1
|
D’Antonio DL, Fantini F, Moscatello C, Ferrone A, Scaringi S, Valanzano R, Ficari F, Efthymakis K, Neri M, Aceto GM, Curia MC. The Interplay among Wnt/β-catenin Family Members in Colorectal Adenomas and Surrounding Tissues. Biomedicines 2024; 12:1730. [PMID: 39200196 PMCID: PMC11352173 DOI: 10.3390/biomedicines12081730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND The colorectal adenoma undergoes neoplastic progression via the normal epithelium-adenoma-adenocarcinoma sequence as reported in the Vogelgram. The hazard of developing a tumor is deeply associated with the number and size of adenomas and their subtype. Adenomatous polyps are histologically categorized as follows: approximately 80-90% are tubular, 5-15% are villous, and 5-10% are tubular/villous. Given the higher risk of a malignant transformation observed in tubular/villous adenomas, patients diagnosed with adenomatous polyposis are at an improved risk of developing CRC. The Wnt/β-catenin pathway plays a key role in the onset of colorectal adenoma; in particular, intestinal cells first acquire loss-of-function mutations in the APC gene that induce the formation of adenomas. METHODS Wnt/β-catenin pathway APC, Wnt3a, Wnt5a, LEF1, and BCL9 genes and protein expression analyses were conducted by qRT-PCR and western blot in 68 colonic samples (polyps and adjacent mucosa) from 41 patients, of which 17 were affected by FAP. Ten normal colonic mucosal samples were collected from 10 healthy donors. RESULTS In this study, both the APC gene and protein were less expressed in the colon tumor compared to the adjacent colonic mucosa. Conversely, the activated β-catenin was more expressed in polyps than in the adjacent mucosa. All results confirmed the literature data on carcinomas. A statistically significant correlation between Wnt3a and BCL9 both in polyps and in the adjacent mucosa underlines that the canonical Wnt pathway is activated in early colon carcinogenesis and that the adjacent mucosa is already altered. CONCLUSION This is the first study analyzing the difference in expression of the Wnt/β-catenin pathway in human colorectal adenomas. Understanding the progression from adenomas to colorectal carcinomas is essential for the development of new therapeutic strategies and improving clinical outcomes with the use of APC and β-catenin as biomarkers.
Collapse
Affiliation(s)
- Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
- Villa Serena Foundation for Research, Via Leonardo Petruzzi 42, 65013 Città Sant’Angelo, Italy
| | - Fabiana Fantini
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| | - Carmelo Moscatello
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| | - Alessio Ferrone
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| | - Stefano Scaringi
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy; (S.S.); (R.V.); (F.F.)
| | - Rosa Valanzano
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy; (S.S.); (R.V.); (F.F.)
| | - Ferdinando Ficari
- Department of Clinical and Experimental Medicine, University of Florence, Largo Brambilla 3, 50134 Firenze, Italy; (S.S.); (R.V.); (F.F.)
| | - Konstantinos Efthymakis
- Department of Medicine and Aging Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (K.E.); (M.N.)
| | - Matteo Neri
- Department of Medicine and Aging Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (K.E.); (M.N.)
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “Gabriele d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (D.L.D.); (F.F.); (C.M.); (A.F.); (G.M.A.)
| |
Collapse
|
2
|
Li Y, Wu M, Fu Y, Xue J, Yuan F, Qu T, Rissanou AN, Wang Y, Li X, Hu H. Therapeutic stapled peptides: Efficacy and molecular targets. Pharmacol Res 2024; 203:107137. [PMID: 38522761 DOI: 10.1016/j.phrs.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Peptide stapling, by employing a stable, preformed alpha-helical conformation, results in the production of peptides with improved membrane permeability and enhanced proteolytic stability, compared to the original peptides, and provides an effective solution to accelerate the rapid development of peptide drugs. Various reviews present peptide stapling chemistries, anchoring residues and one- or two-component cyclization, however, therapeutic stapled peptides have not been systematically summarized, especially focusing on various disease-related targets. This review highlights the latest advances in therapeutic peptide drug development facilitated by the application of stapling technology, including different stapling techniques, synthetic accessibility, applicability to biological targets, potential for solving biological problems, as well as the current status of development. Stapled peptides as therapeutic drug candidates have been classified and analysed mainly by receptor- and ligand-based stapled peptide design against various diseases, including cancer, infectious diseases, inflammation, and diabetes. This review is expected to provide a comprehensive reference for the rational design of stapled peptides for different diseases and targets to facilitate the development of therapeutic peptides with enhanced pharmacokinetic and biological properties.
Collapse
Affiliation(s)
- Yulei Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Minghao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yinxue Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jingwen Xue
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fei Yuan
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tianci Qu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Anastassia N Rissanou
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Honggang Hu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
3
|
Wnt/β-Catenin Signalling and Its Cofactor BCL9L Have an Oncogenic Effect in Bladder Cancer Cells. Int J Mol Sci 2022; 23:ijms23105319. [PMID: 35628130 PMCID: PMC9141496 DOI: 10.3390/ijms23105319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is characterised by a high recurrence and progression rate. However, the molecular mechanisms of BC progression remain poorly understood. BCL9L, a coactivator of β-catenin was mutated in the 5′ and 3′ untranslated regions (UTRs). We assessed the influence of UTRs mutations on BCL9L, and the role of BCL9L and Wnt/β-catenin signalling in BC cells. UTR mutations were analysed by a luciferase reporter. BCL9L protein was assessed by immunohistochemistry in BC tissues. Cell proliferation was examined by crystal violet staining and by the spheroid model. Moreover, migration and invasion were analysed in real-time using the xCelligence RTCA system. The A > T mutation at 3′ UTR of BCL9L reduces the luciferase reporter mRNA expression and activity. BCL9L is predominantly increased in dysplastic urothelial cells and muscle-invasive BC. Knockdown of BCL9L and inhibition of Wnt/β-catenin signalling significantly repress the proliferation, migration and invasion of Cal29 and T24. In addition, BCL9L knockdown reduces mRNA level of Wnt/β-catenin target genes in Cal29 but not in T24 cells. BCL9L and Wnt/β-catenin signalling play an oncogenic role in bladder cancer cells and seems to be associated with BC progression. Nevertheless, the involvement of BCL9L in Wnt/β-catenin signalling is cell-line specific.
Collapse
|
4
|
Orikasa S, Kawashima N, Tazawa K, Hashimoto K, Sunada-Nara K, Noda S, Fujii M, Akiyama T, Okiji T. Hypoxia-inducible factor 1α induces osteo/odontoblast differentiation of human dental pulp stem cells via Wnt/β-catenin transcriptional cofactor BCL9. Sci Rep 2022; 12:682. [PMID: 35027586 PMCID: PMC8758693 DOI: 10.1038/s41598-021-04453-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Accelerated dental pulp mineralization is a common complication in avulsed/luxated teeth, although the mechanisms underlying this remain unclear. We hypothesized that hypoxia due to vascular severance may induce osteo/odontoblast differentiation of dental pulp stem cells (DPSCs). This study examined the role of B-cell CLL/lymphoma 9 (BCL9), which is downstream of hypoxia-inducible factor 1α (HIF1α) and a Wnt/β-catenin transcriptional cofactor, in the osteo/odontoblastic differentiation of human DPSCs (hDPSCs) under hypoxic conditions. hDPSCs were isolated from extracted healthy wisdom teeth. Hypoxic conditions and HIF1α overexpression induced significant upregulation of mRNAs for osteo/odontoblast markers (RUNX2, ALP, OC), BCL9, and Wnt/β-catenin signaling target genes (AXIN2, TCF1) in hDPSCs. Overexpression and suppression of BCL9 in hDPSCs up- and downregulated, respectively, the mRNAs for AXIN2, TCF1, and the osteo/odontoblast markers. Hypoxic-cultured mouse pulp tissue explants showed the promotion of HIF1α, BCL9, and β-catenin expression and BCL9-β-catenin co-localization. In addition, BCL9 formed a complex with β-catenin in hDPSCs in vitro. This study demonstrated that hypoxia/HIF1α-induced osteo/odontoblast differentiation of hDPSCs was partially dependent on Wnt/β-catenin signaling, where BCL9 acted as a key mediator between HIF1α and Wnt/β-catenin signaling. These findings may reveal part of the mechanisms of dental pulp mineralization after traumatic dental injury.
Collapse
Affiliation(s)
- Shion Orikasa
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Kento Tazawa
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kentaro Hashimoto
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Keisuke Sunada-Nara
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Sonoko Noda
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Mayuko Fujii
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
5
|
Li L, He W, You W, Yan J, Liu W. Turing miRNA into infinite coordination supermolecule: a general and enabling nanoengineering strategy for resurrecting nuclear acid therapeutics. J Nanobiotechnology 2022; 20:10. [PMID: 34983557 PMCID: PMC8725389 DOI: 10.1186/s12951-021-01212-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/16/2021] [Indexed: 12/14/2022] Open
Abstract
Background Clinical translation of therapeutic nuclear acid, particularly those targeting tumor progression, has been hampered by the intrinsic weaknesses of nuclear acid therapeutic including poor systemic stability, rapid clearance, low membrane permeability and lack of targeting ability. Small nuclear acid engineered into carrier-free nanodrugs with structural stability and disease targeting may be viable to overcome pharmaceutical obstacles of nuclear acid. Methods A general method through a mild and simple chemistry was established to convert therapeutic miRNA into an infinite Auric-sulfhydryl coordination supramolecular miRNA termed IacsRNA with near-spherical nanostructure, high colloid as well as anti-hydrolysis stability and low macrophage uptakes. Results IacsRNA presented the increased half-life period in circulation and accumulation at tumor sites in comparison to normal miRNA. Moreover, Iacs-miR-30c showed no toxicity of viscera and sanguis system in the 5-time injection dosage of the treatment. More importantly, Iacs-miR-30c potently suppressed the Wnt signaling pathway in vitro and in vivo, and effectively sensitized both potency of 5-Fu in PDX model of colon cancer and Anti-PD1 in B16F10 homograft model of melanoma. Conclusion Collectively, this work amply confirmed the design of IacsRNA as a general and viable strategy of nano-pharmaceutic to concert flimsy therapeutic miRNA into potential drugs. Considering from a broader perspective, the miRNA-initiated infinite coordination self-assembly strategy has distinct advantages in resurrecting nuclear acid therapeutics, probably bringing new inspiration to RNA-derived therapeutics of a great variety of human diseases including cancer. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01212-9.
Collapse
Affiliation(s)
- Liya Li
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wangxiao He
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China. .,Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Weiming You
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China
| | - Jin Yan
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, People's Republic of China.
| | - Wenjia Liu
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
6
|
Wang Z, Zhang M, Quereda V, Frydman SM, Ming Q, Luca VC, Duckett DR, Ji H. Discovery of an Orally Bioavailable Small-Molecule Inhibitor for the β-Catenin/B-Cell Lymphoma 9 Protein-Protein Interaction. J Med Chem 2021; 64:12109-12131. [PMID: 34382808 PMCID: PMC8817233 DOI: 10.1021/acs.jmedchem.1c00742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant activation of Wnt/β-catenin signaling is strongly associated with many diseases including cancer invasion and metastasis. Small-molecule targeting of the central signaling node of this pathway, β-catenin, is a biologically rational approach to abolish hyperactivation of β-catenin signaling but has been demonstrated to be a difficult task. Herein, we report a drug-like small molecule, ZW4864, that binds with β-catenin and selectively disrupts the protein-protein interaction (PPI) between B-cell lymphoma 9 (BCL9) and β-catenin while sparing the β-catenin/E-cadherin PPI. ZW4864 dose-dependently suppresses β-catenin signaling activation, downregulates oncogenic β-catenin target genes, and abrogates invasiveness of β-catenin-dependent cancer cells. More importantly, ZW4864 shows good pharmacokinetic properties and effectively suppresses β-catenin target gene expression in the patient-derived xenograft mouse model. This study offers a selective chemical probe to explore β-catenin-related biology and a drug-like small-molecule β-catenin/BCL9 disruptor for future drug development.
