1
|
Zhang Y, Lin Z, Yao Q, He J, Feng H, Zhang W, Liu Z, Yuan T, Liu X, Ding L. Milk peptides alleviate irritable bowel syndrome by suppressing colonic mast cell activation and prostaglandin E2 production in mice. Food Res Int 2025; 211:116470. [PMID: 40356133 DOI: 10.1016/j.foodres.2025.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/01/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
This study aimed to investigate the effect of milk peptides on irritable bowel syndrome (IBS). The mice were intragastrally administered with casein or whey protein hydrolysates at a dose of 1 g/kg body weight/day for 24 days and were subjected to Citrobacter rodentium infection and water avoidance stress from day 7 to 24. Results indicated that casein and whey protein hydrolysates effectively reduced diarrhea, anxiety, and visceral hypersensitivity in IBS mice. Casein and whey protein hydrolysates regulated gut microbiota composition and increased the abundance of short-chain fatty acid-producing bacteria, such as Alloprevotella and Alistipes. Whey protein hydrolysate significantly increased the mRNA levels of zonula occludens-1 (ZO-1) and claudin-1 in the colon, while casein hydrolysate significantly improved the mRNA levels of occludin. Casein and whey protein hydrolysates both decreased the levels of pro-inflammatory cytokines including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), while increased the level of anti-inflammatory cytokine interleukin-10 (IL-10). Importantly, casein and whey protein hydrolysates significantly reduced colonic mast cell activation and decreased prostaglandin E2 (PGE2) production. Moreover, three novel casein-derived cyclooxygenase-2 (COX2)-inhibitory peptides RGPF, FPK, and NPW were identified with IC50 values of 0.36 ± 0.03, 0.64 ± 0.01, and 1.10 ± 0.09 mM, respectively and predicted to form hydrogen bonds and hydrophobic interactions with the residues of the active site of COX2. This study highlighted the potential of milk peptides as bioactive ingredients in functional foods for managing IBS.
Collapse
Affiliation(s)
- Yu Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, PR China
| | - Zhiqing Lin
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, PR China
| | - Qi Yao
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, PR China
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia 010110, PR China
| | - Haotian Feng
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia 010110, PR China
| | - Wenyi Zhang
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia 010110, PR China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, PR China
| | - Tian Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Xianyang, Shaanxi Province 712100, PR China; College of Chemistry & Pharmacy, Northwest A&F University, Xianyang, Shaanxi Province 712100, PR China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, PR China.
| | - Long Ding
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, PR China.
| |
Collapse
|
2
|
Jiang N, Yang H, Lei Y, Qin W, Xiong H, Chen K, Mei K, Li G, Mu X, Chen R. Characterization of dsRNA binding proteins through solubility analysis identifies ZNF385A as a dsRNA homeostasis regulator. Nat Commun 2025; 16:3433. [PMID: 40210660 PMCID: PMC11985509 DOI: 10.1038/s41467-025-58704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Double-stranded RNA (dsRNA) binding proteins (dsRBPs) play crucial roles in various cellular processes, especially in the innate immune response. Comprehensive characterization of dsRBPs is essential to understand the intricate mechanisms for dsRNA sensing and response. Traditional methods have predominantly relied on affinity purification, favoring the isolation of strong dsRNA binders. Here, we adopt the proteome integral solubility alteration (PISA) workflow for characterizing dsRBPs, resulting in the observation of 18 known dsRBPs and the identification of 200 potential dsRBPs. Next, we focus on zinc finger protein 385 A (ZNF385A) and discover that its knockout activates the transcription of interferon-β in the absence of immunogenic stimuli. The knockout of ZNF385A elevates the level of endogenous dsRNAs, especially transcripts associated with retroelements, such as short interspersed nuclear element (SINE), long interspersed nuclear element (LINE), and long terminal repeat (LTR). Moreover, loss of ZNF385A enhances the bioactivity of 5-Aza-2'-deoxycytidine (5-AZA-CdR) and tumor-killing effect of NK cells. Our findings greatly expand the dsRBP reservoir and contribute to the understanding of cellular dsRNA homeostasis.
Collapse
Affiliation(s)
- Na Jiang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Hekun Yang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Yi Lei
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
- Jinnan Hospital, Tianjin University (Tianjin Jinnan Hospital), Tianjin, China
| | - Weida Qin
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Huifang Xiong
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Kuan Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China
| | - Gongyu Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Science, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, China
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China.
- Jinnan Hospital, Tianjin University (Tianjin Jinnan Hospital), Tianjin, China.
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Tianjin, China.
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China.
| |
Collapse
|
3
|
Greene ES, Roach B, Cuadrado MF, Orlowski S, Dridi S. Effect of heat stress on ileal epithelial barrier integrity in broilers divergently selected for high- and low-water efficiency. Front Physiol 2025; 16:1558201. [PMID: 40260206 PMCID: PMC12009728 DOI: 10.3389/fphys.2025.1558201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Water scarcity and rising global temperatures are two of the greatest current and future threats to poultry sustainability. Therefore, selection for water efficiency (WE) and heat resilience are of vital importance. Additionally, intestinal integrity is of critical importance under challenging conditions to maintain nutrient absorption and therefore, growth and performance of broilers. Here, we examined the effect of chronic cyclic heat stress (HS) on the ileal expression profile of tight-junction, gap-junction, adherens, and desmosome genes in the fourth generation of divergently selected low (LWE)- and high water efficient (HWE)-chicken lines. LWE birds exhibited higher levels of gut permeability, regardless of temperature, as measured by fluorescein isothiocyanate-dextran (FITC-D). Among the claudins (CLDN), Cldn1 showed greater expression in the HWE as compared to LWE, regardless of temperature. Cldn5, -16, -20, and -34 genes were all greater in LWE and lower in HWE during HS. Conversely, Cldn25 was decreased in LWE but increased HWE under HS. Cldn4 was increased in the HWE line and decreased by HS. Cingulin (Cgn) gene expression was lower in HWE as compared to LWE and lower in HS as compared to thermoneutral (TN) condition. Gap junction protein α1 (Gja1) and desmoglein 4 (Dsg4) were greater in the HWE as compared to the LWE. Cadherin 1 (Cdh1) gene expression was greatest in the HWE in TN conditions and lowest in HWE under HS, whereas catenin α2 (Ctnna2) and desmocollin 1 (Dsc1) were highest in HWE during HS compared to all other groups. This differential expression of key genes associated with intestinal barrier integrity likely contributes to the water efficiency phenotype and the response of these birds to HS.
Collapse
Affiliation(s)
- Elizabeth S. Greene
- Division of Agriculture, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Maria Fernandez Cuadrado
- Division of Agriculture, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sara Orlowski
- Division of Agriculture, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Division of Agriculture, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
4
|
Wang S, Liu Y, Liu S, Qin Z, Lu J, Zhang R, Yuan H. Consensus gene co-expression analysis across multiple intestinal tissues to identify key genes and pathways associated with abdominal fat deposition in broilers. Br Poult Sci 2025; 66:155-165. [PMID: 39466128 DOI: 10.1080/00071668.2024.2410367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/28/2024] [Indexed: 10/29/2024]
Abstract
1. Abdominal fat deposition (AFD) is regulated by multiple intestinal tissues, and changes in the function of intestinal tissues are associated with AFD. Currently, integration of transcriptomic data across multiple intestinal tissues to explore excessive AFD has rarely been reported in broilers.2. In this study, a consensus gene co-expression network across the duodenum, jejunum, ileum and caecum of high- and low-abdominal fat broiler lines (HL and LL) was constructed using a publicly available transcriptomic data set. Combining the results of functional enrichment analyses and differential gene expression analyses, this investigated the genes and biological pathways across the four intestinal tissues that might influence AFD.3. In one expression module, NDUFA5, NDUFS6, NDUFA4, NDUFS4, ATP5H, ATP5J and ATP5C1 were significantly enriched in the oxidative phosphorylation pathway, with GPX2 and GSR significantly enriched in the glutathione metabolism pathway. These genes were significantly downregulated in the four intestinal tissues of the HL compared to LL chickens, which may be associated with AFD by increasing intestinal permeability.4. Lipid metabolism relevant genes were identified in other modules (ALDH7A1, ACSBG1, THEM4 and DECR1), which may be linked to AFD through regulation of lipid metabolism. Interestingly, in the first module, 12 genes were significantly enriched in the proteasome pathway and significantly downregulated in the four intestinal tissues in HL birds compared to LL birds, indicating a link between the proteasome and AFD.
Collapse
Affiliation(s)
- S Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Y Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - S Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Z Qin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - J Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - R Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - H Yuan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
5
|
Popa ML, Ichim C, Anderco P, Todor SB, Pop-Lodromanean D. MicroRNAs in the Diagnosis of Digestive Diseases: A Comprehensive Review. J Clin Med 2025; 14:2054. [PMID: 40142862 PMCID: PMC11943142 DOI: 10.3390/jcm14062054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
MicroRNAs (miRNAs) have emerged as crucial regulators in digestive pathologies, including inflammatory bowel disease (miR-31, miR-155, and miR-21), colorectal cancer (miR-21, miR-598, and miR-494), and non-alcoholic fatty liver disease (miR-21, miR-192, and miR-122). Their capacity to modulate gene expression at the post-transcriptional level makes them highly promising candidates for biomarkers and therapeutic interventions. However, despite considerable progress, their clinical application remains challenging. Research has shown that miRNA expression is highly dynamic, varying across patients, disease stages, and different intestinal regions. Their dual function as both oncogenes and tumor suppressors further complicates their therapeutic use, as targeting miRNAs may yield unpredictable effects. Additionally, while miRNA-based therapies hold great potential, significant hurdles persist, including off-target effects, immune activation, and inefficiencies in delivery methods. The intricate interplay between miRNAs and gut microbiota adds another layer of complexity, influencing disease mechanisms and treatment responses. This review examined the role of miRNAs in digestive pathologies, emphasizing their diagnostic and therapeutic potential. While they offer new avenues for disease management, unresolved challenges underscore the need for further research to refine their clinical application.
Collapse
Affiliation(s)
| | - Cristian Ichim
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (M.L.P.); (S.B.T.); (D.P.-L.)
| | - Paula Anderco
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania; (M.L.P.); (S.B.T.); (D.P.-L.)
| | | | | |
Collapse
|
6
|
Zhou Q, Yang L, Verne ZT, Zhang BB, Fields JZ, Thacker AT, Verne GN. Human colonic EVs induce murine enteric neuroplasticity via the lncRNA GAS5/miR-23/NMDA NR2B axis. JCI Insight 2025; 10:e178631. [PMID: 40059833 PMCID: PMC11949048 DOI: 10.1172/jci.insight.178631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/28/2025] [Indexed: 03/29/2025] Open
Abstract
Postinfectious, diarrhea-predominant, irritable bowel syndrome (PI-IBS-D) is difficult to treat owing to its unknown pathophysiology. Extracellular vesicles (EVs) derived from human colon tissue and long noncoding RNAs (lncRNAs), such as growth arrest-specific 5 (GAS5), may play key roles in the pathophysiology of PI-IBS-D. To determine whether altered colonic EV lncRNA signaling leads to gastrointestinal dysfunction and heightened visceral nociception in patients with PI-IBS-D via the GAS5/miR-23ab/NMDA NR2B axis, we conducted translational studies, including those on (a) the role of colonic EV lncRNAs in patients with PI-IBS-D, human colonoids, and PI-IBS-D tissues; (b) i.p. injection of colonic EVs from patients with PI-IBS-D into Rab27a/b-/- mice (P-EV mice) to investigate whether colonic EVs drive visceral hypersensitivity in vivo via the GAS5/miR-23ab/NMDA NR2B axis; and (c) treatment of mice with oligo-miR-23 precursors and anti-GAS5 Vivo-Morpholinos for GAS5/miR-23ab/NMDA NR2B axis mechanisms. Colonic EVs from patients with PI-IBS-D, but not from control participants, demonstrated reduced miR-23a/b expression caused by enhanced GAS5 expression, which drives increased NR2B expression. Intraperitoneal injection of anti-GAS5-Vivo-Morpholino into P-EV mice increased miR-23 levels and decreased NR2B expression and VMR to CD. EVs are internal messengers that alter gastrointestinal function and increase visceral nociception in patients with PI-IBS-D. Strategies to deliver EVs to modulate GAS5/miR-23ab/NMDA NR2B axis signaling may lead to new and innovative treatments for patients with PI-IBS-D.
