1
|
Nobels A, van Marcke C, Jordan BF, Van Hul M, Cani PD. The gut microbiome and cancer: from tumorigenesis to therapy. Nat Metab 2025:10.1038/s42255-025-01287-w. [PMID: 40329009 DOI: 10.1038/s42255-025-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 03/20/2025] [Indexed: 05/08/2025]
Abstract
The gut microbiome has a crucial role in cancer development and therapy through its interactions with the immune system and tumour microenvironment. Although evidence links gut microbiota composition to cancer progression, its precise role in modulating treatment responses remains unclear. In this Review, we summarize current knowledge on the gut microbiome's involvement in cancer, covering its role in tumour initiation and progression, interactions with chemotherapy, radiotherapy and targeted therapies, and its influence on cancer immunotherapy. We discuss the impact of microbial metabolites on immune responses, the relationship between specific bacterial species and treatment outcomes, and potential microbiota-based therapeutic strategies, including dietary interventions, probiotics and faecal microbiota transplantation. Understanding these complex microbiota-immune interactions is critical for optimizing cancer therapies. Future research should focus on defining microbial signatures associated with treatment success and developing targeted microbiome modulation strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Amandine Nobels
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Cédric van Marcke
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bénédicte F Jordan
- UCLouvain, Université catholique de Louvain, Biomedical Magnetic Resonance group (REMA), Louvain Drug Research Institute (LDRI), Brussels, Belgium
| | - Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium.
| |
Collapse
|
2
|
Zhang P, Zhang W, Hong Z, Jiang J, Wu N, Lin J, Kang M. Elucidating the role of CYFIP2 in conferring cisplatin resistance in esophageal squamous cell carcinoma. Sci Rep 2024; 14:27130. [PMID: 39511293 PMCID: PMC11544133 DOI: 10.1038/s41598-024-77420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
Cisplatin (CDDP) serves as a vital component in the chemotherapeutic approach to treat esophageal squamous cell carcinoma (ESCC). However, prolonged CDDP application frequently culminates in resistance, compromising therapeutic outcomes. Through genome-wide CRISPR library screening, our study elucidates the mechanisms underlying this resistance, pinpointing CYFIP2 as a pivotal mediator. Notably, the involvement CYFIP2 is characterized by pronounced autophagic activity and the modulation of multiple cellular pathways. Empirical validation was achieved by treating ESCC cell lines with CDDP, which resulted in an upsurge of CYFIP2 expression. The functional impact of CYFIP2 was further delineated through knockdown experiments, where a marked suppression in cell proliferation was observed, alongside a discernible decline in reactive oxygen species levels. This was complemented by a suite of assays and microscopic techniques, including GFP-LC3, mRFP-GFP-LC3, electron microscopy and western blot, which collectively affirmed the inhibitory effect of CYFIP2 knockdown on autophagic processes, particularly impeding autophagosome formation and their subsequent fusion with lysosomes. In vivo studies have also confirmed that CYFIP2 knockdown limits tumor progression and increases CDDP efficacy. Conclusively, our findings introduce CYFIP2 as a novel contributor to CDDP resistance in ESCC, underscoring its potential as a therapeutic target. This revelation not only deepens our understanding of resistance mechanisms but also paves the way for novel oncotherapeutic strategies, promising enhanced treatment efficacy against ESCC.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Gulou, Fuzhou, 350001, China
| | - Weiguang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Gulou, Fuzhou, 350001, China
| | - Zhinuan Hong
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Gulou, Fuzhou, 350001, China
| | - Junfei Jiang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Gulou, Fuzhou, 350001, China
| | - Ningzi Wu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Gulou, Fuzhou, 350001, China
| | - Jihong Lin
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China.
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Gulou, Fuzhou, 350001, China.
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China.
| |
Collapse
|
3
|
Fu M, Deng F, Chen J, Fu L, Lei J, Xu T, Chen Y, Zhou J, Gao Q, Ding H. Current data and future perspectives on DNA methylation in ovarian cancer (Review). Int J Oncol 2024; 64:62. [PMID: 38757340 PMCID: PMC11095605 DOI: 10.3892/ijo.2024.5650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Ovarian cancer (OC) represents the most prevalent malignancy of the female reproductive system. Its distinguishing features include a high aggressiveness, substantial morbidity and mortality, and a lack of apparent symptoms, which collectively pose significant challenges for early detection. Given that aberrant DNA methylation events leading to altered gene expression are characteristic of numerous tumor types, there has been extensive research into epigenetic mechanisms, particularly DNA methylation, in human cancers. In the context of OC, DNA methylation is often associated with the regulation of critical genes, such as BRCA1/2 and Ras‑association domain family 1A. Methylation modifications within the promoter regions of these genes not only contribute to the pathogenesis of OC, but also induce medication resistance and influence the prognosis of patients with OC. As such, a more in‑depth understanding of DNA methylation underpinning carcinogenesis could potentially facilitate the development of more effective therapeutic approaches for this intricate disease. The present review focuses on classical tumor suppressor genes, oncogenes, signaling pathways and associated microRNAs in an aim to elucidate the influence of DNA methylation on the development and progression of OC. The advantages and limitations of employing DNA methylation in the diagnosis, treatment and prevention of OC are also discussed. On the whole, the present literature review indicates that the DNA methylation of specific genes could potentially serve as a prognostic biomarker for OC and a therapeutic target for personalized treatment strategies. Further investigations in this field may yield more efficacious diagnostic and therapeutic alternatives for patients with OC.
Collapse
Affiliation(s)
- Mengyu Fu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fengying Deng
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jie Chen
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Li Fu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiahui Lei
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ting Xu
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Department of Gynecology and Obstetrics, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215100, P.R. China
| | - Youguo Chen
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jinhua Zhou
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qinqin Gao
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hongmei Ding
- Institute for Fetology, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
4
|
Ahmad A, Mahmood N, Raza MA, Mushtaq Z, Saeed F, Afzaal M, Hussain M, Amjad HW, Al-Awadi HM. Gut microbiota and their derivatives in the progression of colorectal cancer: Mechanisms of action, genome and epigenome contributions. Heliyon 2024; 10:e29495. [PMID: 38655310 PMCID: PMC11035079 DOI: 10.1016/j.heliyon.2024.e29495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Gut microbiota interacts with host epithelial cells and regulates many physiological functions such as genetics, epigenetics, metabolism of nutrients, and immune functions. Dietary factors may also be involved in the etiology of colorectal cancer (CRC), especially when an unhealthy diet is consumed with excess calorie intake and bad practices like smoking or consuming a great deal of alcohol. Bacteria including Fusobacterium nucleatum, Enterotoxigenic Bacteroides fragilis (ETBF), and Escherichia coli (E. coli) actively participate in the carcinogenesis of CRC. Gastrointestinal tract with chronic inflammation and immunocompromised patients are at high risk for CRC progression. Further, the gut microbiota is also involved in Geno-toxicity by producing toxins like colibactin and cytolethal distending toxin (CDT) which cause damage to double-stranded DNA. Specific microRNAs can act as either tumor suppressors or oncogenes depending on the cellular environment in which they are expressed. The current review mainly highlights the role of gut microbiota in CRC, the mechanisms of several factors in carcinogenesis, and the role of particular microbes in colorectal neoplasia.
Collapse
Affiliation(s)
- Awais Ahmad
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nasir Mahmood
- Department of Zoology, University of Central Punjab Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zarina Mushtaq
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hafiz Wasiqe Amjad
- International Medical School, Jinggangshan University, Ji'an, Jiangxi, China
| | | |
Collapse
|
5
|
Tong QY, Pang MJ, Hu XH, Huang XZ, Sun JX, Wang XY, Burclaff J, Mills JC, Wang ZN, Miao ZF. Gastric intestinal metaplasia: progress and remaining challenges. J Gastroenterol 2024; 59:285-301. [PMID: 38242996 DOI: 10.1007/s00535-023-02073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
Most gastric cancers arise in the setting of chronic inflammation which alters gland organization, such that acid-pumping parietal cells are lost, and remaining cells undergo metaplastic change in differentiation patterns. From a basic science perspective, recent progress has been made in understanding how atrophy and initial pyloric metaplasia occur. However, pathologists and cancer biologists have long been focused on the development of intestinal metaplasia patterns in this setting. Arguably, much less progress has been made in understanding the mechanisms that lead to the intestinalization seen in chronic atrophic gastritis and pyloric metaplasia. One plausible explanation for this disparity lies in the notable absence of reliable and reproducible small animal models within the field, which would facilitate the investigation of the mechanisms underlying the development of gastric intestinal metaplasia (GIM). This review offers an in-depth exploration of the current state of research in GIM, shedding light on its pivotal role in tumorigenesis. We delve into the histological subtypes of GIM and explore their respective associations with tumor formation. We present the current repertoire of biomarkers utilized to delineate the origins and progression of GIM and provide a comprehensive survey of the available, albeit limited, mouse lines employed for modeling GIM and engage in a discussion regarding potential cell lineages that serve as the origins of GIM. Finally, we expound upon the myriad signaling pathways recognized for their activity in GIM and posit on their potential overlap and interactions that contribute to the ultimate manifestation of the disease phenotype. Through our exhaustive review of the progression from gastric disease to GIM, we aim to establish the groundwork for future research endeavors dedicated to elucidating the etiology of GIM and developing strategies for its prevention and treatment, considering its potential precancerous nature.
Collapse
Affiliation(s)
- Qi-Yue Tong
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Min-Jiao Pang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xiao-Hai Hu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xuan-Zhang Huang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xin-Yu Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Departments of Pathology and Immunology, Molecular and Cellular Biology, Baylor College of Medicine, Houston, USA
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| | - Zhi-Feng Miao
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
6
|
Lei C, Xu Y, Zhang S, Huang C, Qin J. The role of microbiota in gastric cancer: A comprehensive review. Helicobacter 2024; 29:e13071. [PMID: 38643366 DOI: 10.1111/hel.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Gastric cancer (GC) continues to pose a significant global threat in terms of cancer-related fatalities. Despite notable advancements in medical research and therapies, further investigation is warranted to elucidate its underlying etiology and risk factors. Recent times have witnessed an escalated emphasis on comprehending the role of the microbiota in cancer development. METHODS This review briefly delves into recent developments in microbiome-related research pertaining to gastric cancer. RESULTS According to studies, the microbiota can influence GC growth by inciting inflammation, disrupting immunological processes, and generating harmful microbial metabolites. Furthermore, there is ongoing research into how the microbiome can impact a patient's response to chemotherapy and immunotherapy. CONCLUSION The utilization of the microbiome for detecting, preventing, and managing stomach cancer remains an active area of exploration.