Collapse
Affiliation(s)
- Zhen Wang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Victor Quereda
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Sylvia M Frydman
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Qianqian Ming
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Vincent C Luca
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Derek R Duckett
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| |
Collapse
|
7
|
Li Z, Zhang M, Teuscher KB, Ji H. Discovery of 1-Benzoyl 4-Phenoxypiperidines as Small-Molecule Inhibitors of the β-Catenin/B-Cell Lymphoma 9 Protein-Protein Interaction. J Med Chem 2021; 64:11195-11218. [PMID: 34270257 DOI: 10.1021/acs.jmedchem.1c00596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structure-based design and optimization were performed to develop small-molecule β-catenin/B-cell lymphoma 9 (BCL9) inhibitors and improve their inhibitory activities. Compound ZL3138 with a novel 1-benzoyl 4-phenoxypiperidine scaffold was discovered to disrupt the β-catenin/BCL9 protein-protein interaction (PPI) with a Ki of 0.96 μM in AlphaScreen competitive inhibition assays and displayed good selectivity for β-catenin/BCL9 over β-catenin/E-cadherin PPIs. The binding mode of new inhibitors was characterized by structure-activity relationship and site-directed mutagenesis studies. Protein pull-down assays indicate that this series of compounds directly binds with β-catenin. Cellular target engagement and co-immunoprecipitation experiments demonstrate that ZL3138 binds with β-catenin and disrupts the β-catenin/BCL9 interaction without affecting the β-catenin/E-cadherin interaction in living cells. Further cell-based studies show that ZL3138 selectively suppresses transactivation of Wnt/β-catenin signaling, regulates transcription and expression of Wnt target genes, and inhibits the growth of Wnt/β-catenin-dependent cancer cells.
Collapse
Affiliation(s)
- Zilu Li
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States.,Departments of Oncologic Sciences and Chemistry, University of South Florida, Tampa, Florida 33612-9497, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Kevin B Teuscher
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States.,Department of Chemistry, Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States.,Departments of Oncologic Sciences and Chemistry, University of South Florida, Tampa, Florida 33612-9497, United States
| |
Collapse
|
8
|
Li Z, Lu X, Liu Y, Zhao J, Ma S, Yin H, Huang S, Zhao Y, He X. Gain of LINC00624 Enhances Liver Cancer Progression by Disrupting the Histone Deacetylase 6/Tripartite Motif Containing 28/Zinc Finger Protein 354C Corepressor Complex. Hepatology 2021; 73:1764-1782. [PMID: 32869873 DOI: 10.1002/hep.31530] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Long noncoding RNAs (lncRNAs) are involved in almost every stage of tumor initiation and progression. Here, we have identified an antisense lncRNA, LINC00624, that arises from the antisense strand of chromo-domain-helicase-DNA-binding protein 1-like (CHD1L), located on chr1q21.1, with significant copy number gain and transcriptional activation of CHD1L and B-cell CLL/lymphoma 9 protein (BCL9), in hepatocellular carcinoma (HCC). APPROACH AND RESULTS Overexpression of LINC00624 enhances tumor growth and metastasis in vitro and in vivo. Mechanistically, higher levels of LINC00624 strengthen the interaction between histone deacetylase 6 (HDAC6) and tripartite motif containing 28 (TRIM28), which accelerates HDAC6 ubiquitination and degradation. Moreover, LINC00624 binds to the RBCC domain of TRIM28, inhibits trimer formation, and weakens the interaction between TRIM28 and zinc finger protein 354C (ZNF354C). Thus, LINC00624 overexpression disrupts the formation of the HDAC6-TRIM28-ZNF354C transcriptional corepressor complex, resulting in the dissociation of the complex from the promoter of CHD1L and BCL9, thereby removing transcription inhibition. CONCLUSIONS Our findings suggest that LINC00624 acts as a molecular decoy that sequesters the HDAC6-TRIM28-ZNF354C transcriptional corepressor complex away from the specific genomic loci, and that it can potentially be a therapeutic target in HCC.
Collapse
Affiliation(s)
- Zhe Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xinyuan Lu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yanfang Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingjing Zhao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengzhe Ma
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haoxiang Yin
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yingjun Zhao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Wang Z, Zhang M, Luo W, Zhang Y, Ji H. Discovery of 2-(3-(3-Carbamoylpiperidin-1-yl)phenoxy)acetic Acid Derivatives as Novel Small-Molecule Inhibitors of the β-Catenin/B-Cell Lymphoma 9 Protein-Protein Interaction. J Med Chem 2021; 64:5886-5904. [PMID: 33902288 DOI: 10.1021/acs.jmedchem.1c00046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The β-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction (PPI) is a potential target for the suppression of hyperactive Wnt/β-catenin signaling that is vigorously involved in cancer initiation and development. Herein, we describe the medicinal chemistry optimization of a screening hit to yield novel small-molecule inhibitors of the β-catenin/BCL9 interaction. The best compound 30 can disrupt the β-catenin/BCL9 interaction with a Ki of 3.6 μM in AlphaScreen competitive inhibition assays. Cell-based experiments revealed that 30 selectively disrupted the β-catenin/BCL9 PPI, while leaving the β-catenin/E-cadherin PPI unaffected, dose-dependently suppressed Wnt signaling transactivation, downregulated oncogenic Wnt target gene expression, and on-target selectively inhibited the growth of cancer cells harboring aberrant Wnt signaling. This compound with a new chemotype can serve as a lead compound for further optimization of inhibitors for β-catenin/BCL9 PPI.
Collapse
Affiliation(s)
- Zhen Wang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Min Zhang
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Wen Luo
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States
| | - Yongqiang Zhang
- Department of Chemistry, Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Haitao Ji
- Drug Discovery Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612-9497, United States.,Departments of Oncologic Sciences and Chemistry, University of South Florida, Tampa, Florida 33620-9497, United States
| |
Collapse
|
10
|
Saleh M, Chandrashekar DS, Shahin S, Agarwal S, Kim HG, Behring M, Shaikh AJ, Moloo Z, Eltoum IEA, Yates C, Varambally S, Manne U. Comparative analysis of triple-negative breast cancer transcriptomics of Kenyan, African American and Caucasian Women. Transl Oncol 2021; 14:101086. [PMID: 33839593 PMCID: PMC8058567 DOI: 10.1016/j.tranon.2021.101086] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
The current study determined the molecular fingerprints of TNBCs of women from kenya (KE) and compared them with those of African–American (AA) and Caucasian (CA) women. RNA sequencing analysis highlights the role of molecular alterations in TNBCs and the potential benefit of targeting pathways in this disease for the KE population as compared to AAs and CAs. The dysregulated genes and signaling pathways could contributes to the aggressive phenotypes of TNBCs of KE women.
Purpose : Triple-negative breast cancer (TNBC) patients of various ethnic groups often have discrete clinical presentations and outcomes. Women of African descent have a disproportionately higher chance of developing TNBCs. The aim of the current study was to establish the transcriptome of TNBCs from Kenyan (KE) women of Bantu origin and compare it to those TNBCs of African-Americans (AA) and Caucasians (CA) for identifying KE TNBC-specific molecular determinants of cancer progression and potential biomarkers of clinical outcomes. Patients and Methods : Pathology-confirmed TNBC tissues from Kenyan women of Bantu origin (n = 15) and age and stage range matched AA (n = 19) and CA (n = 23) TNBCs of patients from Alabama were included in this study. RNA was isolated from paraffin-embedded tissues, and expression was analyzed by RNA sequencing. Results : At clinical presentation, young KE TNBC patients have tumors of higher stages. Differential expression analysis identified 160 up-regulated and 178 down-regulated genes in KE TNBCs compared to AA and CA TNBCs. Validation analyses of the TCGA breast cancer data identified 45 KE TNBC-specific genes that are involved in the apoptosis (ACTC1, ERCC6 and CD14), cell proliferation (UHRF2, KDM4C, UHMK1, KCNH5, KRT18, CSF1R and S100A13), and Wnt signaling (BCL9L) pathways. Conclusions : In this study, we identified biomarkers that are specific for KE TNBC patients of Bantu origin. Further study with a larger sample size of matched tumors could confirm our findings. If biologically confirmed, these molecular determinants could have clinical and biological implications and serve as targets for development of personalized therapeutics for KE TNBC patients.
Collapse
Affiliation(s)
- Mansoor Saleh
- Department of Medicine, University of Alabama at Birmingham, Birmingham 35233, AL, United States; Department of Hematology-Oncology, the Aga Khan University, Nairobi, Kenya; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham 35233, AL, United States
| | | | - Sayed Shahin
- Department of Pathology, the Aga Khan University, Nairobi, Kenya
| | - Sumit Agarwal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hyung-Gyoon Kim
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael Behring
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Zahir Moloo
- Department of Pathology, the Aga Khan University, Nairobi, Kenya
| | - Isam-Eldin A Eltoum
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Clayton Yates
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States; Department of Biology & Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Sooryanarayana Varambally
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham 35233, AL, United States; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Upender Manne
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham 35233, AL, United States; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
11
|
Söderholm S, Cantù C. The WNT/β‐catenin dependent transcription: A tissue‐specific business. WIREs Mech Dis 2020; 13:e1511. [PMID: 33085215 PMCID: PMC9285942 DOI: 10.1002/wsbm.1511] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
β‐catenin‐mediated Wnt signaling is an ancient cell‐communication pathway in which β‐catenin drives the expression of certain genes as a consequence of the trigger given by extracellular WNT molecules. The events occurring from signal to transcription are evolutionarily conserved, and their final output orchestrates countless processes during embryonic development and tissue homeostasis. Importantly, a dysfunctional Wnt/β‐catenin pathway causes developmental malformations, and its aberrant activation is the root of several types of cancer. A rich literature describes the multitude of nuclear players that cooperate with β‐catenin to generate a transcriptional program. However, a unified theory of how β‐catenin drives target gene expression is still missing. We will discuss two types of β‐catenin interactors: transcription factors that allow β‐catenin to localize at target regions on the DNA, and transcriptional co‐factors that ultimately activate gene expression. In contrast to the presumed universality of β‐catenin's action, the ensemble of available evidence suggests a view in which β‐catenin drives a complex system of responses in different cells and tissues. A malleable armamentarium of players might interact with β‐catenin in order to activate the right “canonical” targets in each tissue, developmental stage, or disease context. Discovering the mechanism by which each tissue‐specific β‐catenin response is executed will be crucial to comprehend how a seemingly universal pathway fosters a wide spectrum of processes during development and homeostasis. Perhaps more importantly, this could ultimately inform us about which are the tumor‐specific components that need to be targeted to dampen the activity of oncogenic β‐catenin. This article is categorized under:Cancer > Molecular and Cellular Physiology Cancer > Genetics/Genomics/Epigenetics Cancer > Stem Cells and Development
Collapse
Affiliation(s)
- Simon Söderholm
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| |
Collapse
|
12
|
Zhang S, Chen H, Liu W, Fang L, Qian Z, Kong R, Zhang Q, Li J, Cao X. miR-766-3p Targeting BCL9L Suppressed Tumorigenesis, Epithelial-Mesenchymal Transition, and Metastasis Through the β-Catenin Signaling Pathway in Osteosarcoma Cells. Front Cell Dev Biol 2020; 8:594135. [PMID: 33117820 PMCID: PMC7575756 DOI: 10.3389/fcell.2020.594135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has indicated that abnormal microRNAs (miRNAs) serve critical roles in carcinogenesis and development of osteosarcoma (OS). The purpose of the present study was to elucidate the relationship between miR-766-3p and development of osteosarcoma and explore the potential mechanism. In this study, we found that miR-766-3p was the most downregulated miRNA by analyzing GSE65071 from the GEO database. miR-766-3p was lowly expressed in OS tissue samples and cells, and high miR-766-3p expression repressed the malignant level of OS, including cell proliferation, EMT, migration, and invasion in vitro and in vivo. B-Cell Lymphoma 9-Like Protein (BCL9L) was negatively associated with miR-766-3p expression in OS cells and tissue samples and was validated as the downstream target by luciferase reporter assay and western blotting. Rescue experiment indicated that BCL9L could restore the influence of miR-766-3p on OS cells. In addition, the β-Catenin/TCF-4 signal pathway was demonstrated to be related to the miR-766-3p/BCL9L axis. In summary, miR-766-3p, a negative regulator of BCL9L, plays the role of tumor metastasis suppressor via the β-catenin signaling pathway in the progression of OS.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongtao Chen
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanshun Liu
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Le Fang
- Department of Critical Care Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanyang Qian
- Department of Orthopedics, The Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Renyi Kong
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Zhang
- Department of Painology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Juming Li
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojian Cao
- Department of Orthopedics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Structure and function of Pygo in organ development dependent and independent Wnt signalling. Biochem Soc Trans 2020; 48:1781-1794. [PMID: 32677664 DOI: 10.1042/bst20200393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 11/17/2022]
Abstract
Pygo is a nuclear protein containing two conserved domains, NHD and PHD, which play important roles in embryonic development and carcinogenesis. Pygo was first identified as a core component of the Wnt/β-catenin signalling pathway. However, it has also been reported that the function of Pygo is not always Wnt/β-catenin signalling dependent. In this review, we summarise the functions of both domains of Pygo and show that their functions are synergetic. The PHD domain mainly combines with transcription co-factors, including histone 3 and Bcl9/9l. The NHD domain mainly recruits histone methyltransferase/acetyltransferase (HMT/HAT) to modify lysine 4 of the histone 3 tail (H3K4) and interacts with Chip/LIM-domain DNA-binding proteins (ChiLS) to form enhanceosomes to regulate transcriptional activity. Furthermore, we summarised chromatin modification differences of Pygo in Drosophila (dPygo) and vertebrates, and found that Pygo displayes a chromatin silencing function in Drosophila, while in vertebates, Pygo has a chromatin-activating function due to the two substitution of two amino acid residues. Next, we confirmed the relationship between Pygo and Bcl9/9l and found that Pygo-Bcl/9l are specifically partnered both in the nucleus and in the cytoplasm. Finally, we discuss whether transcriptional activity of Pygo is Wnt/β-catenin dependent during embryonic development. Available information indications that the transcriptional activity of Pygo in embryonic development is either Wnt/β-catenin dependent or independent in both tissue-specific and cell-specific-modes.
