUS in both MSH2 (c.2768T>A, p.Val923Glu) and MSH6 (c.3563G>A, p.Ser1188Asn). Two colorectal cancer (CRC) patients were studied for mutations and identified as carriers of both variants. In spite of a relatively high mean age of cancer onset (59.5 years) in the family, many CRC patients and the tumor pathological data suggested that the missense variation in MSH2, the more common susceptibility gene in LS, would be the predisposing alteration. However, MSH2 VUS was surprisingly found to be MMR proficient in an in vitro MMR assay and a tolerant alteration in silico. By supplying evidence that instead of MSH2 p.Val923Glu the MSH6 p.Ser1188Asn variant is completely MMR-deficient, the present study confirms the previous findings, and suggests that MSH6 (c.3563G>A, p.Ser1188Asn) is the pathogenic mutation in the family. Moreover, our results strongly support the strategy to functionally assess all identified VUS before predictive gene testing and genetic counseling are offered to a family.
Collapse
|
26
|
Drost M, Zonneveld JBM, van Hees S, Rasmussen LJ, Hofstra RMW, de Wind N. A rapid and cell-free assay to test the activity of lynch syndrome-associated MSH2 and MSH6 missense variants. Hum Mutat 2011; 33:488-94. [PMID: 22102614 DOI: 10.1002/humu.22000] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/15/2011] [Indexed: 12/31/2022]
Abstract
Lynch syndrome (LS) is an autosomal dominant disorder that predisposes to colon, endometrial, and other cancers. LS is caused by a heterozygous germline mutation in one of the DNA mismatch repair (MMR) genes. A significant proportion of all mutations found in suspected LS patients comprises single amino acid alterations. The pathogenicity of these variants of uncertain significance (VUS) is difficult to assess, precluding diagnosis of carriers and their relatives. Here we present a rapid cell-free assay to investigate MMR activity of MSH2 or MSH6 VUS. We used this assay to analyze a series of MSH2 and MSH6 VUS, selected from the Leiden Open Variation Database. Whereas a significant fraction of the MSH2 VUS has lost MMR activity, suggesting pathogenicity, the large majority of the MSH6 VUS appears MMR proficient. We anticipate that this assay will be an important tool in the development of a comprehensive and widely applicable diagnostic procedure for LS-associated VUS.
Collapse
Affiliation(s)
- Mark Drost
- Department of Toxicogenetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Kansikas M, Kariola R, Nyström M. Verification of the three-step model in assessing the pathogenicity of mismatch repair gene variants. Hum Mutat 2011; 32:107-15. [PMID: 21120944 PMCID: PMC3058133 DOI: 10.1002/humu.21409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In order to assess whether variations affecting DNA mismatch repair (MMR) genes are pathogenic and hence predisposing to Lynch syndrome (LS), a three-step assessment model has been proposed. Where LS is suspected based on family history, STEP1 is dedicated to the identification of the causative MMR gene and the variation within it. Thereafter, in STEP2 of the assessment model, the effect of the variation on the function of the protein is assessed in an in vitro MMR and in silico assays. Where LS cannot be confirmed or ruled out in STEP2, the more specific biochemical laboratory assays such as analyzing the effect of the variation on expression, localization, and interaction of the protein are required in STEP3. Here, we verified the proposed three-step assessment model and its ability to distinguish pathogenic MMR variations from variants of uncertain significance (VUS) by utilizing the clinical as well as the laboratory and in silico data of 37 MLH1, 26 MSH2, and 11 MSH6 variations. The proposed model was shown to be appropriate and proceed logically in assessing the pathogenicity of MMR variations. In fact, for MMR deficient MSH2 and MLH1 variations the first two steps seem to be sufficient as STEP3 provides no imperative information concerning the variant pathogenicity. However, the importance of STEP3 is seen in the assessment of MMR proficient variations showing discrepant in silico results as their pathogenicity cannot be confirmed or ruled out after STEP2. MSH6 variations may be applicable to the model if appropriate selection in terms of ruling out MLH1 and MSH2 variations and MLH1 promoter hypermethylation is ensured prior to the completion of STEP2. In conclusion, taking into consideration the susceptibility gene the three-step model can be utilized in an appropriate and efficient manner to determine the pathogenicity of MMR gene variations. Hum Mutat 32:107–115, 2011. © 2010 Wiley-Liss, Inc.