Collapse
Affiliation(s)
- Changzhen Lei
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yitian Xu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shaopeng Zhang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Qin
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Chorawala MR, Postwala H, Prajapati BG, Shah Y, Shah A, Pandya A, Kothari N. Impact of the microbiome on colorectal cancer development. COLORECTAL CANCER 2024:29-72. [DOI: 10.1016/b978-0-443-13870-6.00021-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Lim NR, Chung WC. Helicobacter pylori-associated Chronic Atrophic Gastritis and Progression of Gastric Carcinogenesis. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 82:171-179. [PMID: 37876256 DOI: 10.4166/kjg.2023.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 10/26/2023]
Abstract
Chronic inflammation due to a Helicobacter pylori (H. pylori) infection is a representative cause of gastric cancer that can promote gastric carcinogenesis by abnormally activating immune cells and increasing the inflammatory cytokines levels. H. pylori infections directly cause DNA double-strand breaks in gastric epithelial cells and genetic damage by increasing the enzymatic activity of cytidine deaminase. Eventually, gastric cancer is induced through dysplasia. Hypermethylation of tumor suppressor genes is an important cause of gastric cancer because of a H. pylori infection. In addition, the changes in gastric microbiota and the mucosal inflammatory changes associated with a co-infection with the Epstein-Barr virus are associated with gastric cancer development. DNA damage induced by H. pylori and the subsequent responses of gastric stem cells have implications for gastric carcinogenesis. Although the pathogenesis of H. pylori has been established, many uncertainties remain, requiring more study.
Collapse
Affiliation(s)
- Na Rae Lim
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| | - Woo Chul Chung
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
9
|
Pawluczuk E, Łukaszewicz-Zając M, Mroczko B. The Comprehensive Analysis of Specific Proteins as Novel Biomarkers Involved in the Diagnosis and Progression of Gastric Cancer. Int J Mol Sci 2023; 24:ijms24108833. [PMID: 37240178 DOI: 10.3390/ijms24108833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Gastric cancer (GC) cases are predicted to rise by 2040 to approximately 1.8 million cases, while GC-caused deaths to 1.3 million yearly worldwide. To change this prognosis, there is a need to improve the diagnosis of GC patients because this deadly malignancy is usually detected at an advanced stage. Therefore, new biomarkers of early GC are sorely needed. In the present paper, we summarized and referred to a number of original pieces of research concerning the clinical significance of specific proteins as potential biomarkers for GC in comparison to well-established tumor markers for this malignancy. It has been proved that selected chemokines and their specific receptors, vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR), specific proteins such as interleukin 6 (IL-6) and C-reactive protein (CRP), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), as well as DNA- and RNA-based biomarkers, and c-MET (tyrosine-protein kinase Met) play a role in the pathogenesis of GC. Based on the recent scientific literature, our review indicates that presented specific proteins are potential biomarkers in the diagnosis and progression of GC as well as might be used as prognostic factors of GC patients' survival.
Collapse
Affiliation(s)
- Elżbieta Pawluczuk
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Marta Łukaszewicz-Zając
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15a, 15-269 Bialystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15a, 15-269 Bialystok, Poland
| |
Collapse
|
10
|
Xi Y, Zhang XL, Luo QX, Gan HN, Liu YS, Shao SH, Mao XH. Helicobacter pylori regulates stomach diseases by activating cell pathways and DNA methylation of host cells. Front Cell Dev Biol 2023; 11:1187638. [PMID: 37215092 PMCID: PMC10192871 DOI: 10.3389/fcell.2023.1187638] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
One of the most prevalent malignant tumors of the digestive tract is gastric cancer (GC). Age, high salt intake, Helicobacter pylori (H. pylori) infection, and a diet deficient in fruits and vegetables are risk factors for the illness. A significant risk factor for gastric cancer is infection with H. pylori. Infecting gastric epithelial cells with virulence agents secreted by H. pylori can cause methylation of tumor genes or carcinogenic signaling pathways to be activated. Regulate downstream genes' aberrant expression, albeit the precise mechanism by which this happens is unclear. Oncogene, oncosuppressor, and other gene modifications, as well as a number of different gene change types, are all directly associated to the carcinogenesis of gastric cancer. In this review, we describe comprehensive H. pylori and its virulence factors, as well as the activation of the NF-κB, MAPK, JAK/STAT signaling pathways, and DNA methylation following infection with host cells via virulence factors, resulting in abnormal gene expression. As a result, host-related proteins are regulated, and gastric cancer progression is influenced. This review provides insight into the H. pylori infection, summarizes a series of relevant papers, discusses the complex signaling pathways underlying molecular mechanisms, and proposes new approach to immunotherapy of this important disease.
Collapse
Affiliation(s)
- Yue Xi
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Zhang
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Qing-Xin Luo
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hai-Ning Gan
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yu-Shi Liu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shi-He Shao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xu-Hua Mao
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| |
Collapse
|
11
|
Kamarehei F, Saidijam M, Taherkhani A. Prognostic biomarkers and molecular pathways mediating Helicobacter pylori–induced gastric cancer: a network-biology approach. Genomics Inform 2023; 21:e8. [PMID: 37037466 PMCID: PMC10085735 DOI: 10.5808/gi.22072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/02/2023] [Indexed: 04/03/2023] Open
Abstract
Cancer of the stomach is the second most frequent cancer-related death worldwide. The survival rate of patients with gastric cancer (GC) remains fragile. There is a requirement to discover biomarkers for prognosis approaches. Helicobacter pylori in the stomach is closely associated with the progression of GC. We identified the genes associated with poor/favorable prognosis in H. pylori–induced GC. Multivariate statistical analysis was applied on the Gene Expression Omnibus (GEO) dataset GSE54397 to identify differentially expressed miRNAs (DEMs) in gastric tissues with H. pylori–induced cancer compared with the H. pylori–positive with non-cancerous tissue. A protein interaction map (PIM) was built and subjected to DEMs targets. The enriched pathways and biological processes within the PIM were identified based on substantial clusters. Thereafter, the most critical genes in the PIM were illustrated, and their prognostic impact in GC was investigated. Considering p-value less than 0.01 and |Log2 fold change| as >1, five microRNAs demonstrated significant changes among the two groups. Gene functional analysis revealed that the ubiquitination system, neddylation pathway, and ciliary process are primarily involved in H. pylori–induced GC. Survival analysis illustrated that the overexpression of DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, TIMP3, SMARCE1, and TXNIP was associated with poor prognosis, while increased MRPS5 expression was related to a favorable prognosis in GC patients. DOCK4, GNAS, CTGF, TGF-b1, ESR1, SELE, TIMP3, SMARCE1, TXNIP, and MRPS5 may be considered prognostic biomarkers for H. pylori–induced GC. However, experimental validation is necessary in the future.
Collapse
Affiliation(s)
- Farideh Kamarehei
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan 6517838678, Iran
- Corresponding author E-mail:
| |
Collapse
|
12
|
Li Z, Fu Y, Hu Y, Zhu Y, Hu L, Shi C, Zhang Y, Zhang J, Zhou S. Low-dose arecoline regulates distinct core signaling pathways in oral submucous fibrosis and oral squamous cell carcinoma. BMC Oral Health 2023; 23:171. [PMID: 36966276 PMCID: PMC10039525 DOI: 10.1186/s12903-023-02887-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/15/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Betel nut chewing plays a role in the pathogenesis of oral submucous fibrosis (OSF) and oral squamous cell carcinoma (OSCC). As the major active ingredient of the betel nut, the effect of arecoline and its underlying mechanism to OSF and OSCC pathogenesis remain unclear. METHODS Next-generation sequencing-based transcriptome and dRRBS analysis were performed on OSF and OSCC cells under low-dose arecoline exposure. Functional analyses were performed to compare the different roles of arecoline during OSF and OSCC pathogenesis, and key genes were identified. RESULTS In this study, we identified that low-dose arecoline promoted cell proliferation of both NFs and OSCC cells via the acceleration of cell cycle progression, while high-dose arecoline was cytotoxic to both NFs and OSCC cells. We performed for the first time the transcriptome and methylome landscapes of NFs and OSCC cells under low-dose arecoline exposure. We found distinct transcriptome and methylome profiles mediated by low-dose arecoline in OSF and OSCC cells, as well as specific genes and signaling pathways associated with metabolic disorders induced by low-dose arecoline exposure. Additionally, low-dose arecoline displayed different functions at different stages, participating in the modulation of the extracellular matrix via Wnt signaling in NFs and epigenetic regulation in OSCC cells. After exposure to low-dose arecoline, the node roles of FMOD in NFs and histone gene clusters in OSCC cells were found. Meanwhile, some key methylated genes induced by arecoline were also identified, like PTPRM and FOXD3 in NFs, SALL3 and IRF8 in OSCC cells, indicating early molecular events mediated by arecoline during OSF and OSCC pathogenesis. CONCLUSIONS This study elucidated the contribution of low-dose arecoline to OSF and OSCC pathogenesis and identified key molecular events that could be targeted for further functional studies and their potential as biomarkers.
