1
|
Zhi P, Liu Y, Zhao C, He K. GCBRGCN: Integration of ceRNA and RGCN to Identify Gastric Cancer Biomarkers. Bioengineering (Basel) 2025; 12:255. [PMID: 40150719 PMCID: PMC11939766 DOI: 10.3390/bioengineering12030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Gastric cancer (GC) is a prevalent malignancy, and the discovery of biomarkers plays a crucial role in the diagnosis and prognosis of GC. However, current strategies for identifying GC biomarkers often focus on a single ribonucleic acid (RNA) class, neglecting the potential for multiple RNA types to collectively serve as biomarkers with improved predictive capabilities. To bridge this gap, our study introduces the GC biomarker relation graph convolution neural network (GCBRGCN) model which integrates the competing endogenous RNA (ceRNA) network with GC clinical informations and whole transcriptomics data, leveraging the relational graph convolutional network (RGCN) to predict GC biomarkers. It demonstrates exceptional performance, surpassing traditional machine learning and graph neural network algorithms with an area under the curve (AUC) of 0.8172 in the task of predicting GC biomarkers. Our study identified three unreported potential novel GC biomarkers: CCNG1, CYP1B1, and CITED2. Moreover, FOXC1 and LINC00324 were characterized as biomarkers with significance in both prognosis and diagnosis. Our work offers a novel framework for GC biomarker identification, highlighting the critical role of multiple types RNA interaction in oncological research.
Collapse
Affiliation(s)
- Peng Zhi
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing 100853, China;
- Medical Innovation Research Department of PLA General Hospital, Chinese PLA General Hospital, Beijing 100853, China
- Key Laboratory for Research and Evaluationof Artificial Intelligence Medical Devices, Chinese PLA General Hospital, Beijing 100853, China
- Medical Engineering Laboratory of Chinese PLA General Hospital, Chinese PLA General Hospital, Beijing 100853, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yue Liu
- School of Computer Science and Technology, National University of Denfense Technology, Changsha 410073, China;
| | - Chenghui Zhao
- Medical Innovation Research Department of PLA General Hospital, Chinese PLA General Hospital, Beijing 100853, China
- Key Laboratory for Research and Evaluationof Artificial Intelligence Medical Devices, Chinese PLA General Hospital, Beijing 100853, China
- Medical Engineering Laboratory of Chinese PLA General Hospital, Chinese PLA General Hospital, Beijing 100853, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing 100853, China
| | - Kunlun He
- Medical Innovation Research Department of PLA General Hospital, Chinese PLA General Hospital, Beijing 100853, China
- Key Laboratory for Research and Evaluationof Artificial Intelligence Medical Devices, Chinese PLA General Hospital, Beijing 100853, China
- Medical Engineering Laboratory of Chinese PLA General Hospital, Chinese PLA General Hospital, Beijing 100853, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
2
|
Tahghighi A, Seyedhashemi E, Mohammadi J, Moradi A, Esmaeili A, Pornour M, Jafarifar K, Ganji SM. Epigenetic marvels: exploring the landscape of colorectal cancer treatment through cutting-edge epigenetic-based drug strategies. Clin Epigenetics 2025; 17:34. [PMID: 39987205 PMCID: PMC11847397 DOI: 10.1186/s13148-025-01844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
Epigenetics is currently considered the investigation of inheritable changes in gene expression that do not rely on DNA sequence alteration. Significant epigenetic procedures are involved, such as DNA methylations, histone modifications, and non-coding RNA actions. It is confirmed through several investigations that epigenetic changes are associated with the formation, development, and metastasis of various cancers, such as colorectal cancer (CRC). The difference between epigenetic changes and genetic mutations is that the former could be reversed or prevented; therefore, cancer treatment and prevention could be achieved by restoring abnormal epigenetic events within the neoplastic cells. These treatments, consequently, cause the anti-tumour effects augmentation, drug resistance reduction, and host immune response stimulation. In this article, we begin our survey by exploring basic epigenetic mechanisms to understand epigenetic tools and strategies for treating colorectal cancer in monotherapy and combination with chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Azar Tahghighi
- Medicinal Chemistry Laboratory, Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Effat Seyedhashemi
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
| | - Javad Mohammadi
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Arash Moradi
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
| | - Aria Esmaeili
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA
| | - Kimia Jafarifar
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Shahla Mohammad Ganji
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran.
| |
Collapse
|
3
|
Li S, Zhang J, Wang X, Wang X, Song Y, Song X, Wang X, Cao W, Zhao C, Qi J, Zheng X, Xing Y. Super-Enhancer Target Gene CBP/p300-Interacting Transactivator With Glu/Asp-Rich C-Terminal Domain, 2 Cooperates With Transcription Factor Forkhead Box J3 to Inhibit Pulmonary Vascular Remodeling. Cell Prolif 2025:e13817. [PMID: 39907030 DOI: 10.1111/cpr.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
The function of super-enhancers (SEs) in pulmonary hypertension (PH), especially in the proliferation of pulmonary artery smooth muscle cells (PASMCs), is currently unknown. We identified SEs-targeted genes in PASMCs with chromatin immunoprecipitation (ChIP)-sequence by H3K27ac antibody and proved that CBP/p300-interacting transactivator with Glu/Asp-rich C-terminal domain, 2 (CITED2) is an SEs-targeted gene through bioinformatics prediction, ChIP-PCR, dual-luciferase reporter gene assays and other experimental methods. We also found that the expression of CITED2 and the transcription factor Forkhead Box J3 (FOXJ3) was reduced in hypoxic mouse PASMCs. In addition, the expression of CITED2 and FOXJ3 also decreased in both the patients with idiopathic pulmonary arterial hypertension (iPAH) and the human PASMCs exposed to hypoxia. The decreased expression of CITED2 was reversed by co-transfection of FOXJ3 and SEs plasmids. Overexpressing of CITED2 attenuated the PASMCs proliferation induced by hypoxia. Lentiviral overexpression of CITED2 also reversed hypoxia-induced pulmonary hypertension mice model. Mechanically, the expression of CITED2 by affecting by FOXJ3, which binding with three SEs located in the about 2000 bp of TSS. In conclusion, we first identified that CITED2 is a kind of SEs-targeted gene, modulated by FOXJ3. The FOXJ3/SEs/CITED2 axis may become a new therapeutic target of PH.
Collapse
Affiliation(s)
- Songyue Li
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Jingya Zhang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xu Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xinru Wang
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Yuyu Song
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xinyue Song
- Central Laboratory, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xiuli Wang
- Department of Pathophysiology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Weiwei Cao
- Department of Pharmaceutical Analysis, Harbin Medical University-Daqing, Heilongjiang, People's Republic of China
| | - Chong Zhao
- Department of Literature Retrieval, Harbin Medical University-Daqing, Heilongjiang, People's Republic of China
| | - Jing Qi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Medical Genetics, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| | - Yan Xing
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, People's Republic of China
| |
Collapse
|
4
|
Song H, Zhang M, Guo C, Guo X, Ma Y, Ma Y. Implication of protein post translational modifications in gastric cancer. Front Cell Dev Biol 2025; 13:1523958. [PMID: 39968176 PMCID: PMC11833226 DOI: 10.3389/fcell.2025.1523958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025] Open
Abstract
Gastric cancer (GC) is one of the most common and highly lethal malignant tumors worldwide, and its occurrence and development are regulated by multiple molecular mechanisms. Post-translational modifications (PTM) common forms include ubiquitylation, phosphorylation, acetylation and methylation. Emerging research has highlighted lactylation and glycosylation. The diverse realm of PTM and PTM crosstalk is linked to many critical signaling events involved in neoplastic transformation, carcinogenesis and metastasis. This review provides a comprehensive overview of the impact of PTM on the occurrence and progression of GC. Specifically, aberrant PTM have been shown to alter the proliferation, migration, and invasion capabilities of GC cells. Moreover, PTM are closely associated with resistance to chemotherapeutic agents in GC. Notably, this review also discusses the phenomenon of PTM crosstalk, highlighting the interactions among PTM and their roles in regulating signaling pathways and protein functions. Therefore, in-depth investigation into the mechanisms of PTM and the development of targeted therapeutic strategies hold promise for advancing early diagnosis, treatment, and prognostic evaluation of GC, offering novel insights and future research directions.
Collapse
Affiliation(s)
- Houji Song
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Mingze Zhang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Chengwang Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xi Guo
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuqi Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuntao Ma
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
5
|
Zenz T, Jenke R, Oliinyk D, Noske S, Thieme R, Kahl T, Gockel I, Meier-Rosar F, Aigner A, Büch TR. Acquired vulnerability against EGF receptor inhibition in gastric cancer promoted by class I histone deacetylase inhibitor entinostat. Neoplasia 2025; 60:101121. [PMID: 39864337 PMCID: PMC11802376 DOI: 10.1016/j.neo.2024.101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025]
Abstract
INTRODUCTION Histone deacetylase inhibitors (HDACi) have shown promising preclinical activity in gastric cancer cells; unfortunately, however, these could not be confirmed in clinical trials. This highlights the need for the identification of underlying reasons, which may also provide the basis for possible combination therapies. Here, we delineated the effects of HDACi on components of EGFR signalling in gastric cancer cells. METHODS We investigated entinostat effects on EGFR and amphiregulin (AREG) expression in various cell line- and primary patient tumor-based in vitro, ex vivo and in vivo models, on the mRNA and protein level. Based on these results, a combined entinostat plus EGFR inhibitor erlotinib treatment in vitro and in vivo was studied. RESULTS Proteomics analyses in gastric cancer cells treated with entinostat revealed a marked upregulation of EGFR in the majority of cell lines and an even more robust induction of the EGFR ligand AREG. This was confirmed in a panel of different cell lines in vitro, in tumor tissue-slice cultures ex vivo and in cell line- or patient-derived tumor xenografts in mice. Since previous studies in other tumor entities showed a downregulation of EGFR by HDACi, our findings thus indicate essential differences in the adaptive response of gastric carcinoma cells. Moreover, our results provided the basis for combined entinostat + EGFR inhibitor (erlotinib) treatment, and indeed we demonstrate synergistic effects in combination therapy studies. CONCLUSION Our findings establish the profound upregulation of the EGFR/AREG axis by entinostat as starting point for a rational combination therapy in gastric carcinoma.