Collapse
|
28
|
Kumar C, Piacente SC, Sibert J, Bukata AR, O’Connor J, Alani E, Surtees JA. Multiple factors insulate Msh2-Msh6 mismatch repair activity from defects in Msh2 domain I. J Mol Biol 2011; 411:765-80. [PMID: 21726567 PMCID: PMC3163898 DOI: 10.1016/j.jmb.2011.06.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 01/16/2023]
Abstract
DNA mismatch repair (MMR) is a highly conserved mutation avoidance mechanism that corrects DNA polymerase misincorporation errors. In initial steps in MMR, Msh2-Msh6 binds mispairs and small insertion/deletion loops, and Msh2-Msh3 binds larger insertion/deletion loops. The msh2Δ1 mutation, which deletes the conserved DNA-binding domain I of Msh2, does not dramatically affect Msh2-Msh6-dependent repair. In contrast, msh2Δ1 mutants show strong defects in Msh2-Msh3 functions. Interestingly, several mutations identified in patients with hereditary non-polyposis colorectal cancer map to domain I of Msh2; none have been found in MSH3. To understand the role of Msh2 domain I in MMR, we examined the consequences of combining the msh2Δ1 mutation with mutations in two distinct regions of MSH6 and those that increase cellular mutational load (pol3-01 and rad27). These experiments reveal msh2Δ1-specific phenotypes in Msh2-Msh6 repair, with significant effects on mutation rates. In vitro assays demonstrate that msh2Δ1-Msh6 DNA binding is less specific for DNA mismatches and produces an altered footprint on a mismatch DNA substrate. Together, these results provide evidence that, in vivo, multiple factors insulate MMR from defects in domain I of Msh2 and provide insights into how mutations in Msh2 domain I may cause hereditary non-polyposis colorectal cancer.
Collapse
Affiliation(s)
- Charanya Kumar
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, 14214 USA
| | | | - Justin Sibert
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 USA
| | - Andrew R. Bukata
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, 14214 USA
| | - Jaime O’Connor
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, 14214 USA
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703 USA
| | | |
Collapse
|
29
|
Young LC, Bone KM, Wang P, Wu F, Adam BA, Hegazy S, Gelebart P, Holovati J, Li L, Andrew SE, Lai R. Fusion tyrosine kinase NPM-ALK Deregulates MSH2 and suppresses DNA mismatch repair function novel insights into a potent oncoprotein. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:411-21. [PMID: 21703420 DOI: 10.1016/j.ajpath.2011.03.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 02/09/2011] [Accepted: 03/10/2011] [Indexed: 11/17/2022]
Abstract
The fusion tyrosine kinase NPM-ALK is central to the pathogenesis of ALK-positive anaplastic large cell lymphoma (ALK(+)ALCL). We recently identified that MSH2, a key DNA mismatch repair (MMR) protein integral to the suppression of tumorigenesis, is an NPM-ALK-interacting protein. In this study, we found in vitro evidence that enforced expression of NPM-ALK in HEK293 cells suppressed MMR function. Correlating with these findings, six of nine ALK(+)ALCL tumors displayed evidence of microsatellite instability, as opposed to none of the eight normal DNA control samples (P = 0.007, Student's t-test). Using co-immunoprecipitation, we found that increasing levels of NPM-ALK expression in HEK293 cells resulted in decreased levels of MSH6 bound to MSH2, whereas MSH2·NPM-ALK binding was increased. The NPM-ALK·MSH2 interaction was dependent on the activation/autophosphorylation of NPM-ALK, and the Y191 residue of NPM-ALK was a crucial site for this interaction and NPM-ALK-mediated MMR suppression. MSH2 was found to be tyrosine phosphorylated in the presence of NPM-ALK. Finally, NPM-ALK impeded the expected DNA damage-induced translocation of MSH2 out of the cytoplasm. To conclude, our data support a model in which the suppression of MMR by NPM-ALK is attributed to its ability to interfere with normal MSH2 biochemistry and function.
Collapse
MESH Headings
- Cytoplasm/metabolism
- DNA Damage
- DNA Mismatch Repair
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Microsatellite Instability
- MutS Homolog 2 Protein/genetics
- MutS Homolog 2 Protein/metabolism
- Phosphorylation
- Protein Multimerization
- Protein Transport
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Tumor Cells, Cultured
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Leah C Young
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
PURPOSE Lynch syndrome is a genetic disease that predisposes to colorectal tumors, caused by mutation in mismatch repair genes. The use of genetic tests to identify mutation carriers does not always give perfectly clear results, as happens when an unclassified variant is found. This study aimed to define the pathogenic role of 35 variants present in MSH2, MLH1, MSH6, and PMS2 genes identified in our 15-year case study. METHODS We collected clinical and molecular data of all carriers, and then we analyzed the variants pathogenic role with web tools and molecular analyses. Using a Bayesian approach, we derived a posterior probability of pathogenicity and classified each variant according to a standardized five-class system. RESULTS The MSH2 p.Pro349Arg, p.Met688Arg, the MLH1 p.Gly67Arg, p.Thr82Ala, p.Lys618Ala, the MSH6 p.Ala1236Pro, and the PMS2 p.Arg20Gln were classified as pathogenic, and the MSH2 p.Cys697Arg and the PMS2 p.Ser46Ile were classified as likely pathogenic. Seven variants were likely nonpathogenic, 3 were nonpathogenic, and 16 remained uncertain. CONCLUSION Quantitative assessment of several parameters and their integration in a multifactorial likelihood model is the method of choice for classifying the variants. As such classifications can be associated with surveillance and testing recommendations, the results and the method developed in our study can be useful for helping laboratory geneticists in evaluation of genetic tests and clinicians in the management of carriers.