Collapse
Affiliation(s)
- Zhenming Li
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - You Fu
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yuhua Hu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yun Zhu
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Longwei Hu
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chaoji Shi
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yi Zhang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jianjun Zhang
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Shanghui Zhou
- Department of Oral & Maxillofacial - Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
- Shanghai Research Institute of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
13
|
Hou J, Guo P, Lu Y, Jin X, Liang K, Zhao N, Xue S, Zhou C, Wang G, Zhu X, Hong H, Chen Y, Lu H, Wang W, Xu C, Han Y, Cai S, Liu Y. A prognostic 15-gene model based on differentially expressed genes among metabolic subtypes in diffuse large B-cell lymphoma. Pathol Oncol Res 2023; 29:1610819. [PMID: 36816541 PMCID: PMC9931744 DOI: 10.3389/pore.2023.1610819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023]
Abstract
The outcomes of patients with diffuse large B-cell lymphoma (DLBCL) vary widely, and about 40% of them could not be cured by the standard first-line treatment, R-CHOP, which could be due to the high heterogeneity of DLBCL. Here, we aim to construct a prognostic model based on the genetic signature of metabolic heterogeneity of DLBCL to explore therapeutic strategies for DLBCL patients. Clinical and transcriptomic data of one training and four validation cohorts of DLBCL were obtained from the GEO database. Metabolic subtypes were identified by PAM clustering of 1,916 metabolic genes in the 7 major metabolic pathways in the training cohort. DEGs among the metabolic clusters were then analyzed. In total, 108 prognosis-related DEGs were identified. Through univariable Cox and LASSO regression analyses, 15 DEGs were used to construct a risk score model. The overall survival (OS) and progression-free survival (PFS) of patients with high risk were significantly worse than those with low risk (OS: HR 2.86, 95%CI 2.04-4.01, p < 0.001; PFS: HR 2.42, 95% CI 1.77-3.31, p < 0.001). This model was also associated with OS in the four independent validation datasets (GSE10846: HR 1.65, p = 0.002; GSE53786: HR 2.05, p = 0.02; GSE87371: HR 1.85, p = 0.027; GSE23051: HR 6.16, p = 0.007) and PFS in the two validation datasets (GSE87371: HR 1.67, p = 0.033; GSE23051: HR 2.74, p = 0.049). Multivariable Cox analysis showed that in all datasets, the risk model could predict OS independent of clinical prognosis factors (p < 0.05). Compared with the high-risk group, patients in the low-risk group predictively respond to R-CHOP (p = 0.0042), PI3K inhibitor (p < 0.05), and proteasome inhibitor (p < 0.05). Therefore, in this study, we developed a signature model of 15 DEGs among 3 metabolic subtypes, which could predict survival and drug sensitivity in DLBCL patients.
Collapse
Affiliation(s)
- Jun Hou
- Department of Pathology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Guo
- Department of Pathology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yujiao Lu
- Burning Rock Biotech, Guangzhou, China
| | | | - Ke Liang
- Burning Rock Biotech, Guangzhou, China
| | - Na Zhao
- Department of Pathology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shunxu Xue
- Department of Pathology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengmin Zhou
- Department of Pathology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Xin Zhu
- Burning Rock Biotech, Guangzhou, China
| | - Huangming Hong
- Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yungchang Chen
- Medical Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafei Lu
- Burning Rock Biotech, Guangzhou, China
| | - Wenxian Wang
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | | | | | - Yang Liu
- Department of Pathology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China,*Correspondence: Yang Liu, ,
| |
Collapse
|
14
|
Amalia R, Panenggak NSR, Doohan D, Rezkitha YAA, Waskito LA, Syam AF, Lubis M, Yamaoka Y, Miftahussurur M. A comprehensive evaluation of an animal model for Helicobacter pylori-associated stomach cancer: Fact and controversy. Helicobacter 2023; 28:e12943. [PMID: 36627714 DOI: 10.1111/hel.12943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023]
Abstract
Even though Helicobacter pylori infection was the most causative factor of gastric cancer, numerous in vivo studies failed to induce gastric cancer using H. pylori infection only. The utilization of established animal studies in cancer research is crucial as they aim to investigate the coincidental association between suspected oncogenes and pathogenesis as well as generate models for the development and testing of potential treatments. The methods to establish gastric cancer using infected animal models remain limited, diverse in methods, and showed different results. This study investigates the differences in animal models, which highlight different pathological results in gaster by literature research. Electronic databases searched were performed in PubMed, Science Direct, and Cochrane, without a period filter. A total of 135 articles were used in this study after a full-text assessment was conducted. The most frequent animal models used for gastric cancer were Mice, while Mongolian gerbils and Transgenic mice were the most susceptible model for gastric cancer associated with H. pylori infection. Additionally, transgenic mice showed that the susceptibility to gastric cancer progression was due to genetic and epigenetic factors. These studies showed that in Mongolian gerbil models, H. pylori could function as a single agent to trigger stomach cancer. However, most gastric cancer susceptibilities were not solely relying on H. pylori infection, and numerous factors are involved in cancer progression. Further study using Mongolian gerbils and Transgenic mice is crucial to conduct and establish the best models for gastric cancer associated H. pylori.
Collapse
Affiliation(s)
- Rizki Amalia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Nur Syahadati Retno Panenggak
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Dalla Doohan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Anatomy, Histology and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yudith Annisa Ayu Rezkitha
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Internal Medicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Langgeng Agung Waskito
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Masrul Lubis
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan.,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Texas, Houston, USA
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
15
|
Vega-Benedetti AF, Loi E, Zavattari P. DNA methylation alterations caused by Leishmania infection may generate a microenvironment prone to tumour development. Front Cell Infect Microbiol 2022; 12:984134. [PMID: 36105147 PMCID: PMC9465093 DOI: 10.3389/fcimb.2022.984134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/10/2022] [Indexed: 01/10/2023] Open
Abstract
DNA methylation is an epigenetic signature consisting of a methyl group at the 5’ cytosine of CpG dinucleotides. Modifications in DNA methylation pattern have been detected in cancer and infectious diseases and may be associated with gene expression changes. In cancer development DNA methylation aberrations are early events whereas in infectious diseases these epigenetic changes may be due to host/pathogen interaction. In particular, in leishmaniasis, a parasitic disease caused by the protozoan Leishmania, DNA methylation alterations have been detected in macrophages upon infection with Leishmania donovani and in skin lesions from patients with cutaneous leishmaniasis. Interestingly, different types of cancers, such as cutaneous malignant lesions, lymphoma and hepatocellular carcinoma, have been diagnosed in patients with a history of leishmaniasis. In fact, it is known that there exists an association between cancer and infectious diseases. Leishmania infection may increase susceptibility to develop cancer, but the mechanisms involved are not entirely clear. Considering these aspects, in this review we discuss the hypothesis that DNA methylation alterations induced by Leishmania may trigger tumorigenesis in long term infection since these epigenetic modifications may enhance and accumulate during chronic leishmaniasis.
Collapse
|
16
|
Lei C, Gong D, Zhuang B, Zhang Z. Alterations in the gastric microbiota and metabolites in gastric cancer: An update review. Front Oncol 2022; 12:960281. [PMID: 36081564 PMCID: PMC9445122 DOI: 10.3389/fonc.2022.960281] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) is one of the leading causes of cancer mortality worldwide. Numerous studies have shown that the gastric microbiota can contribute to the occurrence and development of GC by generating harmful microbial metabolites, suggesting the possibility of discovering biomarkers. Metabolomics has emerged as an advanced promising analytical method for the analysis of microbiota-derived metabolites, which have greatly accelerated our understanding of host-microbiota metabolic interactions in GC. In this review, we briefly compiled recent research progress on the changes of gastric microbiota and its metabolites associated with GC. And we further explored the application of metabolomics and gastric microbiome association analysis in the diagnosis, prevention and treatment of GC.
Collapse
|
17
|
Vahidi S, Mirzajani E, Norollahi SE, Aziminezhad M, Samadani AA. Performance of DNA Methylation on the Molecular Pathogenesis of Helicobacter pylori in Gastric Cancer; targeted therapy approach. J Pharmacopuncture 2022; 25:88-100. [PMID: 35837145 PMCID: PMC9240405 DOI: 10.3831/kpi.2022.25.2.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, Gene Environment Interactions in Cardiovascular Pathophysiology (IGE-PCV), University of Lorraine, Nancy, France
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
18
|
Targeting the gut and tumor microbiota in cancer. Nat Med 2022; 28:690-703. [PMID: 35440726 DOI: 10.1038/s41591-022-01779-2] [Citation(s) in RCA: 267] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
Microorganisms within the gut and other niches may contribute to carcinogenesis, as well as shaping cancer immunosurveillance and response to immunotherapy. Our understanding of the complex relationship between different host-intrinsic microorganisms, as well as the multifaceted mechanisms by which they influence health and disease, has grown tremendously-hastening development of novel therapeutic strategies that target the microbiota to improve treatment outcomes in cancer. Accordingly, the evaluation of a patient's microbial composition and function and its subsequent targeted modulation represent key elements of future multidisciplinary and precision-medicine approaches. In this Review, we outline the current state of research toward harnessing the microbiome to better prevent and treat cancer.
Collapse
|
19
|
Multi-omic characterization of genome-wide abnormal DNA methylation reveals diagnostic and prognostic markers for esophageal squamous-cell carcinoma. Signal Transduct Target Ther 2022; 7:53. [PMID: 35210398 PMCID: PMC8873499 DOI: 10.1038/s41392-022-00873-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/23/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
This study investigates aberrant DNA methylations as potential diagnosis and prognosis markers for esophageal squamous-cell carcinoma (ESCC), which if diagnosed at advanced stages has <30% five-year survival rate. Comparing genome-wide methylation sites of 91 ESCC and matched adjacent normal tissues, we identified 35,577 differentially methylated CpG sites (DMCs) and characterized their distribution patterns. Integrating whole-genome DNA and RNA-sequencing data of the same samples, we found multiple dysregulated transcription factors and ESCC-specific genomic correlates of identified DMCs. Using featured DMCs, we developed a 12-marker diagnostic panel with high accuracy in our dataset and the TCGA ESCC dataset, and a 4-marker prognostic panel distinguishing high-risk patients. In-vitro experiments validated the functions of 4 marker host genes. Together these results provide additional evidence for the important roles of aberrant DNA methylations in ESCC development and progression. Our DMC-based diagnostic and prognostic panels have potential values for clinical care of ESCC, laying foundations for developing targeted methylation assays for future non-invasive cancer detection methods.