Collapse
|
14
|
Moghe A, Monga SP. BCL9/BCL9L in hepatocellular carcinoma: will it or Wnt it be the next therapeutic target? Hepatol Int 2020; 14:460-462. [PMID: 32488834 PMCID: PMC7368815 DOI: 10.1007/s12072-020-10059-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/23/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Akshata Moghe
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street S-422 BST, Pittsburgh, PA, 15261, USA
| | - Satdarshan P Monga
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street S-422 BST, Pittsburgh, PA, 15261, USA. .,Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Huge N, Sandbothe M, Schröder AK, Stalke A, Eilers M, Schäffer V, Schlegelberger B, Illig T, Vajen B, Skawran B. Wnt status-dependent oncogenic role of BCL9 and BCL9L in hepatocellular carcinoma. Hepatol Int 2019; 14:373-384. [PMID: 31440992 PMCID: PMC7220899 DOI: 10.1007/s12072-019-09977-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/03/2019] [Indexed: 12/13/2022]
Abstract
Background Activation of Wnt/β-catenin pathway is a frequent event in hepatocellular carcinoma and is associated with enhanced cell survival and proliferation. Therefore, targeting this signaling pathway is discussed as an attractive therapeutic approach for HCC treatment. BCL9 and BCL9L, two homologous coactivators of the β-catenin transcription factor complex, have not yet been comprehensively characterized in HCC. We aimed to elucidate the roles of BCL9 and BCL9L, especially regarding Wnt/β-catenin signaling and their prognostic value in HCC. Methods Expression of BCL9/BCL9L was determined in HCC cell lines (HLE, HLF, Huh7, HepG2, Hep3B, and Huh6) and normal liver cell lines (THLE-2 and THLE-3). To analyze proliferation and apoptosis, BCL9 and/or BCL9L were knocked down in Wnt-inactive HLE and Wnt-active HepG2 and Huh6 cells using siRNA. Subsequently, Wnt reporter assays were performed in HepG2 and Huh6 cells. BCL9 and BCL9L expression, clinicopathological and survival data of public HCC datasets were analyzed, taking the Wnt signaling status into account. Results Knockdown of BCL9L, but not of BCL9, reduced Wnt signaling activity. Knockdown of BCL9 and/or BCL9L reduced cell viability and increased apoptosis of Wnt-inactive HCC cells, but had no effect in Wnt-active cells. Expression of BCL9 and BCL9L was upregulated in human HCC and increased with progressing dedifferentiation. For BCL9L, higher expression was observed in tumors of larger size. Overexpression of BCL9 and BCL9L correlated with poor overall survival, especially in HCC without activated Wnt signaling. Conclusion Oncogenic BCL9 proteins represent promising targets for cancer therapy and inhibiting them may be particularly beneficial in Wnt-inactive HCCs. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s12072-019-09977-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Huge
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Maria Sandbothe
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Anna K Schröder
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Amelie Stalke
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Marlies Eilers
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Vera Schäffer
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Brigitte Schlegelberger
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Beate Vajen
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany
| | - Britta Skawran
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, 30625, Germany.
| |
Collapse
|
16
|
Soe MT, Shibata Y, Win Htun M, Abe K, Soe K, Win Than N, Lwin T, Phone Kyaw M, Koji T. Immunohistochemical Mapping of Bcl9 Using Two Antibodies that Recognize Different Epitopes Is Useful to Characterize Juvenile Development of Hepatocellular Carcinoma in Myanmar. Acta Histochem Cytochem 2019; 52:9-17. [PMID: 30923411 PMCID: PMC6434316 DOI: 10.1267/ahc.18045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/13/2018] [Indexed: 01/10/2023] Open
Abstract
B-cell lymphoma 9 (Bcl9) is the core component of Wnt/β-catenin signaling and overexpressed in nuclei of various tumors, including hepatocellular carcinoma (HCC). However, the extent of Bcl9 expression relative to HCC differentiation stage and its functional aspects are poorly understood. In this study, we examined the expression pattern of Bcl9 immunohistochemically, using two anti-Bcl9 antibodies; one was a conventional polyclonal-antibody (anti-Bcl9ABC) against amino acid no.800-900 of human-Bcl9, while the other (anti-Bcl9BIO) was against amino acid no.50-200, covering Pygopus-binding sites of Bcl9. Immunohistochemistry using anti-Bcl9BIO demonstrated distinctive staining in the cytoplasm, while the anti-Bcl9ABC signal was detected in both cytoplasm and nuclei of HCC cells, reflecting different states of Bcl9 function because Pygopus-binding to Bcl9 is essential to exert its function together with β-catenin in nucleus. Quantitative analysis revealed a significantly higher immunohistochemical-score by anti-Bcl9BIO in normal liver comparing various differentiation grades of HCC (P < 0.004), whereas no significant difference was noted with anti-Bcl9ABC. Interestingly, immunohistochemical-score of anti-Bcl9BIO in patients aged < 40 years was significantly lower than that of ≥ 40 years group (P < 0.01). The results indicated that anti-Bcl9BIO detected cytoplasmic Bcl9, which does not bind to Pygopus suggesting it could be a useful indicator for development of HCC in young Myanmar patients.
Collapse
Affiliation(s)
- Myat Thu Soe
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| | - Yasuaki Shibata
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| | - Myo Win Htun
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| | - Kuniko Abe
- Department of Pathology, Japanese Red Cross Nagasaki Atomic Bomb Hospital
| | | | - Nay Win Than
- Department of Hepatobiliary and Pancreatic Surgery, Yangon Specialty Hospital
| | - Thann Lwin
- Department of Hepatobiliary and Pancreatic Surgery, Yangon Specialty Hospital
| | | | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
17
|
Mieszczanek J, van Tienen LM, Ibrahim AEK, Winton DJ, Bienz M. Bcl9 and Pygo synergise downstream of Apc to effect intestinal neoplasia in FAP mouse models. Nat Commun 2019; 10:724. [PMID: 30760710 PMCID: PMC6374407 DOI: 10.1038/s41467-018-08164-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/19/2018] [Indexed: 01/03/2023] Open
Abstract
Bcl9 and Pygo are Wnt enhanceosome components that effect β-catenin-dependent transcription. Whether they mediate β-catenin-dependent neoplasia is unclear. Here we assess their roles in intestinal tumourigenesis initiated by Apc loss-of-function (ApcMin), or by Apc1322T encoding a partially-functional Apc truncation commonly found in colorectal carcinomas. Intestinal deletion of Bcl9 extends disease-free survival in both models, and essentially cures Apc1322T mice of their neoplasia. Loss-of-Bcl9 synergises with loss-of-Pygo to shift gene expression within Apc-mutant adenomas from stem cell-like to differentiation along Notch-regulated secretory lineages. Bcl9 loss also promotes tumour retention in ApcMin mice, apparently via relocating nuclear β-catenin to the cell surface, but this undesirable effect is not seen in Apc1322T mice whose Apc truncation retains partial function in regulating β-catenin. Our results demonstrate a key role of the Wnt enhanceosome in β-catenin-dependent intestinal tumourigenesis and reveal the potential of BCL9 as a therapeutic target during early stages of colorectal cancer.
Collapse
Affiliation(s)
- Juliusz Mieszczanek
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Laurens M van Tienen
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ashraf E K Ibrahim
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Douglas J Winton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre,, Robinson Way, Cambridge, CB2 0RE, UK
| | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
18
|
Gay DM, Ridgway RA, Müller M, Hodder MC, Hedley A, Clark W, Leach JD, Jackstadt R, Nixon C, Huels DJ, Campbell AD, Bird TG, Sansom OJ. Loss of BCL9/9l suppresses Wnt driven tumourigenesis in models that recapitulate human cancer. Nat Commun 2019; 10:723. [PMID: 30760720 PMCID: PMC6374445 DOI: 10.1038/s41467-019-08586-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/16/2019] [Indexed: 12/19/2022] Open
Abstract
Different thresholds of Wnt signalling are thought to drive stem cell maintenance, regeneration, differentiation and cancer. However, the principle that oncogenic Wnt signalling could be specifically targeted remains controversial. Here we examine the requirement of BCL9/9l, constituents of the Wnt-enhanceosome, for intestinal transformation following loss of the tumour suppressor APC. Although required for Lgr5+ intestinal stem cells and regeneration, Bcl9/9l deletion has no impact upon normal intestinal homeostasis. Loss of BCL9/9l suppressed many features of acute APC loss and subsequent Wnt pathway deregulation in vivo. This resulted in a level of Wnt pathway activation that favoured tumour initiation in the proximal small intestine (SI) and blocked tumour growth in the colon. Furthermore, Bcl9/9l deletion completely abrogated β-catenin driven intestinal and hepatocellular transformation. We speculate these results support the just-right hypothesis of Wnt-driven tumour formation. Importantly, loss of BCL9/9l is particularly effective at blocking colonic tumourigenesis and mutations that most resemble those that occur in human cancer.
