1
|
Wang Y, Jia X, Cong B. Advances in the mechanism of metformin with wide-ranging effects on regulation of the intestinal microbiota. Front Microbiol 2024; 15:1396031. [PMID: 38855769 PMCID: PMC11157079 DOI: 10.3389/fmicb.2024.1396031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
Metformin is of great focus because of its high safety, low side effects, and various effects other than lowering blood sugar, such as anti-inflammation, anti-tumor, and anti-aging. Studies have shown that metformin has a modulating effect on the composition and function of the intestinal microbiota other than acting on the liver. However, the composition of microbiota is complex and varies to some extent between species and individuals, and the experimental design of each study is also different. Multiple factors present a major obstacle to better comprehending the effects of metformin on the gut microbiota. This paper reviews the regulatory effects of metformin on the gut microbiota, such as increasing the abundance of genus Akkermansia, enriching short-chain fatty acids (SCFAs)-producing bacterial genus, and regulating gene expression of certain genera. The intestinal microbiota is a large and vital ecosystem in the human body and is considered to be the equivalent of an "organ" of the human body, which is highly relevant to human health and disease status. There are a lot of evidences that the gut microbiota is responsible for metformin's widespread effects. However, there are only a few systematic studies on this mechanism, and the specific mechanism is still unclear. This paper aims to summarize the possible mechanism of metformin in relation to gut microbiota.
Collapse
Affiliation(s)
- Yue Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| | - Xianxian Jia
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pathogen Biology, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Lin Q, Li Z, Lu L, Xu H, Lou E, Chen A, Sun D, Zhang W, Zhu W, Yee EU, Sears PS, Chen X, Kelly CP. Budesonide, an anti-inflammatory drug, exacerbate clostridioides difficile colitis in mice. Biomed Pharmacother 2023; 167:115489. [PMID: 37713991 DOI: 10.1016/j.biopha.2023.115489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND AND AIMS Clostridioides difficile infection (CDI) induces intense acute inflammatory responses through toxin release. A combination of antibiotic and anti-inflammatory agents is sometimes recommended in severe, non-responsive cases, although clinical trials have been inconclusive, raising concerns about potential complications. This study aims to investigate the effect of budesonide and mesalamine in the treatment of CDI in a murine model, by evaluating the combination of fidaxomicin and these anti-inflammatory drugs. METHOD C57BL/6 J female mice pretreated with an antimicrobial mixture were challenged with C. difficile VPI 10463 or culture media by gavage. After the challenge, mice received placebo, fidaxomicin alone (20 mg/kg), or fidaxomicin combined with mesalamine (200, 400 mg/kg) or budesonide (0.2, 1, 10 mg/kg) for 5 days. The mice were monitored for 7 days with weight and survival. Colon and cecum tissues were harvested for histological assessment. RESULTS CDI of mice caused 80% mortality. Fidaxomicin completely protected against CDI in all parameters (weight, survival and pathscores). Mortality rates were up to 90%, 70% in budesonide(10 mg/kg) and mesalamine (400 mg/kg) treatment group, respectively. Budesonide (0.02,0.1 and 1 mg/kg) adjunction to fidaxomicin worsened the disease outcome according to all tested parameters. While mesalamine in combination with fidaxomicin (200, 400 mg/kg) did not lead to any deaths during CDI treatment, it did not provide additional benefits. CONCLUSIONS Anti-inflammatory drugs including corticosteroid therapy may worsen the incidence and severity of CDI in this mouse model. These studies may have important clinical implications for understanding the role of anti-inflammatory/ corticosteroid therapy in CDI and inflammatory bowel disease management.
Collapse
Affiliation(s)
- Qianyun Lin
- Department of Gastroenterology, Beijing Friendship Hospital, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Capital Medical University, Beijing, China; Divisions of Gastroenterology, Beth Israel Deaconess Medical Centre, Boston, MA, USA
| | - Zitong Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Lu
- Section of Neonatology, Department of Paediatrics and Medicine, the University of Chicago, Chicago, IL, USA
| | - Hua Xu
- Divisions of Gastroenterology, Beth Israel Deaconess Medical Centre, Boston, MA, USA
| | - Eddie Lou
- Divisions of Gastroenterology, Beth Israel Deaconess Medical Centre, Boston, MA, USA
| | - Alyssa Chen
- Divisions of Gastroenterology, Beth Israel Deaconess Medical Centre, Boston, MA, USA
| | - Dustin Sun
- Divisions of Gastroenterology, Beth Israel Deaconess Medical Centre, Boston, MA, USA
| | - Wuyi Zhang
- Divisions of Gastroenterology, Beth Israel Deaconess Medical Centre, Boston, MA, USA
| | - Weishu Zhu
- Divisions of Gastroenterology, Beth Israel Deaconess Medical Centre, Boston, MA, USA
| | - Eric U Yee
- Department of Pathology, Beth Israel Deaconess Medical Centre, Boston, MA, USA; Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Xinhua Chen
- Divisions of Gastroenterology, Beth Israel Deaconess Medical Centre, Boston, MA, USA.
| | - Ciaran P Kelly
- Divisions of Gastroenterology, Beth Israel Deaconess Medical Centre, Boston, MA, USA.
| |
Collapse
|
3
|
Shu LZ, Ding YD, Xue QM, Cai W, Deng H. Direct and indirect effects of pathogenic bacteria on the integrity of intestinal barrier. Therap Adv Gastroenterol 2023; 16:17562848231176427. [PMID: 37274298 PMCID: PMC10233627 DOI: 10.1177/17562848231176427] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/01/2023] [Indexed: 06/06/2023] Open
Abstract
Bacterial translocation is a pathological process involving migration of pathogenic bacteria across the intestinal barrier to enter the systemic circulation and gain access to distant organs. This phenomenon has been linked to a diverse range of diseases including inflammatory bowel disease, pancreatitis, and cancer. The intestinal barrier is an innate structure that maintains intestinal homeostasis. Pathogenic infections and dysbiosis can disrupt the integrity of the intestinal barrier, increasing its permeability, and thereby facilitating pathogen translocation. As translocation represents an essential step in pathogenesis, a clear understanding of how barrier integrity is disrupted and how this disruption facilitates bacterial translocation could identify new routes to effective prophylaxis and therapy. In this comprehensive review, we provide an in-depth analysis of bacterial translocation and intestinal barrier function. We discuss currently understood mechanisms of bacterial-enterocyte interactions, with a focus on tight junctions and endocytosis. We also discuss the emerging concept of bidirectional communication between the intestinal microbiota and other body systems. The intestinal tract has established 'axes' with various organs. Among our regulatory systems, the nervous, immune, and endocrine systems have been shown to play pivotal roles in barrier regulation. A mechanistic understanding of intestinal barrier regulation is crucial for the development of personalized management strategies for patients with bacterial translocation-related disorders. Advancing our knowledge of barrier regulation will pave the way for future research in this field and novel clinical intervention strategies.
Collapse
Affiliation(s)
- Lin-Zhen Shu
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Yi-Dan Ding
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Qing-Ming Xue
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
| | - Wei Cai
- Medical College, Nanchang University, Nanchang,
Jiangxi Province, China
- Department of Pathology, the Fourth Affiliated
Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated
Hospital of Nanchang University, No. 133 South Guangchang Road, Nanchang
330003, Jiangxi Province, China
- Tumor Immunology Institute, Nanchang
University, Nanchang, China
| |
Collapse
|
4
|
Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, et alVitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, Karin M, Kashkar H, Kaufmann T, Kelly GL, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Kluck R, Krysko DV, Kulms D, Kumar S, Lavandero S, Lavrik IN, Lemasters JJ, Liccardi G, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Luedde T, MacFarlane M, Madeo F, Malorni W, Manic G, Mantovani R, Marchi S, Marine JC, Martin SJ, Martinou JC, Mastroberardino PG, Medema JP, Mehlen P, Meier P, Melino G, Melino S, Miao EA, Moll UM, Muñoz-Pinedo C, Murphy DJ, Niklison-Chirou MV, Novelli F, Núñez G, Oberst A, Ofengeim D, Opferman JT, Oren M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pentimalli F, Pereira DM, Pervaiz S, Peter ME, Pinton P, Porta G, Prehn JHM, Puthalakath H, Rabinovich GA, Rajalingam K, Ravichandran KS, Rehm M, Ricci JE, Rizzuto R, Robinson N, Rodrigues CMP, Rotblat B, Rothlin CV, Rubinsztein DC, Rudel T, Rufini A, Ryan KM, Sarosiek KA, Sawa A, Sayan E, Schroder K, Scorrano L, Sesti F, Shao F, Shi Y, Sica GS, Silke J, Simon HU, Sistigu A, Stephanou A, Stockwell BR, Strapazzon F, Strasser A, Sun L, Sun E, Sun Q, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Troy CM, Turk B, Urbano N, Vandenabeele P, Vanden Berghe T, Vander Heiden MG, Vanderluit JL, Verkhratsky A, Villunger A, von Karstedt S, Voss AK, Vousden KH, Vucic D, Vuri D, Wagner EF, Walczak H, Wallach D, Wang R, Wang Y, Weber A, Wood W, Yamazaki T, Yang HT, Zakeri Z, Zawacka-Pankau JE, Zhang L, Zhang H, Zhivotovsky B, Zhou W, Piacentini M, Kroemer G, Galluzzi L. Apoptotic cell death in disease-Current understanding of the NCCD 2023. Cell Death Differ 2023; 30:1097-1154. [PMID: 37100955 PMCID: PMC10130819 DOI: 10.1038/s41418-023-01153-w] [Show More Authors] [Citation(s) in RCA: 173] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023] Open
Abstract
Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.
Collapse
Affiliation(s)
- Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy.