Collapse
Affiliation(s)
- Tamara Zenz
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany
| | - Robert Jenke
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; University Cancer Center Leipzig (UCCL), University Hospital Leipzig, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena
| | - Denys Oliinyk
- Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena; Jena University Hospital, Functional Proteomics, Research Center Lobeda, Jena, Germany
| | - Sandra Noske
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany
| | - René Thieme
- Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena; Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Tim Kahl
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Division of Oncology/Hematology, Cantonal Hospital Graubünden, Chur, Switzerland
| | - Ines Gockel
- Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena; Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Florian Meier-Rosar
- Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena; Jena University Hospital, Functional Proteomics, Research Center Lobeda, Jena, Germany
| | - Achim Aigner
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena.
| | - Thomas Rh Büch
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena.
| |
Collapse
|
6
|
Li P, Xue Y. Dysregulation of lysine acetylation in the pathogenesis of digestive tract cancers and its clinical applications. Front Cell Dev Biol 2024; 12:1447939. [PMID: 39391349 PMCID: PMC11464462 DOI: 10.3389/fcell.2024.1447939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Recent advances in high-resolution mass spectrometry-based proteomics have improved our understanding of lysine acetylation in proteins, including histones and non-histone proteins. Lysine acetylation, a reversible post-translational modification, is catalyzed by lysine acetyltransferases (KATs) and lysine deacetylases (KDACs). Proteins comprising evolutionarily conserved bromodomains (BRDs) recognize these acetylated lysine residues and consequently activate transcription. Lysine acetylation regulates almost all cellular processes, including transcription, cell cycle progression, and metabolic functions. Studies have reported the aberrant expression, translocation, and mutation of genes encoding lysine acetylation regulators in various cancers, including digestive tract cancers. These dysregulated lysine acetylation regulators contribute to the pathogenesis of digestive system cancers by modulating the expression and activity of cancer-related genes or pathways. Several inhibitors targeting KATs, KDACs, and BRDs are currently in preclinical trials and have demonstrated anti-cancer effects. Digestive tract cancers, including encompass esophageal, gastric, colorectal, liver, and pancreatic cancers, represent a group of heterogeneous malignancies. However, these cancers are typically diagnosed at an advanced stage owing to the lack of early symptoms and are consequently associated with poor 5-year survival rates. Thus, there is an urgent need to identify novel biomarkers for early detection, as well as to accurately predict the clinical outcomes and identify effective therapeutic targets for these malignancies. Although the role of lysine acetylation in digestive tract cancers remains unclear, further analysis could improve our understanding of its role in the pathogenesis of digestive tract cancers. This review aims to summarize the implications and pathogenic mechanisms of lysine acetylation dysregulation in digestive tract cancers, as well as its potential clinical applications.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Yuan Xue
- Department of thyroid surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
7
|
Goodman DM, Ritter CU, Chen E, Tong KKH, Riisom M, Söhnel T, Jamieson SMF, Anderson RF, Brothers PJ, Ware DC, Hartinger CG. Masking the Bioactivity of Hydroxamic Acids by Coordination to Cobalt: Towards Bioreductive Anticancer Agents. Chemistry 2024; 30:e202401724. [PMID: 38853639 DOI: 10.1002/chem.202401724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
The clinical use of many potent anticancer agents is limited by their non-selective toxicity to healthy tissue. One of these examples is vorinostat (SAHA), a pan histone deacetylase inhibitor, which shows high cytotoxicity with limited discrimination for cancerous over healthy cells. In an attempt to improve tumor selectivity, we exploited the properties of cobalt(III) as a redox-active metal center through stabilization with cyclen and cyclam tetraazamacrocycles, masking the anticancer activity of SAHA and other hydroxamic acid derivatives to allow for the complex to reach the hypoxic microenvironment of the tumor. Biological assays demonstrated the desired low in vitro anticancer activity of the complexes, suggesting effective masking of the activity of SAHA. Once in the tumor, the bioactive moiety may be released through the reduction of the CoIII center. Investigations revealed long-term stability of the complexes, with cyclic voltammetry and chemical reduction experiments supporting the design hypothesis of SAHA release through the reduction of the CoIII prodrug. The results highlight the potential for further developing this complex class as novel anticancer agents by masking the high cytotoxicity of a given drug, however, the cellular uptake needs to be improved.
Collapse
Affiliation(s)
- David M Goodman
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Cornelia U Ritter
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Erin Chen
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Kelvin K H Tong
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mie Riisom
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Robert F Anderson
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Penelope J Brothers
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - David C Ware
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
8
|
Park A, Lee Y, Nam S. A performance evaluation of drug response prediction models for individual drugs. Sci Rep 2023; 13:11911. [PMID: 37488424 PMCID: PMC10366128 DOI: 10.1038/s41598-023-39179-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
Drug response prediction is important to establish personalized medicine for cancer therapy. Model construction for predicting drug response (i.e., cell viability half-maximal inhibitory concentration [IC50]) of an individual drug by inputting pharmacogenomics in disease models remains critical. Machine learning (ML) has been predominantly applied for prediction, despite the advent of deep learning (DL). Moreover, whether DL or traditional ML models are superior for predicting cell viability IC50s has to be established. Herein, we constructed ML and DL drug response prediction models for 24 individual drugs and compared the performance of the models by employing gene expression and mutation profiles of cancer cell lines as input. We observed no significant difference in drug response prediction performance between DL and ML models for 24 drugs [root mean squared error (RMSE) ranging from 0.284 to 3.563 for DL and from 0.274 to 2.697 for ML; R2 ranging from -7.405 to 0.331 for DL and from -8.113 to 0.470 for ML]. Among the 24 individual drugs, the ridge model of panobinostat exhibited the best performance (R2 0.470 and RMSE 0.623). Thus, we selected the ridge model of panobinostat for further application of explainable artificial intelligence (XAI). Using XAI, we further identified important genomic features for panobinostat response prediction in the ridge model, suggesting the genomic features of 22 genes. Based on our findings, results for an individual drug employing both DL and ML models were comparable. Our study confirms the applicability of drug response prediction models for individual drugs.
Collapse
Affiliation(s)
- Aron Park
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea
| | - Yeeun Lee
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon, 21999, Republic of Korea.
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea.
| |
Collapse
|
9
|
Loe AKH, Zhu L, Kim TH. Chromatin and noncoding RNA-mediated mechanisms of gastric tumorigenesis. Exp Mol Med 2023; 55:22-31. [PMID: 36653445 PMCID: PMC9898530 DOI: 10.1038/s12276-023-00926-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 01/20/2023] Open
Abstract
Gastric cancer (GC) is one of the most common and deadly cancers in the world. It is a multifactorial disease highly influenced by environmental factors, which include radiation, smoking, diet, and infectious pathogens. Accumulating evidence suggests that epigenetic regulators are frequently altered in GC, playing critical roles in gastric tumorigenesis. Epigenetic regulation involves DNA methylation, histone modification, and noncoding RNAs. While it is known that environmental factors cause widespread alterations in DNA methylation, promoting carcinogenesis, the chromatin- and noncoding RNA-mediated mechanisms of gastric tumorigenesis are still poorly understood. In this review, we focus on discussing recent discoveries addressing the roles of histone modifiers and noncoding RNAs and the mechanisms of their interactions in gastric tumorigenesis. A better understanding of epigenetic regulation would likely facilitate the development of novel therapeutic approaches targeting specific epigenetic regulators in GC.
Collapse
Affiliation(s)
- Adrian Kwan Ho Loe
- grid.42327.300000 0004 0473 9646Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Lexin Zhu
- grid.42327.300000 0004 0473 9646Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4 Canada ,grid.17063.330000 0001 2157 2938Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Tae-Hee Kim
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
10
|
Sogutlu F, Pekerbas M, Biray Avci C. Epigenetic signatures in gastric cancer: current knowledge and future perspectives. Expert Rev Mol Diagn 2022; 22:1063-1075. [PMID: 36522183 DOI: 10.1080/14737159.2022.2159381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Gastric cancer (GC) is the fifth most common malignancy in the world and accounts for 7.7% of all cancer-related deaths. Early diagnosis of GC is critical in terms of prognosis, and aberrations at the molecular level, especially epigenetic alterations, manifest much earlier than histological findings. In recent years, there has been a great deal of research on the epigenomic profile of GC, and epigenetic alterations seem to play a more important role than genetic factors. With the introduction of epigenetic drugs into clinical use in the last decade, the importance of the epigenetic background of GC has increased considerably. AREAS COVERED In this review, we summarize the role of methylation changes, histone modifications, and non-coding RNAs in the pathogenesis of GC and how these signatures can be used as diagnostic and therapeutic targets in clinical management. EXPERT OPINION Epigenetic alterations take place before most genetic aberrations observed in GC and may have an initiating role in the pathogenesis of GC. They can be used as biomarkers in risk calculation, early diagnosis, and evaluation of prognosis of GC, as well as treatment targets.