Collapse
|
31
|
Mastrocola AS, Heinen CD. Lynch syndrome-associated mutations in MSH2 alter DNA repair and checkpoint response functions in vivo. Hum Mutat 2010; 31:E1699-708. [PMID: 20672385 PMCID: PMC2947597 DOI: 10.1002/humu.21333] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/15/2010] [Indexed: 11/06/2022]
Abstract
The DNA mismatch repair (MMR) pathway is essential in maintaining genomic stability through its role in DNA repair and the checkpoint response. Loss of DNA MMR underlies the hereditary cancer disease Lynch Syndrome (LS). Germline mutations in MSH2 account for approximately 40% of LS patients and of these, 18% are missense variants. One important clinical challenge has been discriminating between missense variants that are pathogenic and those that are not. Current analysis of missense mutations in MSH2 is performed using a combination of clinical, biochemical, and functional data; however, suitable cell culture models to test the various functions of the DNA MMR proteins are lacking. Here, we have generated human cell lines stably expressing a subset of MSH2 missense mutants and tested their effect on DNA repair and checkpoint response functions. We have expanded on previous biochemical and functional analyses performed in non-human systems to further understand defects conferred by this subset of single amino acid alterations. The functional characterization of MSH2 missense mutants combined with clinical and biochemical data is essential for appropriate patient management and genetic counseling decisions.
Collapse
Affiliation(s)
- Adam S Mastrocola
- Neag Comprehensive Cancer Center and Center for Molecular Medicine, University of Connecticut Health CenterFarmington, Connecticut 06030-3101, USA
| | - Christopher D Heinen
- Neag Comprehensive Cancer Center and Center for Molecular Medicine, University of Connecticut Health CenterFarmington, Connecticut 06030-3101, USA
| |
Collapse
|
32
|
Demokan S, Suoglu Y, Ulusan M, Dalay N. Analysis of the hMSH2 gene variants in head and neck cancer. DNA Cell Biol 2010; 29:449-57. [PMID: 20438357 DOI: 10.1089/dna.2009.1013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The hMSH2 (human MutS homolog 2) gene plays a central role in DNA mismatch repair. Structural variations in the gene may lead to protein instability and deficient mismatch repair. However, the role of polymorphic variants of the hMSH2 gene have not been defined in head and neck cancer. In this study, the roles of three polymorphic variants in the functional domains of the gene were investigated in 166 patients with head and neck cancer by allele-specific PCR, electronical array addressing, and PCR/RFLP (restriction fragment length polymorphism). This is the first study to investigate the gIVS12-6T --> C polymorphism in head and neck cancer. A significant association between the CC genotype and reduced risk of disease suggests that the gIVS12-6T --> C substitution at the splice-acceptor site may affect the risk of head and neck cancer. We did not observe an association between the Asn127Ser and Gly322Asp polymorphisms and cancer risk. A possible role of the gIVS12-6T --> C substitution warrants further validation in larger cohorts because of low allele frequency.
Collapse
Affiliation(s)
- Semra Demokan
- Department of Basic Oncology, Oncology Institute, Istanbul Faculty of Medicine, Istanbul University, Capa, Istanbul, Turkey
| | | | | | | |
Collapse
|
33
|
Kantelinen J, Kansikas M, Korhonen MK, Ollila S, Heinimann K, Kariola R, Nyström M. MutSbeta exceeds MutSalpha in dinucleotide loop repair. Br J Cancer 2010; 102:1068-73. [PMID: 20160730 PMCID: PMC2844022 DOI: 10.1038/sj.bjc.6605531] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The target substrates of DNA mismatch recognising factors MutSalpha (MSH2+MSH6) and MutSbeta (MSH2+MSH3) have already been widely researched. However, the extent of their functional redundancy and clinical substance remains unclear. Mismatch repair (MMR)-deficient tumours are strongly associated with microsatellite instability (MSI) and the degree and type of MSI seem to be dependent on the MMR gene affected, and is linked to its substrate specificities. Deficiency in MSH2 and MSH6 is associated with both mononucleotide and dinucleotide repeat instability. Although no pathogenic MSH3 mutations have been reported, its deficiency is also suggested to cause low dinucleotide repeat instability. METHODS To assess the substrate specificities and functionality of MutSalpha and MutSbeta we performed an in vitro MMR assay using three substrate constructs, GT mismatch, 1 and 2 nucleotide insertion/deletion loops (IDLs) in three different cell lines. RESULTS Our results show that though MutSalpha alone seems to be responsible for GT and IDL1 repair, MutSalpha and MutSbeta indeed have functional redundancy in IDL2 repair and in contrast with earlier studies, MutSbeta seems to exceed MutSalpha. CONCLUSION The finding is clinically relevant because the strong role of MutSbeta in IDL2 repair indicates MSH3 deficiency in tumours with low dinucleotide and no mononucleotide repeat instability.