Collapse
Affiliation(s)
- QiQi Zhou
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Research Service, Memphis, Tennessee, USA
| | - Liuqing Yang
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Zachary T. Verne
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Benjamin B. Zhang
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jeremy Z. Fields
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Amber T. Thacker
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - G. Nicholas Verne
- College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Research Service, Memphis, Tennessee, USA
| |
Collapse
|
7
|
Marasco G, Cremon C, Salvi D, Meacci D, Dajti E, Colecchia L, Barbaro MR, Stanghellini V, Barbara G. Functional Foods and Nutraceuticals in Irritable Bowel Syndrome. J Clin Med 2025; 14:1830. [PMID: 40142637 PMCID: PMC11943262 DOI: 10.3390/jcm14061830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a common disorder of gut-brain interaction, with a multifactorial pathophysiology involving gut-brain axis dysregulation, visceral hypersensitivity, microbiota imbalance, and immune dysfunction. Traditional IBS management emphasizes dietary modifications and pharmacologic therapies. However, increasing attention has been directed toward functional foods, nutraceuticals, and herbal remedies due to their potential to target IBS pathophysiological mechanisms with favorable safety profiles. This clinical review explores the role of these adjunctive therapies, evaluating evidence from preclinical and clinical studies. Functional foods such as kiwifruit, prunes, and rye bread demonstrate benefits in bowel habit regulation through fiber content and microbiota modulation. Nutraceuticals like peppermint oil, palmitoylethanolamide, and herbal mixtures exhibit anti-inflammatory, antispasmodic, and analgesic effects. Prebiotics provide substrate-driven microbiota changes, although dosage is key, as given their fermentative properties, when used at high dosages, they can exacerbate symptoms in some individuals. Probiotics and postbiotics offer microbiota-based interventions with promising symptom relief in IBS subtypes, although factors for personalized treatment still need to be further elucidated. These strategies highlight a paradigm shift in IBS management, integrating diet-based therapies with evolving nutraceutical options to improve patient outcomes. Despite promising findings, challenges in standardizing definitions, mechanisms, and safety profiles still remain. Rigorous, large-scale trials to validate the therapeutic potential of these interventions are needed, to enhance the benefits of these compounds with an individualized treatment approach.
Collapse
Affiliation(s)
- Giovanni Marasco
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Daniele Salvi
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Gastroenterology and Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - David Meacci
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Elton Dajti
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Luigi Colecchia
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
| | - Vincenzo Stanghellini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
8
|
Grover M, Vanuytsel T, Chang L. Intestinal Permeability in Disorders of Gut-Brain Interaction: From Bench to Bedside. Gastroenterology 2025; 168:480-495. [PMID: 39236897 DOI: 10.1053/j.gastro.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Intestinal barrier function lies at a critical interface of a range of peripheral and central processes that influence disorders of gut-brain interactions (DGBI). Although rigorously tested, the role of barrier dysfunction in driving clinical phenotype of DGBI remains to be fully elucidated. In vitro, in vivo, and ex vivo strategies can test various aspects of the broader permeability and barrier mechanisms in the gut. Luminal mediators of host, bacterial, and dietary origin can influence the barrier function and a disrupted barrier can also influence the luminal milieu. Critical to our understanding is how barrier dysfunction is influenced by stress and other comorbidities that associate with DGBI and the crosstalk between barrier and neural, hormonal, and immune responses. Additionally, the microbiome's significant role in the communication between the brain and gut has led to the integrative model of a microbiome gut-brain axis with reciprocal interactions between brain networks and networks composed of multiple cells in the gut, including immune cells, enterochromaffin cells, gut microbiota and the derived luminal mediators. This review highlights the techniques for assessment of barrier function, appraises evidence for barrier dysfunction in DGBI including mechanistic studies in humans, as well as provides an overview of therapeutic strategies that can be used to directly or indirectly restore barrier function in DGBI patients.
Collapse
Affiliation(s)
- Madhusudan Grover
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (ChroMeta), KULeuven, Leuven, Belgium
| | - Lin Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, California.
| |
Collapse
|
9
|
Layton E, Goldsworthy S, Yang E, Ong WY, Sutherland TE, Bancroft AJ, Thompson S, Au VB, Griffiths-Jones S, Grencis RK, Fairhurst AM, Roberts IS. An optimised faecal microRNA sequencing pipeline reveals fibrosis in Trichuris muris infection. Nat Commun 2025; 16:1589. [PMID: 39939598 PMCID: PMC11822213 DOI: 10.1038/s41467-025-56698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
The intestine is a site of diverse functions including digestion, nutrient absorption, immune surveillance, and microbial symbiosis. Intestinal microRNAs (miRNAs) are detectable in faeces and regulate barrier integrity, host-microbe interactions and the immune response, potentially offering valuable non-invasive tools to study intestinal health. However, current experimental methods are suboptimal and heterogeneity in study design limits the utility of faecal miRNA data. Here, we develop an optimised protocol for faecal miRNA detection and report a reproducible murine faecal miRNA profile in healthy mice. We use this pipeline to study faecal miRNAs during infection with the gastrointestinal helminth, Trichuris muris, revealing roles for miRNAs in fibrosis and wound healing. Intestinal fibrosis was confirmed in vivo using Hyperion® imaging mass cytometry, demonstrating the efficacy of this approach. Further applications of this optimised pipeline to study host-microbe interactions and intestinal disease will enable the generation of hypotheses and therapeutic strategies in diverse contexts.
Collapse
Affiliation(s)
- Emma Layton
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sian Goldsworthy
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - EnJun Yang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Yee Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Microbiology and Immunology Department, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tara E Sutherland
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Allison J Bancroft
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Seona Thompson
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Veonice Bijin Au
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sam Griffiths-Jones
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard K Grencis
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- The Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| | - Anna-Marie Fairhurst
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore.
| | - Ian S Roberts
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
10
|
Jafari N, Abediankenari S. Role of microRNAs in immunoregulatory functions of epithelial cells. BMC Immunol 2024; 25:84. [PMID: 39707170 PMCID: PMC11662810 DOI: 10.1186/s12865-024-00675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024] Open
Abstract
Epithelial cells (ECs) provide the first line of defense against microbial threats and environmental challenges. They participate in the host's immune responses via the expression and secretion of various immune-related molecules such as cytokines and chemokines, as well as interaction with immune cells. A growing body of evidence suggests that the dysregulated function of ECs can be involved in the pathophysiology of a broad range of infectious, autoimmune, and inflammatory diseases, including inflammatory bowel disease (IBD), asthma, multiple sclerosis, and rheumatoid arthritis. To maintain a substantial immunoregulatory function of ECs, precise expression of different molecules and their regulatory effects are indispensable. MicroRNAs (miRNAs, miRs) are small non-coding RNAs that regulate gene expression commonly at post-transcriptional level through degradation of target messenger RNAs (mRNAs) or suppression of protein translation. MiRNAs implicate as critical regulators in many cellular processes, including apoptosis, growth, differentiation, and immune response. Due to the crucial roles of miRNAs in such a vast range of biological processes, they have become the spotlight of biological research for more than two decades, but we are still at the beginning stages of the use of miRNA-based therapies in the improvement of human health. Hence, in the present paper, attempts are made to provide a comprehensive overview with regard to the roles of miRNAs in the immunoregulatory functions of ECs. A better understanding of the molecular mechanisms through which immunoregulatory properties of ECs are manifested, could aid the development of efficient strategies to prevent and treat multiple human diseases.
Collapse
Affiliation(s)
- Narjes Jafari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
11
|
Matar A, Damianos JA, Jencks KJ, Camilleri M. Intestinal Barrier Impairment, Preservation, and Repair: An Update. Nutrients 2024; 16:3494. [PMID: 39458489 PMCID: PMC11509958 DOI: 10.3390/nu16203494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Our objective was to review published studies of the intestinal barrier and permeability, the deleterious effects of dietary components (particularly fat), the impact of altered intestinal permeability in disease models and human diseases, the role of the microbiome and epigenomics in control of barrier function, and the opportunities to restore normal barrier function with dietary interventions and products of the microbiota. METHODS We conducted a literature review including the following keywords alone or in combination: intestinal barrier, permeability, microbiome, epigenomics, diet, irritable bowel syndrome, inflammatory bowel disease, probiotics. RESULTS Intestinal permeability is modified by a diet including fat, which increases permeability, and nutrients such as fiber, glutamine, zinc, vitamin D, polyphenols, emulsifiers, and anthocyanins, which decrease permeability. There is significant interaction of the microbiome and barrier function, including the inflammatory of luminal/bacterial antigens, and anti-inflammatory effects of commensals or probiotics and their products, including short-chain fatty acids. Epigenomic modification of barrier functions are best illustrated by effects on junction proteins or inflammation. Detailed documentation of the protective effects of diet, probiotics, prebiotics, and microbiota is provided. CONCLUSION intestinal permeability is a critical factor in protection against gastrointestinal diseases and is impacted by nutrients that preserve or heal and repair the barrier and nurture anti-inflammatory effects.
Collapse
Affiliation(s)
| | | | | | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.); (J.A.D.)
| |
Collapse
|
12
|
Chen X, Gasaly N, Tang X, Walvoort MT, de Vos P. The effect of nerve cells on the intestinal barrier function and the influence of human milk oligosaccharides (hMOs) on the intestinal neuro-epithelial crosstalk. Curr Res Food Sci 2024; 9:100851. [PMID: 39314222 PMCID: PMC11417580 DOI: 10.1016/j.crfs.2024.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
The intestinal epithelium is an important gatekeeper of the human body by forming a barrier for the luminal content of the intestine. The barrier function is regulated by a complex crosstalk between different cell types, including cells from the enteric nervous system (ENS). ENS is considered to influence gastrointestinal processes and functions, but its direct effect on epithelial barrier function remains to be confirmed. To investigate the effect of nerve cells on the gut barrier function, an in vitro co-culture system was established in which T84 intestinal epithelial cells and SH-SY5Y nerve cells were seeded in ratios of 29:1 and 14:1. When the epithelial barrier was disrupted with the calcium ionophores A23187, we found that nerve cells exert a protective effect on A23187-induced disruption and that this protective effect is nerve cell concentration-dependent. This was demonstrated by rescuing effects on transepithelial electrical resistance (TEER) and upregulation of tight junction (TJ) protein expression. Furthermore, we studied whether similar rescuing effects could be achieved with the human milk oligosaccharides (hMOs) 2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL). Our results illustrate that in the presence of nerve cells 2'-FL and 3-FL do not have any additional rescuing effects, but that these hMOs can substitute the rescuing effects of nerve cells in the absence of nerve cells. Meanwhile, 2'-FL and 3-FL show different regulation effects on TJ expression. These findings provide valuable insights into potential therapeutic strategies for maintaining intestinal barrier integrity.