Collapse
Affiliation(s)
- Fatma Sogutlu
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Mert Pekerbas
- Department of Medical Genetics, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| |
Collapse
|
11
|
Badie A, Gaiddon C, Mellitzer G. Histone Deacetylase Functions in Gastric Cancer: Therapeutic Target? Cancers (Basel) 2022; 14:5472. [PMID: 36358890 PMCID: PMC9659209 DOI: 10.3390/cancers14215472] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 09/05/2023] Open
Abstract
Gastric cancer (GC) is one of the most aggressive cancers. Therapeutic treatments are based on surgery combined with chemotherapy using a combination of platinum-based agents. However, at metastatic stages of the disease, survival is extremely low due to late diagnosis and resistance mechanisms to chemotherapies. The development of new classifications has not yet identified new prognostic markers for clinical use. The studies of epigenetic processes highlighted the implication of histone acetylation status, regulated by histone acetyltransferases (HATs) and by histone deacetylases (HDACs), in cancer development. In this way, inhibitors of HDACs (HDACis) have been developed and some of them have already been clinically approved to treat T-cell lymphoma and multiple myeloma. In this review, we summarize the regulations and functions of eighteen HDACs in GC, describing their known targets, involved cellular processes, associated clinicopathological features, and impact on survival of patients. Additionally, we resume the in vitro, pre-clinical, and clinical trials of four HDACis approved by Food and Drug Administration (FDA) in cancers in the context of GC.
Collapse
Affiliation(s)
| | | | - Georg Mellitzer
- Laboratoire Streinth, Université de Strasbourg, Inserm UMR_S 1113 IRFAC, 67200 Strasbourg, France
| |
Collapse
|
12
|
Hinsenkamp I, Köhler JP, Flächsenhaar C, Hitkova I, Meessen SE, Gaiser T, Wieland T, Weiss C, Röcken C, Mowat M, Quante M, Taxauer K, Mejias-Luque R, Gerhard M, Vogelmann R, Meindl-Beinker N, Ebert M, Burgermeister E. Functional antagonism between CagA and DLC1 in gastric cancer. Cell Death Dis 2022; 8:358. [PMID: 35963849 PMCID: PMC9376073 DOI: 10.1038/s41420-022-01134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022]
Abstract
Helicobacter (H.) pylori-induced gastritis is a risk factor for gastric cancer (GC). Deleted-in-liver-cancer-1 (DLC1/ARHGAP7) inhibits RHOA, a downstream mediator of virulence factor cytotoxin-A (CagA) signalling and driver of consensus-molecular-subtype-2 diffuse GC. DLC1 located to enterochromaffin-like and MIST1+ stem/chief cells in the stomach. DLC1+ cells were reduced in H. pylori gastritis and GC, and in mice infected with H. pylori. DLC1 positivity inversely correlated with tumour progression in patients. GC cells retained an N-terminal truncation variant DLC1v4 in contrast to full-length DLC1v1 in non-neoplastic tissues. H. pylori and CagA downregulated DLC1v1/4 promoter activities. DLC1v1/4 inhibited cell migration and counteracted CagA-driven stress phenotypes enforcing focal adhesion. CagA and DLC1 interacted via their N- and C-terminal domains, proposing that DLC1 protects against H. pylori by neutralising CagA. H. pylori-induced DLC1 loss is an early molecular event, which makes it a potential marker or target for subtype-aware cancer prevention or therapy.
Collapse
Affiliation(s)
- Isabel Hinsenkamp
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jan P Köhler
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Flächsenhaar
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ivana Hitkova
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sabine Eberhart Meessen
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Timo Gaiser
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Wieland
- Experimental Pharmacology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Röcken
- Institute of Pathology, Christian Albrechts University Kiel, Kiel, Germany
| | - Michael Mowat
- CancerCare Manitoba Research Institute, Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Michael Quante
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, Faculty of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Karin Taxauer
- Institute for Med. Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Raquel Mejias-Luque
- Institute for Med. Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Markus Gerhard
- Institute for Med. Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Roger Vogelmann
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadja Meindl-Beinker
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,DKFZ-Hector Institute at the University Medical Center, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Clinical Cooperation Unit Healthy Metabolism, Center of Preventive Medicine and Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Mannheim Cancer Center (MCC), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
13
|
Tang SY, Zhou PJ, Meng Y, Zeng FR, Deng GT. Gastric cancer: An epigenetic view. World J Gastrointest Oncol 2022; 14:90-109. [PMID: 35116105 PMCID: PMC8790429 DOI: 10.4251/wjgo.v14.i1.90] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) poses a serious threat worldwide with unfavorable prognosis mainly due to late diagnosis and limited therapies. Therefore, precise molecular classification and search for potential targets are required for diagnosis and treatment, as GC is complicated and heterogeneous in nature. Accumulating evidence indicates that epigenetics plays a vital role in gastric carcinogenesis and progression, including histone modifications, DNA methylation and non-coding RNAs. Epigenetic biomarkers and drugs are currently under intensive evaluations to ensure efficient clinical utility in GC. In this review, key epigenetic alterations and related functions and mechanisms are summarized in GC. We focus on integration of existing epigenetic findings in GC for the bench-to-bedside translation of some pivotal epigenetic alterations into clinical practice and also describe the vacant field waiting for investigation.
Collapse
Affiliation(s)
- Si-Yuan Tang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Pei-Jun Zhou
- Cancer Research Institute, School of Basic Medicine Science, Central South University, School of Basic Medicine Science, Central South University 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Fu-Rong Zeng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Guang-Tong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
14
|
Feng Y, Lu Y, Li J, Zhang H, Li Z, Feng H, Deng X, Liu D, Shi T, Jiang W, He Y, Zhang J, Wang Z. Design, synthesis and biological evaluation of novel o-aminobenzamide derivatives as potential anti-gastric cancer agents in vitro and in vivo. Eur J Med Chem 2022; 227:113888. [PMID: 34628244 DOI: 10.1016/j.ejmech.2021.113888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
Although gastric cancer has become a major public health problem, oral agents applied in clinics for gastric cancer therapy are scarce. Therefore, to explore new oral chemical entities with high efficiency and low toxicity, 41 o-aminobenzamide derivatives based on the scaffolds of MS-275 and SAHA were designed, synthesized, and evaluated for their anti-gastric cancer abilities in vitro and in vivo. Structure-activity relationships were discussed, leading to the identification of compounds F8 (IC50 = 0.28 μM against HGC-27 cell) and T9 (IC50 = 1.84 μM against HGC-27 cell) with improved cytotoxicity, anti-gastric cancer proliferation potency, induction of cell apoptosis and cell cycle arrest ability, inhibition of cell migration and invasion. What is worth mentioning is that compound F8 was more efficient and less toxic than the positive drug capecitabine in vivo on the HGC-27-xenograft model. Meanwhile, compound F8 exhibited suitable pharmacokinetic properties and less acute toxicity (LD50 > 1000 mg/kg). Besides, western blotting analysis, IHC analysis, differentially expressed proteins analysis and ABPP experiment indicated that compound F8 could modulate molecular pathways involved in apoptosis and cell cycle progression. Consequently, compound F8 is a strong candidate for the development of human gastric cancer therapy.
Collapse
Affiliation(s)
- Yiyue Feng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yingmei Lu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhao Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Hanzhong Feng
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xuemei Deng
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Dan Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Tao Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Weifan Jiang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yongxing He
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
| | - Zhen Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China; School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
15
|
Zhang XH, Kang HQ, Tao YY, Li YH, Zhao JR, Ya-Gao, Ma LY, Liu HM. Identification of novel 1,3-diaryl-1,2,4-triazole-capped histone deacetylase 6 inhibitors with potential anti-gastric cancer activity. Eur J Med Chem 2021; 218:113392. [PMID: 33831778 DOI: 10.1016/j.ejmech.2021.113392] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/24/2022]
Abstract
Histone deacetylase 6 (HDAC6) has emerged as a critical regulator of many cellular pathways in tumors due to its unique structure basis and abundant substrate types. Over the past few decades, the role played by HDAC6 inhibitors as anticancer agents has sparked great interest of biochemists worldwide. However, they were less reported for gastric cancer therapy. In this paper, with the help of bioisosteric replacement, in-house library screening, and lead optimization strategies, we designed, synthesized and verified a series of 1,3-diaryl-1,2,4-triazole-capped HDAC6 inhibitors with promising anti-gastric cancer activities. Amongst, compound 9r displayed the best inhibitory activity towards HDAC6 (IC50 = 30.6 nM), with 128-fold selectivity over HDAC1. Further BLI and CETSA assay proved the high affinity of 9r to HDAC6. In addition, 9r could dose-dependently upregulate the levels of acetylated α-tubulin, without significant effect on acetylated histone H3 in MGC803 cells. Besides, 9r exhibited potent antiproliferative effect on MGC803 cells, and promoted apoptosis and suppressed the metastasis without obvious toxicity, suggesting 9r would serve as a potential lead compound for the development of novel therapeutic agents of gastric cancer.
Collapse
Affiliation(s)
- Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hui-Qin Kang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yuan-Yuan Tao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Yi-Han Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jun-Ru Zhao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ya-Gao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China; China Meheco Topfond Pharmaceutical Co., Ltd, Zhumadian, 463000, PR China.
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
16
|
Liu N, Wu Y, Cheng W, Wu Y, Wang L, Zhuang L. Identification of novel prognostic biomarkers by integrating multi-omics data in gastric cancer. BMC Cancer 2021; 21:460. [PMID: 33902514 PMCID: PMC8073914 DOI: 10.1186/s12885-021-08210-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/13/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Gastric cancer is a fatal gastrointestinal cancer with high morbidity and poor prognosis. The dismal 5-year survival rate warrants reliable biomarkers to assess and improve the prognosis of gastric cancer. Distinguishing driver mutations that are required for the cancer phenotype from passenger mutations poses a formidable challenge for cancer genomics. METHODS We integrated the multi-omics data of 293 primary gastric cancer patients from The Cancer Genome Atlas (TCGA) to identify key driver genes by establishing a prognostic model of the patients. Analyzing both copy number alteration and somatic mutation data helped us to comprehensively reveal molecular markers of genomic variation. Integrating the transcription level of genes provided a unique perspective for us to discover dysregulated factors in transcriptional regulation. RESULTS We comprehensively identified 31 molecular markers of genomic variation. For instance, the copy number alteration of WASHC5 (also known as KIAA0196) frequently occurred in gastric cancer patients, which cannot be discovered using traditional methods based on significant mutations. Furthermore, we revealed that several dysregulation factors played a hub regulatory role in the process of biological metabolism based on dysregulation networks. Cancer hallmark and functional enrichment analysis showed that these key driver (KD) genes played a vital role in regulating programmed cell death. The drug response patterns and transcriptional signatures of KD genes reflected their clinical application value. CONCLUSIONS These findings indicated that KD genes could serve as novel prognostic biomarkers for further research on the pathogenesis of gastric cancers. Our study elucidated a multidimensional and comprehensive genomic landscape and highlighted the molecular complexity of GC.