Collapse
Affiliation(s)
- David M Gay
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Rachel A Ridgway
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Miryam Müller
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Michael C Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - William Clark
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Joshua D Leach
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Rene Jackstadt
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - David J Huels
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Academic Medical Center (AMC), University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Andrew D Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, G61 1QH, UK.
| |
Collapse
|
19
|
Sun R, Liu Z, Han L, Yang Y, Wu F, Jiang Q, Zhang H, Ma R, Miao J, He K, Wang X, Zhou D, Huang C. miR‐22 and miR‐214 targeting BCL9L inhibit proliferation, metastasis, and epithelial‐mesenchymal transition by down‐regulating Wnt signaling in colon cancer. FASEB J 2019; 33:5411-5424. [DOI: 10.1096/fj.201801798rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ruifang Sun
- Department of PathologyXi'an Jiaotong University Xi'an China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
| | - Zhigang Liu
- Department of Thoracic SurgeryShaanxi Provincial Tumor Hospital Xi'an China
| | - Lin Han
- Department of Cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Xi'an China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
| | - Yang Yang
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
- School of Public HealthXi'an Jiaotong University Xi'an China
| | - Fei Wu
- Department of Cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Xi'an China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
| | - Qiuyu Jiang
- Department of Cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Xi'an China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
| | | | - Ruili Ma
- School of Basic Medical ScienceXi'an Medical University Xi'an China
| | - Jiyu Miao
- Department of Cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Xi'an China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
| | - Kang He
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
- Department of PeriodontologyStomatology HospitalXi'an Jiaotong University Xi'an China
| | - Xiaofei Wang
- Department of Cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Xi'an China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
| | - Dangxia Zhou
- Department of PathologyXi'an Jiaotong University Xi'an China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
| | - Chen Huang
- Department of Cell Biology and GeneticsSchool of Basic Medical SciencesXi'an Jiaotong University Xi'an China
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong University Xi'an China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong University Xi'an China
| |
Collapse
|
20
|
Wimsatt JH, Montgomery C, Thomas LS, Savard C, Tallman R, Innes K, Jrebi N. Assessment of a mouse xenograft model of primary colorectal cancer with special reference to perfluorooctane sulfonate. PeerJ 2018; 6:e5602. [PMID: 30405966 PMCID: PMC6216948 DOI: 10.7717/peerj.5602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/18/2018] [Indexed: 01/28/2023] Open
Abstract
Colorectal cancer ranks third among the most commonly diagnosed cancers in the United States. Current therapies have a range of side effects, and the development of a reliable animal model to speed the discovery of safe effective preventative therapies would be of great value. A cross-sectional study in a large Appalachian population recently showed an association between low circulating levels of perfluorooctane sulfonate (PFOS) and a reduced prevalence of colorectal cancer. A study using APCmin (C57BL/6J-ApcMin/J) mice prone to familial adenomatous polyposis found PFOS was protective when exposure occurred during tumor development. To test the possible benefit of PFOS on spontaneous colorectal cancer, we developed a mouse model utilizing primary patient colorectal cancer implants into NSG (NOD.Cg-PrkdcscidIl2rgtm1Wjl /Sz) mice. Study goals included: (1) to assess potential factors supporting the successful use of colorectal cancer from heterogeneous tumors for PDX studies; and, (2) evaluate PFOS as a therapy in tumor matched pairs of mice randomized to receive PFOS or vehicle. The time in days for mice to grow primary tumors to 5 mm took almost 2 months (mean = 53.3, se = 5.7, range = 17-136). Age of mice at implantation, patient age, gender and race appeared to have no discernable effect on engraftment rates. Engraftment rates for low and high-grade patient tumors were similar. PFOS appeared to reduce tumor size dramatically in one group of tumors, those from the right ascending colon. That is, by 5 weeks of treatment in two mice, PFOS had eliminated their 52.4 mm3 and 124.6 mm3 masses completely, an effect that was sustained for 10 weeks of treatment; in contrast, their corresponding matched vehicle control mice had tumors that grew to 472.7 mm3 and 340.1 mm3 in size respectively during the same period. In a third xenograft mouse, the tumor growth was dramatically blunted although not eliminated, and compared favorably to their matched vehicle controls over the same period. These preliminary findings suggested that this mouse model may be advantageous for testing compounds of potential value in the treatment of colorectal cancer, and PFOS may have utility in selected cases.
Collapse
Affiliation(s)
- Jeffrey H Wimsatt
- Department of Medicine, West Virginia University, Morgantown, WV, United States of America.,Department of Epidemiology, West Virginia University, Morgantown, WV, United States of America
| | - Caitlin Montgomery
- Department of Medicine, West Virginia University, Morgantown, WV, United States of America.,Department of Epidemiology, West Virginia University, Morgantown, WV, United States of America
| | - Laurel S Thomas
- Department of Medicine, West Virginia University, Morgantown, WV, United States of America
| | - Charity Savard
- Department of Medicine, West Virginia University, Morgantown, WV, United States of America
| | - Rachel Tallman
- Department of Medicine, West Virginia University, Morgantown, WV, United States of America
| | - Kim Innes
- Department of Epidemiology, West Virginia University, Morgantown, WV, United States of America
| | - Nezar Jrebi
- Department of Surgery, West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
21
|
Chambers AM, Wang J, Lupo KB, Yu H, Atallah Lanman NM, Matosevic S. Adenosinergic Signaling Alters Natural Killer Cell Functional Responses. Front Immunol 2018; 9:2533. [PMID: 30425720 PMCID: PMC6218627 DOI: 10.3389/fimmu.2018.02533] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/15/2018] [Indexed: 02/04/2023] Open
Abstract
Adenosine is a potent immunosuppressive purine metabolite contributing to the pathogenesis of solid tumors. Extracellular adenosine signals on tumor-infiltrating NK cells to inhibit their proliferation, maturation, and cytotoxic function. Cytokine priming imparts upon NK cells distinct activation statuses, which modulate NK anti-tumor immunity and responses to purinergic metabolism. Here, for the first time, we investigated human NK cell responses to adenosinergic signaling in the context of distinct cytokine priming programs. NK cells were shown to be hyper-responsive to adenosine when primed with IL-12 and IL-15 compared to IL-2, exhibiting enhanced IFN-γ expression from CD56bright and CD56dim subsets while modulating the expression of activation marker NKG2D. These responses resulted in signaling that was dependent on mTOR. Adenosine induced upregulation of transcriptional signatures for genes involved in immune responses while downregulating cellular metabolism and other protein synthesis functions that correlate to inhibited oxidative phosphorylation and glycolysis. Overall, our findings show that adenosine acts on specific cellular pathways rather than inducing a broad inhibition of NK cell functions. These responses are dependent on cytokine priming signatures and are important in designing therapeutic interventions that can reprogram NK cell immunometabolism for improved immunotherapies of solid tumors.
Collapse
Affiliation(s)
- Andrea M Chambers
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Jiao Wang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Kyle B Lupo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Hao Yu
- Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | | | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States.,Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
22
|
Chen J, Rajasekaran M, Xia H, Kong SN, Deivasigamani A, Sekar K, Gao H, Swa HL, Gunaratne J, Ooi LL, Xie T, Hong W, Hui KM. CDK1-mediated BCL9 phosphorylation inhibits clathrin to promote mitotic Wnt signalling. EMBO J 2018; 37:e99395. [PMID: 30217955 PMCID: PMC6187222 DOI: 10.15252/embj.201899395] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 11/09/2022] Open
Abstract
Uncontrolled cell division is a hallmark of cancer. Deregulation of Wnt components has been linked to aberrant cell division by multiple mechanisms, including Wnt-mediated stabilisation of proteins signalling, which was notably observed in mitosis. Analysis of Wnt components revealed an unexpected role of B-cell CLL/lymphoma 9 (BCL9) in maintaining mitotic Wnt signalling to promote precise cell division and growth of cancer cell. Mitotic interactome analysis revealed a mechanistic role of BCL9 in inhibiting clathrin-mediated degradation of LRP6 signalosome components by interacting with clathrin and the components in Wnt destruction complex; this function was further controlled by CDK1-driven phosphorylation of BCL9 N-terminal, especially T172. Interestingly, T172 phosphorylation was correlated with cancer patient prognosis and enriched in tumours. Thus, our results revealed a novel role of BCL9 in controlling mitotic Wnt signalling to promote cell division and growth.
Collapse
Affiliation(s)
- Jianxiang Chen
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Medicine, Holistic Integrative Pharmacy Institutes (HIPI), Hangzhou Normal University, Hangzhou, China
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore City, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | - Muthukumar Rajasekaran
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore City, Singapore
| | - Hongping Xia
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore City, Singapore
| | - Shik Nie Kong
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore City, Singapore
| | - Amudha Deivasigamani
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore City, Singapore
| | - Karthik Sekar
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore City, Singapore
| | - Hengjun Gao
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore City, Singapore
| | - Hannah Lf Swa
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | | | - London Lucien Ooi
- Division of Surgery, Singapore General Hospital, Singapore City, Singapore
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Medicine, Holistic Integrative Pharmacy Institutes (HIPI), Hangzhou Normal University, Hangzhou, China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | - Kam Man Hui
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Medicine, Holistic Integrative Pharmacy Institutes (HIPI), Hangzhou Normal University, Hangzhou, China
- Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore City, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore City, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
23
|
Abstract
Head and neck cancer presents primarily as head and neck squamous cell carcinoma (HNSCC), a debilitating malignancy fraught with high morbidity, poor survival rates, and limited treatment options. Mounting evidence indicates that the Wnt/β-catenin signaling pathway plays important roles in the pathobiology of HNSCC. Wnt/β-catenin signaling affects multiple cellular processes that endow cancer cells with the ability to maintain and expand immature stem-like phenotypes, proliferate, extend survival, and acquire aggressive characteristics by adopting mesenchymal traits. A central component of canonical Wnt signaling is β-catenin, which balances its role as a structural component of E-cadherin junctions with its function as a transcriptional coactivator of numerous target genes. Recent genomic characterization of head and neck cancer revealed that while β-catenin is not frequently mutated in HNSCC, its activity is unchecked by more common mutations in genes encoding upstream regulators of β-catenin, NOTCH1, FAT1, and AJUBA. Wnt/β-catenin signaling affects a wide range epigenetic and transcriptional activities, mediated by the interaction of β-catenin with different transcription factors and transcriptional coactivators and corepressors. Furthermore, Wnt/β-catenin functions in a network with many signaling and metabolic pathways that modulate its activity. In addition to its effects on tumor epithelia, β-catenin activity regulates the tumor microenvironment by regulating extracellular matrix remodeling, fibrotic processes, and immune response. These multifunctional oncogenic effects of β-catenin make it an attractive bona fide target for HNSCC therapy.
Collapse
Affiliation(s)
- K A Alamoud
- 1 Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| | - M A Kukuruzinska
- 1 Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
24
|
Zhang M, Wang Z, Zhang Y, Guo W, Ji H. Structure-Based Optimization of Small-Molecule Inhibitors for the β-Catenin/B-Cell Lymphoma 9 Protein-Protein Interaction. J Med Chem 2018; 61:2989-3007. [PMID: 29566337 DOI: 10.1021/acs.jmedchem.8b00068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Structure-based optimization was conducted to improve the potency, selectivity, and cell-based activities of β-catenin/B-cell lymphoma 9 (BCL9) inhibitors based on the 4'-fluoro- N-phenyl-[1,1'-biphenyl]-3-carboxamide scaffold, which was designed to mimic the side chains of the hydrophobic α-helical hot spots at positions i, i + 3, and i + 7. Compound 29 was found to disrupt the β-catenin/BCL9 protein-protein interaction (PPI) with a Ki of 0.47 μM and >1900-fold selectivity for β-catenin/BCL9 over β-catenin/E-cadherin PPIs. The proposed binding mode of new inhibitors was consistent with the results of site-directed mutagenesis and structure-activity relationship studies. Cell-based studies indicated that 29 disrupted the β-catenin/BCL9 interaction without affecting the β-catenin/E-cadherin interaction, selectively suppressed transactivation of Wnt/β-catenin signaling, downregulated expression of Wnt target genes, and inhibited viability of Wnt/β-catenin-dependent cancer cells in dose-dependent manners. A comparison of the biochemical and cell-based assay results offered the directions for future inhibitor optimization.