Collapse
Affiliation(s)
- Xiaochen Chen
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Naschla Gasaly
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Xin Tang
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marthe T.C. Walvoort
- Stratingh Institute for Chemistry, Department of Chemical Biology, University of Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
13
|
Meng EX, Verne GN, Zhou Q. Macrophages and Gut Barrier Function: Guardians of Gastrointestinal Health in Post-Inflammatory and Post-Infection Responses. Int J Mol Sci 2024; 25:9422. [PMID: 39273369 PMCID: PMC11395020 DOI: 10.3390/ijms25179422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The gut barrier is essential for protection against pathogens and maintaining homeostasis. Macrophages are key players in the immune system, are indispensable for intestinal health, and contribute to immune defense and repair mechanisms. Understanding the multifaceted roles of macrophages can provide critical insights into maintaining and restoring gastrointestinal (GI) health. This review explores the essential role of macrophages in maintaining the gut barrier function and their contribution to post-inflammatory and post-infectious responses in the gut. Macrophages significantly contribute to gut barrier integrity through epithelial repair, immune modulation, and interactions with gut microbiota. They demonstrate active plasticity by switching phenotypes to resolve inflammation, facilitate tissue repair, and regulate microbial populations following an infection or inflammation. In addition, tissue-resident (M2) and infiltration (M1) macrophages convert to each other in gut problems such as IBS and IBD via major signaling pathways mediated by NF-κB, JAK/STAT, PI3K/AKT, MAPK, Toll-like receptors, and specific microRNAs such as miR-155, miR-29, miR-146a, and miR-199, which may be good targets for new therapeutic approaches. Future research should focus on elucidating the detailed molecular mechanisms and developing personalized therapeutic approaches to fully harness the potential of macrophages to maintain and restore intestinal permeability and gut health.
Collapse
Affiliation(s)
| | - George Nicholas Verne
- College of Medicine, University of Tennessee, Memphis, TN 38103, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| | - Qiqi Zhou
- College of Medicine, University of Tennessee, Memphis, TN 38103, USA
- Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN 38105, USA
| |
Collapse
|
14
|
Ikegami S, Maeda K, Urano T, Mu J, Nakamura M, Yamamura T, Sawada T, Ishikawa E, Yamamoto K, Muto H, Oishi A, Iida T, Mizutani Y, Ishikawa T, Kakushima N, Furukawa K, Ohno E, Honda T, Ishigami M, Kawashima H. Monoclonal Antibody Against Mature Interleukin-18 Ameliorates Colitis in Mice and Improves Epithelial Barrier Function. Inflamm Bowel Dis 2024; 30:1353-1366. [PMID: 38141180 DOI: 10.1093/ibd/izad292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 12/25/2023]
Abstract
BACKGROUND Antitumor necrosis factor (TNF)-α antibodies have improved the outcome of inflammatory bowel disease (IBD); but half of patients remain unresponsive to treatment. Interleukin-18 (IL-18) gene polymorphism is associated with resistance to anti-TNF-α antibodies, but therapies targeting IL-18 have not been clinically applied. Only the mature protein is biologically active, and we aimed to investigate whether specific inhibition of mature IL-18 using a monoclonal antibody (mAb) against a neoepitope of caspase-cleaved mature IL-18 could be an innovative treatment for IBD. METHODS The expression of precursor and mature IL-18 in patients with UC was examined. Colitis was induced in C57/BL6 mice by administering dextran sulfate sodium (DSS), followed by injection with anti-IL-18 neoepitope mAb. Colon tissues were collected and subjected to histological analysis, immunohistochemistry, immunoblotting, and quantitative polymerase chain reaction. Colon epithelial permeability and microbiota composition were analyzed. RESULTS Mature IL-18 expression was elevated in colon tissues of patients with active ulcerative colitis. Administration of anti-IL-18 neoepitope mAb ameliorated acute and chronic DSS-induced colitis; reduced interferon-γ, TNF-α, and chemokine (CXC motif) ligand-2 production and epithelial cell permeability; promoted goblet cell function; and altered the intestinal microbiome composition. The suppressive effect of anti-IL-18 neoepitope mAb was superior to that of anti-whole IL-18 mAb. Furthermore, combination therapy with anti-TNF-α Ab suppressed acute and chronic colitis additively by suppressing cytokine expressions and reducing cell permeability by upregulating claudin1 and occludin expression. CONCLUSIONS Anti-IL-18 neoepitope mAb ameliorates acute and chronic colitis, suggesting that this mAb will be an innovative therapeutic option for IBD.
Collapse
Affiliation(s)
- Shuji Ikegami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Keiko Maeda
- Department of Endoscopy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo 693-8501, Japan
- mAbProtein Co. Ltd., Izumo 693-8501, Japan
| | - Jingxi Mu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takeshi Yamamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tsunaki Sawada
- Department of Endoscopy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Eri Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenta Yamamoto
- Department of Endoscopy, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hisanori Muto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akina Oishi
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tadashi Iida
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasuyuki Mizutani
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Naomi Kakushima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kazuhiro Furukawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
15
|
Rac M. Synthesis and Regulation of miRNA, Its Role in Oncogenesis, and Its Association with Colorectal Cancer Progression, Diagnosis, and Prognosis. Diagnostics (Basel) 2024; 14:1450. [PMID: 39001340 PMCID: PMC11241650 DOI: 10.3390/diagnostics14131450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
The dysfunction of several types of regulators, including miRNAs, has recently attracted scientific attention for their role in cancer-associated changes in gene expression. MiRNAs are small RNAs of ~22 nt in length that do not encode protein information but play an important role in post-transcriptional mRNA regulation. Studies have shown that miRNAs are involved in tumour progression, including cell proliferation, cell cycle, apoptosis, and tumour angiogenesis and invasion, and play a complex and important role in the regulation of tumourigenesis. The detection of selected miRNAs may help in the early detection of cancer cells, and monitoring changes in their expression profile may serve as a prognostic factor in the course of the disease or its treatment. MiRNAs may serve as diagnostic and prognostic biomarkers, as well as potential therapeutic targets for colorectal cancer. In recent years, there has been increasing evidence for an epigenetic interaction between DNA methylation and miRNA expression in tumours. This article provides an overview of selected miRNAs, which are more frequently expressed in colorectal cancer cells, suggesting an oncogenic nature.
Collapse
Affiliation(s)
- Monika Rac
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
16
|
Chen H, Xu Z, Zhao H, Cao J, Wang R, He J, Nie R, Jia J, Yuan S, Li Y, Liu Z, Zhang X, Ha L, Xu X, Li T. Global research states and trends of micro RNA in irritable bowel syndrome: a bibliometric analysis. Clin Exp Med 2024; 24:149. [PMID: 38967892 PMCID: PMC11226481 DOI: 10.1007/s10238-024-01396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
Irritable bowel syndrome (IBS) is a common chronic gastrointestinal disorder, but its diagnosis and treatment remain obscure. Non-coding RNAs (ncRNAs), as potential biomarkers, have attracted increasing attention in digestive diseases. Here, we present a comprehensive research status, development trends, and valuable insights in this subject area. The literature search was performed using Web of Science Core Collection. VOSviewer 1.6.20, Citespace 6.2.R4, and Microsoft Excel 2021 were used for bibliometric analysis. A total of 124 articles were included in the analysis. Overall, publication patterns fluctuated. Globally, People's Republic of China, the USA, and Germany were the top three contributors of publications. Guangzhou University of Chinese Medicine, University of California, Mayo Clinic, and University of California, Los Angeles contributed the highest number of publications. The pathways and specific mechanisms by which ncRNAs regulate transcription and translation and thus regulate the pathophysiological processes of IBS are the main research hotspots in this field. We found that microRNA (miRNAs) are intricately involved in the regulation of key pathologies such as viscera sensitivity, intestinal permeability, intestinal mucosal barrier, immunoinflammatory response, and brain-gut axis in the IBS, and these topics have garnered significant attention in research community. Notably, microecological disorders are also associated with IBS pathogenesis, and ncRNA may play an important role in the interactions between host and intestinal flora. This is the first bibliometric study to comprehensively summarize the research hotspots and trends related to IBS and ncRNAs (especially miRNAs). Our findings will help understand the role of ncRNAs in IBS and provide guidance to future studies.
Collapse
Affiliation(s)
- Hongxiu Chen
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Zhifang Xu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, No. 10, Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Honggang Zhao
- Shenzhen Hospital of Integrated Chinese and Western Medicine, 528 Xinsha Road, Shajing Street, Baoan District, Shenzhen, People's Republic of China
| | - Jiazhen Cao
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Rui Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Jing He
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Ru Nie
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Jialin Jia
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Shuting Yuan
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Yonghong Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Zhicheng Liu
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China
| | - Xinyu Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, West District, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Lijuan Ha
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China.
| | - Xiaoru Xu
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China.
| | - Tie Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, No. 1035, Boshuo Rd, Jingyue Economic Development District, Changchun, 130117, People's Republic of China.
| |
Collapse
|
17
|
JohnBritto JS, Di Ciaula A, Noto A, Cassano V, Sciacqua A, Khalil M, Portincasa P, Bonfrate L. Gender-specific insights into the irritable bowel syndrome pathophysiology. Focus on gut dysbiosis and permeability. Eur J Intern Med 2024; 125:10-18. [PMID: 38467533 DOI: 10.1016/j.ejim.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder involving the brain-gut interaction. IBS is characterized by persistent abdominal pain and changes in bowel habits. IBS exerts significant impacts on quality of life and imposes huge economic costs. Global epidemiological data reveal variations in IBS prevalence, both globally and between genders, necessitating comprehensive studies to uncover potential societal and cultural influences. While the exact pathophysiology of IBS remains incompletely understood, the mechanism involves a dysregulation of the brain-gut axis, leading to disturbed intestinal motility, local inflammation, altered intestinal permeability, visceral sensitivity, and gut microbiota composition. We reviewed several gender-related pathophysiological aspects of IBS pathophysiology, by focusing on gut dysbiosis and intestinal permeability. This perspective paves the way to personalized and multidimensional clinical management of individuals with IBS.
Collapse
Affiliation(s)
- Jerlin Stephy JohnBritto
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Antonino Noto
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Velia Cassano
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy.
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Jonian Area (DiMePre-J), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
18
|
Vakili O, Adibi Sedeh P, Pourfarzam M. Metabolic biomarkers in irritable bowel syndrome diagnosis. Clin Chim Acta 2024; 560:119753. [PMID: 38821336 DOI: 10.1016/j.cca.2024.119753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Irritable bowel syndrome (IBS) is a chronic gastrointestinal (GI) disorder characterized by altered bowel habits and abdominal discomfort during defecation. It significantly impacts life quality and work productivity for those affected. Global data suggests a slightly higher prevalence in females than in males. Today, unambiguous diagnosis of IBS remains challenging due to the absence of a specific biochemical, histopathological, or radiological test. Current diagnosis relies heavily on thorough symptom evaluation. Efforts by the Rome committees have established standardized diagnostic criteria (Rome I-IV), improving consistency and clinical applicability. Recent studies in this framework, seem to have successfully employed metabolomics techniques to identify distinct metabolite profiles in breath and stool samples of IBS patients, differentiating them from healthy controls and those with other functional GI disorders, such as inflammatory bowel disease (IBD). Building on this success, researchers are investigating the presence of similar metabolites in easily accessible biofluids such as urine, potentially offering a less invasive diagnostic approach. Accordingly, this review focuses on key metabolites specifically detected in IBS patients' biological specimens, with a focus on urinary metabolites, using various methods, particularly mass spectrometry (MS)-based techniques, including gas chromatography-MS (GC-MS), liquid chromatography-tandem MS (LC-MS/MS), and capillary electrophoresis-MS (CE-MS) metabolomics assays. These findings may make provision for a new set of non-invasive biomarkers for IBS diagnosis and management.