Collapse
Affiliation(s)
- Nannan Liu
- The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yun Wu
- The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Weipeng Cheng
- The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Yuxuan Wu
- The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Liguo Wang
- The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| | - Liwei Zhuang
- The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
17
|
Abstract
Cbp/P300 interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a transcription co-factor that interacts with several other transcription factors and co-factors, and serves critical roles in fundamental cell processes, including proliferation, apoptosis, differentiation, migration and autophagy. The interacting transcription factors or co-factors of CITED2 include LIM homeobox 2, transcription factor AP-2, SMAD2/3, peroxisome proliferator-activated receptor γ, oestrogen receptor, MYC, Nucleolin and p300/CBP, which regulate downstream gene expression, and serve important roles in the aforementioned fundamental cell processes. Emerging evidence has demonstrated that CITED2 serves an essential role in embryonic and adult tissue stem cells, including hematopoietic stem cells and tendon-derived stem/progenitor cells. Additionally, CITED2 has been reported to function in different types of cancer. Although the functions of CITED2 in different tissues vary depending on the interaction partner, altered CITED2 expression or altered interactions with transcription factors or co-factors result in alterations of fundamental cell processes, and may affect stem cell maintenance or cancer cell survival. The aim of this review is to summarize the molecular mechanisms of CITED2 function and how it serves a role in stem cells and different types of cancer based on the currently available literature.
Collapse
|
18
|
Canale M, Casadei-Gardini A, Ulivi P, Arechederra M, Berasain C, Lollini PL, Fernández-Barrena MG, Avila MA. Epigenetic Mechanisms in Gastric Cancer: Potential New Therapeutic Opportunities. Int J Mol Sci 2020; 21:E5500. [PMID: 32752096 PMCID: PMC7432799 DOI: 10.3390/ijms21155500] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is one of the deadliest malignancies worldwide. Complex disease heterogeneity, late diagnosis, and suboptimal therapies result in the poor prognosis of patients. Besides genetic alterations and environmental factors, it has been demonstrated that alterations of the epigenetic machinery guide cancer onset and progression, representing a hallmark of gastric malignancies. Moreover, epigenetic mechanisms undergo an intricate crosstalk, and distinct epigenomic profiles can be shaped under different microenvironmental contexts. In this scenario, targeting epigenetic mechanisms could be an interesting therapeutic strategy to overcome gastric cancer heterogeneity, and the efforts conducted to date are delivering promising results. In this review, we summarize the key epigenetic events involved in gastric cancer development. We conclude with a discussion of new promising epigenetic strategies for gastric cancer treatment.
Collapse
Affiliation(s)
- Matteo Canale
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (M.C.); (P.U.)
| | - Andrea Casadei-Gardini
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (M.C.); (P.U.)
| | - Maria Arechederra
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Carmen Berasain
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy;
| | - Maite G. Fernández-Barrena
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| | - Matías A. Avila
- Program of Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.A.); (C.B.); (M.G.F.-B.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain
| |
Collapse
|
19
|
Fernandes MT, Calado SM, Mendes-Silva L, Bragança J. CITED2 and the modulation of the hypoxic response in cancer. World J Clin Oncol 2020; 11:260-274. [PMID: 32728529 PMCID: PMC7360518 DOI: 10.5306/wjco.v11.i5.260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
CITED2 (CBP/p300-interacting transactivator with Glu/Asp-rich C-terminal domain, 2) is a ubiquitously expressed protein exhibiting a high affinity for the CH1 domain of the transcriptional co-activators CBP/p300, for which it competes with hypoxia-inducible factors (HIFs). CITED2 is particularly efficient in the inhibition of HIF-1α-dependent transcription in different contexts, ranging from organ development and metabolic homeostasis to tissue regeneration and immunity, being also potentially involved in various other physiological processes. In addition, CITED2 plays an important role in inhibiting HIF in some diseases, including kidney and heart diseases and type 2-diabetes. In the particular case of cancer, CITED2 either functions by promoting or suppressing cancer development depending on the context and type of tumors. For instance, CITED2 overexpression promotes breast and prostate cancers, as well as acute myeloid leukemia, while its expression is downregulated to sustain colorectal cancer and hepatocellular carcinoma. In addition, the role of CITED2 in the maintenance of cancer stem cells reveals its potential as a target in non-small cell lung carcinoma and acute myeloid leukemia, for example. But besides the wide body of evidence linking both CITED2 and HIF signaling to carcinogenesis, little data is available regarding CITED2 role as a negative regulator of HIF-1α specifically in cancer. Therefore, comprehensive studies exploring further the interactions of these two important mediators in cancer-specific models are sorely needed and this can potentially lead to the development of novel targeted therapies.
Collapse
Affiliation(s)
- Mónica T Fernandes
- School of Health, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Sofia M Calado
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Leonardo Mendes-Silva
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| | - José Bragança
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
20
|
Identification of HDAC9 as a viable therapeutic target for the treatment of gastric cancer. Exp Mol Med 2019; 51:1-15. [PMID: 31451695 PMCID: PMC6802628 DOI: 10.1038/s12276-019-0301-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022] Open
Abstract
Histone deacetylase inhibitors (HDACis) are a new class of anticancer drugs confirmed to have good therapeutic effects against gastric cancer (GC) in preclinical experiments, but most HDACis are non-selective (pan-HDACis), with highly toxic side effects. Therefore, it is necessary to screen HDAC family members that play key roles in GC as therapeutic targets to reduce toxic side effects. In this study, we evaluated the targeting specificity of the HDACi suberoylanilide hydroxamic acid (SAHA) for GC via fluorescence molecular imaging (FMI). In vitro FMI results showed that SAHA had higher binding affinity for GC cells than for normal gastric cells. In vivo FMI of gastric tumor-bearing mice confirmed that SAHA can be enriched in GC tissues. However, there was also a high-concentration distribution in normal organs such as the stomach and lungs, suggesting potential side effects. In addition, we found that among the HDAC family members, HDAC9 was the most significantly upregulated in GC cells, and we verified this upregulation in GC tissues. Further experiments confirmed that knockdown of HDAC9 inhibits cell growth, reduces colony formation, and induces apoptosis and cell cycle arrest. These results suggest that HDAC9 has an oncogenic role in GC. Moreover, HDAC9 siRNA suppressed GC tumor growth and enhanced the antitumor efficacy of cisplatin in GC treatment by inhibiting the proliferation and inducing the apoptosis of GC cells in vitro and in vivo. Our findings suggest that the development of HDAC9-selective HDACis is a potential approach to improve the efficacy of chemotherapy and reduce systemic toxicity. Inhibiting histone deacetylase 9 (HDAC9), a protein that regulates gene expression, reduces stomach cancer cell growth. The efficacy of current treatments for stomach cancer is limited. Although HDACs have emerged as promising therapeutic targets, non-selective HDAC inhibitors can cause severe side effects. Shigang Ding at Peking University Third Hospital in Beijing, China, and colleagues found that human stomach cancer cells have significantly higher levels of HDAC9 than other members of the HDAC family and that high HDAC9 levels are associated with reduced patient survival. Interfering with the production of HDAC9 protein improved the efficacy of the chemotherapeutic drug cisplatin in mice with stomach cancer. The authors suggest that selective HDAC9 inhibitors could help to improve the survival of patients with this type of cancer.
Collapse
|
21
|
Patnaik S, Anupriya. Drugs Targeting Epigenetic Modifications and Plausible Therapeutic Strategies Against Colorectal Cancer. Front Pharmacol 2019; 10:588. [PMID: 31244652 PMCID: PMC6563763 DOI: 10.3389/fphar.2019.00588] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
Genetic variations along with epigenetic modifications of DNA are involved in colorectal cancer (CRC) development and progression. CRC is the fourth leading cause of cancer-related deaths worldwide. Initiation and progression of CRC is the cumulation of a variety of genetic and epigenetic changes in colonic epithelial cells. Colorectal carcinogenesis is associated with epigenetic aberrations including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. Recently, epigenetic modifications have been identified like association of hypermethylated gene Claudin11 (CLDN11) with metastasis and prognosis of poor survival of CRC. DNA methylation of genes CMTM3, SSTR2, MDF1, NDRG4 and TGFB2 are potential epigenetic biomarkers for the early detection of CRC. Tumor suppressor candidate 3 (TUSC3) mRNA expression is silenced by promoter methylation, which promotes epidermal growth factor receptor (EGFR) signaling and rescues the CRC cells from apoptosis and hence leading to poor survival rate. Previous scientific evidences strongly suggest epigenetic modifications that contribute to anticancer drug resistance. Recent research studies emphasize development of drugs targeting histone deacetylases (HDACs) and DNA methyltransferase inhibitors as an emerging anticancer strategy. This review covers potential epigenetic modification targeting chemotherapeutic drugs and probable implementation for the treatment of CRC, which offers a strong rationale to explore therapeutic strategies and provides a basis to develop potent antitumor drugs.