Collapse
Affiliation(s)
- J Kantelinen
- Department of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 5, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
34
|
A study on MSH2 and MLH1 mutations in hereditary nonpolyposis colorectal cancer families from the Basque Country, describing four new germline mutations. Fam Cancer 2010; 8:533-9. [PMID: 19760518 DOI: 10.1007/s10689-009-9283-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Hereditary non-polyposis colorectal cancer (HNPCC) or Lynch syndrome underlies between 2 and 5% of all colorectal cancer. It is inherited as an autosomal dominant condition due to mutations in the mismatch repair genes. Fifty-four non-related index cases, 21 of them fulfilling Amsterdam criteria I or II, were studied. Ten (10/21 = 47.6%) different pathological mutations were found in this group, two of which had not previously been reported--one in MLH1 and the other in MSH2-. In the remaining patients, we also found another family with one of these new mutations, and four additional changes, two of which were also new--a pathological change in MSH2 and a second change of uncertain significance in MLH1-, while the other two changes had already been reported. Of all mutations, eight were found in MSH2 (8/15 = 53.3%) and seven in MLH1 (7/15 = 46.6%), suggesting a slightly greater involvement of MSH2 in HNPCC than MLH1 in our population, in contrast to the results reported by other authors.
Collapse
|
35
|
Lynch PM. The hMSH2 and hMLH1 genes in hereditary nonpolyposis colorectal cancer. Surg Oncol Clin N Am 2009; 18:611-24. [PMID: 19793569 DOI: 10.1016/j.soc.2009.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hereditary nonpolyposis colorectal cancer (HNPCC) is the most common inherited colorectal cancer predisposing condition. HNPCC is an important problem for the surgeon because up to 60% of carriers of mismatch repair (MMR) gene mutations develop colorectal cancer (CRC), commonly before age 50 years. When CRC is diagnosed, the surgeon is in the ideal position to order appropriate tumor testing for microsatellite instability or immunohistochemical stains for loss of MMR gene associated protein, if this has not already been done. This article reviews the history of HNPCC, its clinical features, gene discovery, development of clinical genetic workup, and clinical surveillance, with an emphasis on the two major HNPCC genes, hMSH2 and hMLH1. It is not always possible to discuss these specific genes without commenting on the broader problem of HNPCC diagnosis and management.
Collapse
Affiliation(s)
- Patrick M Lynch
- Department of Gastrointestinal Medicine and Nutrition, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Functional characterization of rare missense mutations in MLH1 and MSH2 identified in Danish colorectal cancer patients. Fam Cancer 2009; 8:489-500. [PMID: 19697156 DOI: 10.1007/s10689-009-9274-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 07/20/2009] [Indexed: 12/21/2022]
Abstract
Recently, we have performed a population based study to analyse the frequency of colorectal cancer related MLH1 and MSH2 missense mutations in the Danish population. Half of the analyzed mutations were rare and most likely only present in the families where they were identified originally. Some of the missense mutations were located in conserved regions in the MLH1 and MSH2 proteins indicating a relation to disease development. In the present study, we functionally characterized 10 rare missense mutations in MLH1 and MSH2 identified in 13 Danish CRC families. To elucidate the pathogenicity of the missense mutations, we carried out in vitro functional analyses. The missense mutations were analyzed for their effect on protein expression and repair efficiency. The results of the functional analysis were correlated with clinical data on the families carrying these mutations. Eight missense mutations resulted in proteins with expression and repair efficiency similar to the wild type. One missense mutation (MSH2 p.Met688Val) caused reduced protein expression and one (MSH2 p.Leu187Arg) caused both reduced protein expression and repair deficiency. The MSH2 p.Leu187Arg mutation was found in an Amsterdam II family presenting with high microsatellite instability and loss of MSH2 and MSH6 proteins in tumours. In conclusion, only 1/10 missense mutations displayed repair deficiency and could be classified as pathogenic. No final conclusion can be drawn on the MSH2 p.Met688Val mutation, which caused reduced protein expression. Although, no deficiencies have been identified in the proteins harbouring the other missense mutations, pathogenicity of these variants cannot be unambiguously excluded.