Collapse
Affiliation(s)
- Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Peyman Adibi Sedeh
- Gastroenterology and Hepatology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Morteza Pourfarzam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
19
|
Verne ZT, Fields JZ, Verne GN, Zhang BB, Thacker AL, Zhou Q. Onset of Irritable Bowel Syndrome, Dyspepsia, Diarrhea, Bloating, and Constipation in Deployed Gulf War Veterans. INTERNATIONAL JOURNAL OF GASTROENTEROLOGY (NEW YORK, N.Y.) 2024; 8:5-10. [PMID: 38487339 PMCID: PMC10935595 DOI: 10.11648/ijg.20240801.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
An estimated 694,550 United States service members were actively deployed to the Persian Gulf from 1990-1991. Many veterans who were deployed developed Persian Gulf War Syndrome along with chronic gastrointestinal symptoms after returning from the Persian Gulf. Our objective in this study was to determine the phenotypic expression of gastrointestinal symptom complexes in previously healthy veterans who had been stationed in the Persian Gulf. One hundred and four consecutive veterans (88 males, 16 females) who had previously been deployed in 1990-91 were evaluated for their bowel habits and gastrointestinal symptoms. A workup was completed to find identifiable causes of their symptoms and all veterans were asked to do a modified version of the Bowel Disease Questionnaire symptom survey. None of the veterans reported gastrointestinal symptoms before deployment. During deployment to the Persian Gulf: 22 veterans (21%) developed irritable bowel syndrome; 17 (16%) developed dyspepsia; 50 (48%) developed diarrhea; 11 (11%) developed bloating; and 4 (4%) developed constipation. The results of the current study suggest that the development of irritable bowel syndrome, dyspepsia, diarrhea, bloating, and constipation is frequently seen in deployed Gulf War Veterans and the gastrointestinal symptoms commonly persist upon returning home. These novel findings are very important for currently deployed veterans who are serving in the Middle East and are at a high risk of developing gastrointestinal disorders.
Collapse
Affiliation(s)
- Zachary Thomas Verne
- Department of Medicine, University of Tennessee Health Science Center, Memphis, The United States
| | - Jeremy Zachary Fields
- Department of Medicine, University of Tennessee Health Science Center, Memphis, The United States
| | - George Nicholas Verne
- Department of Medicine, University of Tennessee Health Science Center, Memphis, The United States
- Research Service, Lt. Col. Luke Weathers, Jr., VA Medical Center, Memphis, The United States
| | - Benjamin Buyi Zhang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, The United States
| | - Amber Leigh Thacker
- Department of Medicine, University of Tennessee Health Science Center, Memphis, The United States
| | - QiQi Zhou
- Department of Medicine, University of Tennessee Health Science Center, Memphis, The United States
- Research Service, Lt. Col. Luke Weathers, Jr., VA Medical Center, Memphis, The United States
| |
Collapse
|
20
|
Eskandarion MR, Eskandarieh S, Shakoori Farahani A, Mahmoodzadeh H, Shahi F, Oghabian MA, Shirkoohi R. Prediction of novel biomarkers for gastric intestinal metaplasia and gastric adenocarcinoma using bioinformatics analysis. Heliyon 2024; 10:e30253. [PMID: 38737262 PMCID: PMC11088262 DOI: 10.1016/j.heliyon.2024.e30253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Background & aim The histologic and molecular changes from intestinal metaplasia (IM) to gastric cancer (GC) have not been fully characterized. The present study sought to identify potential alterations in signaling pathways in IM and GC to predict disease progression; these alterations can be considered therapeutic targets. Materials & methods Seven gene expression profiles were selected from the GEO database. Discriminate differentially expressed genes (DEGs) were analyzed by EnrichR. The STRING database, Cytoscape, Gene Expression Profiling Interactive Analysis (GEPIA), cBioPortal, NetworkAnalyst, MirWalk database, OncomiR, and bipartite miRNA‒mRNA correlation network was used for downstream analyses of selected module genes. Results Analyses revealed that extracellular matrix-receptor interactions (ITGB1, COL1A1, COL1A2, COL4A1, FN1, COL6A3, and THBS2) in GC and PPAR signaling pathway interactions (FABP1, APOC3, APOA1, HMGCS2, and PPARA and PCK1) in IM may play key roles in both the carcinogenesis and progression of underlying GC from intestinal metaplasia. IM enrichment indicated that this is closely related to digestion and absorption. The TF-hub gene regulatory network revealed that AR, TCF4, SALL4, and ESR1 were more important for hub gene expression. It was revealed that the development and prediction of GC may be affected by hsa-miR-29. It was found that PTGR1, C1orf115, CRYL1, ALDOB, and SULT1B1 were downregulated in GC and upregulated in IM. Therefore, they might have tumor suppressor activity in GC progression. Conclusion New potential biomarkers and pathways involved in GC and IM were identified that are important for the transformation of GC from IM to adenocarcinoma and can be therapeutic targets for GC.
Collapse
Affiliation(s)
| | - Sharareh Eskandarieh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Shakoori Farahani
- Medical Genetics Ward, IKHC Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibollah Mahmoodzadeh
- Department of Surgery, Cancer Research Center, Cancer Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Shahi
- Department of Medical Oncology, Cancer Research Center, Cancer Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oghabian
- Medical Physics Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shirkoohi
- Cancer Research Center, Cancer Institute, IKHC, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Akinsuyi OS, Xhumari J, Ojeda A, Roesch LFW. Gut permeability among Astronauts during Space missions. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:171-180. [PMID: 38670644 DOI: 10.1016/j.lssr.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/02/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024]
Abstract
The space environment poses substantial challenges to human physiology, including potential disruptions in gastrointestinal health. Gut permeability has only recently become widely acknowledged for its potential to cause adverse effects on a systemic level, rendering it a critical factor to investigate in the context of spaceflight. Here, we propose that astronauts experience the onset of leaky gut during space missions supported by transcriptomic and metagenomic analysis of human and murine samples. A genetic map contributing to intestinal permeability was constructed from a systematic review of current literature. This was referenced against our re-analysis of three independent transcriptomic datasets which revealed significant changes in gene expression patterns associated with the gut barrier. Specifically, in astronauts during flight, we observed a substantial reduction in the expression genes that are crucial for intestinal barrier function, goblet cell development, gut microbiota modulation, and immune responses. Among rodent spaceflight studies, differential expression of cytokines, chemokines, and genes which regulate mucin production and post-translational modifications suggest a similar dysfunction of intestinal permeability. Metagenomic analysis of feces from two murine studies revealed a notable reduction probiotic, short chain fatty acid-producing bacteria and an increase in the Gram-negative pathogens, including Citrobacter rodentium, Enterobacter cloacea, Klebsiella aerogenes, and Proteus hauseri which promote LPS circulation, a recipe for barrier disruption and systemic inflammatory activation. These findings emphasize the critical need to understand the underlying mechanisms and develop interventions to maintain gastrointestinal health in space.
Collapse
Affiliation(s)
- Oluwamayowa S Akinsuyi
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Jessica Xhumari
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Amanda Ojeda
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Luiz F W Roesch
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA.
| |
Collapse
|
22
|
Shumway AJ, Shanahan MT, Hollville E, Chen K, Beasley C, Villanueva JW, Albert S, Lian G, Cure MR, Schaner M, Zhu LC, Bantumilli S, Deshmukh M, Furey TS, Sheikh SZ, Sethupathy P. Aberrant miR-29 is a predictive feature of severe phenotypes in pediatric Crohn's disease. JCI Insight 2024; 9:e168800. [PMID: 38385744 PMCID: PMC10967384 DOI: 10.1172/jci.insight.168800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/10/2024] [Indexed: 02/23/2024] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory gut disorder. Molecular mechanisms underlying the clinical heterogeneity of CD remain poorly understood. MicroRNAs (miRNAs) are important regulators of gut physiology, and several have been implicated in the pathogenesis of adult CD. However, there is a dearth of large-scale miRNA studies for pediatric CD. We hypothesized that specific miRNAs uniquely mark pediatric CD. We performed small RNA-Seq of patient-matched colon and ileum biopsies from treatment-naive pediatric patients with CD (n = 169) and a control cohort (n = 108). Comprehensive miRNA analysis revealed 58 miRNAs altered in pediatric CD. Notably, multinomial logistic regression analysis revealed that index levels of ileal miR-29 are strongly predictive of severe inflammation and stricturing. Transcriptomic analyses of transgenic mice overexpressing miR-29 show a significant reduction of the tight junction protein gene Pmp22 and classic Paneth cell markers. The dramatic loss of Paneth cells was confirmed by histologic assays. Moreover, we found that pediatric patients with CD with elevated miR-29 exhibit significantly lower Paneth cell counts, increased inflammation scores, and reduced levels of PMP22. These findings strongly indicate that miR-29 upregulation is a distinguishing feature of pediatric CD, highly predictive of severe phenotypes, and associated with inflammation and Paneth cell loss.
Collapse
Affiliation(s)
| | - Michael T. Shanahan
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | | | - Kevin Chen
- Center for Gastrointestinal Biology and Disease
- Department of Genetics
| | | | | | - Sara Albert
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| | - Grace Lian
- Center for Gastrointestinal Biology and Disease
| | | | | | - Lee-Ching Zhu
- Department of Pathology and Laboratory Medicine, and
| | | | | | - Terrence S. Furey
- Center for Gastrointestinal Biology and Disease
- Department of Genetics
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shehzad Z. Sheikh
- Center for Gastrointestinal Biology and Disease
- Department of Genetics
| | - Praveen Sethupathy
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
23
|
Awad K, Barmeyer C, Bojarski C, Nagel O, Lee IFM, Schweiger MR, Schulzke JD, Bücker R. Epithelial Barrier Dysfunction in Diarrhea-Predominant Irritable Bowel Syndrome (IBS-D) via Downregulation of Claudin-1. Cells 2023; 12:2846. [PMID: 38132165 PMCID: PMC10741936 DOI: 10.3390/cells12242846] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND In patients with diarrhea-predominant irritable bowel syndrome (IBS-D), the diarrheal mechanisms are largely unknown, and they were examined in this study on colon biopsies. METHODS Electrophysiological measurements were used for monitoring functional changes in the diarrheic colon specimens. In parallel, tight junction protein expression was analyzed by Western blot and confocal laser-scanning microscopy, and signaling pathway analysis was performed using RNA sequencing and bioinformatics. RESULTS Epithelial resistance was decreased, indicating an epithelial leak flux diarrheal mechanism with a molecular correlate of decreased claudin-1 expression, while induction of active anion secretion and impairment of active sodium absorption via the epithelial sodium channel, ENaC, were not detected. The pathway analysis revealed activation of barrier-affecting cytokines TNF-α, IFN-γ, IL-1β and IL-4. CONCLUSIONS Barrier dysfunction as a result of epithelial tight junction changes plays a role in IBS-D as a pathomechanism inducing a leak flux type of diarrhea.