Collapse
Affiliation(s)
- Min Zhang
- Drug Discovery Department , H. Lee Moffitt Cancer Center and Research Institute , Tampa , Florida 33612 , United States.,Departments of Oncologic Sciences and Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Zhen Wang
- Drug Discovery Department , H. Lee Moffitt Cancer Center and Research Institute , Tampa , Florida 33612 , United States.,Departments of Oncologic Sciences and Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Yongqiang Zhang
- Drug Discovery Department , H. Lee Moffitt Cancer Center and Research Institute , Tampa , Florida 33612 , United States.,Departments of Oncologic Sciences and Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Wenxing Guo
- Drug Discovery Department , H. Lee Moffitt Cancer Center and Research Institute , Tampa , Florida 33612 , United States.,Departments of Oncologic Sciences and Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Haitao Ji
- Drug Discovery Department , H. Lee Moffitt Cancer Center and Research Institute , Tampa , Florida 33612 , United States.,Departments of Oncologic Sciences and Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| |
Collapse
|
25
|
Wingless/Wnt Signaling in Intestinal Development, Homeostasis, Regeneration and Tumorigenesis: A Drosophila Perspective. J Dev Biol 2018; 6:jdb6020008. [PMID: 29615557 PMCID: PMC6026893 DOI: 10.3390/jdb6020008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 02/06/2023] Open
Abstract
In mammals, the Wnt/β-catenin signal transduction pathway regulates intestinal stem cell maintenance and proliferation, whereas Wnt pathway hyperactivation, resulting primarily from the inactivation of the tumor suppressor Adenomatous polyposis coli (APC), triggers the development of the vast majority of colorectal cancers. The Drosophila adult gut has recently emerged as a powerful model to elucidate the mechanisms by which Wingless/Wnt signaling regulates intestinal development, homeostasis, regeneration, and tumorigenesis. Herein, we review recent insights on the roles of Wnt signaling in Drosophila intestinal physiology and pathology.
Collapse
|
26
|
The β-catenin/CBP-antagonist ICG-001 inhibits pediatric glioma tumorigenicity in a Wnt-independent manner. Oncotarget 2018; 8:27300-27313. [PMID: 28460484 PMCID: PMC5432336 DOI: 10.18632/oncotarget.15934] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Pediatric high-grade gliomas (pedHGG) belong to the most aggressive cancers in children with a poor prognosis due to a lack of efficient therapeutic strategies. The β-catenin/Wnt-signaling pathway was shown to hold promising potential as a treatment target in adult high-grade gliomas by abrogating tumor cell invasion and the acquisition of stem cell-like characteristics. Since pedHGG differ from their adult counterparts in genetically and biologically we aimed to investigate the effects of β-catenin/Wnt-signaling pathway-inhibition by the β-catenin/CBP antagonist ICG-001 in pedHGG cell lines. In contrast to adult HGG, pedHGG cells displayed minimal detectable canonical Wnt-signaling activity. Nevertheless, low doses of ICG-001 inhibited cell migration/invasion, tumorsphere- and colony formation, proliferation in vitro as well as tumor growth in vivo/ovo, suggesting that ICG-001 affects pedHGG tumor cell characteristics independent of β-catenin/Wnt-signaling. RNA-sequencing analyses support a Wnt/β-catenin-independent effect of ICG-001 on target gene transcription, revealing strong effects on genes involved in cellular metabolic/biosynthetic processes and cell cycle progression. Among these, high mRNA expression of cell cycle regulator JDP2 was found to confer a better prognosis for pedHGG patients. In conclusion, ICG-001 might offer an effective treatment option for pedHGG patients functioning to regulate cell phenotype and gene expression programs in absence of Wnt/β-catenin signaling-activity.
Collapse
|
27
|
Sannino G, Armbruster N, Bodenhöfer M, Haerle U, Behrens D, Buchholz M, Rothbauer U, Sipos B, Schmees C. Role of BCL9L in transforming growth factor-β (TGF-β)-induced epithelial-to-mesenchymal-transition (EMT) and metastasis of pancreatic cancer. Oncotarget 2018; 7:73725-73738. [PMID: 27713160 PMCID: PMC5342010 DOI: 10.18632/oncotarget.12455] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/24/2016] [Indexed: 12/19/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a low overall survival rate, which is approximately 20% during the first year and decreases to less than 6% within five years of the disease. This is due to premature dissemination accompanied by a lack of disease-specific symptoms during the initial stages. Additionally, to date there are no biomarkers for an early prognosis available.A growing number of studies indicate that epithelial to mesenchymal transition (EMT), triggered by WNT-, TGF-β- and other signaling pathways is crucial for the initiation of the metastatic process in PDAC. Here we show, that BCL9L is up-regulated in PDAC cell lines and patient tissue compared to non-cancer controls. RNAi-induced BCL9L knockdown negatively affected proliferation, migration and invasion of pancreatic cancer cells. On a molecular basis, BCL9L depletion provoked an increment of E-cadherin protein levels, with concomitant increase of β-catenin retention at the plasma membrane. This is linked to the induction of a strong epithelial phenotype in pancreatic cancer cells upon BCL9L knockdown even in the presence of the EMT-inducer TGF-β. Finally, xenograft mouse models of pancreatic cancer revealed a highly significant reduction in the number of liver metastases upon BCL9L knockdown. Taken together, our findings underline the key importance of BCL9L for EMT and thus progression and metastasis of pancreatic cancer cells. Direct targeting of this protein might be a valuable approach to effectively antagonize invasion and metastasis of PDAC.
Collapse
Affiliation(s)
- Giuseppina Sannino
- Natural and Medical Sciences Institute (NMI) at the University of Tuebingen, Tumor Biology Group, Reutlingen, Germany.,Current address: Institute of Pathology, Laboratory of Pediatric Sarcoma Biology, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Nicole Armbruster
- Natural and Medical Sciences Institute (NMI) at the University of Tuebingen, Tumor Biology Group, Reutlingen, Germany.,Current address: Department of Internal Medicine II, University of Tuebingen, Tuebingen, Germany
| | - Mona Bodenhöfer
- Natural and Medical Sciences Institute (NMI) at the University of Tuebingen, Tumor Biology Group, Reutlingen, Germany
| | - Ursula Haerle
- Natural and Medical Sciences Institute (NMI) at the University of Tuebingen, Tumor Biology Group, Reutlingen, Germany
| | - Diana Behrens
- Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Malte Buchholz
- Department of Medicine, Division of Gastroenterology, Endocrinology and Metabolism, Philipps University Marburg, Marburg, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Bence Sipos
- Institute of Pathology, University of Tuebingen, Tuebingen, Germany
| | - Christian Schmees
- Natural and Medical Sciences Institute (NMI) at the University of Tuebingen, Tumor Biology Group, Reutlingen, Germany
| |
Collapse
|
28
|
Nerve growth factor modulates the tumor cells migration in ovarian cancer through the WNT/β-catenin pathway. Oncotarget 2018; 7:81026-81048. [PMID: 27835587 PMCID: PMC5348374 DOI: 10.18632/oncotarget.13186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/21/2016] [Indexed: 12/21/2022] Open
Abstract
Nerve growth factor (NGF)/nerve growth factor receptors (NGFRs) axis and canonical WNT/β-catenin pathway have shown to play crucial roles in tumor initiation, progression and prognosis. But little did we know the relationship between them in modulation of tumor progress. In this report, we found that NGF/NGFRs and β-catenin were coexpression in ovarian cancer cell lines, and NGF can decrease the expression level of β-catenin and affect its activities, which may be related to the NGF-induced down-regulation of B-cell CLL/lymphoma 9-like (BCL9L, BCL9-2). Furthermore, NGF can also increase or decrease the downstream target gene expression levels of WNT/β-catenin depending on the cell types. Especially, we created a novel in vitro cell growth model based on a microfluidic device to intuitively observe the effects of NGF/NGFRs on the motility behaviors of ovarian cancer cells. The results showed that the migration area and maximum distance into three dimensional (3D) matrigel were decreased in CAOV3 and OVCAR3 cells, but increased in SKOV3 cells following the stimulation with NGF. In addition, we found that the cell colony area was down-regulated in CAOV3 cells, however, it was augmented in OVCAR3 cells after treatment with NGF. The inhibitors of NGF/NGFRs, such as Ro 08-2750, K252a and LM11A-31,can all block NGF-stimulated changes of gene expression or migratory behavior on ovarian cancer cells. The different results among ovarian cancer cells illustrated the heterogeneity and complexity of ovarian cancer. Collectively, our results suggested for the first time that NGF is functionally linked to β-catenin in the migration of human ovarian cancer cells, which may be a novel therapeutic perspective to prevent the spread of ovarian carcinomas by studying the interaction between NGF/NGFRs and canonical WNT/β-catenin signaling.
Collapse
|
29
|
The role of Pygo2 for Wnt/ß-catenin signaling activity during intestinal tumor initiation and progression. Oncotarget 2018; 7:80612-80632. [PMID: 27811361 PMCID: PMC5348345 DOI: 10.18632/oncotarget.13016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022] Open
Abstract
Pygo2 acts as a co-activator of Wnt signaling in a nuclear complex with ß-catenin/BCL9/BCL9-2 to increase target gene transcription. Previous studies showed that Pygo2 is upregulated in murine intestinal tumors and human colon cancer, but is apparently dispensable for normal intestinal homeostasis. Here, we have evaluated the in vivo role of Pygo2 during intestinal tumorigenesis using Pygo2 deficient mice. We analyzed chemically induced colon tumor development and conditional intestine specific mouse models harboring either Apc loss-of-function (LOF) or Ctnnb1 gain-of-function (ß-catenin GOF). Remarkably, the number and size of chemically induced tumors was significantly reduced in Pygo2 deficient mice, suggesting that Pygo2 has a tumor promoting function. Furthermore, loss of Pygo2 rescued early tumorigenesis of Ctnnb1 GOF mutants. In contrast, Pygo2 ablation was not sufficient to prevent tumor development of Apc LOF mice. The effect on tumor formation by Pygo2 knockout was linked to the repression of specific deregulated Wnt target genes, in particular of c-Myc. Moreover, the role of Pygo2 appears to be associated with the signaling output of deregulated Wnt signaling in the different tumor models. Thus, targeting Pygo2 might provide a novel strategy to suppress tumor formation in a context dependent manner.
Collapse
|
30
|
Tian A, Benchabane H, Wang Z, Zimmerman C, Xin N, Perochon J, Kalna G, Sansom OJ, Cheng C, Cordero JB, Ahmed Y. Intestinal stem cell overproliferation resulting from inactivation of the APC tumor suppressor requires the transcription cofactors Earthbound and Erect wing. PLoS Genet 2017; 13:e1006870. [PMID: 28708826 PMCID: PMC5510812 DOI: 10.1371/journal.pgen.1006870] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/15/2017] [Indexed: 12/30/2022] Open
Abstract
Wnt/β-catenin signal transduction directs intestinal stem cell (ISC) proliferation during homeostasis. Hyperactivation of Wnt signaling initiates colorectal cancer, which most frequently results from truncation of the tumor suppressor Adenomatous polyposis coli (APC). The β-catenin-TCF transcription complex activates both the physiological expression of Wnt target genes in the normal intestinal epithelium and their aberrantly increased expression in colorectal tumors. Whether mechanistic differences in the Wnt transcription machinery drive these distinct levels of target gene activation in physiological versus pathological states remains uncertain, but is relevant for the design of new therapeutic strategies. Here, using a Drosophila model, we demonstrate that two evolutionarily conserved transcription cofactors, Earthbound (Ebd) and Erect wing (Ewg), are essential for all major consequences of Apc1 inactivation in the intestine: the hyperactivation of Wnt target gene expression, excess number of ISCs, and hyperplasia of the epithelium. In contrast, only Ebd, but not Ewg, mediates the Wnt-dependent regulation of ISC proliferation during homeostasis. Therefore, in the adult intestine, Ebd acts independently of Ewg in physiological Wnt signaling, but cooperates with Ewg to induce the hyperactivation of Wnt target gene expression following Apc1 loss. These findings have relevance for human tumorigenesis, as Jerky (JRK/JH8), the human Ebd homolog, promotes Wnt pathway hyperactivation and is overexpressed in colorectal, breast, and ovarian cancers. Together, our findings reveal distinct requirements for Ebd and Ewg in physiological Wnt pathway activation versus oncogenic Wnt pathway hyperactivation following Apc1 loss. Such differentially utilized transcription cofactors may offer new opportunities for the selective targeting of Wnt-driven cancers.