Collapse
|
37
|
Tournier I, Vezain M, Martins A, Charbonnier F, Baert-Desurmont S, Olschwang S, Wang Q, Buisine MP, Soret J, Tazi J, Frébourg T, Tosi M. A large fraction of unclassified variants of the mismatch repair genes MLH1 and MSH2 is associated with splicing defects. Hum Mutat 2009; 29:1412-24. [PMID: 18561205 DOI: 10.1002/humu.20796] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Numerous unclassified variants (UVs) have been found in the mismatch repair genes MLH1 and MSH2 involved in hereditary nonpolyposis colorectal cancer (HNPCC or Lynch syndrome). Some of these variants may have an effect on pre-mRNA splicing, either by altering degenerate positions of splice site sequences or by affecting intronic or exonic splicing regulatory sequences such as exonic splicing enhancers (ESEs). In order to determine the consequences of UVs on splicing, we used a functional assay of exon inclusion. For each variant, mutant and wild-type exons to be tested were PCR-amplified from patient genomic DNA together with approximately 150 bp of flanking sequences and were inserted into a splicing reporter minigene. After transfection into HeLa cells, the effects on splicing were evaluated by RT-PCR analysis and systematic sequencing. A total of 22 UVs out of 85 different variant alleles examined in 82 families affected splicing, including four exonic variants that affected putative splicing regulatory elements. We analyzed short stretches spanning the latter variants by cloning them into the ESE-dependent central exon of a three-exon splicing minigene and we showed in cell transfection experiments that the wild-type sequences indeed contain functional ESEs. We then used this construct to query for ESE elements in the MLH1 or MSH2 regions affected by 14 previously reported exonic splicing mutations and showed that they also contain functional ESEs. These splicing assays represent a valuable tool for the interpretation of UVs and should contribute to the optimization of the molecular diagnosis of the Lynch syndrome and of other genetic diseases.
Collapse
Affiliation(s)
- Isabelle Tournier
- Inserm U614, Federate Institute for Multidisciplinary Research on Peptides, Faculty of Medicine, University of Rouen, Department of Genetics and Institute for Biomedical Research, Rouen University Hospital, Rouen, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gargiulo S, Torrini M, Ollila S, Nasti S, Pastorino L, Cusano R, Bonelli L, Battistuzzi L, Mastracci L, Bruno W, Savarino V, Sciallero S, Borgonovo G, Nyström M, Bianchi-Scarrà G, Mareni C, Ghiorzo P. Germline MLH1 and MSH2 mutations in Italian pancreatic cancer patients with suspected Lynch syndrome. Fam Cancer 2009; 8:547-553. [PMID: 19728162 DOI: 10.1007/s10689-009-9285-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lynch syndrome is an inherited cancer syndrome caused by germline mutations in mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2. LS predisposes to high risk of early-onset colorectal, endometrial and other tumors. Patients with Lynch syndrome have also been shown to have an elevated risk for pancreatic cancer (PC). In this study, we aimed to estimate the frequency of suspected Lynch syndrome among a series of 135 PC patients. Further, we wanted to determine the frequency of MMR gene mutations in the suspected Lynch syndrome cases. We also aimed to verify the pathogenicity of any novel non-truncating variants we might detect with a functional assay. Based on personal and/or familial cancer history, 19 patients were classified as suspected Lynch syndrome cases. DNA material for mutation analysis was available for eleven of them. Four patients were found to carry a total of five MLH1 or MSH2 variants. Of these, MSH2-Q402X, MSH2-G322D, and MLH1-K618A had been previously reported, while the MSH2-E205Q and MSH2-V367I variants were novel. MSH2-Q402X is a known stop mutation and reported here for the first time here in association with PC. MLH1-K618A was found in the unaffected branch of a kindred, suggesting that it may be a polymorphism or a low penetrance variant. MSH2-G322D likely does not cause a MMR defect, although this variant has also been associated with breast cancer as indeed seen in our patient. The novel variants MSH2-E205Q and MSH2-V367I were found in the same patient. Both novel variants were however functional in the applied MMR assay. Our findings suggest that only a small subset of pancreatic cancer patients carry pathogenic MMR mutations.
Collapse
Affiliation(s)
- S Gargiulo
- Department of Oncology, Biology and Genetics, University of Genoa, 16132 Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Homozygosity of MSH2 c.1906G→C germline mutation is associated with childhood colon cancer, astrocytoma and signs of Neurofibromatosis type I. Fam Cancer 2008; 8:187-94. [DOI: 10.1007/s10689-008-9227-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/08/2008] [Indexed: 10/21/2022]
|
40
|
Ollila S, Dermadi Bebek D, Jiricny J, Nyström M. Mechanisms of pathogenicity in human MSH2 missense mutants. Hum Mutat 2008; 29:1355-63. [PMID: 18951462 DOI: 10.1002/humu.20893] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The human mismatch repair (MMR) gene MSH2 is the second most frequently mutated hereditary nonpolyposis colorectal cancer (HNPCC) susceptibility locus. Given that missense mutations account for 17% of all identified alterations in this gene, the study of their pathogenicity is of increasing importance. Previously, we showed that pathogenic MSH2 missense mutations typically impaired the repair activity of the protein. In this study, we took advantage of its crystal structure and attempted to correlate the mismatch binding and ATP-catalyzed mismatch release activities with the location of 18 nontruncating MSH2 mutations. We observed that the MMR-deficient mutations situated in the amino-terminal connector and lever domains of MSH2 (V161D, G162R, G164R, L173P, L187P, C333Y, and D603N) affected protein stability, whereas mutations in the ATPase domain (A636P, G674A, C697F, I745_I746del, and E749 K) mainly caused defects in mismatch binding or release. Of the MMR-proficient variants, four (T33P, A272 V, G322D, and V923E) showed slightly reduced mismatch binding and/or release efficiencies compared to wild-type (WT) protein, while two variants (N127S and A834 T) showed no defects in the assays. Similar to our biochemical data, the mutations that affected protein stability were associated with an absence of the protein in tumors in immunohistochemical (IHC) analyses. In contrast, the protein with the mutation E749 K, which abrogates MMR but not protein stability, is well expressed in tumors. In conclusion, pathogenic missense mutations in MSH2 may interfere with different mechanisms that tend to cluster in separate protein domains with varying effects on protein stability, which could be taken into account when interpreting IHC data.