Collapse
Affiliation(s)
- Karem Awad
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany (O.N.)
| | - Christian Barmeyer
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany (O.N.)
| | - Christian Bojarski
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany (O.N.)
| | - Oliver Nagel
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany (O.N.)
| | - In-Fah M. Lee
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany (O.N.)
| | - Michal R. Schweiger
- Institute for Translational Epigenetics, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Jörg-Dieter Schulzke
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany (O.N.)
| | - Roland Bücker
- Clinical Physiology/Nutritional Medicine, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany (O.N.)
| |
Collapse
|
24
|
Luo M, Xie P, Deng X, Fan J, Xiong L. Rifaximin Ameliorates Loperamide-Induced Constipation in Rats through the Regulation of Gut Microbiota and Serum Metabolites. Nutrients 2023; 15:4502. [PMID: 37960154 PMCID: PMC10648458 DOI: 10.3390/nu15214502] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Structural changes in the gut microbiota are closely related to the development of functional constipation, and regulating the gut microbiota can improve constipation. Rifaximin is a poorly absorbed antibiotic beneficial for regulating gut microbiota, but few studies have reported its effects on constipation. The purpose of this study was to investigate the effect of rifaximin on loperamide-induced constipation in SD rats. The results showed that rifaximin improved constipation by increasing serum 5-HT, SP, and the mRNA expression of AQP3, AQP8, and reducing the mRNA expression of TLR2 and TLR4. In addition, rifaximin could regulate the gut microbiota of constipated rats, such as increasing the potentially beneficial bacteria Akkermansia muciniphila and Lactobacillus murinus, reducing the Bifidobacterium pseudolongum. According to metabolomics analysis, many serum metabolites, including bile acids and steroids, were changed in constipated rats and were recovered via rifaximin intervention. In conclusion, rifaximin might improve loperamide-induced constipation in rats by increasing serum excitatory neurotransmitters and neuropeptides, modulating water metabolism, and facilitating intestinal inflammation. Muti-Omics analysis results showed that rifaximin has beneficial regulatory effects on the gut microbiota and serum metabolites in constipated rats, which might play critical roles in alleviating constipation. This study suggests that rifaximin might be a potential strategy for treating constipation.
Collapse
Affiliation(s)
| | | | | | | | - Lishou Xiong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (M.L.); (P.X.); (X.D.); (J.F.)
| |
Collapse
|
25
|
Zogg H, Singh R, Ha SE, Wang Z, Jin B, Ha M, Dafinone M, Batalon T, Hoberg N, Poudrier S, Nguyen L, Yan W, Layden BT, Dugas LR, Sanders KM, Ro S. miR-10b-5p rescues leaky gut linked with gastrointestinal dysmotility and diabetes. United European Gastroenterol J 2023; 11:750-766. [PMID: 37723933 PMCID: PMC10576606 DOI: 10.1002/ueg2.12463] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/31/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND/AIM Diabetes has substantive co-occurrence with disorders of gut-brain interactions (DGBIs). The pathophysiological and molecular mechanisms linking diabetes and DGBIs are unclear. MicroRNAs (miRNAs) are key regulators of diabetes and gut dysmotility. We investigated whether impaired gut barrier function is regulated by a key miRNA, miR-10b-5p, linking diabetes and gut dysmotility. METHODS We created a new mouse line using the Mb3Cas12a/Mb3Cpf1 endonuclease to delete mir-10b globally. Loss of function studies in the mir-10b knockout (KO) mice were conducted to characterize diabetes, gut dysmotility, and gut barrier dysfunction phenotypes in these mice. Gain of function studies were conducted by injecting these mir-10b KO mice with a miR-10b-5p mimic. Further, we performed miRNA-sequencing analysis from colonic mucosa from mir-10b KO, wild type, and miR-10b-5p mimic injected mice to confirm (1) deficiency of miR-10b-5p in KO mice, and (2) restoration of miR-10b-5p after the mimic injection. RESULTS Congenital loss of mir-10b in mice led to the development of hyperglycemia, gut dysmotility, and gut barrier dysfunction. Gut permeability was increased, but expression of the tight junction protein Zonula occludens-1 was reduced in the colon of mir-10b KO mice. Patients with diabetes or constipation- predominant irritable bowel syndrome, a known DGBI that is linked to leaky gut, had significantly reduced miR-10b-5p expression. Injection of a miR-10b-5p mimic in mir-10b KO mice rescued these molecular alterations and phenotypes. CONCLUSIONS Our study uncovered a potential pathophysiologic mechanism of gut barrier dysfunction that links both the diabetes and gut dysmotility phenotypes in mice lacking miR-10b-5p. Treatment with a miR-10b-5p mimic reversed the leaky gut, diabetic, and gut dysmotility phenotypes, highlighting the translational potential of the miR-10b-5p mimic.
Collapse
Affiliation(s)
- Hannah Zogg
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Rajan Singh
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Se Eun Ha
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Zhuqing Wang
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Byungchang Jin
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Mariah Ha
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Mirabel Dafinone
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Tylar Batalon
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Nicholas Hoberg
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Sandra Poudrier
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Linda Nguyen
- Division of Gastroenterology & HepatologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Wei Yan
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and MetabolismDepartment of MedicineThe University of Illinois at ChicagoChicagoIllinoisUSA
- Jesse Brown Veterans Affairs Medical CenterChicagoIllinoisUSA
| | - Lara R. Dugas
- Loyola University ChicagoPublic Health SciencesMaywoodIllinoisUSA
- Division of Epidemiology & BiostatisticsSchool of Public HealthFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Kenton M. Sanders
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Seungil Ro
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
- RosVivo TherapeuticsApplied Research FacilityRenoNevadaUSA
| |
Collapse
|
26
|
Liu H, Shen L, Zhao H, Yang J, Huang D. Parkinson's disease patients combined with constipation tend to have higher serum expression of microRNA 29c, prominent neuropsychiatric disorders, possible RBD conversion, and a substandard quality of life. Neurol Sci 2023; 44:3141-3150. [PMID: 37067722 DOI: 10.1007/s10072-023-06793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/02/2023] [Indexed: 04/18/2023]
Abstract
INTRODUCTION The symptom of constipation has been confirmed as an early diagnose criteria for Parkinson's disease (PD). Furthermore, evidences suggest that pathogenesis of PD initiates in gut, rather than brain. If so, identifying biomarkers for constipation in PD might have potentials to assist early diagnosis and initial treatment. METHOD We first identified that microRNA 29c (miR-29c) was dysregulated both in PD and constipation patients through bioinformatics analysis. Then, serological analysis of the expression of miR-29c in 67 PD patients with constipation (PD-C), 51 PD patients without constipation (PD-NC), and 50 healthy controls (HC) was carried out by qPCR. Demographic and clinical features were also compared. Patients in PD-C group were further classified into two groups: those with prodromal stage constipation (PD-C-Pro) (n = 36) and those with clinical stage constipation (PD-C-Clinic) (n = 31), to explore their different characteristics. RESULTS The levels of miR-29c in PD-C group were higher than that in PD-NC group, both higher than HC group. PD-C-Pro group's miR-29c levels were statistically higher compared with PD-C-Clinic group's. What is more, PD-C group had higher scores of MDS-UPDRS-I, NMSS, NMSS3, NMSS4, NMSS6, NMSS9, SCOPA-AUT, HAMD, HAMA, RBDSQ, CSS, and PACQOL compared with PD-NC party. Relative to the PD-C-Clinic, patients in PD-C-Pro group had higher MDS-UPDRS-I, NMSS, NMSS3, HAMD, and HAMA scores, and were more likely to have RBD. CONCLUSION Our results indicated that miR-29c seems to be an underlying cause for developing constipation in patients with PD and PD-C identifies a group of patients with more severe non-motor impairment, prominent neuropsychiatric disorders, and possible RBD conversion as well as a substandard quality of life. We further confirmed that there is a close relationship between symptoms representing the same pathological origin, especially constipation and RBD.
Collapse
Affiliation(s)
- Hong Liu
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Lei Shen
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Haonan Zhao
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jie Yang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Dongya Huang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
27
|
Datta N, Johnson C, Kao D, Gurnani P, Alexander C, Polytarchou C, Monaghan TM. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol Res 2023; 194:106870. [PMID: 37499702 DOI: 10.1016/j.phrs.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
An emerging but less explored shared pathophysiology across microbiota-gut-brain axis disorders is aberrant miRNA expression, which may represent novel therapeutic targets. miRNAs are small, endogenous non-coding RNAs that are important transcriptional repressors of gene expression. Most importantly, they regulate the integrity of the intestinal epithelial and blood-brain barriers and serve as an important communication channel between the gut microbiome and the host. A well-defined understanding of the mode of action, therapeutic strategies and delivery mechanisms of miRNAs is pivotal in translating the clinical applications of miRNA-based therapeutics. Accumulating evidence links disorders of the microbiota-gut-brain axis with a compromised gut-blood-brain-barrier, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. This has the potential to affect all organs, including the brain, causing central inflammation and the development of neurodegenerative and neuropsychiatric diseases. In this review, we have examined in detail miRNA biogenesis, strategies for therapeutic application, delivery mechanisms, as well as their pathophysiology and clinical applications in inflammatory gut-brain disorders. The research data in this review was drawn from the following databases: PubMed, Google Scholar, and Clinicaltrials.gov. With increasing evidence of the pathophysiological importance for miRNAs in microbiota-gut-brain axis disorders, therapeutic targeting of cross-regulated miRNAs in these disorders displays potentially transformative and translational potential. Further preclinical research and human clinical trials are required to further advance this area of research.
Collapse
Affiliation(s)
- Neha Datta
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Charlotte Johnson
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Pratik Gurnani
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Cameron Alexander
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science & Technology, Nottingham Trent University, Nottingham, UK.
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
28
|
Wang Y, Ke W, Gan J, Zhu H, Xie X, He G, Liu S, Huang Y, Tang H. MicroRNA-29b-3p promotes intestinal permeability in IBS-D via targeting TRAF3 to regulate the NF-κB-MLCK signaling pathway. PLoS One 2023; 18:e0287597. [PMID: 37428806 PMCID: PMC10332595 DOI: 10.1371/journal.pone.0287597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/08/2023] [Indexed: 07/12/2023] Open
Abstract
Irritable bowel syndrome with predominant diarrhea (IBS-D) is characterized by increased intestinal permeability. Previous studies have shown that the microRNA-29 gene is involved in the regulation of intestinal permeability in patients with IBS-D. NF-κB was proved to play a key role in inflammatory response of intestine and resultant disruption of tight junction integrity, whose activity could be inhibited by TNF Receptor-Associated Factor 3 (TRAF3). However, the exact mechanism that induces increased intestinal permeability in IBS-D patients has not been clarified. In this study, we found that microRNA-29b‑3p (miR-29b-3p) was significantly upregulated, while TRAF3 was decreased and the NF-κB-MLCK pathway was activated within the colonic tissue of IBS-D patients. Subsequently, we confirmed the targeting relationship between miR-29b-3p and TRAF3 through a double-luciferase reporter assay. Lentivirus transfection of NCM460 cells with miR-29b-3p-overexpressing and -silencing vectors demonstrated that the expression of TRAF3 was negatively correlated with the level of miR-29b-3p. The NF-κB/MLCK pathway was activated in the miR-29b-3p-overexpressing group and inhibited to some extent in the miR-29b-3p-silencing group. Results in WT and miR-29 knockout mice showed that miR-29b-3p levels were increased, TRAF3 levels were decreased, and the NF-κB/MLCK signaling was activated in the WT IBS-D group as compared with the WT control group. The protein levels of TRAF3 and TJs in the miR-29b-/- IBS-D group were partially recovered and NF-κB/MLCK pathway indicators were, to a certain extent, decreased as compared with the WT IBS-D group. These results suggested that miR-29b-3p deletion enhances the TRAF3 level in IBS-D mice and alleviates the high intestinal permeability. In brief, through the analysis of intestinal tissue samples from IBS-D patients and miR-29b-/- IBS-D mice, we showed that miR-29b-3p is involved in the pathogenesis of intestinal hyperpermeability in IBS-D via targeting TRAF3 to regulate the NF-κB-MLCK signaling pathway.