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institut für Immunologie, Kiel University, Kiel, Germany
| | - Massimiliano Agostini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- BIOGEM, Avellino, Italy
| | - Ivano Amelio
- Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - David W Andrews
- Sunnybrook Research Institute, Toronto, ON, Canada
- Departments of Biochemistry and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Rami I Aqeilan
- Hebrew University of Jerusalem, Lautenberg Center for Immunology & Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniele Bano
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nickolai A Barlev
- Department of Biomedicine, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Mathieu J M Bertrand
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marco E Bianchi
- Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy and Ospedale San Raffaele IRCSS, Milan, Italy
| | | | - J Magarian Blander
- Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Carl D Bortner
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Pierluigi Bove
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patricia Boya
- Centro de Investigaciones Biologicas Margarita Salas, CSIC, Madrid, Spain
| | - Catherine Brenner
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches thérapeutiques, Villejuif, France
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Thomas Brunner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- UCL Consortium for Mitochondrial Research, London, UK
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Francesco Cecconi
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francis K-M Chan
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Guo-Qiang Chen
- State Key Lab of Oncogene and its related gene, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Youhai H Chen
- Shenzhen Institute of Advanced Technology (SIAT), Shenzhen, Guangdong, China
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Aaron Ciechanover
- The Technion-Integrated Cancer Center, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Marcus Conrad
- Helmholtz Munich, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Mads Daugaard
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Ted M Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruggero De Maria
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bart De Strooper
- VIB Centre for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J Deberardinis
- Howard Hughes Medical Institute and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Division of Hematology/Oncology, Brown University and the Lifespan Cancer Institute, Providence, RI, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - John W Elrod
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Kurt Engeland
- Molecular Oncology, University of Leipzig, Leipzig, Germany
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Carlo Ganini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
| | - Ana J Garcia-Saez
- CECAD, Institute of Genetics, University of Cologne, Cologne, Germany
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM, UMR, 1231, Dijon, France
- Faculty of Medicine, Université de Bourgogne Franche-Comté, Dijon, France
- Anti-cancer Center Georges-François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler school of Medicine, Tel Aviv university, Tel Aviv, Israel
| | - Sourav Ghosh
- Department of Neurology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Hinrich Gronemeyer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Departments of Molecular Microbiology and Immunology, Pharmacology, Oncology and Neurology, Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Ygal Haupt
- VITTAIL Ltd, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sudan He
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, The University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- National Cancer Center Research Institute, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ana Janic
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Philipp J Jost
- Clinical Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Michael Karin
- Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Hamid Kashkar
- CECAD Research Center, Institute for Molecular Immunology, University of Cologne, Cologne, Germany
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Ruth Kluck
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dagmar Kulms
- Department of Dermatology, Experimental Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden, TU-Dresden, Dresden, Germany
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sergio Lavandero
- Universidad de Chile, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - John J Lemasters
- Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Gianmaria Liccardi
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Richard A Lockshin
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA
- St. John's University, Jamaica, NY, USA
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Marion MacFarlane
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gwenola Manic
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Jean-Christophe Marine
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Rotterdam, the Netherlands
- IFOM-ETS The AIRC Institute for Molecular Oncology, Milan, Italy
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer, and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Ute M Moll
- Department of Pathology and Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Daniel J Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Flavia Novelli
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Dimitry Ofengeim
- Rare and Neuroscience Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine and Howard Hughes Medical Institute, New York, NY, USA
| | - Theocharis Panaretakis
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, YLL School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
- National University Cancer Institute, NUHS, Singapore, Singapore
- ISEP, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Marcus E Peter
- Department of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Porta
- Center of Genomic Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina. Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Cell Clearance, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Barak Rotblat
- Department of Life sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- The NIBN, Beer Sheva, Israel
| | - Carla V Rothlin
- Department of Immunobiology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Thomas Rudel
- Microbiology Biocentre, University of Würzburg, Würzburg, Germany
| | - Alessandro Rufini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- University of Leicester, Leicester Cancer Research Centre, Leicester, UK
| | - Kevin M Ryan
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA, USA
- Department of Systems Biology, Lab of Systems Pharmacology, Harvard Program in Therapeutics Science, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
| | - Akira Sawa
- Johns Hopkins Schizophrenia Center, Johns Hopkins University, Baltimore, MD, USA
| | - Emre Sayan
- Faculty of Medicine, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, NJ, USA
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, PR China
| | - Yufang Shi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Giuseppe S Sica
- Department of Surgical Science, University Tor Vergata, Rome, Italy
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Flavie Strapazzon
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Univ Lyon, Univ Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyogène CNRS, INSERM, Lyon, France
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Liming Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | - Stephen W G Tait
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Daolin Tang
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Carol M Troy
- Departments of Pathology & Cell Biology and Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Nicoletta Urbano
- Department of Oncohaematology, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Methusalem Program, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
- School of Forensic Medicine, China Medical University, Shenyang, China
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences (OeAW), Vienna, Austria
- The Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Daniela Vuri
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Henning Walczak
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Achim Weber
- University of Zurich and University Hospital Zurich, Department of Pathology and Molecular Pathology, Zurich, Switzerland
- University of Zurich, Institute of Molecular Cancer Research, Zurich, Switzerland
| | - Will Wood
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Huang-Tian Yang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Queens College and Graduate Center, City University of New York, Flushing, NY, USA
| | - Joanna E Zawacka-Pankau
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Biochemistry, Laboratory of Biophysics and p53 protein biology, Medical University of Warsaw, Warsaw, Poland
| | - Lin Zhang
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Wenzhao Zhou
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Zhang H, Wang J, Lang W, Liu H, Zhang Z, Wu T, Li H, Bai L, Shi Q. Albiflorin ameliorates inflammation and oxidative stress by regulating the NF-κB/NLRP3 pathway in Methotrexate-induced enteritis. Int Immunopharmacol 2022; 109:108824. [PMID: 35561481 DOI: 10.1016/j.intimp.2022.108824] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/16/2022] [Accepted: 05/02/2022] [Indexed: 12/25/2022]
Abstract
Methotrexate (MTX) treats various diseases but also damages intestinal barrier and leads to enteritis. Albiflorin (ALB) has a variety of pharmacological effects, including antioxidant, anti-inflammation and anti-apoptosis. In the present study, we evaluated the therapeutic effect of ALB on MTX-induced enteritis and investigated the possible mechanisms involved. Male SD rats were intraperitoneally injected with 7 mg/kg MTX for three consecutive days to establish the enteritis model. ALB (20 or 40 mg/kg/day) was intragastrically administrated since two days prior MTX treatment and lasted for six days. We found that ALB treatment increased body weight and intestinal weight of rats with MTX injection. The disease activity index (DAI) score was also decreased after ALB administration. In histological examination, ALB treatment attenuated inflammatory cells infiltration and promoted survival of goblet cells. In detection of inflammatory-associated factors, ALB treatment decreased CD68+ cells infiltration, inhibited myeloperoxidase activity, and suppressed intercellular cell adhesion molecule-1 and cyclooxygenase-2 expression. Additionally, ALB reduced malondialdehyde, glutathione levels, inhibited superoxide dismutase activity and suppressed reactive oxygen species production. Moreover, ALB treatment effectively inhibited NLRP3, as well as caspase 1 p20 and interleukin (IL)-1β and 18 expression. Finally, nuclear factor-κB (NF-κB) p65 phosphorylation and nuclear translocation were also demonstrated to be blocked upon ALB treatment. In conclusion, our findings indicated that ALB alleviated MTX-induced enteritis via inhibiting the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Haihua Zhang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Jing Wang
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Wuying Lang
- College of Biology Pharmacy and Food Engineering, Shangluo University, Shangluo, Shaanxi 726000, People's Republic of China
| | - Hongli Liu
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Zhiqiang Zhang
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Tonglei Wu
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Hongqiang Li
- Hebei Key Laboratory of Specialty Animal Germplasm Resources Exploration and Innovation, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Liya Bai
- Shandong Provincial Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Qiumei Shi
- Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, People's Republic of China.
| |
Collapse
|
6
|
Sousa FBM, Pacheco G, Oliveira AP, Nicolau LAD, Lopes ALF, Ferreira-Fernandes H, Pinto GR, Medeiros JVR. Mechanism of preservation of the intestinal mucosa architecture and NF-κB/PGE2 reduction by hydrogen sulfide on cholera toxin-induced diarrhea in mice. Life Sci 2021; 284:119869. [PMID: 34358552 DOI: 10.1016/j.lfs.2021.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022]
Abstract
AIMS Investigate the involvement of Hydrogen sulfide (H2S) in inflammatory parameters and intestinal morphology caused by cholera toxin (CT) in mice. MAIN METHODS Mice were subjected to the procedure of inducing diarrhea by CT in the isolated intestinal loop model. The intestinal loops were inoculated with H2S donor molecules (NaHS and GYY 4137) or saline and CT. To study the role of EP2 and EP4 prostaglandin E2 (PGE2) receptors in the H2S antisecretory effect, PAG (DL-propargylglycine - inhibitor of cystathionine-γ-lyase (CSE)), PF-04418948 (EP2 antagonist) and ONO-AE3-208 (EP4 antagonist) were used. The intestinal loops were evaluated for intestinal secretion, relation of the depth of villi and intestinal crypts, and real-time PCR for the mRNA of the CXCL2, IL-6, NOS-2, IL-17, NF-κB1, NF-κBIA, SLC6A4 and IFN-γ genes. KEY FINDINGS H2S restored the villus/crypt depth ratio caused by CT. NaHS and GYY 4137 increased the expression of NF-κB1 and for the NF-κBIA gene, only GYY 4137 increased the expression of this gene. The increased expression of NF-κB inhibitors, NF-κB1 and NF-κBIA by H2S indicates a possible decrease in NF-κB activity. The pretreatment with PAG reversed the protective effect of PF-04418948 and ONO-AE3-208, indicating that H2S probably decreases PGE2 because in the presence of antagonists of this pathway, PAG promotes intestinal secretion. SIGNIFICANCE Our results point to a protective activity of H2S against CT for promoting a protection of villus and crypt intestine morphology and also that its mechanism occurs at least in part due to decreasing the activity of NF-κB and PGE2.
Collapse
Affiliation(s)
- Francisca B M Sousa
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil; Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil
| | - Gabriella Pacheco
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - Ana P Oliveira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil; Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil
| | - Lucas A D Nicolau
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - André L F Lopes
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - Hygor Ferreira-Fernandes
- Laboratory of Genetics and Molecular Biology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - Giovanny R Pinto
- Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil; Laboratory of Genetics and Molecular Biology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil
| | - Jand V R Medeiros
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (LAFIDG), Post-graduation Program in Biotechnology, Parnaiba Delta Federal University, Parnaíba, PI, Brazil; Northeast Biotechnology Network (RENORBIO), Federal University of Piauí, Teresina, PI, Brazil.
| |
Collapse
|
7
|
Liu D, Zeng L, Yan Z, Jia J, Gao J, Wei Y. The mechanisms and safety of probiotics against toxigenic clostridium difficile. Expert Rev Anti Infect Ther 2020; 18:967-975. [PMID: 32520637 DOI: 10.1080/14787210.2020.1778464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Toxigenic Clostridium difficile (C. difficile) is the main cause of antibiotic-associated diarrhea and can induce pseudomembranous colitis and infrequent toxic megacolon, which are potentially fatal. The standard antibiotic therapy for C. difficile infection (CDI) is limited by antibiotics' broad spectrum and further disruptive effects on indigenous microbiota. Probiotics may offer a prospective and alternative strategy for the prevention and treatment of CDI. AREAS COVERED In this article, the mechanisms implying the probiotic effect against C. difficile and the safety profile highlighting the patient groups with inappropriate application of probiotics were reviewed from 2015 to 2020. EXPERT OPINION Although many strains with ability against C. difficile have been reported, the usage of probiotics for CDI prevention and/or treatment is scarce since the number of clinical trials is not sufficient to prove probiotics' efficacy and safety in CDI treatment, especially for premature infant and immunocompromised patient. Especially, there are few well-defined clinical studies supporting safety of probiotics for CDI. A few strains from Lactobacillus and Saccharomyces genus have been studied more extensively than other probiotic strains through clinical trials for CDI. Thus, more clinical intervention studies regarding the benefit and the comprehensive safety assessments of probiotics for CDI are needed.