Collapse
|
20
|
Song L, Feng D, Tan J, Zhang H. Novel ferroptosis-related gene signature as a potential prognostic tool for gastric cancer. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives Gastric cancer (GC) is a major global health concern and is difficult to diagnose in the early stage. Ferroptosis is an iron-dependent, novel form of non-apoptotic cell death. In recent years, inducing the upregulation of ferroptosis-related genes has become a promising therapeutic alternative for cancers, especially those resistant to traditional treatments. However, the relationship between ferroptosis-related genes and GC remains to be further elucidated. Methods In the present study, mRNA expression profiles and corresponding clinical data of patients with GC were retrieved from The Cancer Genome Atlas and used as test data. A multigene signature was constructed using the least absolute shrinkage and selection operator Cox regression model. Data of patients with GC from ‘GSE84426’ in the Gene Expression Omnibus database were used as Training data for validation. Results More than half ferroptosis-related genes were differentially expressed in GC tissues and adjacent normal tissue samples (58.43%) in the test data. Univariate Cox regression analysis showed that 16 differentially expressed genes were related to the prognosis of GC (all p < 0.05). Expression profiles of the 16 DGEs were analysed using LASSO Cox regression, and a prognostic model was established by selecting the 10 best genes for λ. These 10 genes were used to construct a 10-gene signature and stratify patients into two risk groups. Based on the median risk score in the test data, patients with GC were divided into high- and low-risk groups ( p < 0.001). Risk score was an independent predictor for overall survival in multivariate Cox regression analyses ( p < 0.001 and <0.01 in the test and training data, respectively; hazard ratio >1). Receiver operating characteristic curve analysis confirmed the predictive capacity of the 10-gene signature. Functional analysis revealed that tumour-infiltrating lymphocytes, antigen-presenting cell co-stimulation, and cytokine-cytokine receptors were enriched; however, the immune status differed between the two risk groups. Conclusion The novel ferroptosis-related gene signature can be used for GC prognosis. In addition, ferroptosis may provide a novel alternative for the diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Ling Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dou Feng
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiajie Tan
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Choi JM, Kim SG. Effect of Helicobacter pylori Eradication on Epigenetic Changes in Gastric Cancer-related Genes. THE KOREAN JOURNAL OF HELICOBACTER AND UPPER GASTROINTESTINAL RESEARCH 2021. [DOI: 10.7704/kjhugr.2021.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that gastric carcinogenesis results from the progressive changes from chronic gastritis to gastric atrophy, intestinal metaplasia, dysplasia, and invasive carcinoma. Several genetic and epigenetic alterations are involved in this process, and Helicobacter pylori (H. pylori) infection is believed to induce the initiation and progression of these steps. From an epigenetic point of view, H. pylori induces hypermethylation of genes involved in the development of gastric cancer and regulates the expression of various microRNAs (miRNAs). These H. pylori-related epigenetic changes are accumulated not only at the site of neoplasm but also in the adjacent non-cancerous gastric mucosa. Thereby, a state vulnerable to gastric cancer known as an epigenetic field defect is formed. H. pylori eradication can have an effective chemopreventive effect in gastric carcinogenesis. However, the molecular biological changes that occur in the stomach environment during H. pylori eradication have not yet been established. Several studies have reported that H. pylori eradication can restore infection-related changes, especially epigenetic alterations in gastric cancer-related genes, but some studies have shown otherwise. Simply put, it appears that the recovery of methylated gastric cancer-related genes and miRNAs during H. pylori eradication may vary among genes and may also differ depending on the histological subtype of the gastric mucosa. In this review, we will discuss the potential mechanism of gastric cancer prevention by H. pylori eradication, mainly from an epigenetic perspective.
Collapse
|
22
|
Wu Z, Li Y, Niu Y, Lu J, Yan Z, Xu T, Guo Y, Dong Z, Guo W. FOXD3 suppresses epithelial-mesenchymal transition through direct transcriptional promotion of SMAD7 in esophageal squamous cell carcinoma. Mol Carcinog 2021; 60:859-873. [PMID: 34551139 DOI: 10.1002/mc.23350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023]
Abstract
The transcription factor forkhead box D3 (FOXD3) is an important member of the FOX family, which can maintain the pluripotent properties of cell clusters, neural crest, and trophoblastic progenitor cells in vivo. It has been shown that FOXD3 could affect proliferation, migration, and angiogenesis of various tumors and its deletion and overexpression in organisms will undoubtedly have important influence on the change of cell fate and the occurrence of tumors. However, the underlying functions and molecular mechanisms of FOXD3 in esophageal squamous cell carcinoma (ESCC) have not been fully clarified. According to the present study, the expression levels and functional roles of FOXD3 were investigated, and its prognostic value and molecular mechanisms in tumorigenesis and progression of ESCC were clarified. The expression level of FOXD3 was significantly downregulated in ESCC tissues and cell lines, and correlated with gender, family history of upper gastrointestinal cancer, TNM stage, depth of invasion, lymph node metastasis, and ESCC patients' survival. Moreover, FOXD3 inhibited cells migration and invasion as well as participated in TGF-β1 induced epithelial-mesenchymal transition process. Furthermore, a positive correlation between FOXD3 and SMAD family member 7 (SMAD7) was explored in ESCC. FOXD3 could directly bind to promoter regions of SMAD7 gene, leading to transcriptional promotion of SMAD7 in human esophageal cancer cells. Taken together, FOXD3 may play a tumor suppressor role in ESCC and may be applied as a new therapeutic target and prognostic marker for ESCC.
Collapse
Affiliation(s)
- Zheng Wu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Li
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunfeng Niu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Juntao Lu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhaoyang Yan
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tongxin Xu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanli Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhiming Dong
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
23
|
Moderate Prognostic Value of lncRNA FOXD2-AS1 in Gastric Cancer with Helicobacter pylori Infection. J Gastrointest Cancer 2021; 53:687-691. [PMID: 34478035 DOI: 10.1007/s12029-021-00686-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Gastric cancer (GC) is one of the most frequent tumors worldwide and identification of a sensitive and specific prognostic biomarker is of great importance. Long non-coding RNAs (lncRNAs) play crucial roles in tumorigenesis of various malignancies. In the present study, we investigated lncRNA FOXD2-AS1 expression in gastric tumors and assessed its potential as a prognostic biomarker. METHODS A total of 95 tumor and corresponding adjacent non-tumor tissue specimens were collected from patients with GC from Imam Reza hospital, Tabriz, Iran. Total RNA was isolated and FOXD2-AS1 expression was measured using quantitative reverse transcriptase (qRT)-PCR. RESULTS FOXD2-AS1 was significantly upregulated in tumor samples as compared to non-tumor tissues (P < 0.0001). In addition, higher expression of FOXD2-AS1 was significantly associated with lymph node metastasis and Helicobacter pylori infection. The receiver operating characteristic (ROC) curve analysis revealed that FOXD2-AS1 might be served as a potential prognostic biomarker for GC. CONCLUSION FOXD2-AS1 is upregulated in gastric tumors and can be used as a valuable biomarker in the prognosis of patients with GC.
Collapse
|
24
|
Yaoxing H, Danchun Y, Xiaojuan S, Shuman J, Qingqing Y, Lin J. Identification of Novel Susceptible Genes of Gastric Cancer Based on Integrated Omics Data. Front Cell Dev Biol 2021; 9:712020. [PMID: 34354996 PMCID: PMC8329722 DOI: 10.3389/fcell.2021.712020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common causes of cancer-related deaths in the world. This cancer has been regarded as a biological and genetically heterogeneous disease with a poorly understood carcinogenesis at the molecular level. Thousands of biomarkers and susceptible loci have been explored via experimental and computational methods, but their effects on disease outcome are still unknown. Genome-wide association studies (GWAS) have identified multiple susceptible loci for GC, but due to the linkage disequilibrium (LD), single-nucleotide polymorphisms (SNPs) may fall within the non-coding region and exert their biological function by modulating the gene expression level. In this study, we collected 1,091 cases and 410,350 controls from the GWAS catalog database. Integrating with gene expression level data obtained from stomach tissue, we conducted a machine learning-based method to predict GC-susceptible genes. As a result, we identified 787 novel susceptible genes related to GC, which will provide new insight into the genetic and biological basis for the mechanism and pathology of GC development.
Collapse
Affiliation(s)
- Huang Yaoxing
- Department of Gastroenterology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yu Danchun
- Department of Gastroenterology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Sun Xiaojuan
- Department of Gastroenterology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiang Shuman
- Department of Gastroenterology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan Qingqing
- Department of Gastroenterology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jia Lin
- Department of Gastroenterology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
25
|
|
26
|
Ma Z, Liu X, Paul ME, Chen M, Zheng P, Chen H. Comparative investigation of early-onset gastric cancer. Oncol Lett 2021; 21:374. [PMID: 33777198 DOI: 10.3892/ol.2021.12635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 02/09/2021] [Indexed: 12/22/2022] Open
Abstract
Early-onset gastric cancer (EOGC) is a serious social burden. For patients with EOGC, typically considered as those aged <45 years, the underlying cause of the disease remains unclear. In addition, several misunderstandings of EOGC remain in clinical practice. Upon diagnosis, numerous patients with EOGC are already at an advanced stage (stage IV) of the disease and are unable to benefit from treatment. Moreover, several conclusions and data obtained from different EOGC studies appear to be to contradictory. The literature indicates that the incidence of EOGC is gradually rising, and that EOGC differs from traditional and familial gastric cancer in terms of clinicopathological characteristics. Patients with EOGC typically exhibit low survival rates, poor prognosis, rapid disease progression, a low degree of differentiation (signet-ring cell tumors are common) and rapid lymph node and distant metastasis, among other characteristics. The molecular genetic mechanisms of EOGC are also significantly different from those of traditional gastric cancer. An improved definition of EOCG may provide a reference for clinical diagnosis and treatment, and clear guidelines may serve as a basis for more accurate diagnosis and the development of effective treatment strategies.