Collapse
Affiliation(s)
- Yongfu Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Ke
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jianfeng Gan
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - He Zhu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiangyu Xie
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guodong He
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shan Liu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yusheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hongmei Tang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Dothel G, Barbaro MR, Di Vito A, Ravegnini G, Gorini F, Monesmith S, Coschina E, Benuzzi E, Fuschi D, Palombo M, Bonomini F, Morroni F, Hrelia P, Barbara G, Angelini S. New insights into irritable bowel syndrome pathophysiological mechanisms: contribution of epigenetics. J Gastroenterol 2023; 58:605-621. [PMID: 37160449 PMCID: PMC10307698 DOI: 10.1007/s00535-023-01997-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Irritable bowel syndrome (IBS) is a complex multifactorial condition including alterations of the gut-brain axis, intestinal permeability, mucosal neuro-immune interactions, and microbiota imbalance. Recent advances proposed epigenetic factors as possible regulators of several mechanisms involved in IBS pathophysiology. These epigenetic factors include biomolecular mechanisms inducing chromosome-related and heritable changes in gene expression regardless of DNA coding sequence. Accordingly, altered gut microbiota may increase the production of metabolites such as sodium butyrate, a prominent inhibitor of histone deacetylases. Patients with IBS showed an increased amount of butyrate-producing microbial phila as well as an altered profile of methylated genes and micro-RNAs (miRNAs). Importantly, gene acetylation as well as specific miRNA profiles are involved in different IBS mechanisms and may be applied for future diagnostic purposes, especially to detect increased gut permeability and visceromotor dysfunctions. In this review, we summarize current knowledge of the role of epigenetics in IBS pathophysiology.
Collapse
Affiliation(s)
- Giovanni Dothel
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Connect By Circular Lab SRL, Madrid, Spain
| | | | - Aldo Di Vito
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sarah Monesmith
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Emma Coschina
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Eva Benuzzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Marta Palombo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Bonomini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Inter-Departmental Center for Health Sciences & Technologies, CIRI-SDV, University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Jeong JJ, Ganesan R, Jin YJ, Park HJ, Min BH, Jeong MK, Yoon SJ, Choi MR, Choi J, Moon JH, Min U, Lim JH, Lee DY, Han SH, Ham YL, Kim BY, Suk KT. Multi-strain probiotics alleviate loperamide-induced constipation by adjusting the microbiome, serotonin, and short-chain fatty acids in rats. Front Microbiol 2023; 14:1174968. [PMID: 37333632 PMCID: PMC10272585 DOI: 10.3389/fmicb.2023.1174968] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Constipation is one of the most common gastrointestinal (GI) disorders worldwide. The use of probiotics to improve constipation is well known. In this study, the effect on loperamide-induced constipation by intragastric administration of probiotics Consti-Biome mixed with SynBalance® SmilinGut (Lactobacillus plantarum PBS067, Lactobacillus rhamnosus LRH020, Bifidobacterium animalis subsp. lactis BL050; Roelmi HPC), L. plantarum UALp-05 (Chr. Hansen), Lactobacillus acidophilus DDS-1 (Chr. Hansen), and Streptococcus thermophilus CKDB027 (Chong Kun Dang Bio) to rats was evaluated. To induce constipation, 5 mg/kg loperamide was intraperitoneally administered twice a day for 7 days to all groups except the normal control group. After inducing constipation, Dulcolax-S tablets and multi-strain probiotics Consti-Biome were orally administered once a day for 14 days. The probiotics were administered 0.5 mL at concentrations of 2 × 108 CFU/mL (G1), 2 × 109 CFU/mL (G2), and 2 × 1010 CFU/mL (G3). Compared to the loperamide administration group (LOP), the multi-strain probiotics not only significantly increased the number of fecal pellets but also improved the GI transit rate. The mRNA expression levels of serotonin- and mucin-related genes in the colons that were treated with the probiotics were also significantly increased compared to levels in the LOP group. In addition, an increase in serotonin was observed in the colon. The cecum metabolites showed a different pattern between the probiotics-treated groups and the LOP group, and an increase in short-chain fatty acids was observed in the probiotic-treated groups. The abundances of the phylum Verrucomicrobia, the family Erysipelotrichaceae and the genus Akkermansia were increased in fecal samples of the probiotic-treated groups. Therefore, the multi-strain probiotics used in this experiment were thought to help alleviate LOP-induced constipation by altering the levels of short-chain fatty acids, serotonin, and mucin through improvement in the intestinal microflora.
Collapse
Affiliation(s)
- Jin-Ju Jeong
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Yoo-Jeong Jin
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Hee Jin Park
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Byeong Hyun Min
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Min Kyo Jeong
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Mi Ran Choi
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| | - Jieun Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji Hyun Moon
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Uigi Min
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Jong-Hyun Lim
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Young Lim Ham
- Department of Nursing, Daewon University College, Jecheon, Republic of Korea
| | - Byung-Yong Kim
- R&D Center, Chong Kun Dang Healthcare, Seoul, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Disease, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
31
|
Wang WF, Zhong HJ, Cheng S, Fu D, Zhao Y, Cai HM, Xiong J, Zhao WL. A nuclear NKRF interacting long noncoding RNA controls EBV eradication and suppresses tumor progression in natural killer/T-cell lymphoma. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166722. [PMID: 37084822 DOI: 10.1016/j.bbadis.2023.166722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/01/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Long intergenic noncoding RNAs (lincRNAs) are differentially expressed in EBV-infected cells and play an essential role in tumor progression. Molecular pathogenesis of lincRNAs in EBV-driven natural killer T cell lymphoma (NKTCL) remains unclear. Here we investigated the ncRNA profile using high-throughput RNA sequencing data of 439 lymphoma samples and screened out LINC00486, whose downregulation was further validated by quantitative real-time polymerase chain reaction in EBV-encoded RNA (EBER)-positive lymphoma, particularly NKTCL. Both in vitro and in vivo studies revealed the tumor suppressive function of LINC00486 through inhibiting tumor cell growth and inducing G0/G1 cell cycle arrest. As mechanism of action, LINC00486 specifically interacted with NKRF to abrogate its binding with phosphorylated p65, activated NF-κB/TNF-α signaling and subsequently enhanced EBV eradication. Solute carrier family 1 member 1 (SLC1A1), upregulated and mediated the glutamine-addiction and tumor progression in NKTCL, was negatively correlated with the expression of NKRF. NKRF specifically bound to the promoter and transcriptionally downregulated the expression of SLC1A1, as evidenced by Chromatin Immunoprecipitation (ChIP) and luciferase assay. Collectively, LINC00486 functioned as a tumor suppressor and counteracted EBV infection in NKTCL. Our study improved the knowledge of EBV-driven oncogenesis in NKTCL and provided the clinical rationale of EBV eradication in anti-cancer treatment.
Collapse
Affiliation(s)
- Wen-Fang Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Juan Zhong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Man Cai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Xiong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei-Li Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
32
|
Langlois LD, Oddoux S, Aublé K, Violette P, Déchelotte P, Noël A, Coëffier M. Effects of Glutamine, Curcumin and Fish Bioactive Peptides Alone or in Combination on Intestinal Permeability in a Chronic-Restraint Stress Model. Int J Mol Sci 2023; 24:ijms24087220. [PMID: 37108383 PMCID: PMC10139227 DOI: 10.3390/ijms24087220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Irritable bowel syndrome (IBS), a multifactorial intestinal disorder, is often associated with a disruption in intestinal permeability as well as an increased expression of pro-inflammatory markers. The aim of this study was to first test the impact of treatment with glutamine (Gln), a food supplement containing natural curcumin extracts and polyunsaturated n-3 fatty acids (Cur); bioactive peptides from a fish protein hydrolysate (Ga); and a probiotic mixture containing Bacillus coagulans, Lactobacillus acidophilus, Lactobacillus gasseri and Lactobacillus helveticus. These compounds were tested alone on a stress-based IBS model, the chronic-restraint stress model (CRS). The combination of Gln, Cur and Ga (GCG) was also tested. Eight-week-old C57Bl/6 male mice were exposed to restraint stress for two hours every day for four days and received different compounds every day one week before and during the CRS procedure. Plasma corticosterone levels were measured as a marker of stress, and colonic permeability was evaluated ex vivo in Ussing chambers. Changes in the gene expression of tight junction proteins (occludin, claudin-1 and ZO 1) and inflammatory cytokines (IL1β, TNFα, CXCL1 and IL10) were assessed using RT-qPCR. The CRS model led to an increase in plasma corticosterone and an increase in colonic permeability compared with unstressed animals. No change in plasma corticosterone concentrations was observed in response to CRS with the different treatments (Gln, Cur, Ga or GCG). Stressed animals treated with Gln, Cur and Ga alone and in combination showed a decrease in colonic permeability when compared to the CRS group, while the probiotic mixture resulted in an opposite response. The Ga treatment induced an increase in the expression of the anti-inflammatory cytokine IL-10, and the GCG treatment was able to decrease the expression of CXCL1, suggesting the synergistic effect of the combined mixture. In conclusion, this study demonstrated that a combined administration of glutamine, a food supplement containing curcumin and polyunsaturated n-3 fatty acids, and bioactive peptides from a fish hydrolysate was able to reduce colonic hyperpermeability and reduce the inflammatory marker CXCL1 in a stress-based model of IBS and could be of interest to patients suffering from IBS.