Collapse
Affiliation(s)
- Dianbin Liu
- School of Stomatology/Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University , Xuzhou, Jiangsu Province, China
| | - Lingbing Zeng
- Department of clinical microbiology, The First Affiliated Hospital of Nanchang University , Nanchang, Jiangxi Province, China
| | - Zhihan Yan
- School of Stomatology/Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University , Xuzhou, Jiangsu Province, China
| | - Junqi Jia
- School of Stomatology/Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University , Xuzhou, Jiangsu Province, China
| | - Jing Gao
- School of Stomatology/Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University , Xuzhou, Jiangsu Province, China
| | - Yanxia Wei
- School of Stomatology/Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University , Xuzhou, Jiangsu Province, China
| |
Collapse
|
8
|
Noori M, Yadegar A, Zali MR. A Complex Scenario of Nonsteroidal Anti-inflammatory Drugs Induced Prostaglandin E2 Production and Gut Microbiota Alteration in Clostridium difficile-Infected Mice. mBio 2020; 11:e02596-19. [PMID: 31937640 PMCID: PMC6960283 DOI: 10.1128/mbio.02596-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Maryam Noori
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Khan I, Ullah N, Zha L, Bai Y, Khan A, Zhao T, Che T, Zhang C. Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens 2019; 8:pathogens8030126. [PMID: 31412603 PMCID: PMC6789542 DOI: 10.3390/pathogens8030126] [Citation(s) in RCA: 495] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic complex inflammatory gut pathological condition, examples of which include Crohn’s disease (CD) and ulcerative colitis (UC), which is associated with significant morbidity. Although the etiology of IBD is unknown, gut microbiota alteration (dysbiosis) is considered a novel factor involved in the pathogenesis of IBD. The gut microbiota acts as a metabolic organ and contributes to human health by performing various physiological functions; deviation in the gut flora composition is involved in various disease pathologies, including IBD. This review aims to summarize the current knowledge of gut microbiota alteration in IBD and how this contributes to intestinal inflammation, as well as explore the potential role of gut microbiota-based treatment approaches for the prevention and treatment of IBD. The current literature has clearly demonstrated a perturbation of the gut microbiota in IBD patients and mice colitis models, but a clear causal link of cause and effect has not yet been presented. In addition, gut microbiota-based therapeutic approaches have also shown good evidence of their effects in the amelioration of colitis in animal models (mice) and IBD patients, which indicates that gut flora might be a new promising therapeutic target for the treatment of IBD. However, insufficient data and confusing results from previous studies have led to a failure to define a core microbiome associated with IBD and the hidden mechanism of pathogenesis, which suggests that well-designed randomized control trials and mouse models are required for further research. In addition, a better understanding of this ecosystem will also determine the role of prebiotics and probiotics as therapeutic agents in the management of IBD.
Collapse
Affiliation(s)
- Israr Khan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Naeem Ullah
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Lajia Zha
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Ashiq Khan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, China
| | - Tang Zhao
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Tuanjie Che
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China.
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China.
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou 730000, China.
| |
Collapse
|
10
|
Maseda D, Zackular JP, Trindade B, Kirk L, Roxas JL, Rogers LM, Washington MK, Du L, Koyama T, Viswanathan VK, Vedantam G, Schloss PD, Crofford LJ, Skaar EP, Aronoff DM. Nonsteroidal Anti-inflammatory Drugs Alter the Microbiota and Exacerbate Clostridium difficile Colitis while Dysregulating the Inflammatory Response. mBio 2019; 10:mBio.02282-18. [PMID: 30622186 PMCID: PMC6325247 DOI: 10.1128/mbio.02282-18] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Clostridium difficile infection (CDI) is a major public health threat worldwide. The use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with enhanced susceptibility to and severity of CDI; however, the mechanisms driving this phenomenon have not been elucidated. NSAIDs alter prostaglandin (PG) metabolism by inhibiting cyclooxygenase (COX) enzymes. Here, we found that treatment with the NSAID indomethacin prior to infection altered the microbiota and dramatically increased mortality and the intestinal pathology associated with CDI in mice. We demonstrated that in C. difficile-infected animals, indomethacin treatment led to PG deregulation, an altered proinflammatory transcriptional and protein profile, and perturbed epithelial cell junctions. These effects were paralleled by increased recruitment of intestinal neutrophils and CD4+ cells and also by a perturbation of the gut microbiota. Together, these data implicate NSAIDs in the disruption of protective COX-mediated PG production during CDI, resulting in altered epithelial integrity and associated immune responses.IMPORTANCEClostridium difficile infection (CDI) is a spore-forming anaerobic bacterium and leading cause of antibiotic-associated colitis. Epidemiological data suggest that use of nonsteroidal anti-inflammatory drugs (NSAIDs) increases the risk for CDI in humans, a potentially important observation given the widespread use of NSAIDs. Prior studies in rodent models of CDI found that NSAID exposure following infection increases the severity of CDI, but mechanisms to explain this are lacking. Here we present new data from a mouse model of antibiotic-associated CDI suggesting that brief NSAID exposure prior to CDI increases the severity of the infectious colitis. These data shed new light on potential mechanisms linking NSAID use to worsened CDI, including drug-induced disturbances to the gut microbiome and colonic epithelial integrity. Studies were limited to a single NSAID (indomethacin), so future studies are needed to assess the generalizability of our findings and to establish a direct link to the human condition.
Collapse
Affiliation(s)
- Damian Maseda
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Joseph P Zackular
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Bruno Trindade
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Leslie Kirk
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jennifer Lising Roxas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Lisa M Rogers
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mary K Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Liping Du
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tatsuki Koyama
- Center for Quantitative Sciences, Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - V K Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Patrick D Schloss
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Leslie J Crofford
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David M Aronoff
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Popoff MR. Clostridium difficile and Clostridium sordellii toxins, proinflammatory versus anti-inflammatory response. Toxicon 2018; 149:54-64. [DOI: 10.1016/j.toxicon.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022]
|
12
|
Wei Y, Yang F, Wu Q, Gao J, Liu W, Liu C, Guo X, Suwal S, Kou Y, Zhang B, Wang Y, Zheng K, Tang R. Protective Effects of Bifidobacterial Strains Against Toxigenic Clostridium difficile. Front Microbiol 2018; 9:888. [PMID: 29867801 PMCID: PMC5952185 DOI: 10.3389/fmicb.2018.00888] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
Probiotics might offer an attractive alternative to prevent and control Clostridium difficile (C. difficile) infection (CDI). Limited information is available on the ability of commercially used bifidobacterial strains to inhibit C. difficile. This study examined the anti-clostridial effects of Bifidobacterium longum JDM301, a widely used commercial probiotic strain in China, in vitro and in vivo. In vitro evaluation revealed a significant reduction in C. difficile counts when JDM301 was co-cultured with C. difficile, which was correlated with the significant decrease in clostridial toxin titres (TcdA and TcdB). Furthermore, the cell-free culture supernatants (CFS) of JDM301 inhibited C. difficile growth and degraded TcdA and TcdB. Notably, the results showed that acid pH promoted the degradation of TcdA by CFS from JDM301. Furthermore, comparative studies among 10 B. longum strains were performed, which showed that the inhibitory effect of CFS from JDM301 was similar with the other 8 B. longum strains and higher than strain BLY1. However, when it was neutralized, the significant different was lost. When present together, it was suggested that the acid pH induced by probiotics not only played important roles in the growth inhibition against C. difficile resulting in the reduction of toxins titres, but also directly promoted the degradation of clostridial toxin. In vivo studies proved that JDM301 partially relieved damage to tissues caused by C. difficile and also decreased the number of C. difficile and toxin levels. In summary, our results demonstrated that the commercial strain, JDM301 could be considered a probiotic able to exert anti-toxin capability and most of the CFS from Bifidobacterium were able to inhibit the growth of C. difficile, depending on acid pH. These results highlighted a potential that JDM301 could be helpful in preventing CDI and that most of the bifidobacterial strains could (at least partially) exert protective effects by reducing toxin titres through growth inhibition against toxigenic C. difficile.
Collapse
Affiliation(s)
- Yanxia Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Fan Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Qiong Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Jing Gao
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Wenli Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Chang Liu
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaokui Guo
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sharmila Suwal
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Yanbo Kou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Bo Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Koon HW, Wang J, Mussatto CC, Ortiz C, Lee EC, Tran DHN, Chen X, Kelly CP, Pothoulakis C. Fidaxomicin and OP-1118 Inhibit Clostridium difficile Toxin A- and B-Mediated Inflammatory Responses via Inhibition of NF-κB Activity. Antimicrob Agents Chemother 2018; 62:e01513-17. [PMID: 29038278 PMCID: PMC5740352 DOI: 10.1128/aac.01513-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/12/2017] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile causes diarrhea and colitis by releasing toxin A and toxin B. In the human colon, both toxins cause intestinal inflammation and stimulate tumor necrosis factor alpha (TNF-α) expression via the activation of NF-κB. It is well established that the macrolide antibiotic fidaxomicin is associated with reduced relapses of C. difficile infection. We showed that fidaxomicin and its primary metabolite OP-1118 significantly inhibited toxin A-mediated intestinal inflammation in mice in vivo and toxin A-induced cell rounding in vitro We aim to determine whether fidaxomicin and OP-1118 possess anti-inflammatory effects against toxin A and toxin B in the human colon and examine the mechanism of this response. We used fresh human colonic explants, NCM460 human colonic epithelial cells, and RAW264.7 mouse macrophages to study the mechanism of the activity of fidaxomicin and OP-1118 against toxin A- and B-mediated cytokine expression and apoptosis. Fidaxomicin and OP-1118 dose-dependently inhibited toxin A- and B-induced TNF-α and interleukin-1β (IL-1β) mRNA expression and histological damage in human colonic explants. Fidaxomicin and OP-1118 inhibited toxin A-mediated NF-κB phosphorylation in human and mouse intestinal mucosae. Fidaxomicin and OP-1118 also inhibited toxin A-mediated NF-κB phosphorylation and TNF-α expression in macrophages, which was reversed by the NF-κB activator phorbol myristate acetate (PMA). Fidaxomicin and OP-1118 prevented toxin A- and B-mediated apoptosis in NCM460 cells, which was reversed by the addition of PMA. PMA reversed the cytoprotective effect of fidaxomicin and OP-1118 in toxin-exposed human colonic explants. Fidaxomicin and OP-1118 inhibit C. difficile toxin A- and B-mediated inflammatory responses, NF-κB phosphorylation, and tissue damage in the human colon.