Collapse
|
22
|
Luo T, Zhao J, Lu Z, Bi J, Pang T, Cui H, Yang B, Li W, Wang Y, Wu S, Xue X. Characterization of long non-coding RNAs and MEF2C-AS1 identified as a novel biomarker in diffuse gastric cancer. Transl Oncol 2018; 11:1080-1089. [PMID: 30005210 PMCID: PMC6067087 DOI: 10.1016/j.tranon.2018.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 02/08/2023] Open
Abstract
Previous studies proved that long noncoding RNAs (lncRNAs) play important role in human cancer. However, the knowledge of genome scale expression of lncRNAs and their potential biological function in gastric cancer is still lacking. Next generation RNA sequencing (RNA-seq) was performed on tumor tissues and matched adjacent normal tissues of six diffuse gastric cancer (DGC) patients. Then we performed a comprehensive analysis on lncRNAs and mRNA. Fifty-eight lncRNAs were upregulated and 54 lncRNAs were downregulated in diffuse gastric cancer tissue compared with adjacent tissue. The numbers of up- and downregulated mRNAs were 306 and 161, respectively. In addition, we inferred the function of lncRNAs by construction of a co-expression network for deregulated mRNAs and lncRNAs. Co-expressed genes of MEF2C-AS1 and FENDRR were enriched to RAS and TGF-beta signaling pathway. MEF2C-AS1 and FENDRR expression were re-evaluated by Real-time Quantitative PCR in 42 DGC patients' tumor and normal tissues, and other 46 DGC patents' and 21 healthy controls' plasma. Validation data showed MEF2C-AS1 and FENDRR were significantly downregulated in tumor tissues compared with normal tissues. And decreased FENDRR are associated with aggressive tumor characteristics including more advanced stage (P = .030), poor differentiation (P = .043) and lymphatic metastasis (P = .001). The expression level MEF2C-AS1 was significantly lower in DGC patients' plasma than that in healthy controls' plasma. In gastric cancer cell lines, knock-down of MEF2C-AS1 or FENDRR reduced the protein levels of FAT3, NTN1 and LYVE1 (the co-expressed genes), which were related with gastric cancer cell proliferation and invasion by previous studies. In addition, knock-down of MEF2C-AS1 or FENDRR promoted aggressive tumor behaviors in in-vitro assays. In this study, we provide a valuable resource of lncRNAs which might play important roles in the function of oncogenes or tumor suppressors affecting the development and progression of diffuse gastric cancer.
Collapse
Affiliation(s)
- Tianhang Luo
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China.
| | - Jiangman Zhao
- Zhangjiang Center for Translational Medicine, Shanghai, Biotecan Diagnostics Co. Ltd, Shanghai 201204, China.
| | - Zhengmao Lu
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China.
| | - Jianwei Bi
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China.
| | - Tao Pang
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China.
| | - Hangtian Cui
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China.
| | - Biao Yang
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China.
| | - Wushuang Li
- Zhangjiang Center for Translational Medicine, Shanghai, Biotecan Diagnostics Co. Ltd, Shanghai 201204, China.
| | - Yu Wang
- Zhangjiang Center for Translational Medicine, Shanghai, Biotecan Diagnostics Co. Ltd, Shanghai 201204, China.
| | - Shouxin Wu
- Zhangjiang Center for Translational Medicine, Shanghai, Biotecan Diagnostics Co. Ltd, Shanghai 201204, China.
| | - Xuchao Xue
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
23
|
Saunders JH, Onion D, Collier P, Dorrington MS, Argent RH, Clarke PA, Reece-Smith AM, Parsons SL, Grabowska AM. Individual patient oesophageal cancer 3D models for tailored treatment. Oncotarget 2018; 8:24224-24236. [PMID: 27736801 PMCID: PMC5421842 DOI: 10.18632/oncotarget.12500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022] Open
Abstract
Background A model to predict chemotherapy response would provide a marked clinical benefit, enabling tailored treatment of oesophageal cancer, where less than half of patients respond to the routinely administered chemotherapy. Methods Cancer cells were established from tumour biopsies taken from individual patients about to undergo neoadjuvant chemotherapy. A 3D-tumour growth assay (3D-TGA) was developed, in which cancer cells were grown with or without supporting mesenchymal cells, then subjected to chemo-sensitivity testing using the standard chemotherapy administered in clinic, and a novel emerging HDAC inhibitor, Panobinostat. RESULTS Individual patients cancer cells could be expanded and screened within a clinically applicable timescale of 3 weeks. Incorporating mesenchymal support within the 3D-TGA significantly enhanced both the growth and drug resistance profiles of the patients cancer cells. The ex vivo drug response in the presence, but not absence, of mesenchymal cells accurately reflected clinical chemo-sensitivity, as measured by tumour regression grade. Combination with Panobinostat enhanced response and proved efficacious in otherwise chemo-resistant tumours. Conclusions This novel method of establishing individual patient oesophageal cancers in the laboratory, from small endoscopic biopsies, enables clinically-relevant chemo-sensitivity testing, and reduces use of animals by providing more refined in vitro models for pre-screening of drugs. The 3D-TGA accurately predicted chemo-sensitivity in patients, and could be developed to guide tailored patient treatment. The incorporation of mesenchymal cells as the stromal cell component of the tumour micro-environment had a significant effect upon enhancing chemotherapy drug resistance in oesophageal cancer, and could prove a useful target for future drug development.
Collapse
Affiliation(s)
- John H Saunders
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Upper GI Surgery, City Hospital Campus, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - David Onion
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Pamela Collier
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Matthew S Dorrington
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Richard H Argent
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Philip A Clarke
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Alex M Reece-Smith
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Upper GI Surgery, City Hospital Campus, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Simon L Parsons
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Upper GI Surgery, City Hospital Campus, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Anna M Grabowska
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
24
|
Piao J, Chen L, Quan T, Li L, Quan C, Piao Y, Jin T, Lin Z. Superior efficacy of co-treatment with the dual PI3K/mTOR inhibitor BEZ235 and histone deacetylase inhibitor Trichostatin A against NSCLC. Oncotarget 2018; 7:60169-60180. [PMID: 27507059 PMCID: PMC5312376 DOI: 10.18632/oncotarget.11109] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. NSCLC development and progression have recently been correlated with the heightened activation of histone deacetylases (HDACs) and PI3K/Akt signaling pathways. Targeted inhibition of these proteins is promising approach for the development of novel therapeutic strategies to treat patients with advanced NSCLC. For this reason, we combined a dual PI3K and mTOR inhibitor, BEZ235 with the HDAC inhibitor Trichostatin A (TSA), to determine their combined effects on human NSCLC. In this study, we initially discovered that co-treatment with BEZ235 and TSA showed a synergistic effect on inhibition of NSCLC cell proliferation and induction of apoptosis. The combination treatment also synergistically suppressed NSCLC migration, invasion and the NSCLC epithelial-mesenchymal transition (EMT) in vitro. The synergistic effect was also evidenced by declines in xenograft growth and metastasis rates and in ki-67 protein expression in vivo. Together, these results indicated that BEZ235 and TSA combination treatment significantly increased anti-tumor activities compared with BEZ235 and TSA alone, supporting a further evaluation of combination treatment for NSCLC.
Collapse
Affiliation(s)
- Junjie Piao
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji 133002, China.,Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji 133002, China
| | - Liyan Chen
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji 133002, China
| | - Taihao Quan
- Department of Dermatology, University of Michigan Medical School, Michigan 48109-5609, USA
| | - Longshan Li
- Department of Radiation Oncology, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8807, USA
| | - Chunji Quan
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Yingshi Piao
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| | - Tiefeng Jin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji 133002, China.,Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules (Yanbian University), Ministry of Education, Yanji 133002, China
| | - Zhenhua Lin
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji 133002, China
| |
Collapse
|
25
|
Benitz S, Regel I, Reinhard T, Popp A, Schäffer I, Raulefs S, Kong B, Esposito I, Michalski CW, Kleeff J. Polycomb repressor complex 1 promotes gene silencing through H2AK119 mono-ubiquitination in acinar-to-ductal metaplasia and pancreatic cancer cells. Oncotarget 2017; 7:11424-33. [PMID: 26716510 PMCID: PMC4905483 DOI: 10.18632/oncotarget.6717] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/16/2015] [Indexed: 01/26/2023] Open
Abstract
Acinar-to-ductal metaplasia (ADM) occurring in cerulein-mediated pancreatitis or in oncogenic Kras-driven pancreatic cancer development is accompanied by extensive changes in the transcriptional program. In this process, acinar cells shut down the expression of acinar specific differentiation genes and re-express genes usually found in embryonic pancreatic progenitor cells. Previous studies have demonstrated that a loss of acinar-specific transcription factors sensitizes the cells towards oncogenic transformation, ultimately resulting in cancer development. However, the mechanism behind the transcriptional silencing of acinar cell fate genes in ADM and pancreatic cancer is largely unknown. Here, we analyzed whether elevated levels of the polycomb repressor complex 1 (PRC1) components Bmi1 and Ring1b and their catalyzed histone modification H2AK119ub in ADMs and tumor cells, are responsible for the mediation of acinar gene silencing. Therefore, we performed chromatin-immunoprecipitation in in vitro generated ADMs and isolated murine tumor cells against the repressive histone modifications H3K27me3 and H2AK119ub. We established that the acinar transcription factor complex Ptf1-L is epigenetically silenced in ADMs as well as in pancreatic tumor cells. For the first time, this work presents a possible mechanism of acinar gene silencing, which is an important prerequisite in the initiation and maintenance of a dedifferentiated cell state in ADMs and tumor cells.