Collapse
Affiliation(s)
- Ludovic D Langlois
- Univ Rouen Normandie, Inserm, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", F-76000 Rouen, France
- Laboratoire DIELEN, F-50110 Tourlaville, France
| | | | - Kanhia Aublé
- Univ Rouen Normandie, Inserm, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", F-76000 Rouen, France
| | | | - Pierre Déchelotte
- Univ Rouen Normandie, Inserm, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", F-76000 Rouen, France
- Nutrition Department, CHU Rouen, F-76000 Rouen, France
| | | | - Moïse Coëffier
- Univ Rouen Normandie, Inserm, ADEN UMR1073 "Nutrition, Inflammation and Microbiota-Gut-Brain Axis", F-76000 Rouen, France
- Nutrition Department, CHU Rouen, F-76000 Rouen, France
| |
Collapse
|
33
|
Zhou Q, Yang L, Verne ML, Zhang BB, Fields J, Verne GN. Catechol-O-Methyltransferase Loss Drives Cell-Specific Nociceptive Signaling via the Enteric Catechol-O-Methyltransferase/microRNA-155/Tumor Necrosis Factor α Axis. Gastroenterology 2023; 164:630-641.e34. [PMID: 36623778 PMCID: PMC10038873 DOI: 10.1053/j.gastro.2022.12.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS The etiology of abdominal pain in postinfectious, diarrhea-predominant irritable bowel syndrome (PI-IBS-D) is unknown, and few treatment options exist. Catechol-O-methyltransferase (COMT), an enzyme that inactivates and degrades biologically active catecholamines, plays an important role in numerous physiologic processes, including modulation of pain perception. Our objective was to determine the mechanism(s) of how decreased colonic COMT in PI-IBS-D patients contributes to the chronic abdominal pain phenotype after enteric infections. METHODS Colon neurons, epithelial cells, and macrophages were procured with laser capture microdissection from PI-IBS-D patients to evaluate cell-specific colonic COMT, microRNA-155 (miR-155), and tumor necrosis factor (TNF) α expression levels compared to recovered patients (infection cleared: did not develop PI-IBS-D) and control individuals. COMT-/-, colon-specific COMT-/-, and miR-155-/- mice and human colonoids were used to model phenotypic expression of COMT in PI-IBS-D patients and to investigate signaling pathways linking abdominal pain. Citrobacter rodentium and trinitrobenzene sulfonic acid animal models were used to model postinflammatory changes seen in PI-IBS-D patients. RESULTS Colonic COMT levels were significantly decreased and correlated with increased visual analog scale abdominal pain ratings in PI-IBS-D patients compared to recovered patients and control individuals. Colonic miR-155 and TNF-α were increased in PI-IBS-D patients with diminished colonic COMT. COMT-/- mice had significantly increased expression of miR-155 and TNF-α in both colon tissues and dorsal root ganglia. Introduction of cV1q antibody (anti-TNF-α) into mice reversed visceral hypersensitivity after C rodentium and trinitrobenzene sulfonic acid. CONCLUSIONS Decreased colonic COMT in PI-IBS-D patients drives abdominal pain phenotypes via the COMT/miR-155/TNF-α axis. These important findings will allow new treatment paradigms and more targeted and personalized medicine approaches for gastrointestinal disorders after enteric infections.
Collapse
Affiliation(s)
- QiQi Zhou
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Memphis Veterans Affairs Medical Center, Research Service, Memphis, Tennessee
| | - Liuqing Yang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Meghan L Verne
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Benjamin B Zhang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jeremy Fields
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - George Nicholas Verne
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; Memphis Veterans Affairs Medical Center, Research Service, Memphis, Tennessee.
| |
Collapse
|
34
|
Lu Y, Chai Y, Qiu J, Zhang J, Wu M, Fu Z, Wang Y, Qin C. Integrated omics analysis reveals the epigenetic mechanism of visceral hypersensitivity in IBS-D. Front Pharmacol 2023; 14:1062630. [PMID: 37007011 PMCID: PMC10064328 DOI: 10.3389/fphar.2023.1062630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Background and objective: IBS-D is a common functional bowel disease with complex etiology and without biomarker. The pathological and physiological basis of IBS-D focuses on visceral hypersensitivity. However, its epigenetic mechanism remains elusive. Our study aimed to integrate the relationship between differentially expressed miRNAs, mRNAs and proteins in IBS-D patients in order to reveal epigenetic mechanism of visceral hypersensitivity from transcription and protein levels and provide the molecular basis for discovering biomarkers of IBS-D.Methods: The intestinal biopsies from IBS-D patients and healthy volunteers were obtained for high-throughput sequencing of miRNAs and mRNAs. The differential miRNAs were selected and verified by q-PCR experiment followed by target mRNA prediction. Biological functions were respectively analyzed for target mRNAs, differential mRNAs and the previously identified differential proteins in order to explore the characteristic involved visceral hypersensitivity. At last, interaction analysis of miRNAs, mRNAs and proteins was performed for the epigenetic regulation mechanism from transcription and protein levels.Results: Thirty-three miRNAs were found to be differentially expressed in IBS-D and five of them were further confirmed, including upregulated hsa-miR-641, hsa-miR-1843, hsa-let-7d-3p and downregulated hsa-miR-219a-5p, hsa-miR-19b-1-5p. In addition, 3,812 differential mRNAs were identified. Thirty intersecting molecules were found from the analysis on the target mRNAs of miRNAs and mRNAs. Fourteen intersecting molecules were obtained from the analysis on the target mRNAs and proteins, and thirty-six intersecting molecules were identified from analysis on the proteins and different mRNAs. According to the integrated analysis of miRNA-mRNA-protein, we noticed two new molecules COPS2 regulated by hsa-miR-19b-1-5p and MARCKS regulated by hsa-miR-641. Meanwhile some critical signaling pathways in IBS-D were found such as MAPK, GABAergic synapse, Glutamatergic synapse, and Adherens junction.Conclusion: The expressions of hsa-miR-641, hsa-miR-1843, hsa-let-7d-3p, hsa-miR-219a-5p, and hsa-miR-19b-1-5p in the intestinal tissues of IBS-D patients were significantly different. Moreover, they could regulate a variety of molecules and signaling pathways, which were involved in the multifaceted and multilevel mechanism of visceral hypersensitivity of IBS-D.
Collapse
Affiliation(s)
- Yaoyao Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuna Chai
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Yuna Chai, ; Yongfu Wang, ; Chongzhen Qin,
| | - Jianli Qiu
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jingmin Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Menglin Wu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhe Fu
- Department of General Pediatric Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongfu Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Yuna Chai, ; Yongfu Wang, ; Chongzhen Qin,
| | - Chongzhen Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Yuna Chai, ; Yongfu Wang, ; Chongzhen Qin,
| |
Collapse
|
35
|
Xiao J, Zhou YN, Yang YL, He L, Wang KK, Chen M. Study on the pathogenesis of MiR-6324 regulating diarrheal irritable bowel syndrome and bioinformatics analysis. Front Pharmacol 2023; 14:1044330. [PMID: 36873998 PMCID: PMC9975503 DOI: 10.3389/fphar.2023.1044330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Objective: To investigate the pathogenesis of IBS-D by bioinformatics analysis of the differential microRNAs in rat colon tissue and to analyze and predict the function of their target genes. Methods: Twenty male Wistar rats of SPF class were randomly divided into two groups, the model group was manipulated using the colorectal dilatation method + chronic restraint stress method to establish the IBS-D model; while the blank group stroked the perineum at the same frequency. Screening of differential miRNAs after High-throughput sequencing of rat colon tissue. GO and KEGG analysis of target genes using the DAVID website, further mapping using RStudio software; the STRING database and the Cytoscape software were used to obtain the protein interaction network (PPI) of the target genes as well as the core genes. Finally, qPCR was used to detect the expression of target genes in the colon tissue of two groups of rats. Results: After the screening, miR-6324 was obtained as the key of this study. The GO analysis of target genes of miR-6324 is mainly involved in protein phosphorylation, positive regulation of cell proliferation, and intracellular signal transduction; it affects a variety of cellular components such as cytoplasm, nucleus, and organelles on the intracellular surface; it is also involved in molecular functions such as protein binding, ATP binding, and DNA binding. KEGG analysis showed that the intersecting target genes were mainly enriched in cancer pathways, proteoglycans in cancer, neurotrophic signaling pathway, etc. The protein-protein interaction network screened out the core genes mainly Ube2k, Rnf41, Cblb, Nek2, Nde1, Cep131, Tgfb2, Qsox1, and Tmsb4x. The qPCR results showed that the expression of miR-6324 decreased in the model group, but the decrease was not significant. Conclusion: miR-6324 may be involved in the pathogenesis of IBS-D as a potential biological target and provide further ideas for research on the pathogenesis of the disease or treatment options.
Collapse
Affiliation(s)
- Jin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan-ni Zhou
- Sichuan Hospital of Integrative Medicine TCM, Chengdu, Sichuan, China
| | - Yan-lin Yang
- Zigong Fifth People’s Hospital, Zigong, Sichuan, China
| | - Li He
- Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ke-kai Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Min Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
36
|
Guo JG, Rao YF, Jiang J, Li X, Zhu SM. MicroRNA-155-5p inhibition alleviates irritable bowel syndrome by increasing claudin-1 and ZO-1 expression. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:34. [PMID: 36819593 PMCID: PMC9929797 DOI: 10.21037/atm-22-4859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022]
Abstract
Background Irritable bowel syndrome (IBS) is a common gastrointestinal disease. Emerging studies have demonstrated that microRNAs (miRNAs) are commonly dysregulated in patients with IBS, and aberrant miRNAs are implicated in IBS occurrence. Although miR-155-5p participates in inflammatory bowel disease (IBD) and intestinal barrier dysfunction, the role of miR-155-5p in IBS is unclear. Methods In the present study, colon samples were obtained from IBS patients and IBS mice induced by trinitrobenzenesulfonic acid (TNBS), and the levels of miR-155-5p, claudin-1 (CLDN1), and zonula occludens-1 (ZO-1) were assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemical analysis. The regulatory role of miR-155-5p in CLDN1 and ZO-1 expression was validated using dual luciferase reporter assay. Results We found that miR-155-5p levels were upregulated in colon samples of IBS patients and mice compared with healthy subjects and normal mice, respectively. Meanwhile, the levels of CLDN1 and ZO-1 were decreased in colon samples of IBS patients and mice. Importantly, forced expression of miR-155-5p inhibited CLDN1 and ZO-1 expression. In IBS mice, intraperitoneal injection with miR-155-5p inhibitor increased CLDN1 and ZO-1 expression in intestinal mucosal epithelium, enhanced visceral response thresholds, and decreased myeloperoxidase (MPO) activity. Conclusions In summary, these results suggested that miR-155-5p participated in the pathogenesis of IBS, at least in part by inhibiting CLDN1 and ZO-1 expression, indicating that miR-155-5p may be a potential therapeutic target for IBS.
Collapse
Affiliation(s)
- Jian-Guo Guo
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Feng Rao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Jiang
- Hangzhou Dunen Medical Laboratory Co., Ltd., Hangzhou, China
| | - Xin Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng-Mei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
37
|
Du P, Joshi V, Beyder A. Tracking Gut Motility in Organ and Cultures. Methods Mol Biol 2023; 2644:449-466. [PMID: 37142940 DOI: 10.1007/978-1-0716-3052-5_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Gastrointestinal (GI) motility is a key component of digestive health, and it is complex, involving a multitude of cell types and mechanisms to drive both rhythmic and arrhythmic activity. Tracking GI motility in organ and tissue cultures across multiple temporal (seconds, minutes, hours, days) scales can provide valuable information regarding dysmotility and to evaluate treatment options. Here, the chapter describes a simple method to monitor GI motility in organotypic cultures, using a single video camera is placed perpendicularly to the surface of the tissue. A cross-correlational analysis is used to track the relative movements of tissues between subsequent frames and subsequent fitting procedures to fit finite element functions to the deformed tissue to calculate the strain fields. Additional motility index measures from the displacement information are used to further quantify the behaviors of the tissues that are maintained in organotypic culture over days. The protocols presented in this chapter can be adapted to study organotypic cultures from other organs.