Collapse
Affiliation(s)
- Hon Wai Koon
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| | - Jiani Wang
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | - Caroline C Mussatto
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| | - Christina Ortiz
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| | - Elaine C Lee
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| | - Diana Hoang-Ngoc Tran
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| | - Xinhua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ciaran P Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Charalabos Pothoulakis
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
14
|
Yoon IN, Lu LF, Hong J, Zhang P, Kim DH, Kang JK, Hwang JS, Kim H. The American cockroach peptide periplanetasin-4 inhibits Clostridium difficile toxin A-induced cell toxicities and inflammatory responses in the mouse gut. J Pept Sci 2017; 23:833-839. [PMID: 28949065 DOI: 10.1002/psc.3046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/27/2017] [Accepted: 08/27/2017] [Indexed: 01/07/2023]
Abstract
Many reports have shown that crude extracts of the American cockroach have therapeutic effects on inflammation. In a previous study, our research group showed that an antimicrobial peptide (Periplanetasin-2) derived from the American cockroach via de novo transcriptome analysis inhibited apoptosis of human colonocytes and inflammatory responses of the mouse gut caused by Clostridium difficile toxin A. Here, we examined whether Periplanetasin-4 (Peri-4), another antimicrobial peptide identified via de novo transcriptome analysis of the American cockroach, could also inhibit the various toxicities induced by C. difficile toxin A. We found that Peri-4 significantly reduced the cell viability loss and cell apoptosis caused by toxin A in vitro. Peri-4 also ameliorated the severe inflammatory responses seen in the toxin A-induced mouse enteritis model, rescuing the villus disruption and interleukin-6 production induced by luminal injection of toxin A into the mouse gut. Mechanistically, we found that Peri-4 could reduce toxin A-induced reactive oxygen species production to inhibit the activations of p38MAPK and p21Cip1/Waf1 , which are critical for the cell damages induced by toxin A. These results collectively suggest that the Peri-4 may be a potential therapeutic agent for treating toxin A-induced pseudomembranous colitis. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- I Na Yoon
- Division of Life Science and Chemistry, College of Natural Science, Daejin University, Pocheon, Gyeonggido, 11159, Korea
| | - Li Fang Lu
- Hainan Institute of Science and Technology, Haikou, 571126, China
| | - Ji Hong
- Division of Life Science and Chemistry, College of Natural Science, Daejin University, Pocheon, Gyeonggido, 11159, Korea
| | - Peng Zhang
- Division of Life Science and Chemistry, College of Natural Science, Daejin University, Pocheon, Gyeonggido, 11159, Korea
| | - Dae Hong Kim
- Division of Life Science and Chemistry, College of Natural Science, Daejin University, Pocheon, Gyeonggido, 11159, Korea
| | - Jin Ku Kang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University Graduate School of Medicine, Incheon, 406-840, Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju, 55365, Korea
| | - Ho Kim
- Division of Life Science and Chemistry, College of Natural Science, Daejin University, Pocheon, Gyeonggido, 11159, Korea
| |
Collapse
|
15
|
Gu YB, Zhang MC, Sun J, Lv KZ, Zhong J. Risk factors and clinical outcome of Clostridium difficile infection in patients with IBD: A single-center retrospective study of 260 cases in China. J Dig Dis 2017; 18:207-211. [PMID: 28251812 DOI: 10.1111/1751-2980.12461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Clostridium difficile infection (CDI) may lead to poor outcomes in patients with inflammatory bowel disease (IBD). In this study we aimed to investigate the cumulative incidence, risk factors and outcome of CDI in patients with IBD in a single center in China. METHODS The clinical features and endoscopic profiles of consecutive IBD patients admitted to Ruijin Hospital, Shanghai Jiaotong University School of Medicine between January 2013 and December 2015 were retrospectively analyzed. CDI was diagnosed based on a positive polymerase chain reaction (PCR) stool test. RESULTS A total of 260 patients with IBD were enrolled, including 176 with Crohn's disease (CD) and 84 with ulcerative colitis (UC). Altogether 13 (5.0%) patients were diagnosed with CDI. The incidence of CDI was 4.0% (7/176) in CD and 7.1% (6/84) in UC, respectively. The endoscopic feature of pseudomembrane was found in four (33.3%) IBD-CDI patients, and pseudomembrane and deep ulcers were significantly correlated with CDI (P < 0.001 and P = 0.006, respectively). Hemoglobin (Hb) <100 g/L was found to be associated with CDI (OR 3.48, 95% CI 1.04-11.61, P = 0.043). Patients in the CDI group showed a higher risk of developing abdominal abscesses than those in the non-CDI group (OR 6.09, 95% CI 1.8-15.2, P = 0.003). CONCLUSIONS PCR-based fecal test for CDI should be performed in these IBD patients. Hb <100 g/L may be an important risk factor for CDI in IBD. For patients with CDI, antibiotics should be administered promptly to prevent abdominal abscess.
Collapse
Affiliation(s)
- Yu Bei Gu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mao Chen Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ke Zhi Lv
- Department of Colorectal Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Zhong
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Fiebiger U, Bereswill S, Heimesaat MM. Dissecting the Interplay Between Intestinal Microbiota and Host Immunity in Health and Disease: Lessons Learned from Germfree and Gnotobiotic Animal Models. Eur J Microbiol Immunol (Bp) 2016; 6:253-271. [PMID: 27980855 PMCID: PMC5146645 DOI: 10.1556/1886.2016.00036] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
This review elaborates the development of germfree and gnotobiotic animal models and their application in the scientific field to unravel mechanisms underlying host-microbe interactions and distinct diseases. Strictly germfree animals are raised in isolators and not colonized by any organism at all. The germfree state is continuously maintained by birth, raising, housing and breeding under strict sterile conditions. However, isolator raised germfree mice are exposed to a stressful environment and exert an underdeveloped immune system. To circumvent these physiological disadvantages depletion of the bacterial microbiota in conventionally raised and housed mice by antibiotic treatment has become an alternative approach. While fungi and parasites are not affected by antibiosis, the bacterial microbiota in these "secondary abiotic mice" have been shown to be virtually eradicated. Recolonization of isolator raised germfree animals or secondary abiotic mice results in a gnotobiotic state. Both, germfree and gnotobiotic mice have been successfully used to investigate biological functions of the conventional microbiota in health and disease. Particularly for the development of novel clinical applications germfree mice are widely used tools, as summarized in this review further focusing on the modulation of bacterial microbiota in laboratory mice to better mimic conditions in the human host.
Collapse
Affiliation(s)
| | | | - Markus M. Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology and Hygiene, Charité – University Medicine Berlin, Campus Benjamin Franklin
| |
Collapse
|
17
|
Abstract
The intestinal microbiota has important metabolic and host-protective functions. Conversely to these beneficial functions, the intestinal microbiota is thought to play a central role in the etiopathogenesis of inflammatory bowel disease (IBD; Crohn's disease and ulcerative colitis), a chronic inflammation of the gut mucosa. Genetic screens and studies in experimental mouse models have clearly demonstrated that IBD can develop due to excessive translocation of bacteria into the bowel wall or dysregulated handling of bacteria in genetically susceptible hosts. In healthy individuals, the microbiota is efficiently separated from the mucosal immune system of the gut by the gut barrier, a single layer of highly specialized epithelial cells, some of which are equipped with innate immune functions to prevent or control access of bacterial antigens to the mucosal immune cells. It is currently unclear whether the composition of the microbial flora or individual bacterial strains or pathogens induces or supports the pathogenesis of IBD. Further research will be necessary to carefully dissect the contribution of individual bacterial species to this disease and to ascertain whether specific modulation of the intestinal microbiome may represent a valuable further option for future therapeutic strategies.
Collapse
Affiliation(s)
- Christoph Becker
- Christoph Becker, PhD, is associated professor, Markus F. Neurath, MD, is director, and Stefan Wirtz, PhD, is senior scientist at the Department of Medicine 1 at the Friedrich-Alexander University Erlangen-Nuremberg in Erlangen, Germany
| | - Markus F Neurath
- Christoph Becker, PhD, is associated professor, Markus F. Neurath, MD, is director, and Stefan Wirtz, PhD, is senior scientist at the Department of Medicine 1 at the Friedrich-Alexander University Erlangen-Nuremberg in Erlangen, Germany
| | - Stefan Wirtz
- Christoph Becker, PhD, is associated professor, Markus F. Neurath, MD, is director, and Stefan Wirtz, PhD, is senior scientist at the Department of Medicine 1 at the Friedrich-Alexander University Erlangen-Nuremberg in Erlangen, Germany
| |
Collapse
|
18
|
Ahmed I, Roy BC, Khan SA, Septer S, Umar S. Microbiome, Metabolome and Inflammatory Bowel Disease. Microorganisms 2016; 4:microorganisms4020020. [PMID: 27681914 PMCID: PMC5029486 DOI: 10.3390/microorganisms4020020] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/25/2016] [Accepted: 06/06/2016] [Indexed: 12/17/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn’s Disease (CD) or Ulcerative Colitis (UC), two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- Department of Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, 4028 Wahl Hall East, Kansas City, KS 66160, USA.
| | - Badal C Roy
- Department of Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, 4028 Wahl Hall East, Kansas City, KS 66160, USA.
| | - Salman A Khan
- Department of Internal Medicine and Department of Pediatrics, University of Missouri, Kansas City, MO 64110, USA.
| | - Seth Septer
- Department of Internal Medicine and Department of Pediatrics, University of Missouri, Kansas City, MO 64110, USA.
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, 4028 Wahl Hall East, Kansas City, KS 66160, USA.
| |
Collapse
|
19
|
Kim DH, Hwang JS, Lee IH, Nam ST, Hong J, Zhang P, Lu LF, Lee J, Seok H, Pothoulakis C, Lamont JT, Kim H. The Insect Peptide CopA3 Increases Colonic Epithelial Cell Proliferation and Mucosal Barrier Function to Prevent Inflammatory Responses in the Gut. J Biol Chem 2015; 291:3209-23. [PMID: 26655716 DOI: 10.1074/jbc.m115.682856] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 01/05/2023] Open
Abstract
The epithelial cells of the gut form a physical barrier against the luminal contents. The collapse of this barrier causes inflammation, and its therapeutic restoration can protect the gut against inflammation. EGF enhances mucosal barrier function and increases colonocyte proliferation, thereby ameliorating inflammatory responses in the gut. Based on our previous finding that the insect peptide CopA3 promotes neuronal growth, we herein tested whether CopA3 could increase the cell proliferation of colonocytes, enhance mucosal barrier function, and ameliorate gut inflammation. Our results revealed that CopA3 significantly increased epithelial cell proliferation in mouse colonic crypts and also enhanced colonic epithelial barrier function. Moreover, CopA3 treatment ameliorated Clostridium difficile toxin As-induced inflammation responses in the mouse small intestine (acute enteritis) and completely blocked inflammatory responses and subsequent lethality in the dextran sulfate sodium-induced mouse model of chronic colitis. The marked CopA3-induced increase of colonocyte proliferation was found to require rapid protein degradation of p21(Cip1/Waf1), and an in vitro ubiquitination assay revealed that CopA3 directly facilitated ubiquitin ligase activity against p21(Cip1/Waf1). Taken together, our findings indicate that the insect peptide CopA3 prevents gut inflammation by increasing epithelial cell proliferation and mucosal barrier function.
Collapse
Affiliation(s)
- Dae Hong Kim
- From the Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido, 487-711, Republic of Korea
| | - Jae Sam Hwang
- the Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju 55365, Republic of Korea
| | - Ik Hwan Lee
- From the Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido, 487-711, Republic of Korea
| | - Seung Taek Nam
- From the Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido, 487-711, Republic of Korea
| | - Ji Hong
- From the Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido, 487-711, Republic of Korea
| | - Peng Zhang
- From the Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido, 487-711, Republic of Korea
| | - Li Fang Lu
- From the Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido, 487-711, Republic of Korea
| | - Junguee Lee
- the Department of Pathology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daeheung-ro 64, Jung-gu, Daejeon 301-723, Republic of Korea
| | - Heon Seok
- the Department of Biomedical Engineering, Jungwon University, Goesan, Chungcheongbukdo, 367-700, South Korea
| | - Charalabos Pothoulakis
- the Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, and
| | - John Thomas Lamont
- the Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115
| | - Ho Kim
- From the Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido, 487-711, Republic of Korea,
| |
Collapse
|
20
|
Sun C, Wang H, Mao S, Liu J, Li S, Wang J. Reactive oxygen species involved in CT26 immunogenic cell death induced by Clostridium difficile toxin B. Immunol Lett 2015; 164:65-71. [DOI: 10.1016/j.imlet.2015.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/26/2015] [Accepted: 02/15/2015] [Indexed: 11/15/2022]
|
21
|
Hing TC, Ho S, Shih DQ, Ichikawa R, Cheng M, Chen J, Chen X, Law I, Najarian R, Kelly CP, Gallo RL, Targan SR, Pothoulakis C, Koon HW. The antimicrobial peptide cathelicidin modulates Clostridium difficile-associated colitis and toxin A-mediated enteritis in mice. Gut 2013; 62:1295-305. [PMID: 22760006 PMCID: PMC3737259 DOI: 10.1136/gutjnl-2012-302180] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clostridium difficile mediates intestinal inflammation by releasing toxin A (TxA), a potent enterotoxin. Cathelicidins (Camp as gene name, LL-37 peptide in humans and mCRAMP peptide in mice) are antibacterial peptides that also posses anti-inflammatory properties. OBJECTIVES To determine the role of cathelicidins in models of Clostridium difficile infection and TxA-mediated ileal inflammation and cultured human primary monocytes. DESIGN Wild-type (WT) and mCRAMP-deficient (Camp(-/-)) mice were treated with an antibiotic mixture and infected orally with C difficile. Some mice were intracolonically given mCRAMP daily for 3 days. Ileal loops were also prepared in WT mice and treated with either saline or TxA and incubated for 4 h, while some TxA-treated loops were injected with mCRAMP. RESULTS Intracolonic mCRAMP administration to C difficile-infected WT mice showed significantly reduced colonic histology damage, apoptosis, tissue myeloperoxidase (MPO) and tumour necrosis factor (TNF)α levels. Ileal mCRAMP treatment also significantly reduced histology damage, tissue apoptosis, MPO and TNFα levels in TxA-exposed ileal loops. WT and Camp(-/-) mice exhibited similar intestinal responses in both models, implying that C difficile/TxA-induced endogenous cathelicidin may be insufficient to modulate C difficile/TxA-mediated intestinal inflammation. Both LL-37 and mCRAMP also significantly reduced TxA-induced TNFα secretion via inhibition of NF-κB phosphorylation. Endogenous cathelicidin failed to control C difficile and/or toxin A-mediated inflammation and even intestinal cathelicidin expression was increased in humans and mice. CONCLUSION Exogenous cathelicidin modulates C difficile colitis by inhibiting TxA-associated intestinal inflammation. Cathelicidin administration may be a new anti-inflammatory treatment for C difficile toxin-associated disease.