Collapse
Affiliation(s)
- Simone Benitz
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Ivonne Regel
- Department of Surgery, Technische Universität München, Munich, Germany.,Institute of Pathology, Heinrich-Heine University, Duesseldorf, Germany
| | - Tobias Reinhard
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Anna Popp
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Isabell Schäffer
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Susanne Raulefs
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Bo Kong
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Irene Esposito
- Institute of Pathology, Heinrich-Heine University, Duesseldorf, Germany
| | | | - Jörg Kleeff
- Department of Surgery, Technische Universität München, Munich, Germany.,The Royal Liverpool and Broadgreen University Hospitals, Liverpool, United Kingdom.,Department of Surgery, Heinrich-Heine University, Duesseldorf, Germany
| |
Collapse
|
26
|
Hinsenkamp I, Schulz S, Roscher M, Suhr AM, Meyer B, Munteanu B, Fuchser J, Schoenberg SO, Ebert MPA, Wängler B, Hopf C, Burgermeister E. Inhibition of Rho-Associated Kinase 1/2 Attenuates Tumor Growth in Murine Gastric Cancer. Neoplasia 2017; 18:500-11. [PMID: 27566106 PMCID: PMC5018096 DOI: 10.1016/j.neo.2016.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/06/2016] [Indexed: 11/27/2022]
Abstract
Gastric cancer (GC) remains a malignant disease with high mortality. Patients are frequently diagnosed in advanced stages where survival prognosis is poor. Thus, there is high medical need to find novel drug targets and treatment strategies. Recently, the comprehensive molecular characterization of GC subtypes revealed mutations in the small GTPase RHOA as a hallmark of diffuse-type GC. RHOA activates RHO-associated protein kinases (ROCK1/2) which regulate cell contractility, migration and growth and thus may play a role in cancer. However, therapeutic benefit of RHO-pathway inhibition in GC has not been shown so far. The ROCK1/2 inhibitor 1-(5-isoquinoline sulfonyl)-homopiperazine (HA-1077, fasudil) is approved for cerebrovascular bleeding in patients. We therefore investigated whether fasudil (i.p., 10 mg/kg per day, 4 times per week, 4 weeks) inhibits tumor growth in a preclinical model of GC. Fasudil evoked cell death in human GC cells and reduced the tumor size in the stomach of CEA424-SV40 TAg transgenic mice. Small animal PET/CT confirmed preclinical efficacy. Mass spectrometry imaging identified a translatable biomarker for mouse GC and suggested rapid but incomplete in situ distribution of the drug to gastric tumor tissue. RHOA expression was increased in the neoplastic murine stomach compared with normal non-malignant gastric tissue, and fasudil reduced (auto) phosphorylation of ROCK2 at THR249 in vivo and in human GC cells in vitro. In sum, our data suggest that RHO-pathway inhibition may constitute a novel strategy for treatment of GC and that enhanced distribution of future ROCK inhibitors into tumor tissue may further improve efficacy.
Collapse
Affiliation(s)
- Isabel Hinsenkamp
- Dept. of Internal Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Sandra Schulz
- Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS) and Institute of Medical Technology of Heidelberg University and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Mareike Roscher
- Dept. of Clinical Radiology and Nuclear Medicine (Molecular Imaging and Radiochemistry), Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Anne-Maria Suhr
- Dept. of Clinical Radiology and Nuclear Medicine (Molecular Imaging and Radiochemistry), Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Björn Meyer
- Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS) and Institute of Medical Technology of Heidelberg University and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Bogdan Munteanu
- Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS) and Institute of Medical Technology of Heidelberg University and Mannheim University of Applied Sciences, Mannheim, Germany
| | | | - Stefan O Schoenberg
- Dept. of Clinical Radiology and Nuclear Medicine (Molecular Imaging and Radiochemistry), Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Matthias P A Ebert
- Dept. of Internal Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Björn Wängler
- Dept. of Clinical Radiology and Nuclear Medicine (Molecular Imaging and Radiochemistry), Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
| | - Carsten Hopf
- Center for Applied Research in Biomedical Mass Spectrometry (ABIMAS) and Institute of Medical Technology of Heidelberg University and Mannheim University of Applied Sciences, Mannheim, Germany
| | - Elke Burgermeister
- Dept. of Internal Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany.
| |
Collapse
|
27
|
Abstract
Gastric cancer is a deadly malignancy afflicting close to a million people worldwide. Patient survival is poor and largely due to late diagnosis and suboptimal therapies. Disease heterogeneity is a substantial obstacle, underscoring the need for precision treatment strategies. Studies have identified different subgroups of gastric cancer displaying not just genetic, but also distinct epigenetic hallmarks. Accumulating evidence suggests that epigenetic abnormalities in gastric cancer are not mere bystander events, but rather promote carcinogenesis through active mechanisms. Epigenetic aberrations, induced by pathogens such as Helicobacter pylori, are an early component of gastric carcinogenesis, probably preceding genetic abnormalities. This Review summarizes our current understanding of the gastric cancer epigenome, highlighting key advances in recent years in both tumours and pre-malignant lesions, made possible through targeted and genome-wide technologies. We focus on studies related to DNA methylation and histone modifications, linking these findings to potential therapeutic opportunities. Lessons learned from the gastric cancer epigenome might also prove relevant for other gastrointestinal cancers.
Collapse
|
28
|
Tie J, Zhang X, Fan D. Epigenetic roles in the malignant transformation of gastric mucosal cells. Cell Mol Life Sci 2016; 73:4599-4610. [PMID: 27464701 PMCID: PMC5097112 DOI: 10.1007/s00018-016-2308-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/10/2016] [Accepted: 07/08/2016] [Indexed: 12/14/2022]
Abstract
Gastric carcinogenesis occurs when gastric epithelial cells transition through the initial, immortal, premalignant, and malignant stages of transformation. Epigenetic regulations contribute to this multistep process. Due to the critical role of epigenetic modifications , these changes are highly likely to be of clinical use in the future as new biomarkers and therapeutic targets for the early detection and treatment of cancers. Here, we summarize the recent findings on how epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs, regulate gastric carcinogenesis, and we discuss potential new strategies for the diagnosis and treatments of gastric cancer. The strategies may be helpful in the further understanding of epigenetic regulation in human diseases.
Collapse
Affiliation(s)
- Jun Tie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, No. 127, West Chang-Le Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Xiangyuan Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, No. 127, West Chang-Le Road, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, No. 127, West Chang-Le Road, Xi'an, Shaanxi, 710032, People's Republic of China.
| |
Collapse
|
29
|
Minemura H, Takagi K, Sato A, Takahashi H, Miki Y, Shibahara Y, Watanabe M, Ishida T, Sasano H, Suzuki T. CITED2 in breast carcinoma as a potent prognostic predictor associated with proliferation, migration and chemoresistance. Cancer Sci 2016; 107:1898-1908. [PMID: 27627783 PMCID: PMC5198946 DOI: 10.1111/cas.13081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/26/2016] [Accepted: 09/09/2016] [Indexed: 12/20/2022] Open
Abstract
CITED2 (Cbp/p300‐interacting transactivator, with Glu/Asp‐rich carboxy‐terminal domain, 2) is a member of the CITED family and is involved in various cellular functions during development and differentiation. Mounting evidence suggests the importance of CITED in the progression of human malignancies, but the significance of CITED2 protein has not yet been examined in breast carcinoma. Therefore, in the present study, we examined the clinical significance and the biological functions of CITED2 in breast carcinoma by immunohistochemistry and in vitro study. CITED2 immunoreactivity was detected in breast carcinoma tissues, and it was significantly higher compared to those in morphologically normal mammary glands. CITED2 immunoreactivity was significantly associated with stage, pathological T factor, lymph node metastasis, histological grade, HER2 and Ki‐67, and inversely correlated with estrogen receptor. Moreover, the immunohistochemical CITED2 status was significantly associated with increased incidence of recurrence and breast cancer‐specific death of the breast cancer patients, and multivariate analyses demonstrated CITED2 status as an independent worse prognostic factor for disease‐free and breast cancer‐specific survival. Subsequent in vitro experiments showed that CITED2 expression significantly increased proliferation activity and migration property in MCF‐7and S KBR‐3 breast carcinoma cells. Moreover, CITED2 caused chemoresistance to epirubicin and 5‐fluorouracil, but not paclitaxel, in these cells, and it inhibited p53 accumulation after 5‐fluorouracil treatment in MCF‐7 cells. These results suggest that CITED2 plays important roles in the progression and chemoresistance of breast carcinoma and that CITED2 status is a potent prognostic factor in breast cancer patients.