Collapse
Affiliation(s)
- Zhen Ma
- The Second Clinical Medical College, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Xiaolong Liu
- The Second Clinical Medical College, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Maswikiti Ewetse Paul
- The Second Clinical Medical College, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Mali Chen
- Department of Labor, Delivery and Recovery, Gansu Provincial Maternity and Childcare Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Peng Zheng
- The Second Clinical Medical College, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Hao Chen
- The Second Clinical Medical College, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730030, P.R. China.,Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
27
|
Zhao P, Cheng J, Li B, Nie D, Li C, Gui S, Wang H, Zhang Y. Up-regulation of the expressions of MiR-149-5p and MiR-99a-3p in exosome inhibits the progress of pituitary adenomas. Cell Biol Toxicol 2021; 37:633-651. [PMID: 33400021 DOI: 10.1007/s10565-020-09570-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 11/04/2020] [Indexed: 10/22/2022]
Abstract
This study explored the function of microRNAs (miRNAs) in invasive pituitary adenomas (IPA), and developed a microRNA-exosome strategy for the disease treatment. Differentially expressed miRNAs and tumor-associated markers in IPA, non-invasive pituitary adenoma (NIPA), and rat pituitary adenoma cells were identified by bioinformatics analysis and qRT-PCR. Then, the cells were treated by miR-149-5p and miR-99a-3p mimics or inhibitors, or incubated with modified exosome with overexpressed or silenced miRNAs. The cell behaviors were analyzed by molecular experiments. Xenograft assays were constructed by injection of pituitary adenoma cells and exosome into NU/NU nude mice. Tumor size, weight, and expressions of markers related to miRNAs and angiogenesis were determined. Target genes for miR-99a-3p and miR-149 were predicted and verified by bioinformatics analysis and molecular experiments. Twenty differentially expressed miRNAs were identified, among which miR-99a-3p and miR-149 were inhibited in both pituitary adenoma cells and tissues significantly. Expressions of E-cadherin and p53 were down-regulated, while those of MMP-2, MMP-9, N-cadherin, Vimentin, and VEGF were up-regulated in pituitary adenoma cells and tissues, especially in IPA. Further experiments revealed that overexpressed miR-149 and miR-99a-3p inhibited the growth and metastasis of pituitary adenoma cells and tube formation of endothelial cells. MiR-149 and miR-99a-3p overexpressed by exosome showed similar suppressive effects on cell viability, metastasis, tube formation ability, in vivo tumor growth, and expressions of angiogenesis-related markers. Further analysis showed that NOVA1, DTL, and RAB27B were targeted by miR-99a-3p. This study found that overexpressed miR-149-5p and miR-99a-3p induced by exosome could suppress the progression of IPA. 1. MiR-149-5p and miR-99a-3p affect the expression of EMT- and ECM-related markers and tumor-related genes in rat pituitary adenoma cells treated with exosomes. 2. Exosome inhibited the tumor growth. 3. Overexpressed miR-149-5p and miR-99a-3p induced by exosome.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Jianhua Cheng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Bin Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ding Nie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Chuzhong Li
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Songbai Gui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Hongyun Wang
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yazhuo Zhang
- Department of Cell Biology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Crowley E, Hussey S. Helicobacter pylori in Childhood. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2021:275-292.e12. [DOI: 10.1016/b978-0-323-67293-1.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
29
|
Zhao Y, Wang C, Goel A. Role of gut microbiota in epigenetic regulation of colorectal Cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188490. [PMID: 33321173 PMCID: PMC7856101 DOI: 10.1016/j.bbcan.2020.188490] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) remains one of the most commonly diagnosed cancers and a leading cause of cancer-related deaths worldwide. The stepwise accumulation of epigenetic alterations in the normal colorectal epithelium has been reported to act as a driving force for the initiation and promotion of tumorigenesis in CRC. From a mechanistic standpoint, emerging evidence indicates that within the colorectal epithelium, the diverse gut microbiota can interact with host cells to regulate multiple physiological processes. In fact, recent studies have found that the gut microbiota represents a potential cause of carcinogenesis, invasion, and metastasis via DNA methylation, histone modifications, and non-coding RNAs - providing an epigenetic perspective for the connection between the gut microbiota and CRC. Herein, we comprehensively review the recent research that provides a comprehensive yet succinct evidence connecting the gut microbiota to CRC at an epigenetic level, including carcinogenic mechanisms of cancer-related microbiota, and the potential for utilizing the gut microbiota as CRC biomarkers. These scientific findings highlight a promising future for manipulating the gut microbiota to improve clinical outcomes in patients suffering from CRC.
Collapse
Affiliation(s)
- Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
30
|
Panwar H, Rokana N, Aparna SV, Kaur J, Singh A, Singh J, Singh KS, Chaudhary V, Puniya AK. Gastrointestinal stress as innate defence against microbial attack. J Appl Microbiol 2020; 130:1035-1061. [PMID: 32869386 DOI: 10.1111/jam.14836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/09/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
The human gastrointestinal (GI) tract has been bestowed with the most difficult task of protecting the underlying biological compartments from the resident commensal flora and the potential pathogens in transit through the GI tract. It has a unique environment in which several defence tactics are at play while maintaining homeostasis and health. The GI tract shows myriad number of environmental extremes, which includes pH variations, anaerobic conditions, nutrient limitations, elevated osmolarity etc., which puts a check to colonization and growth of nonfriendly microbial strains. The GI tract acts as a highly selective barrier/platform for ingested food and is the primary playground for balance between the resident and uninvited organisms. This review focuses on antimicrobial defense mechanisms of different sections of human GI tract. In addition, the protective mechanisms used by microbes to combat the human GI defence systems are also discussed. The ability to survive this innate defence mechanism determines the capability of probiotic or pathogen strains to confer health benefits or induce clinical events respectively.
Collapse
Affiliation(s)
- H Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - N Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - S V Aparna
- Department of Dairy Microbiology, College of Dairy Science and Technology, Kerala Veterinary and Animal Science University, Mannuthy, Thrissur, India
| | - J Kaur
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - A Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - J Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - K S Singh
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - V Chaudhary
- Department of Microbiology, Punjab Agriculture University, Ludhiana, Punjab, India
| | - A K Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
31
|
Xu M, Zhu J, Liu S, Wang C, Shi Q, Kuang Y, Fang X, Hu X. FOXD3, frequently methylated in colorectal cancer, acts as a tumor suppressor and induces tumor cell apoptosis under ER stress via p53. Carcinogenesis 2020; 41:1253-1262. [PMID: 31784734 DOI: 10.1093/carcin/bgz198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/25/2019] [Accepted: 11/28/2019] [Indexed: 01/05/2023] Open
Abstract
Forkhead box D3 (FOXD3), an important member of the forkhead box transcription factor family, has many biological functions. However, the role and signaling pathways of FOXD3 in colorectal cancer (CRC) are still unclear. We examined FOXD3 expression and methylation in normal colon mucosa, CRC cell lines and primary tumors by reverse transcription-polymerase chain reaction, methylation-specific PCR and bisulfite genomic sequencing. We also evaluated its tumor-suppressive function by examining its modulation of apoptosis under endoplasmic reticulum (ER) stress in CRC cells. The FOXD3 target signal pathway was identified by western blotting, immunofluorescence and chromatin immunoprecipitation. We found that FOXD3 was frequently methylated and silenced in CRC cell lines and was downregulated in CRC tissues compared with paired adjacent non-tumor tissues. Meanwhile, low FOXD3 protein expression was significantly correlated with poor histopathological grading, lymph node metastasis and poor prognosis of patients, indicating its potential as a tumor marker that may be of potential value as a therapeutic target for CRC. Moreover, restoration of FOXD3 expression inhibited the proliferation and migration of tumor cells. FOXD3 also increased mitochondrial apoptosis through the unfolded protein response under ER stress. Furthermore, we found that FOXD3 could bind directly to the promoter of p53 and enhance its expression. Knockdown of p53 impaired the effect of apoptosis induced by FOXD3. In conclusion, we showed for the first time that FOXD3, which is frequently methylated in CRC, acted as a tumor suppressor inducing tumor cell apoptosis under ER stress via p53.
Collapse
Affiliation(s)
- Ming Xu
- Department of General Surgery and Key Laboratory of Endoscopic Technique Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jing Zhu
- Department of Oncology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuiping Liu
- Department of Cancer Pharmacology, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Chan Wang
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qinglan Shi
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yeye Kuang
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiao Fang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaotong Hu
- Department of Pathology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Li Z, Li Y, Jia Y, Ding B, Yu J. Rab1A knockdown represses proliferation and promotes apoptosis in gastric cancer cells by inhibition of mTOR/p70S6K pathway. Arch Biochem Biophys 2020; 685:108352. [PMID: 32240637 DOI: 10.1016/j.abb.2020.108352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023]
Abstract
Rab1A, a member of the Ras-like protein in rat brain (Rab) family, acts as an oncogene in a variety of malignant tumors. Previous studies reported that Rab1A was highly expressed in GC tissues. However, the function and molecular mechanism of Rab1A in gastric cancer (GC) development remain far from being addressed. Rab1A mRNA and protein levels were detected by qRT-PCR and western blot, respectively. Cell proliferation was evaluated by CCK-8 and BrdU incorporation assays. Apoptosis was estimated by flow cytometry analysis and western blot analysis of B cell lymphoma 2 (Bcl-2), myeloid cell leukemia 1 (Mcl-1), Bcl-2 associated X (Bax), and Bcl-2 homologous antagonist/killer (Bak) expression. Alteration of the mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase (p70S6K) signaling pathway was detected by western blot. We found that Rab1A expression at both mRNA and protein was upregulated in GC cells. Rab1A knockdown significantly inhibited cell proliferation and induced apoptosis in GC cells. Rab1A overexpression promoted proliferation, inhibited cisplatin-induced apoptosis, and increased xenograft growth. In addition, we found that Rab1A knockdown suppressed the mTOR/p70S6K pathway in GC cells. Moreover, activation of mTOR/p70S6K pathway by MHY1485 abolished the effects of Rab1A knockdown on cell proliferation and apoptosis. In conclusion, Rab1A knockdown repressed proliferation and promoted apoptosis in GC cells by inhibition of the mTOR/p70S6K pathway.