Collapse
Affiliation(s)
- Tressia C Hing
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, the University of California Los Angeles, Los Angeles, California, USA
| | - Samantha Ho
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, the University of California Los Angeles, Los Angeles, California, USA
| | - David Q Shih
- Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Ryan Ichikawa
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, the University of California Los Angeles, Los Angeles, California, USA
| | - Michelle Cheng
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, the University of California Los Angeles, Los Angeles, California, USA
| | - Jeremy Chen
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, the University of California Los Angeles, Los Angeles, California, USA
| | - Xinhua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy Law
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, the University of California Los Angeles, Los Angeles, California, USA
| | - Robert Najarian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ciaran P Kelly
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard L Gallo
- Division of Dermatology, the University of California San Diego, San Diego, California, USA
| | - Stephan R Targan
- Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, the University of California Los Angeles, Los Angeles, California, USA
| | - Hon Wai Koon
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, the University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
22
|
Fitzpatrick LR. Probiotics for the treatment of Clostridium difficile associated disease. World J Gastrointest Pathophysiol 2013; 4:47-52. [PMID: 23946887 PMCID: PMC3740259 DOI: 10.4291/wjgp.v4.i3.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/15/2013] [Accepted: 06/04/2013] [Indexed: 02/06/2023] Open
Abstract
The purpose of this review paper is to update the current and potential future role of probiotics for Clostridium difficile-associated disease (CDAD). Included in this review, is an update on the testing of newer probiotics (e.g., Bacillus coagulans GBI-30, 6086) in animal models of CDAD. There is a focus on the modulation of signal transduction pathways (i.e., transcription factors like cAMP response element-binding, activator protein 1, and nuclear factor kappa B), as well as the inhibition of certain kinases (e.g., p38 mitogen activated protein kinases) by probiotics. Inhibition of signal transduction by probiotics, such as Saccharomyces boulardii, result in multiple effects on intestinal fluid secretion, neutrophil influx into the colon, inflammation, and colonocyte apoptosis that may positively impact CDAD. Recent clinical approaches with probiotics, for the prevention of primary and recurrent CDAD, are also summarized in this review paper. Future directions for the treatment of CDAD by probiotics are also mentioned in this review. In particular, the use of multi-strain probiotic formulations such as Ecologic® AAD and VSL #3® may represent a rationale pharmacological approach, particularly as adjunctive therapies for CDAD. Understanding the mechanistic basis of CDAD, and how probiotics interfere at ceratin steps in the pathogenic process, may also present the opportunity to design other multi-strain probiotics that could have a future impact on CDAD.
Collapse
|
23
|
Boone JH, DiPersio JR, Tan MJ, Salstrom SJ, Wickham KN, Carman RJ, Totty HR, Albert RE, Lyerly DM. Elevated lactoferrin is associated with moderate to severe Clostridium difficile disease, stool toxin, and 027 infection. Eur J Clin Microbiol Infect Dis 2013; 32:1517-23. [PMID: 23771554 PMCID: PMC3825630 DOI: 10.1007/s10096-013-1905-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/27/2013] [Indexed: 12/18/2022]
Abstract
We evaluated blood and fecal biomarkers as indicators of severity in symptomatic patients with confirmed Clostridium difficile infection (CDI). Recruitment included patients with CDI based on clinical symptoms and supporting laboratory findings. Disease severity was defined by physician’s assessment and blood and fecal biomarkers were measured. Toxigenic culture done using spore enrichment and toxin B detected by tissue culture were done as confirmatory tests. Polymerase chain reaction (PCR) ribotyping was performed on each isolate. There were 98 patients recruited, with 85 (87 %) confirmed cases of toxigenic CDI (21 severe, 57 moderate, and seven mild), of which 68 (80 %) were also stool toxin-positive. Elevated lactoferrin (p = 0.01), increased white blood cell (WBC) count (p = 0.08), and low serum albumin (p = 0.03) were all associated with the more severe cases of CDI. Ribotype 027 infection accounted for 71 % of severe cases (p < 0.01) and patients with stool toxin had significantly higher lactoferrin levels and WBC counts (p < 0.05). Our findings show that elevated fecal lactoferrin, along with increased WBC count and low serum albumin, were associated with more severe CDI. In addition, patients infected with ribotype 027 and those with stool toxin had significantly higher fecal lactoferrin and WBC counts.
Collapse
Affiliation(s)
- J H Boone
- Research and Development, TechLab, Inc., 2001 Kraft Drive, Blacksburg, VA, 24060, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sobral B, Mao C, Shukla M, Sullivan D, Zhang C. Informatics-Driven Infectious Disease Research. BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, INTERNATIONAL JOINT CONFERENCE, BIOSTEC ... REVISED SELECTED PAPERS. BIOSTEC (CONFERENCE) 2013; 273:3-11. [PMID: 39995609 PMCID: PMC11849688 DOI: 10.1007/978-3-642-29752-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Informatics-driven approaches change how research and development are conducted, who participates, and enables systems-oriented views of science and research. Most life sciences researchers have a very strong desire for the full integration of data and analysis tools delivered through a single interface. Infectious disease (ID) research and development provides a uniquely challenging and high impact opportunity. The biological complexity of infectious disease systems, which are composed of multiple scales of interactions between potential pathogens, hosts, vectors, and the environment, challenges information resources because of the breadth of organism-organism and organism-environment interactions. Applications of integrated data for ID serves a variety of constituencies, such as clinicians, diagnostician, drug and vaccine developers, and epidemiologists. Thus there is a complexity that makes ID an opportune area in which to develop, deploy and use CyberInfrastructure.
Collapse
Affiliation(s)
- Bruno Sobral
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, U.S.A
| | - Chunhong Mao
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, U.S.A
| | - Maulik Shukla
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, U.S.A
| | - Dan Sullivan
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, U.S.A
| | - Chengdong Zhang
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, U.S.A
| |
Collapse
|
25
|
Glutamine and alanyl-glutamine increase RhoA expression and reduce Clostridium difficile toxin-a-induced intestinal epithelial cell damage. BIOMED RESEARCH INTERNATIONAL 2012; 2013:152052. [PMID: 23484083 PMCID: PMC3591182 DOI: 10.1155/2013/152052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 11/12/2012] [Indexed: 12/18/2022]
Abstract
Clostridium difficile is a major cause of antibiotic-associated colitis and is associated with significant morbidity and mortality. Glutamine (Gln) is a major fuel for the intestinal cell population. Alanyl-glutamine (Ala-Gln) is a dipeptide that is highly soluble and well tolerated. IEC-6 cells were used in the in vitro experiments. Cell morphology was evaluated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Cell proliferation was assessed by WST-1 and Ki-67 and apoptosis was assessed by TUNEL. Cytoskeleton was evaluated by immunofluorescence for RhoA and F-actin. RhoA was quantified by immunoblotting. TcdA induced cell shrinkage as observed by AFM, SEM, and fluorescent microscopy. Additionally, collapse of the F-actin cytoskeleton was demonstrated by immunofluorescence. TcdA decreased cell volume and area and increased cell height by 79%, 66.2%, and 58.9%, respectively. Following TcdA treatment, Ala-Gln and Gln supplementation, significantly increased RhoA by 65.5% and 89.7%, respectively at 24 h. Ala-Gln supplementation increased cell proliferation by 137.5% at 24 h and decreased cell apoptosis by 61.4% at 24 h following TcdA treatment. In conclusion, TcdA altered intestinal cell morphology and cytoskeleton organization, decreased cell proliferation, and increased cell apoptosis. Ala-Gln and Gln supplementation reduced intestinal epithelial cell damage and increased RhoA expression.
Collapse
|
26
|
Fitzpatrick LR, Small JS, Greene WH, Karpa KD, Farmer S, Keller D. Bacillus coagulans GBI-30, 6086 limits the recurrence of Clostridium difficile-Induced colitis following vancomycin withdrawal in mice. Gut Pathog 2012; 4:13. [PMID: 23088680 PMCID: PMC3484022 DOI: 10.1186/1757-4749-4-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 10/12/2012] [Indexed: 02/07/2023] Open
Abstract
Background Recently, we found that the probiotic strain Bacillus coagulans GBI-30, 6086 (GanedenBC30) improved indices of Clostridium difficile (C. difficile)-induced colitis in mice (Fitzpatrick et al., Gut Pathogens, 2011). Our goal was to determine if BC30 could also prevent the recurrence of C. difficile-induced colitis in mice, following initial treatment with vancomycin. During study days 0 through 5, mice were treated with antibiotics. On day 6, the C. difficile strain VPI 10463 was given by oro-gastric gavage at ≈ 5x104 CFU to induce colitis. Mice were treated on study days 6 to 10 with vancomycin (50 mg/kg) (vanco) or vehicle (saline) by gavage. On days 10 to16, mice were dosed by gavage with saline vehicle or BC30 (2 x 109 CFU per day). Mice were monitored for mortality, weight loss and diarrhea. On study days 14, 16 and 17, stools and colons were collected for analyzing other parameters of colitis. Results The mean stool consistency score in Vehicle/C.difficile/Vanco mice increased from 0.4 (day 10) to a range of 1.1 to 1.4 (days 14 to 17), indicating the recurrence of colitis. On days 13 through 17, the stool consistency scores for the vancomycin/BC30 mice were significantly lower (p< 0.05) than for the vancomycin/vehicle cohort of animals. On day 17, 88.9% of mice treated with BC30 had normal stools, while this value was 0% with vehicle treatment (p value = 0.0004). Colonic myeloperoxidase (Units/2 cm colon) was significantly (p < 0.05) reduced from 4.3 ± 0.7 (Vehicle/C.difficile/Vanco) to 2.6 ± 0.2 (BC30/C. Difficle/Vanco). The colonic histology score and Keratinocyte derived-chemokine level in the colon were also lower in BC30 treated mice. Summary In BC30-treated mice, there was evidence of better stool consistency, as well as improved biochemical and histological indices of colitis, following initial treatment of animals with vancomycin. Conclusion BC30 limited the recurrence of CD-induced colitis following vancomycin withdrawal in mice.