Collapse
Affiliation(s)
- Hiroyuki Minemura
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ai Sato
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hikaru Takahashi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukiko Shibahara
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika Watanabe
- Department of Pathology, Tohoku University Hospital, Sendai, Japan
| | - Takanori Ishida
- Department of Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pathology, Tohoku University Hospital, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
30
|
Wu WK, Yu J, Chan MT, To KF, Cheng AS. Combinatorial epigenetic deregulation by Helicobacter pylori and Epstein-Barr virus infections in gastric tumourigenesis. J Pathol 2016; 239:245-9. [PMID: 27102722 DOI: 10.1002/path.4731] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 01/06/2023]
Abstract
Epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodelling and microRNAs, convert environmental signals to transcriptional outputs but are commonly hijacked by pathogenic microorganisms. Recent advances in cancer epigenomics have shed new light on the importance of epigenetic deregulation in Helicobacter pylori- and Epstein-Barr virus (EBV)-driven gastric tumourigenesis. Moreover, it is becoming apparent that epigenetic mechanisms interact through crosstalk and feedback loops, which modify global gene expression patterns. The SWI/SNF remodelling complexes are commonly involved in gastric cancers associated with H. pylori or EBV through different mechanisms, including microRNA-mediated deregulation and genetic mutations. While H. pylori causes epigenetic silencing of tumour-suppressor genes to deregulate cellular pathways, EBV-positive tumours exhibit a widespread and distinctive DNA hypermethylation profile. Given the early successes of epigenetic drugs in haematological malignancies, further studies are mandated to enrich and translate our understanding of combinatorial epigenetic deregulation in gastric cancers into interventional strategies in the clinic. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- William Kk Wu
- Department of Anaesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Digestive Diseases, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Jun Yu
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Digestive Diseases, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Matthew Tv Chan
- Department of Anaesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Ka F To
- Department of Anatomical and Cellular Pathology, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Digestive Diseases, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Alfred Sl Cheng
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,State Key Laboratory of Digestive Diseases, Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, People's Republic of China
| |
Collapse
|
31
|
Braunstein M, Liao L, Lyttle N, Lobo N, Taylor KJ, Krzyzanowski PM, Kalatskaya I, Yao CQ, Stein LD, Boutros PC, Twelves CJ, Marcellus R, Bartlett JMS, Spears M. Downregulation of histone H2A and H2B pathways is associated with anthracycline sensitivity in breast cancer. Breast Cancer Res 2016; 18:16. [PMID: 26852132 PMCID: PMC4744406 DOI: 10.1186/s13058-016-0676-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/13/2016] [Indexed: 12/31/2022] Open
Abstract
Background Drug resistance in breast cancer is the major obstacle to effective treatment with chemotherapy. While upregulation of multidrug resistance genes is an important component of drug resistance mechanisms in vitro, their clinical relevance remains to be determined. Therefore, identifying pathways that could be targeted in the clinic to eliminate anthracycline-resistant breast cancer remains a major challenge. Methods We generated paired native and epirubicin-resistant MDA-MB-231, MCF7, SKBR3 and ZR-75-1 epirubicin-resistant breast cancer cell lines to identify pathways contributing to anthracycline resistance. Native cell lines were exposed to increasing concentrations of epirubicin until resistant cells were generated. To identify mechanisms driving epirubicin resistance, we used a complementary approach including gene expression analyses to identify molecular pathways involved in resistance, and small-molecule inhibitors to reverse resistance. In addition, we tested its clinical relevance in a BR9601 adjuvant clinical trial. Results Characterisation of epirubicin-resistant cells revealed that they were cross-resistant to doxorubicin and SN-38 and had alterations in apoptosis and cell-cycle profiles. Gene expression analysis identified deregulation of histone H2A and H2B genes in all four cell lines. Histone deacetylase small-molecule inhibitors reversed resistance and were cytotoxic for epirubicin-resistant cell lines, confirming that histone pathways are associated with epirubicin resistance. Gene expression of a novel 18-gene histone pathway module analysis of the BR9601 adjuvant clinical trial revealed that patients with low expression of the 18-gene histone module benefited from anthracycline treatment more than those with high expression (hazard ratio 0.35, 95 % confidence interval 0.13–0.96, p = 0.042). Conclusions This study revealed a key pathway that contributes to anthracycline resistance and established model systems for investigating drug resistance in all four major breast cancer subtypes. As the histone modification can be targeted with small-molecule inhibitors, it represents a possible means of reversing clinical anthracycline resistance. Trial registration ClinicalTrials.gov identifier NCT00003012. Registered on 1 November 1999. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0676-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marsela Braunstein
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, ON, M5G 0A3, Canada. .,Department of Immunology, University of Toronto, Toronto, ON, Canada.
| | - Linda Liao
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, ON, M5G 0A3, Canada.
| | - Nicola Lyttle
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, ON, M5G 0A3, Canada.
| | - Nazleen Lobo
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, ON, M5G 0A3, Canada.
| | - Karen J Taylor
- Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, UK
| | - Paul M Krzyzanowski
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, ON, M5G 0A3, Canada.
| | - Irina Kalatskaya
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, ON, M5G 0A3, Canada.
| | - Cindy Q Yao
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, ON, M5G 0A3, Canada.
| | - Lincoln D Stein
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, ON, M5G 0A3, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Paul C Boutros
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, ON, M5G 0A3, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada.
| | - Christopher J Twelves
- Leeds Institute of Cancer and Pathology and Cancer Research UK Centre, St James's University Hospital, Leeds, UK.
| | - Richard Marcellus
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, ON, M5G 0A3, Canada.
| | - John M S Bartlett
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, ON, M5G 0A3, Canada. .,Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, UK. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Melanie Spears
- Ontario Institute for Cancer Research, MaRS Centre, 661 University Avenue, Toronto, ON, M5G 0A3, Canada.
| |
Collapse
|
32
|
Regel I, Hausmann S, Benitz S, Esposito I, Kleeff J. Pathobiology of pancreatic cancer: implications on therapy. Expert Rev Anticancer Ther 2015; 16:219-27. [PMID: 26652651 DOI: 10.1586/14737140.2016.1129276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although the concept of tumor heterogeneity was established several decades ago, the interest in this topic is still unbroken. With the identification of inter- and intratumoral genomic rearrangements and the detection of cancer stem cells (CSCs) through phenotypic variations of cancer cells there are increasing options for pancreatic cancer therapy. Indeed, some pre-clinical studies have shown promising results in the treatment of drug-resistant CSCs, whereby a few strategies were already tested in clinical trials. Basically, CSCs are influenced by the tumor microenvironment and an epigenetic reprogramming to gain stem cell-like characteristics. Targeting options inhibiting the epithelial-mesenchymal crosstalk or promoting epigenetic-driven differentiation of CSCs to a less aggressive phenotype raised the possibilities of further therapeutic applications, which will be discussed in this review.
Collapse
Affiliation(s)
- Ivonne Regel
- a Institute of Pathology , Heinrich-Heine-University , Duesseldorf , Germany
| | - Simone Hausmann
- b Department of Surgery , Technical University , Munich , Germany
| | - Simone Benitz
- b Department of Surgery , Technical University , Munich , Germany
| | - Irene Esposito
- a Institute of Pathology , Heinrich-Heine-University , Duesseldorf , Germany
| | - Jörg Kleeff
- c Department of Surgery , The Royal Liverpool and Broadgreen University Hospitals , Liverpool , UK.,d Department of Surgery , Heinrich-Heine-University , Duesseldorf , Germany
| |
Collapse
|
33
|
Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer. Biochem Biophys Res Commun 2015; 463:961-7. [DOI: 10.1016/j.bbrc.2015.06.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/05/2015] [Indexed: 11/21/2022]
|
34
|
Histone deacetylase 2 controls p53 and is a critical factor in tumorigenesis. Biochim Biophys Acta Rev Cancer 2014; 1846:524-38. [PMID: 25072962 DOI: 10.1016/j.bbcan.2014.07.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/05/2014] [Accepted: 07/22/2014] [Indexed: 12/21/2022]
Abstract
Histone deacetylase 2 (HDAC2) regulates biological processes by deacetylation of histones and non-histone proteins. HDAC2 is overexpressed in numerous cancer types, suggesting general cancer-relevant functions of HDAC2. In human tumors the TP53 gene encoding p53 is frequently mutated and wild-type p53 is often disarmed. Molecular pathways inactivating wild-type p53 often remain to be defined and understood. Remarkably, current data link HDAC2 to the regulation of the tumor suppressor p53 by deacetylation and to the maintenance of genomic stability. Here, we summarize recent findings on HDAC2 overexpression in solid and hematopoietic cancers with a focus on mechanisms connecting HDAC2 and p53 in vitro and in vivo. In addition, we present an evidence-based model that integrates molecular pathways and feedback loops by which p53 and further transcription factors govern the expression and the ubiquitin-dependent proteasomal degradation of HDAC2 and of p53 itself. Understanding the interactions between p53 and HDAC2 might aid in the development of new therapeutic approaches against cancer.
Collapse
|
35
|
Zhang H, Zhao B, Huang C, Meng XM, Bian EB, Li J. Melittin restores PTEN expression by down-regulating HDAC2 in human hepatocelluar carcinoma HepG2 cells. PLoS One 2014; 9:e95520. [PMID: 24788349 PMCID: PMC4008415 DOI: 10.1371/journal.pone.0095520] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/27/2014] [Indexed: 12/21/2022] Open
Abstract
Melittin is a water-soluble toxic peptide derived from the venom of the bee. Although many studies show the anti-tumor activity of melittin in human cancer including glioma cells, the underlying mechanisms remain elusive. Here the effect of melittin on human hepatocelluar carcinoma HepG2 cell proliferation in vitro and further mechanisms was investigated. We found melittin could inhibit cell proliferation in vitro using Flow cytometry and MTT method. Besides, we discovered that melittin significantly downregulated the expressions of CyclinD1 and CDK4. Results of western Blot and Real-time PCR analysis indicated that melittin was capable to upregulate the expression of PTEN and attenuate histone deacetylase 2 (HDAC2) expression. Further studies demonstrated that knockdown of HDAC2 completely mimicked the effects of melittin on PTEN gene expression. Conversely, it was that the potential utility of melittin on PTEN expression was reversed in cells treated with a recombinant pEGFP-C2-HDAC2 plasmid. In addition, treatment with melittin caused a downregulation of Akt phosphorylation, while overexpression of HDAC2 promoted Akt phosphorylation. These findings suggested that the inhibitory of cell growth by melittin might be led by HDAC2-mediated PTEN upregulation, Akt inactivation, and inhibition of the PI3K/Akt signaling pathways.