Collapse
Affiliation(s)
- Ai Tian
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Zhenghan Wang
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Chloe Zimmerman
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Nan Xin
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Jessica Perochon
- Wolfson Wohl Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gabriela Kalna
- CRUK Beatson Institute, Garscube Estate, Glasgow, United Kingdom
| | - Owen J. Sansom
- CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, United Kingdom
| | - Chao Cheng
- Department of Biomedical Data Science, Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Julia B. Cordero
- Wolfson Wohl Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| |
Collapse
|
31
|
Wimsatt J, Villers M, Thomas L, Kamarec S, Montgomery C, Yeung LWY, Hu Y, Innes K. Oral perfluorooctane sulfonate (PFOS) lessens tumor development in the APC min mouse model of spontaneous familial adenomatous polyposis. BMC Cancer 2016; 16:942. [PMID: 27927180 PMCID: PMC5143440 DOI: 10.1186/s12885-016-2861-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023] Open
Abstract
Background Colorectal cancer is the second most common cause of cancer deaths for both men and women, and the third most common cause of cancer in the U.S. Toxicity of current chemotherapeutic agents for colorectal cancer, and emergence of drug resistance underscore the need to develop new, potentially less toxic alternatives. Our recent cross-sectional study in a large Appalachian population, showed a strong, inverse, dose–response association of serum perfluorooctane sulfonate (PFOS) levels to prevalent colorectal cancer, suggesting PFOS may have therapeutic potential in the prevention and/or treatment of colorectal cancer. In these preliminary studies using a mouse model of familial colorectal cancer, the APCmin mouse, and exposures comparable to those reported in human populations, we assess the efficacy of PFOS for reducing tumor burden, and evaluate potential dose–response effects. Methods At 5–6 weeks of age, APCmin mice were randomized to receive 0, 20, 250 mg PFOS/kg (females) or 0, 10, 50 and 200 mg PFOS/kg (males) via their drinking water. At 15 weeks of age, gastrointestinal tumors were counted and scored and blood PFOS levels measured. Results PFOS exposure was associated with a significant, dose–response reduction in total tumor number in both male and female mice. This inverse dose–response effect of PFOS exposure was particularly pronounced for larger tumors (r2 for linear trend = 0.44 for males, p’s <0.001). Conclusions The current study in a mouse model of familial adenomatous polyposis offers the first experimental evidence that chronic exposure to PFOS in drinking water can reduce formation of gastrointestinal tumors, and that these reductions are both significant and dose-dependent. If confirmed in further studies, these promising findings could lead to new therapeutic strategies for familial colorectal cancer, and suggest that PFOS testing in both preventive and therapeutic models for human colorectal cancer is warranted.
Collapse
Affiliation(s)
- Jeffrey Wimsatt
- Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA. .,Department of Epidemiology, School of Public Health, West Virginia University, Morgantown, WV, 26506, USA. .,West Virginia University, 186 HSCN, 1 Medical Center Drive, Morgantown, WV, 26508, USA.
| | - Meghan Villers
- Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Laurel Thomas
- Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Stacey Kamarec
- Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Caitlin Montgomery
- Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, 26506, USA
| | - Leo W Y Yeung
- Man-Technology-Environment (MTM) Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro, SE-70182, Sweden
| | - Yanqing Hu
- Department of Statistics, West Virginia University, Morgantown, WV, 26506, USA
| | - Kim Innes
- Department of Epidemiology, School of Public Health, West Virginia University, Morgantown, WV, 26506, USA
| |
Collapse
|
32
|
Wisniewski JA, Yin J, Teuscher KB, Zhang M, Ji H. Structure-Based Design of 1,4-Dibenzoylpiperazines as β-Catenin/B-Cell Lymphoma 9 Protein-Protein Interaction Inhibitors. ACS Med Chem Lett 2016; 7:508-13. [PMID: 27190602 DOI: 10.1021/acsmedchemlett.5b00284] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
A small-molecule inhibitor with a 1,4-dibenzoylpiperazine scaffold was designed to match the critical binding elements in the β-catenin/B-cell lymphoma 9 (BCL9) protein-protein interaction interface. Inhibitor optimization led to a potent inhibitor that can disrupt the β-catenin/BCL9 interaction and exhibit 98-fold selectivity over the β-catenin/cadherin interaction. The binding mode of new inhibitors was characterized by structure-activity relationships and site-directed mutagenesis studies. Cell-based studies demonstrated that this series of inhibitors can selectively suppress canonical Wnt signaling and inhibit growth of Wnt/β-catenin-dependent cancer cells.
Collapse
Affiliation(s)
- John A. Wisniewski
- Department
of Chemistry,
Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Jinya Yin
- Department
of Chemistry,
Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Kevin B. Teuscher
- Department
of Chemistry,
Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Min Zhang
- Department
of Chemistry,
Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Haitao Ji
- Department
of Chemistry,
Center for Cell and Genome Science, University of Utah, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
33
|
Giannakis M, Mu XJ, Shukla SA, Qian ZR, Cohen O, Nishihara R, Bahl S, Cao Y, Amin-Mansour A, Yamauchi M, Sukawa Y, Stewart C, Rosenberg M, Mima K, Inamura K, Nosho K, Nowak JA, Lawrence MS, Giovannucci EL, Chan AT, Ng K, Meyerhardt JA, Van Allen EM, Getz G, Gabriel SB, Lander ES, Wu CJ, Fuchs CS, Ogino S, Garraway LA. Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma. Cell Rep 2016; 15:857-865. [PMID: 27149842 PMCID: PMC4850357 DOI: 10.1016/j.celrep.2016.03.075] [Citation(s) in RCA: 592] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/29/2016] [Accepted: 03/17/2016] [Indexed: 12/24/2022] Open
Abstract
Large-scale genomic characterization of tumors from prospective cohort studies may yield new insights into cancer pathogenesis. We performed whole-exome sequencing of 619 incident colorectal cancers (CRCs) and integrated the results with tumor immunity, pathology, and survival data. We identified recurrently mutated genes in CRC, such as BCL9L, RBM10, CTCF, and KLF5, that were not previously appreciated in this disease. Furthermore, we investigated the genomic correlates of immune-cell infiltration and found that higher neoantigen load was positively associated with overall lymphocytic infiltration, tumor-infiltrating lymphocytes (TILs), memory T cells, and CRC-specific survival. The association with TILs was evident even within microsatellite-stable tumors. We also found positive selection of mutations in HLA genes and other components of the antigen-processing machinery in TIL-rich tumors. These results may inform immunotherapeutic approaches in CRC. More generally, this study demonstrates a framework for future integrative molecular epidemiology research in colorectal and other malignancies.
Collapse
Affiliation(s)
- Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xinmeng Jasmine Mu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sachet A Shukla
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhi Rong Qian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ofir Cohen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Reiko Nishihara
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Samira Bahl
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yin Cao
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ali Amin-Mansour
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mai Yamauchi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yasutaka Sukawa
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo 108-8345, Japan
| | - Chip Stewart
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mara Rosenberg
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kosuke Mima
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kentaro Inamura
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Katsuhiko Nosho
- Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan
| | - Jonathan A Nowak
- Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey A Meyerhardt
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | | | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Charles S Fuchs
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Division of MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
34
|
Beaulieu JF. Tuning WNT-β-catenin signaling via BCL9 proteins for targeting colorectal cancer cells. EBioMedicine 2015; 2:1846-1847. [PMID: 26844253 PMCID: PMC4703768 DOI: 10.1016/j.ebiom.2015.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Department of Anatomy & Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada, J1H 5N4
| |
Collapse
|
35
|
Hoggard LR, Zhang Y, Zhang M, Panic V, Wisniewski JA, Ji H. Rational design of selective small-molecule inhibitors for β-catenin/B-cell lymphoma 9 protein-protein interactions. J Am Chem Soc 2015; 137:12249-60. [PMID: 26352795 DOI: 10.1021/jacs.5b04988] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Selective inhibition of α-helix-mediated protein-protein interactions (PPIs) with small organic molecules provides great potential for the discovery of chemical probes and therapeutic agents. Protein Data Bank data mining using the HippDB database indicated that (1) the side chains of hydrophobic projecting hot spots at positions i, i + 3, and i + 7 of an α-helix had few orientations when interacting with the second protein and (2) the hot spot pockets of PPI complexes had different sizes, shapes, and chemical groups when interacting with the same hydrophobic projecting hot spots of α-helix. On the basis of these observations, a small organic molecule, 4'-fluoro-N-phenyl-[1,1'-biphenyl]-3-carboxamide, was designed as a generic scaffold that itself directly mimics the binding mode of the side chains of hydrophobic projecting hot spots at positions i, i + 3, and i + 7 of an α-helix. Convenient decoration of this generic scaffold led to the selective disruption of α-helix-mediated PPIs. A series of small-molecule inhibitors selective for β-catenin/B-cell lymphoma 9 (BCL9) over β-catenin/cadherin PPIs was designed and synthesized. The binding mode of new inhibitors was characterized by site-directed mutagenesis and structure-activity relationship studies. This new class of inhibitors can selectively disrupt β-catenin/BCL9 over β-catenin/cadherin PPIs, suppress the transactivation of canonical Wnt signaling, downregulate the expression of Wnt target genes, and inhibit the growth of Wnt/β-catenin-dependent cancer cells.
Collapse
Affiliation(s)
- Logan R Hoggard
- Department of Chemistry, Center for Cell and Genome Science, University of Utah , Salt Lake City, Utah 84112-0850, United States
| | - Yongqiang Zhang
- Department of Chemistry, Center for Cell and Genome Science, University of Utah , Salt Lake City, Utah 84112-0850, United States
| | - Min Zhang
- Department of Chemistry, Center for Cell and Genome Science, University of Utah , Salt Lake City, Utah 84112-0850, United States
| | - Vanja Panic
- Department of Chemistry, Center for Cell and Genome Science, University of Utah , Salt Lake City, Utah 84112-0850, United States
| | - John A Wisniewski
- Department of Chemistry, Center for Cell and Genome Science, University of Utah , Salt Lake City, Utah 84112-0850, United States
| | - Haitao Ji
- Department of Chemistry, Center for Cell and Genome Science, University of Utah , Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
36
|
Li Q, Li Y, Gu B, Fang L, Zhou P, Bao S, Huang L, Dai X. Akt Phosphorylates Wnt Coactivator and Chromatin Effector Pygo2 at Serine 48 to Antagonize Its Ubiquitin/Proteasome-mediated Degradation. J Biol Chem 2015; 290:21553-67. [PMID: 26170450 DOI: 10.1074/jbc.m115.639419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 01/16/2023] Open
Abstract
Pygopus 2 (Pygo2/PYGO2) is an evolutionarily conserved coactivator and chromatin effector in the Wnt/β-catenin signaling pathway that regulates cell growth and differentiation in various normal and malignant tissues. Although PYGO2 is highly overexpressed in a number of human cancers, the molecular mechanism underlying its deregulation is largely unknown. Here we report that Pygo2 protein is degraded through the ubiquitin/proteasome pathway and is posttranslationally stabilized through phosphorylation by activated phosphatidylinositol 3-kinase/Akt signaling. Specifically, Pygo2 is stabilized upon inhibition of the proteasome, and its intracellular level is regulated by Cullin 4 (Cul4) and DNA damage-binding protein 1 (DDB1), components of the Cul4-DDB1 E3 ubiquitin ligase complex. Furthermore, Pygo2 is phosphorylated at multiple residues, and Akt-mediated phosphorylation at serine 48 leads to its decreased ubiquitylation and increased stability. Finally, we provide evidence that Akt and its upstream growth factors act in parallel with Wnt to stabilize Pygo2. Taken together, our findings highlight chromatin regulator Pygo2 as a common node downstream of oncogenic Wnt and Akt signaling pathways and underscore posttranslational modification, particularly phosphorylation and ubiquitylation, as a significant mode of regulation of Pygo2 protein expression.