Collapse
Affiliation(s)
- Leo R Fitzpatrick
- Ganeden Biotech Inc,, 5800 Landerbrook Drive, Suite 300, Mayfield Heights, OH, 44124, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Intrarectal instillation of Clostridium difficile toxin A triggers colonic inflammation and tissue damage: development of a novel and efficient mouse model of Clostridium difficile toxin exposure. Infect Immun 2012; 80:4474-84. [PMID: 23045481 DOI: 10.1128/iai.00933-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Clostridium difficile, a major cause of hospital-acquired diarrhea, triggers disease through the release of two toxins, toxin A (TcdA) and toxin B (TcdB). These toxins disrupt the cytoskeleton of the intestinal epithelial cell, increasing intestinal permeability and triggering the release of inflammatory mediators resulting in intestinal injury and inflammation. The most prevalent animal model to study TcdA/TcdB-induced intestinal injury involves injecting toxin into the lumen of a surgically generated "ileal loop." This model is time-consuming and exhibits variability depending on the expertise of the surgeon. Furthermore, the target organ of C. difficile infection (CDI) in humans is the colon, not the ileum. In the current study, we describe a new model of CDI that involves intrarectal instillation of TcdA/TcdB into the mouse colon. The administration of TcdA/TcdB triggered colonic inflammation and neutrophil and macrophage infiltration as well as increased epithelial barrier permeability and intestinal epithelial cell death. The damage and inflammation triggered by TcdA/TcdB isolates from the VPI and 630 strains correlated with the concentration of TcdA and TcdB produced. TcdA/TcdB exposure increased the expression of a number of inflammatory mediators associated with human CDI, including interleukin-6 (IL-6), gamma interferon (IFN-γ), and IL-1β. Finally, we were able to demonstrate that TcdA was much more potent at inducing colonic injury than was TcdB but TcdB could act synergistically with TcdA to exacerbate injury. Taken together, our data indicate that the intrarectal murine model provides a robust and efficient system to examine the effects of TcdA/TcdB on the induction of inflammation and colonic tissue damage in the context of human CDI.
Collapse
|
28
|
Yousif S, Chaves C, Potin S, Margaill I, Scherrmann JM, Declèves X. Induction of P-glycoprotein and Bcrp at the rat blood-brain barrier following a subchronic morphine treatment is mediated through NMDA/COX-2 activation. J Neurochem 2012; 123:491-503. [PMID: 22845665 DOI: 10.1111/j.1471-4159.2012.07890.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 07/07/2012] [Accepted: 07/25/2012] [Indexed: 01/23/2023]
Abstract
Subchronic morphine treatment induces P-glycoprotein (P-gp) up-regulation at the blood-brain barrier. This study investigates the rate and extent to which P-gp and breast cancer-resistance protein (Bcrp) increase at the rat blood-brain barrier following subchronic morphine treatment. Rats were given increasing doses of morphine (10-40 mg/kg) or saline i.p. twice daily for 5 days. The brain cortex large vessels and microvessels were then mechanical isolated 6, 9, 12, 24, and 36 h after the last injection. The gene and protein expression of P-gp and Bcrp in morphine-treated and control rats were compared by qRT-PCR and western blotting. The levels of Mdr1a and Bcrp mRNAs were not significantly modified 6 h post morphine, but the Mdr1a mRNA increased 1.4-fold and Bcrp mRNA 2.4-fold at 24 h. P-gp and Bcrp protein expression in brain microvessels was unchanged 6 h post morphine and increased 1.5-fold at 24 h. This effect was more pronounced in large vessels than in microvessels. However, extracellular morphine concentrations of 0.01-10 μM did not modify the expressions of the MDR1 and BCRP genes in hCMEC/D3 human endothelial brain cells in vitro. MK-801 (NMDA antagonist) and meloxicam (cyclo-oxygenase-2 inhibitor) given after morphine treatment completely blocked P-gp and Bcrp up-regulation. Interestingly, misoprostol and iloprost, two well-known agonists of prostaglandin E2 receptors induced both MDR1 and BCRP mRNA levels in hCMEC/D3. Thus, morphine does not directly stimulate P-gp and Bcrp expression by the brain endothelium, but glutamate released during morphine withdrawal may do so by activating the NMDA/cyclo-oxygenase-2 cascade.
Collapse
Affiliation(s)
- Salah Yousif
- CNRS, UMR 8206, Neuropsychopharmacologie des addictions, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Kang BR, Kim H, Nam SH, Yun EY, Kim SR, Ahn MY, Chang JS, Hwang JS. CopA3 peptide from Copris tripartitus induces apoptosis in human leukemia cells via a caspase-independent pathway. BMB Rep 2012; 45:85-90. [PMID: 22360885 DOI: 10.5483/bmbrep.2012.45.2.85] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous study demonstrated that CopA3, a disulfide dimer of the coprisin peptide analogue (LLCIALRKK), has antibacterial activity. In this study, we assessed whether CopA3 caused cellular toxicity in various mammalian cell lines. CopA3 selectively caused a marked decrease in cell viability in Jurkat T, U937, and AML-2 cells (human leukemia cells), but was not cytotoxic to Caki or Hela cells. Fragmentation of DNA, a marker of apoptosis, was also confirmed in the leukemia cell lines, but not in the other cells. CopA3-induced apoptosis in leukemia cells was mediated by apoptosis inducing factor (AIF), indicating induction of a caspase-independent signaling pathway.
Collapse
Affiliation(s)
- Bo Ram Kang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Daejin University, Pocheon 487-711, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Clostridium difficile of the ileum following total abdominal colectomy, with or without proctectomy: who is at risk? Dis Colon Rectum 2012; 55:424-8. [PMID: 22426266 DOI: 10.1097/dcr.0b013e31823f86a2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Clostridium difficile enteritis is considered a rare entity, although recent data suggest a significant increase in prevalence and incidence. There is paucity of data evaluating risk factors of C difficile enteritis following total colectomy. OBJECTIVE The aim of this study was to determine the incidence and risk factors of C difficile enteritis for patients who had undergone total abdominal colectomy with or without proctectomy. DESIGN This study involves a retrospective chart review of 310 patients. Univariate analysis was performed on potential risk factors (p ≤ 0.05) with the use of a logistic regression model, and a Fisher exact test was used for variables that had no occurrences of C difficile. These groups of variables were then examined in a multiple variate setting with stepwise logistic regression analysis. SETTINGS This study was conducted at a tertiary referral center. PATIENTS A data analysis was performed on patients who had undergone total abdominal colectomy with or without proctectomy who were tested for C difficile of the ileum. RESULTS Twenty-two of 137 patients that were tested (16%) were positive for C difficile of the ileum. Univariate analysis of known risk factors for C difficile demonstrated that black race was a protective factor against C difficile (p = 0.016). The multivariate analysis demonstrated that emergency surgery (p = 0.035), race (p = 0.003), and increasing age by decade (p = 0.033) were risk factors for C difficile. LIMITATIONS This study was limited by the small patient sample, and it was not a randomized trial. CONCLUSIONS Black race is protective, and whites are 4 times more likely to acquire C difficile of the ileum after undergoing a total abdominal colectomy with or without proctectomy. The data also demonstrated that an increased age by a decade and emergency surgery are risk factors for C difficile enteritis, whereas the described risk factors of C difficile of the colon and type of colon surgery do not appear to influence the risk of C difficile of the ileum.
Collapse
|
32
|
Lee JY, Choi AY, Oh YT, Choe W, Yeo EJ, Ha J, Kang I. AMP-activated protein kinase mediates T cell activation-induced expression of FasL and COX-2 via protein kinase C theta-dependent pathway in human Jurkat T leukemia cells. Cell Signal 2012; 24:1195-207. [PMID: 22330070 DOI: 10.1016/j.cellsig.2012.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 12/17/2022]
Abstract
AMP-activated protein kinase (AMPK), an important regulator of energy homeostasis, is known to be activated during T cell activation. T cell activation by T cell receptor (TCR) engagement or its pharmacological mimics, PMA plus ionomycin (PMA/Io), induces immunomodulatory FasL and cyclooxygenase-2 (COX-2) expression. In this study, we examined the role and mechanisms of AMPK in PMA/Io-induced expression of FasL and COX-2 in Jurkat T human leukemic cells. Inhibition of AMPK by a pharmacological agent, compound C, or AMPKα1 siRNA suppressed expression of FasL and COX-2 mRNAs and proteins in PMA/Io-activated Jurkat cells. It also reduced secretion of FasL protein and prostaglandin E2, a main product of COX-2, in Jurkat cells and peripheral blood lymphocytes activated with PMA/Io or monoclonal anti-CD3 plus anti-CD28. Consistently, inhibition of AMPK blocked promoter activities of FasL and COX-2 in activated Jurkat cells. As protein kinase C theta (PKCθ) is a central molecule for TCR signaling, we examined any possible cross-talk between AMPK and PKCθ in activated T cells. Of particular importance, we found that inhibition of AMPK blocked phosphorylation and activation of PKCθ, suggesting that AMPK is an upstream kinase of PKCθ. Moreover, we showed that AMPK was directly associated with PKCθ and phosphorylated Thr538 of PKCθ in PMA/Io-stimulated Jurkat cells. We also showed that inhibition of PKCθ by rottlerin or dominant negative PKCθ reduced AMPK-mediated transcriptional activation of NF-AT and AP-1 in activated Jurkat cells. Taken together, these results suggest that AMPK regulates expression of FasL and COX-2 via the PKCθ and NF-AT and AP-1 pathways in activated Jurkat cells.
Collapse
Affiliation(s)
- Jung Yeon Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Medical Research Center for Bioreaction to Reactive Oxygen Species, Biomedical Science Institute, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Fitzpatrick LR, Small JS, Greene WH, Karpa KD, Keller D. Bacillus Coagulans GBI-30 (BC30) improves indices of Clostridium difficile-Induced colitis in mice. Gut Pathog 2011; 3:16. [PMID: 22014083 PMCID: PMC3212889 DOI: 10.1186/1757-4749-3-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/20/2011] [Indexed: 12/29/2022] Open
Abstract
Background Probiotics have beneficial effects in rodent models of Clostridium difficile (C. diffiicle)-induced colitis. The spore forming probiotic strain Bacillus Coagulans GBI-30, 6086 (BC30) has demonstrated anti-inflammatory and immune-modulating effects in vitro. Our goal was to determine if BC30 improved C. difficile-induced colitis in mice. Starting on study day 0, female C57BL/6 mice were dosed by oro-gastric gavage for 15 days with vehicle (saline) or BC30 (2 × 109 CFU per day). Mice in the C. difficile groups received an antibiotic mixture (study days 5 to 8 in the drinking water), and clindamycin (10 mg/kg, i.p., on study day 10). The C. difficile strain VPI 10463 was given by gavage at 104 CFU to induce colitis on day 11. On day 16, stools and colons were collected for further analyses. Results All mice treated with BC30 survived on study day 13, while two mice treated with vehicle did not survive. On day 12, a significant difference (p = 0.0002) in the percentage of mice with normal stools (66.7%) was found in the BC30/C. difficile group, as compared to the vehicle/C. diffcile group (13.0%). On study day 16, 23.8% of mice treated with BC30 had normal stools, while this value was 0% with vehicle treatment (p value = 0.0187). On this day, the stool consistency score for the BC30/C. difficile group (1.1 ± 0.2) was significantly lower (p < 0.05) than for the vehicle/C. difficile cohort (1.9 ± 0.2). BC30 modestly attenuated the colonic pathology (crypt damage, edema, leukocyte influx) that was present following C. difficile infection. Colonic MIP-2 chemokine contents (pg/2 cm colon) were: 10.2 ± 0.5 (vehicle/no C. difficile), 24.6 ± 9.5 (vehicle/C. difficile) and 16.3 ± 4.3 (BC30/C. difficle). Conclusion The probiotic BC30 improved some parameters of C. difficile-induced colitis in mice. BC30 prolonged the survival of C. diffiicle infected mice. Particularly, this probiotic improved the stool consistency of mice, in this infectious colitis model.