Collapse
Affiliation(s)
- Zhong Li
- Department of General Surgery, Nanyang First People's Hospital, Nanyang, 473012, China
| | - Yuan Li
- Department of General Surgery, Nanyang First People's Hospital, Nanyang, 473012, China
| | - Yunhao Jia
- Department of General Surgery, Nanyang First People's Hospital, Nanyang, 473012, China
| | - Bo Ding
- Department of General Surgery, Nanyang First People's Hospital, Nanyang, 473012, China
| | - Jinsong Yu
- Department of General Surgery, Nanyang First People's Hospital, Nanyang, 473012, China.
| |
Collapse
|
33
|
Ge Y, Ma G, Liu H, Lin Y, Zhang G, Du M, Wang M, Chu H, Zhang H, Zhang Z. MUC1 is associated with TFF2 methylation in gastric cancer. Clin Epigenetics 2020; 12:37. [PMID: 32122390 PMCID: PMC7053135 DOI: 10.1186/s13148-020-00832-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/23/2020] [Indexed: 01/14/2023] Open
Abstract
Background Emerging evidence has shown that MUC1 and TFF2 play crucial roles in the H. pylori-infected pathogenesis of gastric cancer (GC). A recent study revealed that H. pylori infection induced obviously increased Tff2 methylation levels in Muc1−/− mice compared with controls. However, little is known of the molecular mechanism on MUC1 regulating the expression of TFF2. Methods We conducted a correlation analysis of MUC1 and TFF2 in public databases and our adjacent GC tissues. Besides, MUC1 overexpression vector or small interfering RNA (siRNA) was transfected into GC cells to assess the change in TFF2 expression. Furthermore, the methylation status of TFF2 was measured by bisulfite sequencing PCR (BSP). Results The expression of MUC1 was significantly lower in non-cardia and cardia tumor tissues than that in normal tissues. Downregulation of TFF2 expression was also observed in GC tissues. In addition, we found that MUC1 expression was positively associated with TFF2 expression in GC tissues, especially among GC patients with H. pylori infection. Overexpression of MUC1 in BGC-823 and SGC-7901 cell lines substantially increased the TFF2 expression, whereas knockdown of MUC1 reverted this effect. Moreover, MUC1 was negatively related to the methylation of TFF2 in the co-expression analysis. The results of BSP experiments showed that compared with negative vector group, the methylation level of TFF2 was decreased in GC cells transfected with MUC1 overexpression vector. Additionally, survival analysis indicated that GC patients with lower level of MUC1 or TFF2 had a worse outcome. Conclusion Our results indicated that MUC1 was associated with the methylation of TFF2, which may have implications for TFF2 expression in GC. These findings warrant further research toward the underlying mechanism of MUC1 influenced the TFF2 methylation.
Collapse
Affiliation(s)
- Yuqiu Ge
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Gaoxiang Ma
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanting Liu
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yadi Lin
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Gang Zhang
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Haiyan Zhang
- Department of Gastroenterology, Xuzhou Clinical College of Nanjing Medical University, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221009, China.
| | - Zhengdong Zhang
- Department of Environmental Genomics, School of Public Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, China. .,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
34
|
Zhao R, Liu Z, Xu W, Song L, Ren H, Ou Y, Liu Y, Wang S. Helicobacter pylori infection leads to KLF4 inactivation in gastric cancer through a TET1-mediated DNA methylation mechanism. Cancer Med 2020; 9:2551-2563. [PMID: 32017451 PMCID: PMC7131848 DOI: 10.1002/cam4.2892] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/04/2020] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Krüppel-like factor 4 (KLF4) has a tumor suppressor role in the progression of gastric cancer (GC), and inhibition or loss of KLF4 expression was identified in GC. The aim of this study was to explore the new molecular mechanism of KLF4 inactivation in gastric cancer. Herein, we report that Helicobacter pylori infection or Cag pathogenicity island protein A (CagA) gene transduction resulted in KLF4 expression downregulation and promoted gastric epithelial cell and gastric cancel cell proliferation, migration, and colony formation. Mechanistically, we found that CagA gene transduction led to DNA methylation of the KLF4 promoter, an effect that was relevant to the significant downregulation of TET1 expression. Causally, knockdown of TET1 expression decreased KLF4 expression, whereas overexpression of TET1 had the opposite effect. Clinically, we found that KLF4 expression and the 5-hmC levels were lower in GC cells with H pylori infection than in GC cells without H pylori infection. Thus, our study not only sheds new light on how H pylori infection promotes the progression of GC but also elucidates a novel mechanism of KLF4 inactivation in GC pathogenesis. During pathogenesis, an alteration in the H pylori/CagA-TET1-KLF4 signaling pathway plays a critical role, suggesting that this pathway may be a prospective target for gastric carcinoma intervention and therapy.
Collapse
Affiliation(s)
- Rongrong Zhao
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China.,Department of Pathology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhengxia Liu
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Wenting Xu
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Le Song
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Haifeng Ren
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Yang Ou
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Yakun Liu
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| | - Siying Wang
- Department of Physiopathology, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
35
|
Wang S, Chen Z, Zhu S, Lu H, Peng D, Soutto M, Naz H, Peek R, Xu H, Zaika A, Xu Z, El-Rifai W. PRDX2 protects against oxidative stress induced by H. pylori and promotes resistance to cisplatin in gastric cancer. Redox Biol 2020; 28:101319. [PMID: 31536951 PMCID: PMC6811995 DOI: 10.1016/j.redox.2019.101319] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is the main risk factor for gastric cancer. The role of antioxidant enzyme peroxiredoxin 2 (PRDX2) in gastric tumorigenesis remains unknown. In vitro (AGS and SNU-1 cell lines) and in vivo mouse models were utilized to investigate the role of PRDX2 in response to H. pylori infection (7.13, J166 or PMSS1 strain). We detected high levels of PRDX2 expression in gastric cancer tissues. Gastric cancer patients with high expression levels of PRDX2 had significantly worse overall and progression-free survival than those with low levels. H. pylori infection induced activation of NF-κB with increased expression of PRDX2, in in vitro and in vivo models. The knockdown of PRDX2 led to an increase in the levels of reactive oxygen species (ROS), oxidative DNA damage, and double-strand DNA breaks, in response to H. pylori infection, as measured by H2DCFDA, 8-oxoguanine, and p-H2AXγ assays. Luciferase reporter and ChIP assays confirmed the presence of a putative binding site of NF-κB-p65 on PRDX2 promoter region. The inhibition of PRDX2 significantly sensitized AGS and SNU-1 cells to cisplatin treatment. Our data suggest that the future development of therapeutic approaches targeting PRDX2 may be useful in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Sen Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zheng Chen
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Shoumin Zhu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Heng Lu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Dunfa Peng
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Mohammed Soutto
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Huma Naz
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Richard Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, 37232, TN, USA
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Alexander Zaika
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA.
| |
Collapse
|
36
|
Sabit H, Cevik E, Tombuloglu H. Colorectal cancer: The epigenetic role of microbiome. World J Clin Cases 2019; 7:3683-3697. [PMID: 31799293 PMCID: PMC6887622 DOI: 10.12998/wjcc.v7.i22.3683] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in men (746000 cases per year) and the second most common cancer in women globally (614000 cases per year). The incidence rate of CRC in developed countries (737000 cases per year) is higher than that in less developed countries (624000 cases per year). CRC can arise from genetic causes such as chromosomal instability and microsatellite instability. Several etiologic factors underlie CRC including age, diet, and lifestyle. Gut microbiota represent a proven cause of the disease, where they play pivotal roles in modulating and reshaping the host epigenome. Several active microbial metabolites have been found to drive carcinogenesis, invasion, and metastasis via modifying both the methylation landscape along with histone structure in intestinal cells. Gut microbiota, in response to diet, can exert both beneficial and harmful functions in humans, according to the intestinal balance of number and types of these bacteria. Although the intestinal microbial community is diverse among individuals, these microbes cumulatively produce 100-fold more proteins than the human genome itself, which calls for further studies to elaborate on the complicated interaction between these microorganisms and intestinal cells. Therefore, understanding the exact role that gut microbiota play in inducing CRC will help attain reliable strategies to precisely diagnose and treat this fatal disease.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Emre Cevik
- Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
37
|
Birkett N, Al-Zoughool M, Bird M, Baan RA, Zielinski J, Krewski D. Overview of biological mechanisms of human carcinogens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:288-359. [PMID: 31631808 DOI: 10.1080/10937404.2019.1643539] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review summarizes the carcinogenic mechanisms for 109 Group 1 human carcinogens identified as causes of human cancer through Volume 106 of the IARC Monographs. The International Agency for Research on Cancer (IARC) evaluates human, experimental and mechanistic evidence on agents suspected of inducing cancer in humans, using a well-established weight of evidence approach. The monographs provide detailed mechanistic information about all carcinogens. Carcinogens with closely similar mechanisms of action (e.g. agents emitting alpha particles) were combined into groups for the review. A narrative synopsis of the mechanistic profiles for the 86 carcinogens or carcinogen groups is presented, based primarily on information in the IARC monographs, supplemented with a non-systematic review. Most carcinogens included a genotoxic mechanism.