Collapse
Affiliation(s)
- Qiuling Li
- From the Department of Biological Chemistry, the State Key Laboratory of Molecular and Developmental Biology, Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Yuewei Li
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Bingnan Gu
- From the Department of Biological Chemistry
| | - Lei Fang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697
| | - Pengbo Zhou
- the Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Shilai Bao
- the State Key Laboratory of Molecular and Developmental Biology, Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Lan Huang
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697,
| | - Xing Dai
- From the Department of Biological Chemistry,
| |
Collapse
|
37
|
Zatula N, Wiese M, Bunzendahl J, Birchmeier W, Perske C, Bleckmann A, Brembeck FH. The BCL9-2 proto-oncogene governs estrogen receptor alpha expression in breast tumorigenesis. Oncotarget 2015; 5:6770-87. [PMID: 25149534 PMCID: PMC4196162 DOI: 10.18632/oncotarget.2252] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The majority of human breast cancers express estrogen receptor alpha (ER), which is important for therapy with anti-estrogens. Here we describe the role of BCL9-2, a proto-oncogene previously characterized as co-activator of Wnt/ß-catenin signaling, for mammary tumorigenesis in mice and human. ER positive human breast cancers showed overexpression of BCL9-2 and tamoxifen treated patients with high BCL9-2 demonstrated a better survival. BCL9-2 was upregulated during puberty and pregnancy in normal mammary epithelia, but downregulated in the involuted gland. BCL9-2 overexpression in vivo delayed the mammary involution and induced alveolar hyperplasia. Moreover, aged BCL9-2 transgenic mice developed ductal-like mammary tumors with high nuclear ER expression. We found, that primary cell cultures of BCL9-2 breast tumors responded to tamoxifen treatment. Moreover, BCL9-2 regulated the expression of ER and the proliferation of human breast cancer cells independently of ß-catenin. Finally, we describe a novel mechanism, how BCL9-2 regulates ER transcription by interaction with Sp1 through the proximal ESR1 gene promoter. In summary, BCL9-2 induces ER positive breast cancers in vivo, regulates ER expression by a novel ß-catenin independent mechanism in breast cancer cells, and might predict the therapy response to tamoxifen treatment.
Collapse
Affiliation(s)
- Nathalie Zatula
- Tumor Biology and Signal Transduction, Georg-August-University Göttingen, Germany. Dept. of Hematology and Medical Oncology, Georg-August-University Göttingen, Germany
| | - Maria Wiese
- Tumor Biology and Signal Transduction, Georg-August-University Göttingen, Germany. Dept. of Hematology and Medical Oncology, Georg-August-University Göttingen, Germany
| | - Jens Bunzendahl
- Tumor Biology and Signal Transduction, Georg-August-University Göttingen, Germany. Dept. of Hematology and Medical Oncology, Georg-August-University Göttingen, Germany
| | | | | | - Annalen Bleckmann
- Dept. of Hematology and Medical Oncology, Georg-August-University Göttingen, Germany
| | - Felix H Brembeck
- Tumor Biology and Signal Transduction, Georg-August-University Göttingen, Germany. Dept. of Hematology and Medical Oncology, Georg-August-University Göttingen, Germany
| |
Collapse
|
38
|
Xu CQ, de la Monte SM, Tong M, Huang CK, Kim M. Chronic Ethanol-Induced Impairment of Wnt/β-Catenin Signaling is Attenuated by PPAR-δ Agonist. Alcohol Clin Exp Res 2015; 39:969-79. [PMID: 25903395 DOI: 10.1111/acer.12727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 03/09/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND The Wnt/β-catenin pathway regulates liver growth, repair, and regeneration. Chronic ethanol (EtOH) exposure blunts normal liver regenerative responses, in part by inhibiting insulin/IGF signaling, and correspondingly, previous studies showed that EtOH-impaired liver regeneration could be restored by insulin sensitizer (proliferator-activated receptor [PPAR]-δ agonist) treatment. As Wnt/β-catenin functions overlap and cross talk with insulin/IGF pathways, we investigated the effects of EtOH exposure and PPAR-δ agonist treatment on Wnt pathway gene expression in relation to liver regeneration. METHODS Adult male Long Evans rats were fed with isocaloric liquid diets containing 0 or 37% EtOH for 8 weeks and also treated with vehicle or a PPAR-δ agonist during the last 3 weeks of the feeding regimen. The rats were then subjected to 70% partial hepatectomy (PH) and livers harvested at various post-PH time points were used to quantitate expression of 19 Wnt pathway genes using Quantigene 2.0 Multiplex Assay. RESULTS EtOH broadly inhibited expression of Wnt/β-catenin signaling-related genes, including down-regulation of Wnt1, Fzd3, Lef1, and Bcl9 throughout the post-PH time course (0 to 72 hours), and suppression of Wnt7a, Ccnd1, Fgf4, Wif1, Sfrp2, and Sfrp5 at 18- and 24-hour post-PH time points. PPAR-δ agonist treatments rescued the EtOH-induced suppression of Wnt1, Wnt7a, Fzd3, Lef1, Bcl9, Ccnd1, and Sfrp2 gene expression in liver, corresponding with the improvements in DNA synthesis and restoration of hepatic architecture. CONCLUSIONS Chronic high-dose EtOH exposures inhibit Wnt signaling, which likely contributes to the impairments in liver regeneration. Therapeutic effects of PPAR-δ agonists extend beyond restoration of insulin/IGF signaling mechanisms and are mediated in part by enhancement of Wnt pathway signaling. Future studies will determine the degree to which targeted restoration of Wnt signaling is sufficient to improve liver regeneration and remodeling in the context of chronic EtOH exposure.
Collapse
Affiliation(s)
- Chelsea Q Xu
- Liver Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Suzanne M de la Monte
- Departments of Medicine and Pathology, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Ming Tong
- Liver Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Chiung-Kuei Huang
- Liver Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Miran Kim
- Liver Research Center, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
39
|
El-Hage P, Petitalot A, Monsoro-Burq AH, Maczkowiak F, Driouch K, Formstecher E, Camonis J, Sabbah M, Bièche I, Lidereau R, Lallemand F. The Tumor-Suppressor WWOX and HDAC3 Inhibit the Transcriptional Activity of the β-Catenin Coactivator BCL9-2 in Breast Cancer Cells. Mol Cancer Res 2015; 13:902-12. [PMID: 25678599 DOI: 10.1158/1541-7786.mcr-14-0180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 01/19/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED The WW domain containing oxidoreductase (WWOX) has recently been shown to inhibit of the Wnt/β-catenin pathway by preventing the nuclear import of disheveled 2 (DVL2) in human breast cancer cells. Here, it is revealed that WWOX also interacts with the BCL9-2, a cofactor of the Wnt/β-catenin pathway, to enhance the activity of the β-catenin-TCF/LEF (T-cell factor/lymphoid enhancer factors family) transcription factor complexes. By using both a luciferase assay in MCF-7 cells and a Xenopus secondary axis induction assay, it was demonstrated that WWOX inhibits the BCL9-2 function in Wnt/β-catenin signaling. WWOX does not affect the BCL9-2-β-catenin association and colocalizes with BCL9-2 and β-catenin in the nucleus of the MCF-7 cells. Moreover, WWOX inhibits the β-catenin-TCF1 interaction. Further examination found that HDAC3 associates with BCL9-2, enhances the inhibitory effect of WWOX on BCL9-2 transcriptional activity, and promotes the WWOX-BCL9-2 interaction, independent of its deacetylase activity. However, WWOX does not influence the HDAC3-BCL9-2 interaction. Altogether, these results strongly indicate that nuclear WWOX interacts with BCL9-2 associated with β-catenin only when BCL9-2 is in complex with HDAC3 and inhibits its transcriptional activity, in part, by inhibiting the β-catenin-TCF1 interaction. The promotion of the WWOX-BCL9-2 interaction by HDAC3, independent of its deacetylase activity, represents a new mechanism by which this HDAC inhibits transcription. IMPLICATIONS The inhibition of the transcriptional activity of BCL9-2 by WWOX and HDAC3 constitutes a new molecular mechanism and provides new insight for a broad range of cancers.
Collapse
Affiliation(s)
- Perla El-Hage
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France
| | - Ambre Petitalot
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France
| | - Anne-Hélène Monsoro-Burq
- Institut Curie, CNRS UMR3347, INSERM U1021, Centre Universitaire, Paris, France. Université Paris Sud, Centre Universitaire, Paris, France
| | - Frédérique Maczkowiak
- Institut Curie, CNRS UMR3347, INSERM U1021, Centre Universitaire, Paris, France. Université Paris Sud, Centre Universitaire, Paris, France
| | - Keltouma Driouch
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France
| | | | | | - Michèle Sabbah
- INSERM U938, hôpital Saint-Antoine, Université Pierre et Marie Curie, Paris, France
| | - Ivan Bièche
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France
| | - Rosette Lidereau
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France
| | - François Lallemand
- Institut Curie, Service de Génétique, Unité de pharmacogénomique, Paris, France.
| |
Collapse
|
40
|
AlphaScreen selectivity assay for β-catenin/B-cell lymphoma 9 inhibitors. Anal Biochem 2015; 469:43-53. [DOI: 10.1016/j.ab.2014.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/03/2014] [Accepted: 09/25/2014] [Indexed: 01/07/2023]
|
41
|
Cantù C, Zimmerli D, Hausmann G, Valenta T, Moor A, Aguet M, Basler K. Pax6-dependent, but β-catenin-independent, function of Bcl9 proteins in mouse lens development. Genes Dev 2014; 28:1879-84. [PMID: 25184676 PMCID: PMC4197948 DOI: 10.1101/gad.246140.114] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bcl9 and Bcl9l (Bcl9/9l) encode Wnt signaling components that mediate the interaction between β-catenin and Pygo. Cantù et al. find that Bcl9/9l contribute in a Pygo-dependent, but β-catenin-independent, fashion to eye lens formation. Pax6, the master regulator of eye differentiation, directly activates Bcl9 and Bcl9l transcription. Bcl9 and Bcl9l (Bcl9/9l) encode Wnt signaling components that mediate the interaction between β-catenin and Pygopus (Pygo) via two evolutionarily conserved domains, HD1 and HD2, respectively. We generated mouse strains lacking these domains to probe the β-catenin-dependent and β-catenin-independent roles of Bcl9/9l and Pygo during mouse development. While lens development is critically dependent on the presence of the HD1 domain, it is not affected by the lack of the HD2 domain, indicating that Bcl9/9l act in this context in a β-catenin-independent manner. Furthermore, we uncover a new regulatory circuit in which Pax6, the master regulator of eye development, directly activates Bcl9/9l transcription.