Collapse
Affiliation(s)
- Leo R Fitzpatrick
- Department of Pharmacology, Penn State College of Medicine, 1214 Research Boulevard, Hummelstown, PA 17036, USA.
| | | | | | | | | |
Collapse
|
34
|
The insect peptide coprisin prevents Clostridium difficile-mediated acute inflammation and mucosal damage through selective antimicrobial activity. Antimicrob Agents Chemother 2011; 55:4850-7. [PMID: 21807975 DOI: 10.1128/aac.00177-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Clostridium difficile-associated diarrhea and pseudomembranous colitis are typically treated with vancomycin or metronidazole, but recent increases in relapse incidence and the emergence of drug-resistant strains of C. difficile indicate the need for new antibiotics. We previously isolated coprisin, an antibacterial peptide from Copris tripartitus, a Korean dung beetle, and identified a nine-amino-acid peptide in the α-helical region of it (LLCIALRKK) that had antimicrobial activity (J.-S. Hwang et al., Int. J. Pept., 2009, doi:10.1155/2009/136284). Here, we examined whether treatment with a coprisin analogue (a disulfide dimer of the nine peptides) prevented inflammation and mucosal damage in a mouse model of acute gut inflammation established by administration of antibiotics followed by C. difficile infection. In this model, coprisin treatment significantly ameliorated body weight decreases, improved the survival rate, and decreased mucosal damage and proinflammatory cytokine production. In contrast, the coprisin analogue had no apparent antibiotic activity against commensal bacteria, including Lactobacillus and Bifidobacterium, which are known to inhibit the colonization of C. difficile. The exposure of C. difficile to the coprisin analogue caused a marked increase in nuclear propidium iodide (PI) staining, indicating membrane damage; the staining levels were similar to those seen with bacteria treated with a positive control for membrane disruption (EDTA). In contrast, coprisin analogue treatment did not trigger increases in the nuclear PI staining of Bifidobacterium thermophilum. This observation suggests that the antibiotic activity of the coprisin analogue may occur through specific membrane disruption of C. difficile. Thus, these results indicate that the coprisin analogue may prove useful as a therapeutic agent for C. difficile infection-associated inflammatory diarrhea and pseudomembranous colitis.
Collapse
|
35
|
Abstract
Clostridium difficile is the most common cause of nosocomial bacterial diarrhoea in the Western world. Diarrhoea and colitis are caused by the actions of toxins A and B released by pathogenic strains of C. difficile. Adaptive immune responses to these toxins influence the outcomes of C. difficile infection (CDI). Symptomless carriers of toxinogenic C. difficile and those with a single episode of CDI without recurrence show more robust antitoxin immune responses than those with symptomatic and recurrent disease. Immune-based approaches to CDI therapy and prevention have been developed using active vaccination or passive immunotherapy targeting C. difficile toxins. Innate immune responses to C. difficile and its toxins are also central to the pathophysiology of CDI. An acute intestinal inflammatory response with prominent neutrophil infiltration and associated tissue injury is characteristic of CDI. Furthermore, inhibiting this acute inflammatory response can protect against the intestinal injury that results from exposure to C. difficile toxins in animal models. Studies examining host risk factors for CDI have led to validated clinical prediction tools for risk of primary and of recurrent disease. Risk factors associated with severe CDI with poor clinical outcomes have also been identified and include marked elevation of the peripheral white blood cell count and elevated creatinine. However, further work is needed in this area to guide the clinical application of new approaches to disease prevention and treatment including new antimicrobials as well as passive and active immunization.
Collapse
Affiliation(s)
- Ciarán P Kelly
- Gastroenterology Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| | - Lorraine Kyne
- Department of Medicine for the Older Person, Mater Misericordiae University Hospital and University College, Dublin, Ireland
| |
Collapse
|
36
|
Kellermayer R, Dowd SE, Harris RA, Balasa A, Schaible TD, Wolcott RD, Tatevian N, Szigeti R, Li Z, Versalovic J, Smith CW. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice. FASEB J 2011; 25:1449-60. [PMID: 21228220 DOI: 10.1096/fj.10-172205] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The connection between intestinal microbiota and host physiology is increasingly becoming recognized. The details of this dynamic interaction, however, remain to be explored. Toll-like receptor 2 (Tlr2) is important for its role in bacterial recognition, intestinal inflammation, and obesity-related metabolic changes. Therefore, we sought to determine the epigenomic and metagenomic consequences of Tlr2 deficiency in the colonic mucosa of mice to gain insights into biological pathways that shape the interface between the gut microbiota and the mammalian host. Colonic mucosa from wild type (WT) and Tlr2(-/-) C57BL/6 mice was interrogated by microarrays specific for DNA methylation and gene expression. The mucosal microbiome was studied by next-generation pyrosequencing of bacterial 16S rRNA. The expression of genes involved in immune processes was significantly modified by the absence of Tlr2, a number of which correlated with DNA methylation changes. The epigenomic and transcriptomic modifications associated with alteration in mucosal microbial composition. Several bacterial species, including members of the Firmicutes were significantly different in abundance between WT and Tlr2(-/-) animals. This manuscript highlights the intimate interrelationships between expression of immune-related genes and immunity pathways in the host with compositional and functional differences of the mammalian microbiome.
Collapse
Affiliation(s)
- Richard Kellermayer
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030-2399, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Difference in the biological effects of Clostridium difficile toxin B in proliferating and non-proliferating cells. Naunyn Schmiedebergs Arch Pharmacol 2011; 383:275-83. [PMID: 21212934 DOI: 10.1007/s00210-010-0595-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 12/21/2010] [Indexed: 02/07/2023]
Abstract
Toxin A (TcdA) and toxin B (TcdB) from Clostridium difficile are the causative agents of the C. difficile-associated diarrhea (CDAD) and its severe form, the pseudomembranous colitis. TcdA and TcdB both glucosylate and thereby inactivate low molecular weight GTP-binding proteins of the Rho, Rac, and Cdc42 subfamilies. In cultured cell lines, TcdB induces actin re-organization and bi-nucleation ("cytopathic effects") and cell death ("cytotoxic effects"). In this study, the role of cell cycle progression in the cytopathic and the cytotoxic effects of TcdB is evaluated by a differential analysis of these effects in proliferating and non-proliferating cells. Density-synchronized murine fibroblasts and confluent HT29 colonocytes are exploited as cell culture models for non-proliferating cells. Cell death is analyzed in terms of a loss of cell viability, phosphatidylserine exposure, and DNA fragmentation. In proliferating cells, TcdB blocks cell proliferation and induces apoptotic cell death. In contrast, TcdB induces non-apoptotic cell death in non-proliferating cells. TcdB-induced cell rounding turns out to be independent of cell cycle progression. Cell cycle progression is an important determinant in the biological effects of TcdB. With respect to the pathology of CDAD, this study leads to the new hypothesis that necrotic cell death of terminally differentiated colonocytes and inhibition of epithelial renewal of the colon contribute to the pathogenesis of CDAD.
Collapse
|
38
|
Nam HJ, Kang JK, Kim SK, Ahn KJ, Seok H, Park SJ, Chang JS, Pothoulakis C, Lamont JT, Kim H. Clostridium difficile toxin A decreases acetylation of tubulin, leading to microtubule depolymerization through activation of histone deacetylase 6, and this mediates acute inflammation. J Biol Chem 2010; 285:32888-32896. [PMID: 20696758 DOI: 10.1074/jbc.m110.162743] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Clostridium difficile toxin A is known to cause actin disaggregation through the enzymatic inactivation of intracellular Rho proteins. Based on the rapid and severe cell rounding of toxin A-exposed cells, we speculated that toxin A may be involved in post-translational modification of tubulin, leading to microtubule instability. In the current study, we observed that toxin A strongly reduced α-tubulin acetylation in human colonocytes and mouse intestine. Fractionation analysis demonstrated that toxin A-induced α-tubulin deacetylation yielded monomeric tubulin, indicating the presence of microtubule depolymerization. Inhibition of the glucosyltransferase activity against Rho proteins of toxin A by UDP-2',3'-dialdehyde significantly abrogated toxin A-induced α-tubulin deacetylation. In colonocytes treated with trichostatin A (TSA), an inhibitor of the HDAC6 tubulin deacetylase, toxin A-induced α-tubulin deacetylation and loss of tight junction were completely blocked. Administration of TSA also attenuated proinflammatory cytokine production, mucosal damage, and epithelial cell apoptosis in mouse intestine exposed to toxin A. These results suggest that toxin A causes microtubule depolymerization by activation of HDAC6-mediated tubulin deacetylation. Indeed, blockage of HDAC6 by TSA markedly attenuates α-tubulin deacetylation, proinflammatory cytokine production, and mucosal damage in a toxin A-induced mouse enteritis model. Tubulin deacetylation is an important component of the intestinal inflammatory cascade following toxin A-mediated Rho inactivation in vitro and in vivo.
Collapse
Affiliation(s)
- Hyo Jung Nam
- From the Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711, Korea
| | - Jin Ku Kang
- From the Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711, Korea
| | - Sung-Kuk Kim
- From the Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711, Korea
| | - Keun Jae Ahn
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 102-752, Korea
| | - Heon Seok
- School of Nano-Biotechnology and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798, Korea
| | - Sang Joon Park
- Department of Veterinary Histology, College of Veterinary Medicine, Kyungpook National University, Taeku 702-701, Korea
| | - Jong Soo Chang
- From the Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711, Korea
| | - Charalabos Pothoulakis
- Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, California 90095
| | - John Thomas Lamont
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Ho Kim
- From the Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711, Korea.
| |
Collapse
|
39
|
Maher TM, Evans IC, Bottoms SE, Mercer PF, Thorley AJ, Nicholson AG, Laurent GJ, Tetley TD, Chambers RC, McAnulty RJ. Diminished prostaglandin E2 contributes to the apoptosis paradox in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2010; 182:73-82. [PMID: 20203246 PMCID: PMC2902759 DOI: 10.1164/rccm.200905-0674oc] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 03/04/2010] [Indexed: 12/15/2022] Open
Abstract
RATIONALE Patients with idiopathic pulmonary fibrosis (IPF), a progressive disease with a dismal prognosis, exhibit an unexplained disparity of increased alveolar epithelial cell (AEC) apoptosis but reduced fibroblast apoptosis. OBJECTIVES To examine whether the failure of patients with IPF to up-regulate cyclooxygenase (COX)-2, and thus the antifibrotic mediator prostaglandin (PG)E(2), accounts for this imbalance. METHODS Fibroblasts and primary type II AECs were isolated from control and fibrotic human lung tissue. The effects of COX-2 inhibition and exogenous PGE(2) on fibroblast and AEC sensitivity to Fas ligand (FasL)-induced apoptosis were assessed. MEASUREMENTS AND MAIN RESULTS IPF lung fibroblasts are resistant to FasL-induced apoptosis compared with control lung fibroblasts. Inhibition of COX-2 in control lung fibroblasts resulted in an apoptosis-resistant phenotype. Administration of PGE(2) almost doubled the rate of FasL-induced apoptosis in fibrotic lung fibroblasts compared with FasL alone. Conversely, in primary fibrotic lung type II AECs, PGE(2) protected against FasL-induced apoptosis. In human control and, to a greater extent, fibrotic lung fibroblasts, PGE(2) inhibits the phosphorylation of Akt, suggesting that regulation of this prosurvival protein kinase is an important mechanism by which PGE(2) modulates cellular apoptotic responses. CONCLUSIONS The observation that PGE(2) deficiency results in increased AEC but reduced fibroblast sensitivity to apoptosis provides a novel pathogenic insight into the mechanisms driving persistent fibroproliferation in IPF.