Collapse
Affiliation(s)
- Nicholas Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mustafa Al-Zoughool
- Department of Community and Environmental Health, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Michael Bird
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert A Baan
- International Agency for Research on Cancer, Lyon, France
| | - Jan Zielinski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Risk Sciences International, Ottawa, Canada
| |
Collapse
|
38
|
Yin L, Li W, Wang G, Shi H, Wang K, Yang H, Peng B. NR1B2 suppress kidney renal clear cell carcinoma (KIRC) progression by regulation of LATS 1/2-YAP signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:343. [PMID: 31391070 PMCID: PMC6686564 DOI: 10.1186/s13046-019-1344-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Kidney Renal Clear Cell Carcinoma (KIRC) accounts for 75% of all renal cancers. Previous study had conflict evidences regarding NR1B2 role in cancer, and its expression and biological role in KIRC remained unclear. Our aims were to characterize the role of NR1B2 in KIRC. METHODS NR1B2 expression in TCGA database were analyzed. Clinical KIRC samples were examined by RT-PCR, western blot and tissue microarray (TMA). The relationship between NR1B2 expression and the clinical characteristics were evaluated. KIRC cell line were stably overexpressed NR1B2 or with an NR1B2 knocked down using lentivirus system. The cells were analyzed by migration and invasion assay, then injected into nude mice to assess tumor growth and metastasis. EMT marker expression and LATS 1/2-YAP pathway demonstration were detected by the TCGA database and western blot. RESULTS The expression of NR1B2 in KIRC was significantly down-regulated in the TCGA database and our clinical samples. Moreover, NR1B2 expression negatively correlated with tumor stage and positively correlated with overall and disease-free survival rate. Univariate and multivariate analyses indicated the expression level of NR1B2 could be used as an independent factor for predicting the prognosis of KIRC. Overexpression NR1B2 significantly inhibited and knockdown NR1B2 markedly promoted KIRC cell invasion and metastasis both in vitro and in vivo. Mechanistic investigations revealed that NR1B2 might be a tumor suppressor to inhibit EMT through the LATS1/2-YAP pathway. CONCLUSIONS our results defined NR1B2 as a tumor suppressor in KIRC that restricted EMT by the LATS1/2-YAP pathway.
Collapse
Affiliation(s)
- Lei Yin
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Wenjia Li
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangchun Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Heng Shi
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China.,Department of Urology, Shanghai Tenth People's Hospital, Nanjing Medical University, Nanjing, China
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China
| | - Huan Yang
- Department of Urology, Tongji Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, China.
| |
Collapse
|
39
|
Xu Z, Yu Z, Tan Q, Wei C, Tang Q, Wang L, Hong Y. MiR-876-5p regulates gastric cancer cell proliferation, apoptosis and migration through targeting WNT5A and MITF. Biosci Rep 2019; 39:BSR20190066. [PMID: 31171711 PMCID: PMC6597843 DOI: 10.1042/bsr20190066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are reported to play critical roles in various cancers. Recently, mounting miRNAs are found to exert oncogenic or tumor inhibitory role in gastric cancer (GC), however, their potential molecular mechanism in GC remains ill-defined. Currently, we aimed to elucidate the functional and mechanistic impacts of a novel miRNA on GC cellular process. The significant down-regulation of miR-876-5p in GC cells attracted our attention. In function, we performed gain-of-function assays and found that miR-876-5p overexpression repressed proliferative, anti-apoptotic and migratory abilities and epithelial-mesenchymal transition (EMT) of GC cells. By applying bioinformatics prediction and mechanism experiments, we verified that miR-876-5p could double-bind to the 3' untranslated regions (3'UTRs) of Wnt family member 5A (WNT5A) and melanogenesis associated transcription factor (MITF), thus regulating their mRNA and protein levels. Both WNT5A and MITF were highly expressed in GC cells. Additionally, we conducted loss-of-function assays and confirmed the oncogenic roles of WNT5A and MITF in GC. Finally, rescue assay uncovered a fact that miR-876-5p suppressed GC cell viability and migration, but induced cell apoptosis via targeting WNT5A and MITF. Taken together, we might offer a valuable evidence for miR-876-5p role in GC development.
Collapse
Affiliation(s)
- Zhenglei Xu
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Zhichao Yu
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Qinghong Tan
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Cheng Wei
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Qi Tang
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Lisheng Wang
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| | - Yingcai Hong
- Department of Thoracic Surgery, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen 518000, Guangdong, China
| |
Collapse
|
40
|
Guan Y, Bhandari A, Xia E, Yang F, Xiang J, Wang O. lncRNA FOXD3-AS1 is associated with clinical progression and regulates cell migration and invasion in breast cancer. Cell Biochem Funct 2019; 37:239-244. [PMID: 31017311 DOI: 10.1002/cbf.3393] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022]
Abstract
For women, breast cancer is the most commonly diagnosed cancer and the leading cause of women deaths due to cancer. In recent years, increasing long noncoding RNA (lncRNA) has been discovered to be related to tumorigenesis, progression, and prognosis. FOXD3-AS1 is a lncRNA and has been identified as a cancer-promoting gene in glioma. By analysing the FOXD3-AS1 expression in The Cancer Genome Atlas (TCGA) database, we found that FOXD3-AS1 has significantly high expression in breast cancer tumour comparing with the normal tissue. And patients with low FOXD3-AS1 expression had greater survival probability, smaller tumour size, and less distant metastasis. This leads us to peep inquisitively biological function of FOXD3-AS1 in breast cancer. Biological assays demonstrated that silenced FOXD3-AS1 impaired cell proliferation and inhibited cell migration and invasion in breast cancer cell lines (BT549, MDA-MB-231). These results suggest that FOXD3-AS1 could play a potential diagnostics or prognostic biomarker for patients with breast cancer. SIGNIFICANCE OF THE STUDY: We demonstrated that lncRNA FOXD3-AS1 has significantly high expression in breast cancer cell lines comparing with the normal tissue. Besides, our findings suggested that lncRNA FOXD3-AS1 could play a potential diagnostics or prognostic biomarker for patients with breast cancer.
Collapse
Affiliation(s)
- Yaoyao Guan
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Adheesh Bhandari
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Erjie Xia
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Fan Yang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Jingjing Xiang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| |
Collapse
|
41
|
Xu W, Li J, Li L, Hou T, Cai X, Liu T, Yang X, Wei H, Jiang C, Xiao J. FOXD3 Suppresses Tumor-Initiating Features in Lung Cancer via Transcriptional Repression of WDR5. Stem Cells 2019; 37:582-592. [PMID: 30703266 DOI: 10.1002/stem.2984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Wei Xu
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Jialin Li
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences; East China Normal University; Shanghai People's Republic of China
| | - Tianhui Hou
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
- The School of Sports and Health; East China Normal University; Shanghai People's Republic of China
| | - Xiaopan Cai
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Tielong Liu
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Xinghai Yang
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Haifeng Wei
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Cong Jiang
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Jianru Xiao
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| |
Collapse
|
42
|
Muhammad JS, Eladl MA, Khoder G. Helicobacter pylori-induced DNA Methylation as an Epigenetic Modulator of Gastric Cancer: Recent Outcomes and Future Direction. Pathogens 2019; 8:23. [PMID: 30781778 PMCID: PMC6471032 DOI: 10.3390/pathogens8010023] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is ranked fifth in cancer list and has the third highest mortality rate. Helicobacter pylori is a class I carcinogen and a predominant etiological factor of gastric cancer. H. pylori infection may induce carcinogenesis via epigenetic alterations in the promoter region of various genes. H. pylori is known to induce hypermethylation-silencing of several tumor suppressor genes in H. pylori-infected cancerous and H. pylori-infected non-cancerous gastric mucosae. This article presents a review of the published literature mainly from the last year 15 years. The topic focuses on H. pylori-induced DNA methylation linked to gastric cancer development. The authors have used MeSH terms "Helicobacter pylori" with "epigenetic," "DNA methylation," in combination with "gastric inflammation", gastritis" and "gastric cancer" to search SCOPUS, PubMed, Ovid, and Web of Science databases. The success of epigenetic drugs such as de-methylating agents in the treatment of certain cancers has led towards new prospects that similar approaches could also be applied against gastric cancer. However, it is very important to understand the role of all the genes that have already been linked to H. pylori-induced DNA methylation in order to in order to evaluate the potential benefits of epigenetic drugs.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE.
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE.
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE.
| |
Collapse
|
43
|
Xu BN, Zhang L, Zhang DD, Song CY, Tian DL, Jiang WJ. Serum Fork-Head Box D3 (FOXD3) Expression Is Down-Regulated in and Associated with Diagnosis of Patients with Non-Small Cell Lung Cancer. Med Sci Monit 2018; 24:9504-9508. [PMID: 30596382 PMCID: PMC6324864 DOI: 10.12659/msm.896748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background The aim of this study was to detect the expression of fork-head box D3 (FOXD3) and investigate its diagnostic value in patients with non-small cell lung cancer (NSCLC). Material/Methods The relative expression of FOXD3 at mRNA and protein levels was determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting analysis, respectively. Chi-square test was used to explore the relevance of FOXD3 expression with clinical features of NSCLC patients. A receiver operating characteristic (ROC) curve was built to estimate the diagnostic value of FOXD3 in distinguishing NSCLC patients from healthy controls. Results Serum FOXD3 expression was weakly expressed in NSCLC patients compared to the controls at mRNA and protein levels (P<0.001) and low FOXD3 expression was positively correlated with TNM stage, lymph node metastasis, and differentiation. The ROC curve indicated that FOXD3 acts as a diagnostic bio-marker for NSCLC patients, with an AUC of 0.826 corresponding to a sensitivity of 77.1% and a specificity of 74.6%, and an optimal cutoff point of 2.38. Conclusions Decreased expression of serum FOXD3 was observed in NSCLC patients, and it was found to be a potential molecular marker for the diagnosis of NSCLC.
Collapse
Affiliation(s)
- Bao-Ning Xu
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Lei Zhang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Dan-Dan Zhang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Cheng-Yang Song
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Da-Li Tian
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Wen-Jun Jiang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
44
|
Ge Y, Wu Q, Ma G, Shao W, Liu H, Zhang Q, Xin J, Xue Y, Du M, Zhao Q, Wang M, Chu H, Zhang Z. Hypermethylation of EIF4E promoter is associated with early onset of gastric cancer. Carcinogenesis 2018; 39:66-71. [PMID: 29342273 DOI: 10.1093/carcin/bgx110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/29/2017] [Indexed: 12/14/2022] Open
Abstract
Although gastric cancer (GC) in young adults (≤ 45 years) accounts for fewer than 10% of newly diagnosed cases, the young patients are more likely to have advanced disease at presentation compared with elderly patients. Previous studies have identified that the DNA methylation of genomes are different during aging. Our study aimed to explore the association between DNA methylation and the onset of GC. We applied Illumina HumanMethylation450 BeadChip to examine methylation expression profiles and compared methylation expression patterns in five early onset GC patients and seven elderly patients. Additionally, we evaluated the associations of methylation expression with different clinicopathological characteristics of GC. Our results showed that the pattern of genome-wide methylation expression was significantly different between early onset and elderly GC. The top 10 hypomethylation and hypermethylation CpG sites were selected for further analyses in The Cancer Genome Atlas (TCGA) database. We found that the hypermethylation of cg11037477, located at the promoter of EIF4E, was significantly associated with age at diagnosis and the expression of EIF4E. Besides, GC patients with high level of cg11037477 were more likely to have advance disease with T3/T4 invasion and III/IV stage. The cg11037477 hypermethylation and EIF4E down-expression were significantly related to poor survival of GC patients. Our study provides new insights into the molecular mechanism of early onset patients with GC and suggests that methylation of cg11037477 and expression of EIF4E may act as prognostic markers in GC.