Collapse
Affiliation(s)
- Claudio Cantù
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Dario Zimmerli
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - George Hausmann
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Tomas Valenta
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Andreas Moor
- Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, 1011 Lausanne, Switzerland
| | - Michel Aguet
- Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, 1011 Lausanne, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
42
|
Han W, Wang H. Regulation of canonical Wnt/β-catenin pathway in the nucleus. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0489-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Charbonneau B, Wang AH, Maurer MJ, Asmann YW, Zent CS, Link BK, Ansell SM, Weiner GJ, Ozsan N, Feldman AL, Witzig TE, Cunningham JM, Dogan A, Habermann TM, Slager SL, Novak AJ, Cerhan JR. CXCR5 polymorphisms in non-Hodgkin lymphoma risk and prognosis. Cancer Immunol Immunother 2013; 62:1475-84. [PMID: 23812490 PMCID: PMC3758443 DOI: 10.1007/s00262-013-1452-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/13/2013] [Indexed: 12/22/2022]
Abstract
CXCR5 [chemokine (C-X-C motif) receptor 5; also known as Burkitt lymphoma receptor 1 (BCR1)] is expressed on mature B-cells, subsets of CD4+ and CD8+ T-cells, and skin-derived migratory dendritic cells. Together with its ligand, CXCL13, CXCR5 is involved in guiding B-cells into the B-cell zones of secondary lymphoid organs as well as T-cell migration. This study evaluated the role of common germline genetic variation in CXCR5 in the risk and prognosis of non-Hodgkin lymphoma (NHL) using a clinic-based study of 1,521 controls and 2,694 NHL cases including 710 chronic lymphocytic leukemia/small lymphocytic lymphoma, 586 diffuse large B-cell lymphoma (DLBCL), 588 follicular lymphoma (FL), 137 mantle cell lymphoma (MCL), 230 marginal zone lymphoma (MZL), and 158 peripheral T-cell lymphoma (PTCL). Of the ten CXCR5 tag SNPs in our study, five were associated with risk of NHL, with rs1790192 having the strongest association (OR 1.19, 95% CI 1.08-1.30; p = 0.0003). This SNP was most strongly associated with the risk of FL (OR 1.44, 95 % CI 1.25-1.66; p = 3.1 × 10(-7)), with a lower degree of association with DLBCL (OR 1.16, 95% CI 1.01-1.33; p = 0.04) and PTCL (OR 1.29, 95 % CI 1.02-1.64; p = 0.04) but no association with the risk of MCL or MZL. For FL patients that were observed as initial disease management, the number of minor alleles of rs1790192 was associated with better event-free survival (HR 0.64; 95% CI 0.47-0.87; p = 0.004). These results provide additional evidence for a role of host genetic variation in CXCR5 in lymphomagenesis, particularly for FL.
Collapse
Affiliation(s)
- Bridget Charbonneau
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN USA
| | - Alice H. Wang
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN USA
| | - Matthew J. Maurer
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN USA
| | - Yan W. Asmann
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN USA
| | - Clive S. Zent
- Division of Hematology, Department of Internal Medicine, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN USA
| | - Brian K. Link
- Division of Hematology, Oncology, Blood and Marrow Transplantation, Department of Internal Medicine, College of Medicine, University of Iowa, Iowa City, IA USA
| | - Stephen M. Ansell
- Division of Hematology, Department of Internal Medicine, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN USA
| | - George J. Weiner
- Division of Hematology, Oncology, Blood and Marrow Transplantation, Department of Internal Medicine, College of Medicine, University of Iowa, Iowa City, IA USA
| | - Nazan Ozsan
- Department of Pathology, Faculty of Medicine, Ege University, Bornova, İzmir Turkey
| | - Andrew L. Feldman
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN USA
| | - Thomas E. Witzig
- Division of Hematology, Department of Internal Medicine, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN USA
| | - Julie M. Cunningham
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN USA
| | - Ahmet Dogan
- Department of Laboratory Medicine and Pathology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN USA
| | - Thomas M. Habermann
- Division of Hematology, Department of Internal Medicine, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN USA
| | - Susan L. Slager
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN USA
| | - Anne J. Novak
- Division of Hematology, Department of Internal Medicine, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN USA
| | - James R. Cerhan
- Department of Health Sciences Research, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN USA
| |
Collapse
|
44
|
Hyeon J, Ahn S, Lee JJ, Song DH, Park CK. Prognostic Significance of BCL9 Expression in Hepatocellular Carcinoma. KOREAN JOURNAL OF PATHOLOGY 2013; 47:130-6. [PMID: 23667372 PMCID: PMC3647125 DOI: 10.4132/koreanjpathol.2013.47.2.130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/05/2013] [Accepted: 02/20/2013] [Indexed: 12/13/2022]
Abstract
Background BCL9 enhances β-catenin-mediated transcriptional activity regardless of the mutational status of the Wnt signaling components and increases the cell proliferation, migration, invasion, and metastatic potential of tumor cells. The goal of this study was to elucidate the prognostic significance of BCL9 protein expression in hepatocellular carcinoma (HCC) patients. Methods We evaluated BCL9 protein expression by immunohistochemistry in tumor tissue from 288 primary HCC patients who underwent curative hepatectomy. The impact of BCL9 expression on the survival of the patients was analyzed. The median follow-up period was 97.1 months. Results Nuclear BCL9 protein expression was observed in 74 (25.7%) of the 288 HCCs. BCL9 expression was significantly associated with younger age (p=0.038), higher Edmondson grade (p=0.001), microvascular invasion (p=0.013), and intrahepatic metastasis (p=0.017). Based on univariate analyses, BCL9 expression showed an unfavorable influence on both disease-free survival (DFS, p=0.012) and disease-specific survival (DSS, p=0.032). Multivariate analyses revealed that higher Barcelona Clinic Liver Cancer stage was an independent predictor of both shorter DFS (p<0.001) and shorter DSS (p<0.001). BCL9 expression tended to be an independent predictor of shorter DFS (p=0.078). Conclusions BCL9 protein expression might be a marker of shorter DFS in HCC patients after curative hepatectomy.
Collapse
Affiliation(s)
- Jiyeon Hyeon
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
45
|
Holland JD, Klaus A, Garratt AN, Birchmeier W. Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol 2013; 25:254-64. [PMID: 23347562 DOI: 10.1016/j.ceb.2013.01.004] [Citation(s) in RCA: 380] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/26/2012] [Accepted: 01/02/2013] [Indexed: 02/06/2023]
Abstract
The functional versatility of Wnt/β-catenin signaling can be seen by its ability to act in stem cells of the embryo and of the adult as well as in cancer stem cells. During embryogenesis, stem cells demonstrate a requirement for β-catenin in mediating the response to Wnt signaling for their maintenance and transition from a pluripotent state. In adult stem cells, Wnt signaling functions at various hierarchical levels to contribute to specification of different tissues. This has raised the possibility that the tightly regulated self-renewal mediated by Wnt signaling in stem and progenitor cells is subverted in cancer cells to allow malignant progression. Intensive work is currently being performed to resolve how intrinsic and extrinsic factors that regulate Wnt/β-catenin signaling coordinate the stem and cancer stem cell states.
Collapse
Affiliation(s)
- Jane D Holland
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, D-13125 Berlin, Germany
| | | | | | | |
Collapse
|
46
|
Takada K, Zhu D, Bird GH, Sukhdeo K, Zhao JJ, Mani M, Lemieux M, Carrasco DE, Ryan J, Horst D, Fulciniti M, Munshi NC, Xu W, Kung AL, Shivdasani RA, Walensky LD, Carrasco DR. Targeted disruption of the BCL9/β-catenin complex inhibits oncogenic Wnt signaling. Sci Transl Med 2012; 4:148ra117. [PMID: 22914623 PMCID: PMC3631420 DOI: 10.1126/scitranslmed.3003808] [Citation(s) in RCA: 203] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Deregulated Wnt/β-catenin signaling underlies the pathogenesis of a broad range of human cancers, yet the development of targeted therapies to disrupt the resulting aberrant transcription has proved difficult because the pathway comprises large protein interaction surfaces and regulates many homeostatic functions. Therefore, we have directed our efforts toward blocking the interaction of β-catenin with B cell lymphoma 9 (BCL9), a co-activator for β-catenin-mediated transcription that is highly expressed in tumors but not in the cells of origin. BCL9 drives β-catenin signaling through direct binding mediated by its α-helical homology domain 2. We developed a stabilized α helix of BCL9 (SAH-BCL9), which we show targets β-catenin, dissociates native β-catenin/BCL9 complexes, selectively suppresses Wnt transcription, and exhibits mechanism-based antitumor effects. SAH-BCL9 also suppresses tumor growth, angiogenesis, invasion, and metastasis in mouse xenograft models of Colo320 colorectal carcinoma and INA-6 multiple myeloma. By inhibiting the BCL9-β-catenin interaction and selectively suppressing oncogenic Wnt transcription, SAH-BCL9 may serve as a prototype therapeutic agent for cancers driven by deregulated Wnt signaling.
Collapse
Affiliation(s)
- Kohichi Takada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Di Zhu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Gregory H. Bird
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Children's Hospital Boston, and Harvard Medical School, Boston, Massachusetts, USA
| | - Kumar Sukhdeo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jian-Jun Zhao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Mala Mani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Madeleine Lemieux
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Children's Hospital Boston, and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel E. Carrasco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeremy Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - David Horst
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Nikhil C. Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, Washington, USA
| | - Andrew L. Kung
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Children's Hospital Boston, and Harvard Medical School, Boston, Massachusetts, USA
| | - Ramesh A. Shivdasani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Loren D. Walensky
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Children's Hospital Boston, and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Ruben Carrasco
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Brigham & Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Wang D, Zhang Y, Huang Y, Li P, Wang M, Wu R, Cheng L, Zhang W, Zhang Y, Li B, Wang C, Guo Z. Comparison of different normalization assumptions for analyses of DNA methylation data from the cancer genome. Gene 2012; 506:36-42. [PMID: 22771920 DOI: 10.1016/j.gene.2012.06.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 01/02/2023]
Abstract
Nowadays, some researchers normalized DNA methylation arrays data in order to remove the technical artifacts introduced by experimental differences in sample preparation, array processing and other factors. However, other researchers analyzed DNA methylation arrays without performing data normalization considering that current normalizations for methylation data may distort real differences between normal and cancer samples because cancer genomes may be extensively subject to hypomethylation and the total amount of CpG methylation might differ substantially among samples. In this study, using eight datasets by Infinium HumanMethylation27 assay, we systemically analyzed the global distribution of DNA methylation changes in cancer compared to normal control and its effect on data normalization for selecting differentially methylated (DM) genes. We showed more differentially methylated (DM) genes could be found in the Quantile/Lowess-normalized data than in the non-normalized data. We found the DM genes additionally selected in the Quantile/Lowess-normalized data showed significantly consistent methylation states in another independent dataset for the same cancer, indicating these extra DM genes were effective biological signals related to the disease. These results suggested normalization can increase the power of detecting DM genes in the context of diagnostic markers which were usually characterized by relatively large effect sizes. Besides, we evaluated the reproducibility of DM discoveries for a particular cancer type, and we found most of the DM genes additionally detected in one dataset showed the same methylation directions in the other dataset for the same cancer type, indicating that these DM genes were effective biological signals in the other dataset. Furthermore, we showed that some DM genes detected from different studies for a particular cancer type were significantly reproducible at the functional level.
Collapse
Affiliation(s)
- Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
The many faces and functions of β-catenin. EMBO J 2012; 31:2714-36. [PMID: 22617422 DOI: 10.1038/emboj.2012.150] [Citation(s) in RCA: 1265] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 04/30/2012] [Indexed: 02/07/2023] Open
Abstract
β-Catenin (Armadillo in Drosophila) is a multitasking and evolutionary conserved molecule that in metazoans exerts a crucial role in a multitude of developmental and homeostatic processes. More specifically, β-catenin is an integral structural component of cadherin-based adherens junctions, and the key nuclear effector of canonical Wnt signalling in the nucleus. Imbalance in the structural and signalling properties of β-catenin often results in disease and deregulated growth connected to cancer and metastasis. Intense research into the life of β-catenin has revealed a complex picture. Here, we try to capture the state of the art: we try to summarize and make some sense of the processes that regulate β-catenin, as well as the plethora of β-catenin binding partners. One focus will be the interaction of β-catenin with different transcription factors and the potential implications of these interactions for direct cross-talk between β-catenin and non-Wnt signalling pathways.
Collapse
|