Collapse
Affiliation(s)
- Hui Zhang
- School of pharmacy, Anhui key laboratory of bioactivity of natural products, Anhui Medical University, Hefei, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University (AMU), Hefei, Anhui Province, China
| | - Bin Zhao
- School of pharmacy, Anhui key laboratory of bioactivity of natural products, Anhui Medical University, Hefei, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University (AMU), Hefei, Anhui Province, China
| | - Cheng Huang
- School of pharmacy, Anhui key laboratory of bioactivity of natural products, Anhui Medical University, Hefei, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University (AMU), Hefei, Anhui Province, China
| | - Xiao-Ming Meng
- School of pharmacy, Anhui key laboratory of bioactivity of natural products, Anhui Medical University, Hefei, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University (AMU), Hefei, Anhui Province, China
| | - Er-Bao Bian
- School of pharmacy, Anhui key laboratory of bioactivity of natural products, Anhui Medical University, Hefei, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University (AMU), Hefei, Anhui Province, China
| | - Jun Li
- School of pharmacy, Anhui key laboratory of bioactivity of natural products, Anhui Medical University, Hefei, Anhui Province, China
- Institute for Liver Diseases of Anhui Medical University (AMU), Hefei, Anhui Province, China
- * E-mail:
| |
Collapse
|
36
|
Munteanu B, Meyer B, von Reitzenstein C, Burgermeister E, Bog S, Pahl A, Ebert MP, Hopf C. Label-Free in Situ Monitoring of Histone Deacetylase Drug Target Engagement by Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry Biotyping and Imaging. Anal Chem 2014; 86:4642-7. [DOI: 10.1021/ac500038j] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - Elke Burgermeister
- Department
of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Susanne Bog
- Heidelberg Pharma
GmbH, Schriesheimer Strasse 101, 68526 Ladenburg, Germany
| | - Andreas Pahl
- Heidelberg Pharma
GmbH, Schriesheimer Strasse 101, 68526 Ladenburg, Germany
| | - Matthias P. Ebert
- Department
of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | | |
Collapse
|
37
|
Anne M, Sammartino D, Barginear MF, Budman D. Profile of panobinostat and its potential for treatment in solid tumors: an update. Onco Targets Ther 2013; 6:1613-24. [PMID: 24265556 PMCID: PMC3833618 DOI: 10.2147/ott.s30773] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The histone deacetylase (HDAC) inhibitors have emerged as novel therapies for cancer. Panobinostat (LBH 589, Novartis Pharmaceuticals) is a pan-deacetylase inhibitor that is being evaluated in both intravenous and oral formulations across multiple tumor types. Comparable to the other HDACs, panobinostat leads to hyperacetylation of histones and other intracellular proteins, allowing for the expression of otherwise repressed genes, leading to inhibition of cellular proliferation and induction of apoptosis in malignant cells. Panobinostat, analogous to other HDAC inhibitors, also induces apoptosis by directly activating cellular death receptor pathways. Preclinical data suggests that panobinostat has inhibitory activity at nanomolar concentrations and appears to be the most potent clinically available HDAC inhibitor. Here we review the current status of panobinostat and discuss its role in the treatment of solid tumors.
Collapse
Affiliation(s)
- Madhurima Anne
- Monter Cancer Center, Hofstra North Shore-LIJ School of Medicine, Lake Success, NY, USA
| | - Daniel Sammartino
- Department of Medicine, Hofstra North Shore-LIJ School of Medicine, Lake Success, NY, USA
| | - Myra F Barginear
- Monter Cancer Center, Hofstra North Shore-LIJ School of Medicine, Lake Success, NY, USA
| | - Daniel Budman
- Monter Cancer Center, Hofstra North Shore-LIJ School of Medicine, Lake Success, NY, USA
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Transcription co-regulator Cited2 is essential for mouse development. Recent work has shown that Cited2 plays important roles in normal hematopoiesis in fetal liver and adult bone marrow. This review focuses on the function of Cited2 in the maintenance of hematopoietic stem cells (HSCs) and its potential role in the metabolic regulation of HSCs. RECENT FINDINGS Fetal liver cells from Cited2 null embryos give rise to reduced numbers of hematopoietic colonies and display significantly impaired hematopoietic reconstitution capacity. In adult mice, conditional deletion of Cited2 markedly reduces the number of HSCs and compromises hematopoietic reconstitution in mice receiving a transplant of Cited2 deficient bone marrow cells. Additional deletion of Ink4a/Arf or p53 in a Cited2-deficient background restores HSC functionality. Meanwhile, Cited2 deficient HSCs display loss of quiescence, which can be partially rescued by additional deletion of hypoxia inducible factor-1α. SUMMARY Cited2 is an essential regulator in fetal liver and adult hematopoiesis. Further studies into the function of Cited2 and the underlying mechanism in the metabolic regulation of HSCs will provide a better understanding of the connection between energy metabolism and HSC quiescence and self-renewal. Investigations of the pathologic role of Cited2 in leukemogenesis may yield useful information in developing effective therapeutic strategies.
Collapse
|
39
|
Song X, Wang J, Zheng T, Song R, Liang Y, Bhatta N, Yin D, Pan S, Liu J, Jiang H, Liu L. LBH589 Inhibits proliferation and metastasis of hepatocellular carcinoma via inhibition of gankyrin/STAT3/Akt pathway. Mol Cancer 2013; 12:114. [PMID: 24093956 PMCID: PMC3853770 DOI: 10.1186/1476-4598-12-114] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/01/2013] [Indexed: 01/01/2023] Open
Abstract
Background Gankyrin has shown to be overexpressed in human liver cancers and plays a complex role in hepatocarcinogenesis. Panobinostat (LBH589), a new hydroxamic acid-derived histone deacetylase inhibitor has shown promising anticancer effects recently. Here, we investigated the potential of LBH589 as a form of treatment for hepatocellular carcinoma (HCC). Methods Gankyrin plasmid was transfected into HCC cells, and the cells were selected for more than 4 weeks by incubation with G418 for overexpression clones. The therapeutic effects of LBH589 were evaluated in vitro and in vivo. Cell proliferation, apoptosis, cell cycle, invasive potential, and epithelial-mesenchy-mal transition (EMT) were examined. Results LBH589 significantly inhibited HCC growth and metastasis in vitro and in vivo. Western blotting analysis indicated that LBH589 could decrease the expression of gankyrin and subsequently reduced serine-phosphorylated Akt and tyrosine-phosphorylated STAT3 expression although the total Akt and STAT3 were unaffected. LBH589 inhibited metastasis in vitro via down-regulation of N-cadherin, vimentin, TWIST1, VEGF and up-regulation of E-cadherin. LBH589 also induced apoptosis and G1 phase arrest in HCC cell lines. Ectopic expression of gankyrin attenuated the effects of LBH589, which indicates that gankyrin might play an important role in LBH589 mediated anticancer effects. Lastly, in vivo study indicated that LBH589 inhibited tumor growth and metastasis, without discernable adverse effects comparing to control group, with abrogating gankyrin/STAT3/Akt pathway. Conclusions Our results suggested that LBH589 could inhibit HCC growth and metastasis through down-regulating gankyrin/STAT3/Akt pathway. LBH589 may present itself as a novel therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xuan Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, 150001 Harbin, Heilongjiang Province, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hitkova I, Yuan G, Anderl F, Gerhard M, Kirchner T, Reu S, Röcken C, Schäfer C, Schmid RM, Vogelmann R, Ebert MPA, Burgermeister E. Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis. PLoS Pathog 2013; 9:e1003251. [PMID: 23592983 PMCID: PMC3623771 DOI: 10.1371/journal.ppat.1003251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 02/04/2013] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies (“humming bird”) compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells. Infection with the bacterium Helicobacter pylori (H. pylori) mainly affects children in the developing countries who are at risk to progress to gastric cancer (GC) as adults after many years of persistent infection, especially with strains which are positive for the oncogenic virulence factor CagA. Eradication of H. pylori by antibiotics is a treatment of choice but may also alter the susceptibility to allergies and other tumor types. Thus, novel diagnostic or prognostic markers are needed which detect early molecular changes in the stomach mucosa during the transition of chronic inflammation to cancer. In our study, we found that the tumor suppressor caveolin-1 (Cav1) is reduced upon infection with H. pylori, and CagA was sufficient but not necessary for this down-regulation. Loss of Cav1 was caused by H. pylori-dependent activation of sterol-responsive element-binding protein-1 (SREBP1), and this event abolished the interaction of Cav1 with p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1), a second bona fide tumor suppressor in gastric tissue. Conclusively, Cav1 and DLC1 may constitute novel molecular markers in the H. pylori-infected gastric mucosa before neoplastic transformation of the epithelium.
Collapse
Affiliation(s)
- Ivana Hitkova
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gang Yuan
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Florian Anderl
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, München, Germany
| | - Markus Gerhard
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, München, Germany
- German Centre for Infection Research (DZIF), München, Germany
| | - Thomas Kirchner
- Institute of Pathology, Klinikum der Universität München, München, Germany
| | - Simone Reu
- Institute of Pathology, Klinikum der Universität München, München, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts Universität, Kiel, Germany
| | - Claus Schäfer
- Department of Medicine II, Klinikum der Universität München, München, Germany
| | - Roland M. Schmid
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Roger Vogelmann
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P. A. Ebert
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elke Burgermeister
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| |
Collapse
|
41
|
Li Q, Ramírez-Bergeron DL, Dunwoodie SL, Yang YC. Cited2 gene controls pluripotency and cardiomyocyte differentiation of murine embryonic stem cells through Oct4 gene. J Biol Chem 2012; 287:29088-100. [PMID: 22761414 DOI: 10.1074/jbc.m112.378034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cited2 (CBP/p300-interacting transactivator with glutamic acid (E)/aspartic acid (D)-rich tail 2) is a transcriptional modulator critical for the development of multiple organs. Although many Cited2-mediated phenotypes and molecular events have been well characterized using in vivo genetic murine models, Cited2-directed cell fate decision in embryonic stem cells (ESCs) remains elusive. In this study, we examined the role of Cited2 in the maintenance of stemness and pluripotency of murine ESCs by a gene-targeting approach. Cited2 knock-out (Cited2(Δ/-), KO) ESCs display defective differentiation. Loss of Cited2 in differentiating ESCs results in delayed silencing of the genes involved in the maintenance of pluripotency and self-renewal of stem cells (Oct4, Klf4, Sox2, and c-Myc) and the disturbance in cardiomyocyte, hematopoietic, and neuronal differentiation. In addition, Cited2 KO ESCs experience a delayed induction of cardiomyocyte differentiation-associated proteins, NFAT3 (along with the reduced expression of NFAT3 target genes, Nkx2.5 and β-MHC), N-cadherin, and smooth muscle actin. CITED2 is recruited to the Oct4 promoter to regulate its expression during early ESC differentiation. This is the first demonstration that Cited2 controls ESC pluripotency and differentiation via direct regulation of Oct4 gene expression.
Collapse
Affiliation(s)
- Qiang Li
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|