Collapse
Affiliation(s)
- Yuqiu Ge
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qin Wu
- Department of Medical Technology, Yancheng Insititute of Health Sciences, Yancheng, China
| | - Gaoxiang Ma
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Shao
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiang Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yao Xue
- Department of Hematology and oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qinghong Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Fattahi S, Golpour M, Amjadi-Moheb F, Sharifi-Pasandi M, Khodadadi P, Pilehchian-Langroudi M, Ashrafi GH, Akhavan-Niaki H. DNA methyltransferases and gastric cancer: insight into targeted therapy. Epigenomics 2018; 10:1477-1497. [PMID: 30325215 DOI: 10.2217/epi-2018-0096] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer is a major health problem worldwide occupying most frequent causes of cancer-related mortality. In addition to genetic modifications, epigenetic alterations catalyzed by DNA methyltransferases (DNMTs) are a well-characterized epigenetic hallmark in gastric cancer. The reversible nature of epigenetic alterations and central role of DNA methylation in diverse biological processes provides an opportunity for using DNMT inhibitors to enhance the efficacy of chemotherapeutics. In this review, we discussed key factors or mechanisms such as SNPs, infections and genetic modifications that trigger DNMTs level modification in gastric cancer, and their potential roles in cancer progression. Finally, we focused on how inhibitors of the DNMTs can most effectively be used for the treatment of gastric cancer with multidrug resistance.
Collapse
Affiliation(s)
- Sadegh Fattahi
- Cellular & Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, 4717647745, Babol, Iran.,North Research Center, Pasteur Institute, Amol, 4615885399, Iran
| | - Monireh Golpour
- Molecular & Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Science, Sari, 4817844718, Iran
| | - Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, 4717647745, Babol, Iran
| | - Marzieh Sharifi-Pasandi
- Molecular & Cell Biology Research Center, Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Science, Sari, 4817844718, Iran
| | - Parastesh Khodadadi
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, 4717647745, Babol, Iran
| | | | - Gholam Hossein Ashrafi
- School of Life Science, Pharmacy & Chemistry, SEC Faculty, Cancer Theme, Kingston University London, Kingston upon Thames, London KT1 2EE, UK
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, 4717647745, Babol, Iran
| |
Collapse
|
46
|
Mills JC, Samuelson LC. Past Questions and Current Understanding About Gastric Cancer. Gastroenterology 2018; 155:939-944. [PMID: 29964037 PMCID: PMC6174109 DOI: 10.1053/j.gastro.2018.06.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Jason C Mills
- Departments of Medicine, Developmental Biology, Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri.
| | - Linda C Samuelson
- Departments of Molecular & Integrative Physiology and Internal Medicine, the University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
47
|
Upregulation of the long noncoding RNA FOXD2-AS1 promotes carcinogenesis by epigenetically silencing EphB3 through EZH2 and LSD1, and predicts poor prognosis in gastric cancer. Oncogene 2018; 37:5020-5036. [PMID: 29789713 DOI: 10.1038/s41388-018-0308-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 03/27/2018] [Accepted: 04/18/2018] [Indexed: 01/21/2023]
Abstract
Accumulating data indicate that long noncoding RNAs (lncRNAs) serve as important modulators in biological processes and are dysregulated in diverse tumors. The function of FOXD2-AS1 in gastric cancer (GC) progression and related biological mechanisms remain undefined. A comprehensive analysis identified that FOXD2-AS1 enrichment was upregulated markedly in GC and positively correlated with a large tumor size, a later pathologic stage, and a poor prognosis. Gene-set enrichment analysis (GSEA) in GEO datasets uncovered that cell cycle and DNA replication associated genes were enriched in patients with high FOXD2-AS1 expression. Loss of FOXD2-AS1 function inhibited cell growth via inhibiting the cell cycle in GC, whereas upregulation of FOXD2-AS1 expression promoted cancer progression. The enhancer of zeste homolog 2 (EZH2) and lysine (K)-specific demethylase 1A (LSD1) proteins were found to serve as binding partners of FOXD2-AS1 and mediators of FOXD2-AS1 function. Mechanically, FOXD2-AS1 promoted GC tumorigenesis partly through EZH2 and LSD1 mediated EphB3 downregulation. The present results revealed that FOXD2-AS1 acted as a tumor inducer in GC partly through EphB3 inhibition by direct interaction with EZH2 and LSD1, and may prove to be a potential biomarker of carcinogenesis.
Collapse
|
48
|
Vaziri F, Tarashi S, Fateh A, Siadat SD. New insights of Helicobacter pylori host-pathogen interactions: The triangle of virulence factors, epigenetic modifications and non-coding RNAs. World J Clin Cases 2018; 6:64-73. [PMID: 29774218 PMCID: PMC5955730 DOI: 10.12998/wjcc.v6.i5.64] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/09/2018] [Accepted: 03/07/2018] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a model organism for understanding host-pathogen interactions and infection-mediated carcinogenesis. Gastric cancer and H. pylori colonization indicates the strong correlation. The progression and exacerbation of H. pylori infection are influenced by some factors of pathogen and host. Several virulence factors involved in the proper adherence and attenuation of immune defense to contribute the risk of emerging gastric cancer, therefore analysis of them is very important. H. pylori also modulates inflammatory and autophagy process to intensify its pathogenicity. From the host regard, different genetic factors particularly affect the development of gastric cancer. Indeed, epigenetic modifications, MicroRNA and long non-coding RNA received more attention. Generally, various factors related to pathogen and host that modulate gastric cancer development in response to H. pylori need more attention due to develop an efficacious therapeutic intervention. Therefore, this paper will present a brief overview of host-pathogen interaction especially emphases on bacterial virulence factors, interruption of host cellular signaling, the role of epigenetic modifications and non-coding RNAs.
Collapse
Affiliation(s)
- Farzam Vaziri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Samira Tarashi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Abolfazl Fateh
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| |
Collapse
|
49
|
Wong CC, Li W, Chan B, Yu J. Epigenomic biomarkers for prognostication and diagnosis of gastrointestinal cancers. Semin Cancer Biol 2018; 55:90-105. [PMID: 29665409 DOI: 10.1016/j.semcancer.2018.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
Altered epigenetic regulation is central to many human diseases, including cancer. Over the past two decade, major advances have been made in our understanding of the role of epigenetic alterations in carcinogenesis, particularly for DNA methylation, histone modifications and non-coding RNAs. Aberrant hypermethylation of DNA at CpG islands is a well-established phenomenon that mediates transcriptional silencing of tumor suppressor genes, and it is an early event integral to gastrointestinal cancer development. As such, detection of aberrant DNA methylation is being developed as biomarkers for prognostic and diagnostic purposes in gastrointestinal cancers. Diverse tissue types are suitable for the analyses of methylated DNA, such as tumor tissues, blood, plasma, and stool, and some of these markers are already utilized in the clinical setting. Recent advances in the genome-wide epigenomic approaches are enabling the comprehensive mapping of the cancer methylome, thus providing new avenues for mining novel biomarkers for disease prognosis and diagnosis. Here, we review the current knowledge on DNA methylation biomarkers for the prognostication and non-invasive diagnosis of gastrointestinal cancers and highlight their clinical application.
Collapse
Affiliation(s)
- Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| | - Weilin Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Bertina Chan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
50
|
Song K, Lv T, Chen Y, Diao Y, Yao Q, Wang Y. Emodin inhibits TGF-β2 by activating the FOXD3/miR‑199a axis in ovarian cancer cells in vitro. Oncol Rep 2018; 39:2063-2070. [PMID: 29512773 PMCID: PMC5928761 DOI: 10.3892/or.2018.6301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/02/2018] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is a highly metastatic malignancy and a leading cause of cancer-related death in postmenopausal women. Emodin is a natural anthraquinone isolated from several traditional Chinese medicines including Rhubarb and Polygonum cuspidatum. Recently, emodin was demonstrated to reduce the growth of human ovarian carcinoma cells. However, the mechanism remains unclear. In the present study, we identified that transforming growth factor (TGF)-β2 was significantly affected by emodin treatment in A2780 cells using microarray analysis. MicroRNA (miR)-199a was predicted as a potential miRNA targeting TGF-β2 by in silico prediction using TargetScan. The mRNA and protein levels of TGF-β2 were both significantly reduced by miR-199a. Spearman's correlation analysis revealed a significant correlation between the expression level of miR-199a and TGF-β2 in human ovarian cancer specimens. Silencing of miR-199a with miR-199a inhibitor significantly restored the reduction in TGF-β2 expression induced by emodin. Additionally, cell viability and colony formation of A2780 cells were markedly inhibited by emodin treatment, which was mediated by miR-199a. We analyzed the primary mature miR-199a-1 and miR-199a-2 transcripts in A2780 cells treated with emodin or dimethyl sulfoxide (DMSO) and found that only pri-miR-199a-1 was regulated by emodin. A conserved binding site of Forkhead box D3 (FOXD3) was identified within pri-miR-199a-1. We further revealed that miR-199a expression was significantly regulated by FOXD3. Taken together, the present study demonstrated that emodin may directly promote FOXD3 expression and sequentially activates miR-199a, which in turn suppresses the expression of TGF-β2 to reduce cell viability and colony formation of A2780 cells.
Collapse
Affiliation(s)
- Kejuan Song
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Teng Lv
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yulong Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yuchao Diao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Qin Yao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yankui Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|