Collapse
Affiliation(s)
- Saara Ollila
- Department of Biological and Environmental Sciences, Genetics, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
41
|
Couch FJ, Rasmussen LJ, Hofstra R, Monteiro ANA, Greenblatt MS, de Wind N, IARC Unclassified Genetic Variants Working Group. Assessment of functional effects of unclassified genetic variants. Hum Mutat 2008; 29:1314-26. [PMID: 18951449 PMCID: PMC2771414 DOI: 10.1002/humu.20899] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Collaborators] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inherited predisposition to disease is often linked to reduced activity of a disease associated gene product. Thus, quantitation of the influence of inherited variants on gene function can potentially be used to predict the disease relevance of these variants. While many disease genes have been extensively characterized at the functional level, few assays based on functional properties of the encoded proteins have been established for the purpose of predicting the contribution of rare inherited variants to disease. Much of the difficulty in establishing predictive functional assays stems from the technical complexity of the assays. However, perhaps the most challenging aspect of functional assay development for clinical testing purposes is the absolute requirement for validation of the sensitivity and specificity of the assays and the determination of positive predictive values (PPVs) and negative predictive values (NPVs) of the assays relative to a "gold standard" measure of disease predisposition. In this commentary, we provide examples of some of the functional assays under development for several cancer predisposition genes (BRCA1, BRCA2, CDKN2A, and mismatch repair [MMR] genes MLH1, MSH2, MSH6, and PMS2) and present a detailed review of the issues associated with functional assay development. We conclude that validation is paramount for all assays that will be used for clinical interpretation of inherited variants of any gene, but note that in certain circumstances information derived from incompletely validated assays may be valuable for classification of variants for clinical purposes when used to supplement data derived from other sources.
Collapse
Affiliation(s)
- Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
Collaborators
Paolo Boffetta, Fergus Couch, Niels de Wind, Douglas Easton, Diana Eccles, William Foulkes, Maurizio Genuardi, David Goldgar, Marc Greenblatt, Robert Hofstra, Frans Hogervorst, Nicoline Hoogerbrugge, Sharon Plon, Paolo Radice, Lene Rasmussen, Olga Sinilnikova, Amanda Spurdle, Sean V Tavtigian,
Collapse
|
42
|
Lützen A, de Wind N, Georgijevic D, Nielsen FC, Rasmussen LJ. Functional analysis of HNPCC-related missense mutations in MSH2. Mutat Res 2008; 645:44-55. [PMID: 18822302 DOI: 10.1016/j.mrfmmm.2008.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 07/25/2008] [Accepted: 08/26/2008] [Indexed: 12/28/2022]
Abstract
Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions.
Collapse
Affiliation(s)
- Anne Lützen
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
| | | | | | | | | |
Collapse
|
43
|
Nilbert M, Wikman FP, Hansen TVO, Krarup HB, Orntoft TF, Nielsen FC, Sunde L, Gerdes AM, Cruger D, Timshel S, Bisgaard ML, Bernstein I, Okkels H. Major contribution from recurrent alterations and MSH6 mutations in the Danish Lynch syndrome population. Fam Cancer 2008; 8:75-83. [PMID: 18566915 DOI: 10.1007/s10689-008-9199-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 06/02/2008] [Indexed: 12/27/2022]
Abstract
An increasing number of mismatch-repair (MMR) gene mutations have been identified in hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome. This study presents the population-based Danish MMR gene mutation profile, which contains 138 different MMR gene alterations. Among these, 88 mutations in 164 families are considered pathogenic and an additional 50 variants from 76 families are considered to represent variants of unknown pathogenicity. The different MMR genes contribute to 40% (MSH2), 29% (MLH1), and 22% (MSH6) of the mutations and the Danish population thus shows a considerably higher frequency of MSH6 mutations than previously described. Although 69/88 (78%) pathogenic mutations were present in a single family, previously recognized recurrent/founder mutations were causative in 75/137 (55%) MLH1/MSH2 mutant families. In addition, the Danish MLH1 founder mutation c.1667+2_1667_+8TAAATCAdelinsATTT was identified in 14/58 (24%) MLH1 mutant families. The Danish Lynch syndrome population thus demonstrates that MSH6 mutations and recurrent/founder mutations have a larger contribution than previously recognized, which implies that the MSH6 gene should be included in routine diagnostics and suggests that directed analysis of recurrent/founder mutations may be feasible e.g. in families were diagnostic material is restricted to archival tissue.