Collapse
Affiliation(s)
- Toby M Maher
- Centre for Respiratory Research, University College London, Rayne Building, 5 University Street, London WC1E 6JJ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Clostridia produce the highest number of toxins of any type of bacteria and are involved in severe diseases in humans and other animals. Most of the clostridial toxins are pore-forming toxins responsible for gangrenes and gastrointestinal diseases. Among them, perfringolysin has been extensively studied and it is the paradigm of the cholesterol-dependent cytolysins, whereas Clostridium perfringens epsilon-toxin and Clostridium septicum alpha-toxin, which are related to aerolysin, are the prototypes of clostridial toxins that form small pores. Other toxins active on the cell surface possess an enzymatic activity, such as phospholipase C and collagenase, and are involved in the degradation of specific cell-membrane or extracellular-matrix components. Three groups of clostridial toxins have the ability to enter cells: large clostridial glucosylating toxins, binary toxins and neurotoxins. The binary and large clostridial glucosylating toxins alter the actin cytoskeleton by enzymatically modifying the actin monomers and the regulatory proteins from the Rho family, respectively. Clostridial neurotoxins proteolyse key components of neuroexocytosis. Botulinum neurotoxins inhibit neurotransmission at neuromuscular junctions, whereas tetanus toxin targets the inhibitory interneurons of the CNS. The high potency of clostridial toxins results from their specific targets, which have an essential cellular function, and from the type of modification that they induce. In addition, clostridial toxins are useful pharmacological and biological tools.
Collapse
Affiliation(s)
- Michel R Popoff
- Institut Pasteur, Bactéries Anaérobies et Toxines, 75724 Paris cedex 15, France.
| | | |
Collapse
|
41
|
Abstract
Clostridium difficile infection of the colon is, unfortunately, a relatively common occurrence that typically follows treatment with antibiotics; however, C. difficile infection of the small bowel is a much more rare phenomenon with only 19 cases reported to date. We present three cases of isolated C. difficile enteritis after colectomy. Although all three patients were identified early and successfully treated with medical management without the need for surgical intervention, previous authors have suggested a much higher morbidity and mortality rate with this infection. This article reviews the current available literature on C. difficile enteritis to highlight this potentially serious condition in postoperative colectomy patients who present with low-grade fevers, abdominal or pelvic pain, and increased ileostomy output.
Collapse
Affiliation(s)
- M. Wayne Causey
- Department of Surgery, Madigan Army Medical Center, Tacoma, Washington; and the
| | - Michael P. Spencer
- Division of Colon and Rectal Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Scott R. Steele
- Department of Surgery, Madigan Army Medical Center, Tacoma, Washington; and the
| |
Collapse
|
42
|
Im E, Choi YJ, Pothoulakis C, Rhee SH. Bacillus polyfermenticus ameliorates colonic inflammation by promoting cytoprotective effects in colitic mice. J Nutr 2009; 139:1848-54. [PMID: 19675103 PMCID: PMC2744608 DOI: 10.3945/jn.109.108613] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 05/09/2009] [Accepted: 07/24/2009] [Indexed: 11/14/2022] Open
Abstract
Although human consumption of Bacillus polyfermenticus provides several health benefits, the probiotic effect of this bacterium against colonic inflammation has not yet, to our knowledge, been studied. Therefore, we induced colitis in mice by oral or intrarectal administration of dextran sodium sulfate (DSS) or trinitrobenzenosulfonic acid (TNBS), respectively, and investigated the effect of B. polyfermenticus on colitis. We found that mice treated with DSS or TNBS along with B. polyfermenticus had reduced mortality and severity of colitis (weight loss, diarrhea, and mucosal damages) than mice treated with DSS or TNBS alone. B. polyfermenticus also reduced the expression of inflammatory molecules, including chemokine (C-X-C motif) ligand 1, intercellular adhesion molecule, and tumor necrosis factor-alpha, but enhanced the expression of the antiinflammatory cytokine interleukin-10 in the inflamed mouse colon. Moreover, B. polyfermenticus suppressed apoptosis both in vivo in inflamed colonic mucosa and in vitro in colonic epithelial cells stimulated with apoptosis-inducing agents (FasL or Clostridium difficile Toxin A) when the apoptotic response was determined by a terminal deoxynucleotidyl transferase dUTP nick end labeling assay and cleavage of poly(ADP-ribose) polymerase or caspase-3, respectively. Treating colonic epithelial cells with B. polyfermenticus-conditioned medium (BPCM) enhanced cell proliferation and induced the phosphoinositide 3-kinases/Akt signaling pathway, suggesting that this bacterium can promote epithelial cell proliferation. BPCM also promoted the migration of colonic epithelial cells. These data suggest that B. polyfermenticus ameliorates colonic inflammation by suppressing apoptosis and promoting epithelial cell proliferation and migration.
Collapse
Affiliation(s)
- Eunok Im
- Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
43
|
Packey CD, Sartor RB. Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel diseases. Curr Opin Infect Dis 2009; 22:292-301. [PMID: 19352175 PMCID: PMC2763597 DOI: 10.1097/qco.0b013e32832a8a5d] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The authors present evidence published during the past 2 years of the roles of commensal and pathogenic bacteria in the pathogenesis of the inflammatory bowel diseases. RECENT FINDINGS Rodent models conclusively implicate commensal enteric bacteria in chronic, immune-mediated, experimental colitis, and genetically determined defects in bacterial killing by innate immune cells are found in a subset of patients with Crohn's disease. There is no evidence that a single pathogen, including Mycobacterium avium subspecies paratuberculosis, causes Crohn's disease or ulcerative colitis. However, adherent/invasive Escherichia coli are associated with ileal Crohn's disease, with the mechanisms and genetics of adherent/invasive E. coli virulence being elucidated. Molecular characterization of the microbiota in patients with inflammatory bowel diseases reveals decreased biodiversity of commensal bacteria, most notably the phyla Bacteroidetes and Firmicutes, including the clinically relevant Faecalibacterium prausnitzii, and increased E. coli concentrations. VSL#3 is one probiotic preparation shown to be efficacious in certain clinical situations in small clinical trials. SUMMARY Further characterization of altered microbiota in patients with inflammatory bowel diseases and linking dysbiosis with host genetic alterations in immunoregulation, innate microbial killing and barrier function are critical, so that individualized treatments to increase beneficial commensals and their metabolic products (probiotic and prebiotic administration) and diminish deleterious species such as adherent/invasive E. coli can be tailored for defined patient subsets.
Collapse
Affiliation(s)
- Christopher Dennis Packey
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - R. Balfour Sartor
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Immunology and Microbiology, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
44
|
O'Callaghan G, Kelly J, Shanahan F, Houston A. Prostaglandin E2 stimulates Fas ligand expression via the EP1 receptor in colon cancer cells. Br J Cancer 2008; 99:502-12. [PMID: 18648368 PMCID: PMC2527805 DOI: 10.1038/sj.bjc.6604490] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fas ligand (FasL/CD95L) is a member of the tumour necrosis factor superfamily that triggers apoptosis following crosslinking of the Fas receptor. Despite studies strongly implicating tumour-expressed FasL as a major inhibitor of the anti-tumour immune response, little is known about the mechanisms that regulate FasL expression in tumours. In this study, we show that the cyclooxygenase (COX) signalling pathway, and in particular prostaglandin E2 (PGE2), plays a role in the upregulation of FasL expression in colon cancer. Suppression of either COX-2 or COX-1 by RNA interference in HCA-7 and HT29 colon tumour cells reduced FasL expression at both the mRNA and protein level. Conversely, stimulation with PGE2 increased FasL expression and these cells showed increased cytotoxicity against Fas-sensitive Jurkat T cells. Prostaglandin E2-induced FasL expression was mediated by signalling via the EP1 receptor. Moreover, immunohistochemical analysis using serial sections of human colon adenocarcinomas revealed a strong positive correlation between COX-2 and FasL (r=0.722; P<0.0001) expression, and between EP1 receptor and FasL (r=0.740; P<0.0001) expression, in the tumour cells. Thus, these findings indicate that PGE2 positively regulates FasL expression in colon tumour cells, adding another pro-neoplastic activity to PGE2.
Collapse
Affiliation(s)
- G O'Callaghan
- Department of Medicine, University College Cork, National University of Ireland, Clinical Science Building, Cork University Hospital, Wilton, Cork, Ireland
| | | | | | | |
Collapse
|
45
|
Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology 2008; 134:577-94. [PMID: 18242222 DOI: 10.1053/j.gastro.2007.11.059] [Citation(s) in RCA: 1371] [Impact Index Per Article: 80.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 11/28/2007] [Indexed: 02/07/2023]
Abstract
The predominantly anaerobic microbiota of the distal ileum and colon contain an extraordinarily complex variety of metabolically active bacteria and fungi that intimately interact with the host's epithelial cells and mucosal immune system. Crohn's disease, ulcerative colitis, and pouchitis are the result of continuous microbial antigenic stimulation of pathogenic immune responses as a consequence of host genetic defects in mucosal barrier function, innate bacterial killing, or immunoregulation. Altered microbial composition and function in inflammatory bowel diseases result in increased immune stimulation, epithelial dysfunction, or enhanced mucosal permeability. Although traditional pathogens probably are not responsible for these disorders, increased virulence of commensal bacterial species, particularly Escherichia coli, enhance their mucosal attachment, invasion, and intracellular persistence, thereby stimulating pathogenic immune responses. Host genetic polymorphisms most likely interact with functional bacterial changes to stimulate aggressive immune responses that lead to chronic tissue injury. Identification of these host and microbial alterations in individual patients should lead to selective targeted interventions that correct underlying abnormalities and induce sustained and predictable therapeutic responses.
Collapse
Affiliation(s)
- R Balfour Sartor
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
46
|
Clostridium difficile toxins: more than mere inhibitors of Rho proteins. Int J Biochem Cell Biol 2008; 40:592-7. [PMID: 18289919 DOI: 10.1016/j.biocel.2007.12.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/18/2007] [Accepted: 12/19/2007] [Indexed: 11/23/2022]
Abstract
Toxin A (TcdA) and Toxin B (TcdB) are the major pathogenicity factors of the Clostridium difficile-associated diarrhoea (CDAD). The single-chained protein toxins enter their target cells by receptor-mediated endocytosis. New data show the critical role of auto-catalytic processing for target cell entry. Inside the cell, the toxins mono-glucosylate and thereby inactivate low molecular mass GTP-binding proteins of the Rho subfamily. Toxin-treated cells respond to RhoA glucosylation with up-regulation and activation of the pro-apoptotic Rho family protein RhoB. These data reinforce the critical role of the glucosyltransferase activity for programmed cell death and show that TcdA and TcdB, generally classified as broad-spectrum inhibitors of Rho proteins, are also capable of activating Rho proteins.
Collapse
|