Collapse
Affiliation(s)
- Mef Nilbert
- Clinical Research Centre and HNPCC-Register, Copenhagen University, Hvidovre University Hospital, Kettegård Allé 30, Hvidovre, 2650, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Christensen LL, Madsen BE, Wikman FP, Wiuf C, Koed K, Tjønneland A, Olsen A, Syvänen AC, Andersen CL, Ørntoft TF. The association between genetic variants in hMLH1 and hMSH2 and the development of sporadic colorectal cancer in the Danish population. BMC MEDICAL GENETICS 2008; 9:52. [PMID: 18547406 PMCID: PMC2438340 DOI: 10.1186/1471-2350-9-52] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 06/11/2008] [Indexed: 12/27/2022]
Abstract
BACKGROUND Mutations in the mismatch repair genes hMLH1 and hMSH2 predispose to hereditary non-polyposis colorectal cancer (HNPCC). Genetic screening of more than 350 Danish patients with colorectal cancer (CRC) has led to the identification of several new genetic variants (e.g. missense, silent and non-coding) in hMLH1 and hMSH2. The aim of the present study was to investigate the frequency of these variants in hMLH1 and hMSH2 in Danish patients with sporadic colorectal cancer and in the healthy background population. The purpose was to reveal if any of the common variants lead to increased susceptibility to colorectal cancer. METHODS Associations between genetic variants in hMLH1 and hMSH2 and sporadic colorectal cancer were evaluated using a case-cohort design. The genotyping was performed on DNA isolated from blood from the 380 cases with sporadic colorectal cancer and a sub-cohort of 770 individuals. The DNA samples were analyzed using Single Base Extension (SBE) Tag-arrays. A Bonferroni corrected Fisher exact test was used to test for association between the genotypes of each variant and colorectal cancer. Linkage disequilibrium (LD) was investigated using HaploView (v3.31). RESULTS Heterozygous and homozygous changes were detected in 13 of 35 analyzed variants. Two variants showed a borderline association with colorectal cancer, whereas the remaining variants demonstrated no association. Furthermore, the genomic regions covering hMLH1 and hMSH2 displayed high linkage disequilibrium in the Danish population. Twenty-two variants were neither detected in the cases with sporadic colorectal cancer nor in the sub-cohort. Some of these rare variants have been classified either as pathogenic mutations or as neutral variants in other populations and some are unclassified Danish variants. CONCLUSION None of the variants in hMLH1 and hMSH2 analyzed in the present study were highly associated with colorectal cancer in the Danish population. High linkage disequilibrium in the genomic regions covering hMLH1 and hMSH2, indicate that common genetic variants in the two genes in general are not involved in the development of sporadic colorectal cancer. Nevertheless, some of the rare unclassified variants in hMLH1 and hMSH2 might be involved in the development of colorectal cancer in the families where they were originally identified.
Collapse
Affiliation(s)
- Lise Lotte Christensen
- Molecular Diagnostic Laboratory, Department of Clinical Biochemistry, Aarhus University Hospital, Skejby, Denmark
| | - Bo E Madsen
- Bioinformatics Research Center (BiRC), University of Aarhus, Denmark
| | - Friedrik P Wikman
- Molecular Diagnostic Laboratory, Department of Clinical Biochemistry, Aarhus University Hospital, Skejby, Denmark
| | - Carsten Wiuf
- Bioinformatics Research Center (BiRC), University of Aarhus, Denmark
| | - Karen Koed
- Faculty of Medical Laboratory Technology, University College Jutland, Aarhus, Denmark
| | - Anne Tjønneland
- Danish Cancer Society, Institute of Cancer Epidemiology, Copenhagen, Denmark
| | - Anja Olsen
- Danish Cancer Society, Institute of Cancer Epidemiology, Copenhagen, Denmark
| | | | - Claus L Andersen
- Molecular Diagnostic Laboratory, Department of Clinical Biochemistry, Aarhus University Hospital, Skejby, Denmark
| | - Torben F Ørntoft
- Molecular Diagnostic Laboratory, Department of Clinical Biochemistry, Aarhus University Hospital, Skejby, Denmark
| |
Collapse
|
45
|
Ollila S, Bebek DD, Greenblatt M, Nyström M. Uncertain pathogenicity of MSH2
variants N127S and G322D challenges their classification. Int J Cancer 2008; 123:720-4. [DOI: 10.1002/ijc.23573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Syndromic colon cancer: lynch syndrome and familial adenomatous polyposis. Gastroenterol Clin North Am 2008; 37:47-72, vi. [PMID: 18313539 DOI: 10.1016/j.gtc.2007.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Colon cancer, the third leading cause of mortality from cancer in the United States, afflicts about 150,000 patients annually. More than 10% of these patients exhibit familial clustering. The most common and well characterized of these familial colon cancer syndromes is hereditary nonpolyposis colon cancer syndrome (Lynch syndrome), which accounts for about 2% to 3% of all cases of colon cancer in the United States. We review the current knowledge of familial cancer syndromes, with an emphasis on Lynch syndrome and familial adenomatous polyposis.
Collapse
|
47
|
Menéndez M, González S, Obrador-Hevia A, Domínguez A, Pujol MJ, Valls J, Canela N, Blanco I, Torres A, Pineda-Lucena A, Moreno V, Bachs O, Capellá G. Functional characterization of the novel APC N1026S variant associated with attenuated familial adenomatous polyposis. Gastroenterology 2008; 134:56-64. [PMID: 18166348 DOI: 10.1053/j.gastro.2007.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 09/20/2007] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS We identified the APC N1026S variant of unknown malignant potential in the adenomatous polyposis coli (APC) gene in a Spanish attenuated familial adenomatous polyposis (AFAP) family. The variant was located in the first of the 4 highly conserved 15-amino acid (AA) repeats within the beta-catenin union domain. Our aim was to determine its functional relevance to establish its pathogenicity. METHODS N1026S variant was analyzed in 22 members of the AFAP family studied, in 236 sporadic colorectal cancer cases, 203 matched controls, and 205 unrelated familial colorectal cancer cases. To assess its effects on beta-catenin binding, beta-catenin/Tcf-4-mediated transcription and beta-catenin subcellular distribution we performed affinity chromatography experiments, BIAcore 1000 (BIAcore AB, Uppsala, Sweden) assays, luciferase reporter assays, assessment of c-myc messenger RNA levels, and cell fractionation. RESULTS N1026S variant cosegregated with the disease in the AFAP family studied. None of the sporadic or familial cases as well as the controls analyzed was positive for the variant. N1026S variant completely precluded beta-catenin binding to the first 15-AA repeat and diminished it when all four 15-AA repeats were present. Expression of APC N1026S in SW480 and DLD-1 cells did not diminish beta-catenin/Tcf-4-mediated transcription as effectively as APC wild-type. N1026S did not decrease c-myc transcription in DLD1 cells and nuclear beta-catenin in SW480 cells as effectively as WT. CONCLUSIONS These findings strongly support a pathogenic role of the APC N1026S variant in the AFAP phenotype, reinforcing the importance of functional characterization of APC variants for genetic counseling.
Collapse
Affiliation(s)
- Mireia Menéndez
- Laboratori de Recerca Translacional, Departament de Prevenció i Control del Càncer, Servei d'Epidemiologia i Registre del Càncer, Institut d'Investigació Biomèdica de Bellvitge-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ou J, Niessen RC, Lützen A, Sijmons RH, Kleibeuker JH, de Wind N, Rasmussen LJ, Hofstra RMW. Functional analysis helps to clarify the clinical importance of unclassified variants in DNA mismatch repair genes. Hum Mutat 2007; 28:1047-54. [PMID: 17594722 DOI: 10.1002/humu.20580] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome is caused by DNA variations in the DNA mismatch repair (MMR) genes MSH2, MLH1, MSH6, and PMS2. Many of the mutations identified result in premature termination of translation and thus in loss-of-function of the encoded mutated protein. These DNA variations are thought to be pathogenic mutations. However, some patients carry other DNA mutations, referred to as unclassified variants (UVs), which do not lead to such a premature termination of translation; it is not known whether these contribute to the disease phenotype or merely represent rare polymorphisms. This is a major problem which has direct clinical consequences. Several criteria can be used to classify these UVs, such as: whether they segregate with the disease within pedigrees, are absent in control individuals, show a change of amino acid polarity or size, provoke an amino acid change in a domain that is evolutionary conserved and/or shared between proteins belonging to the same protein family, or show altered function in an in vitro assay. In this review we discuss the various functional assays reported for the HNPCC-associated MMR proteins and the outcomes of these tests on UVs identified in patients diagnosed with or suspected of having HNPCC. We conclude that a large proportion of MMR UVs are likely to be pathogenic, suggesting that missense variants of MMR proteins do indeed play a role in HNPCC.
Collapse
Affiliation(s)
- Jianghua Ou
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Tracking mutations in a family: Recognizing indicators of germline mutation in Lynch syndrome. CURRENT COLORECTAL CANCER REPORTS 2007. [DOI: 10.1007/s11888-007-0031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Germline missense mutations in mismatch-repair genes and genetic testing for HNPCC. CURRENT COLORECTAL CANCER REPORTS 2007. [DOI: 10.1007/s11888-007-0030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|