Collapse
Affiliation(s)
- Peng Du
- Auckland Bioengineering Institute, Department of Engineering Science and Biomedical Engineering, University of Auckland, Auckland, New Zealand.
| | - Vikram Joshi
- Department of Physiology and Biomedical Engineering, Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arthur Beyder
- Department of Physiology and Biomedical Engineering, Enteric NeuroScience Program (ENSP), Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
38
|
Verne ZT, Fields JZ, Zhang BB, Zhou Q. Autonomic dysfunction and gastroparesis in Gulf War veterans. J Investig Med 2023; 71:7-10. [PMID: 35798472 DOI: 10.1136/jim-2021-002291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 01/25/2023]
Abstract
Over 25% of veterans with Gulf War illness developed chronic gastrointestinal (GI) symptoms of unknown etiology after they returned from deployment to the Persian Gulf. To determine the prevalence of delayed gastric emptying and its association with autonomic dysfunction in returning Gulf War (GW) veterans with chronic GI symptoms, we prospectively studied 35 veterans who were deployed to the Persian Gulf and developed chronic nausea, vomiting, postprandial abdominal pain, and bloating during their tour of duty and 15 asymptomatic controls. All veterans underwent 5 standardized cardiovascular tests to assess autonomic function. Each test was scored from 0 (normal) to 5 (severe disease) and the mean was calculated. A composite score >1.5 was considered abnormal, with 5 representing severe autonomic dysfunction. A standardized gastric emptying test with a solid phase was performed in each veteran. A gastric retention of >50% at 100 minutes was considered abnormal. The composite autonomic score was 3.7 in veterans with GI symptoms (vs 1.3 in controls) (p<0.01). The mean solid phase retention at 100 minutes was 72.6% in the symptomatic veterans versus 24.6% in controls (p<0.001). Our results suggest that autonomic dysfunction and delayed gastric emptying are common in returning GW veterans with GI symptoms. Autonomic dysfunction was positively correlated with the severity of delayed gastric emptying and may account for the GI symptoms of nausea, vomiting, postprandial abdominal pain, and bloating. These new findings are important for an increasing number of veterans who are serving in the Persian Gulf and are at a high risk of developing GI disorders while deployed.
Collapse
Affiliation(s)
| | - Jeremy Z Fields
- Department of Medicine, The University of Tennessee Health Science Center College of Medicine, Memphis, Tennessee, USA
| | - Benjamin Buyi Zhang
- Department of Medicine, The University of Tennessee Health Science Center College of Medicine, Memphis, Tennessee, USA
| | - QiQi Zhou
- Department of Medicine, The University of Tennessee Health Science Center College of Medicine, Memphis, Tennessee, USA.,Memphis VA Medical Center, Memphis, Tennessee, USA
| |
Collapse
|
39
|
Functional Implications and Clinical Potential of MicroRNAs in Irritable Bowel Syndrome: A Concise Review. Dig Dis Sci 2023; 68:38-53. [PMID: 35507132 PMCID: PMC9066399 DOI: 10.1007/s10620-022-07516-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
MicroRNAs (miRNAs) are tiny (20-24 nucleotides long), non-coding, highly conserved RNA molecules that play a crucial role within the post-transcriptional regulation of gene expression via sequence-specific mechanisms. Since the miRNA transcriptome is involved in multiple molecular processes needed for cellular homeostasis, its altered expression can trigger the development and progression of several human pathologies. In this context, over the last few years, several relevant studies have demonstrated that dysregulated miRNAs affect a wide range of molecular mechanisms associated with irritable bowel syndrome (IBS), a common gastrointestinal disorder. For instance, abnormal miRNA expression in IBS patients is related to the alteration of intestinal permeability, visceral hyperalgesia, inflammatory pathways, and pain sensitivity. Besides, specific miRNAs are differentially expressed in the different subtypes of IBS, and therefore, they might be used as biomarkers for precise diagnosis of these pathological conditions. Accordingly, miRNAs have noteworthy potential as theragnostic targets for IBS. Hence, in this current review, we present an overview of the recent discoveries regarding the clinical relevance of miRNAs in IBS, which might be useful in the future for the development of miRNA-based drugs against this disorder.
Collapse
|
40
|
Paeoniflorin alleviates inflammatory response in IBS-D mouse model via downregulation of the NLRP3 inflammasome pathway with involvement of miR-29a. Heliyon 2022; 8:e12312. [PMID: 36590561 PMCID: PMC9800317 DOI: 10.1016/j.heliyon.2022.e12312] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Paeoniflorin has been traditionally used to treat pain and immunologic derangement in China. However, its detailed mechanism remains to be illuminated. We investigated the mechanism by which paeoniflorin alleviates the inflammatory response in a mouse model of irritable bowel syndrome with predominant diarrhea (IBS-D). C57BL/6 wild type (WT) and miR-29a knockout (KO) mice were randomly divided into control, model, rifaximin, and paeoniflorin groups (n = 7). IBS-D model was induced by single intracolonic instillation of 0.1 mL trinitro-benzene-sulfonic acid (TNBS, 50 mg/mL) combined with restraint stress for seven consecutive days. The treatment groups received rifaximin (100 mg/kg) and paeoniflorin (50 mg/kg) via intragastric administration for seven days, respectively. The results showed that the fecal water content, fecal pellet output, visceral sensitivity, and histopathological score after paeoniflorin treatment were lower than those of the model group in both WT and miR-29a KO mice (P < 0.05). In both lineage mice, damage was observed in the colon tissues of model group, while paeoniflorin treatment partially ameliorated the tissue damage. Serum levels of DAO, DLA, IL-1β, IL-18, TNF-α, and MPO were decreased after paeoniflorin treatment (P < 0.05), with miR-29a KO mice in a lower level compared with that of WT mice. RT-PCR showed that the relative expression of miR-29a, NF-κB (p65), NLRP3, ASC, caspase-1, IL-1β, and TNF-α was downregulated while NKRF was upregulated after paeoniflorin treatment (P < 0.05). Immunohistochemistry showed that intestinal epithelial protein levels of NLRP3, ASC, and caspase-1 decreased while those of Claudin-1 and ZO-1 increased in the paeoniflorin treatment group (P < 0.05). In general, compared with WT mice, NLRP3 inflammasome pathway targets was in much lower expression level than miR-29a KO mice. In conclusion, paeoniflorin could inhibit abnormal activation of the NLRP3 inflammasome pathway by inhibiting miR-29a in IBS-D, thereby relieving the inflammatory response of the intestinal mucosa and reconstructing the intestinal epithelial barrier.
Collapse
|
41
|
MicroRNAs in Inflammatory Bowel Disease and Its Complications. Int J Mol Sci 2022; 23:ijms23158751. [PMID: 35955886 PMCID: PMC9369281 DOI: 10.3390/ijms23158751] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD), classified primarily between Crohn's disease and ulcerative colitis, is a collection of chronic gastrointestinal inflammatory conditions that cause multiple complications because of systemic alterations in the immune response. One major player is microRNA (miRNA), which is found to be associated with multiple pathways in mediating inflammation, especially those of a chronic nature in IBD, as well as irritable bowel syndrome. Although there have been studies linking miRNA alterations in IBD, even differentiating Crohn's disease and ulcerative colitis, this review focuses mainly on how miRNAs cause and mechanistically influence the pathologic complications of IBD. In addition to its role in the well-known progression towards colorectal cancer, we also emphasize how miRNA manifests the many extraintestinal complications in IBD such as cardiovascular diseases; neuropsychiatric conditions such as depression and anxiety disorders; and others, including various musculoskeletal, dermatologic, ocular, and hepatobiliary complications. We conclude through a description of its potential use in bettering diagnostics and the future treatment of IBD and its systemic symptoms.
Collapse
|
42
|
Camilleri M, Magnus Y, Carlson P, Wang XJ, Chedid V, Maselli D, Taylor A, McKinzie S, Kengunte Nagaraj N, Busciglio I, Nair A. Differential mRNA expression in ileal and colonic biopsies in irritable bowel syndrome with diarrhea or constipation. Am J Physiol Gastrointest Liver Physiol 2022; 323:G88-G101. [PMID: 35502856 PMCID: PMC9291427 DOI: 10.1152/ajpgi.00063.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Altered mucosal functions are documented in jejunal or colorectal mucosa from patients with irritable bowel syndrome (IBS). Our aim was to quantify ileal, ascending, and rectosigmoid colon mucosal expression of genes in IBS-diarrhea (D) and IBS-constipation (C). Forty-four patients with IBS-D, 30 with IBS-C, and 30 healthy volunteers underwent colonoscopic ileal, ascending, and rectosigmoid colon biopsies. Biopsies were stored in RNAlater at -80 °C, purified with on-column DNase, cDNA libraries prepared from 100-200 ng of total RNA, sequenced on Illumina NovaSeq 6000, and analyzed on Illumina's RTA version 3.4.4. Normalized mRNA expression was obtained using MAP-RSeq bioinformatics pipeline. Differential expressions in the groups (Log2-fold change) were measured using the bioinformatics package edgeR 2.6.2, corrected for false discovery rate (PADJ <0.05). There were 30 females with IBS-C and 31 females and 13 males with IBS-D. In IBS-D and IBS-C groups, there were differential expressions of 181 genes in ascending colon and 199 genes in rectosigmoid colon. The majority were gene upregulations in IBS-D with functions reflecting activation of inflammation genes, TRPV1 (visceral hypersensitivity) and neurotransmitters/receptors (specifically purinergic, GABA, and cannabinoid). Although gene differential expressions in the ascending and rectosigmoid colon mucosa of the two groups were different, the diverse upregulated genes involved immune functions, receptors, transmitters, ion channels, and transporters. Conversely, there was reduced expression of PI15 and PI16 genes that inhibit proteases. In patients with IBS-D and IBS-C, differential expressions of genes related to immune, transmitter, nociceptive, protease inhibition, channel, and transporter functions suggest opportunities to reverse the pathobiology and treat patients with IBS.NEW & NOTEWORTHY This study compares gene expression in mucosa of the terminal ileum, right colon, and left colon in patients with diarrhea- or constipation-predominant irritable bowel syndrome (IBS) and contrasts expression between these two disease entities and also between each entity and mucosa from healthy controls. The study shows there is differential expression of genes related to immune, transmitter, nociceptive, ion channel, and transporter functions, as well as reduced serine protease inhibition, in patients with IBS.
Collapse
Affiliation(s)
- Michael Camilleri
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | - Yorick Magnus
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | - Paula Carlson
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | - Xiao Jing Wang
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | - Victor Chedid
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | - Daniel Maselli
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | - Ann Taylor
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | - Sanna McKinzie
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | | | - Irene Busciglio
- 1Clinical Enteric Neuroscience Translational and Epidemiology Research (C.E.N.T.E.R.), Rochester, Minnesota
| | - Asha Nair
- 2Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
43
|
Wu X, Chen H, Gao X, Gao H, He Q, Li G, Yao J, Liu Z. Natural Herbal Remedy Wumei Decoction Ameliorates Intestinal Mucosal Inflammation by Inhibiting Th1/Th17 Cell Differentiation and Maintaining Microbial Homeostasis. Inflamm Bowel Dis 2022; 28:1061-1071. [PMID: 35092428 DOI: 10.1093/ibd/izab348] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Evidence has shown that the traditional Chinese herbal medicine Wumei decoction (WMD) has a protective effect on ulcerative colitis. Here, we studied the anti-inflammatory effects and potential mechanisms of WMD on chronic colitis in mice. METHODS A dextran sulfate sodium (DSS)-induced chronic colitis model and CD45RBhighCD4+ T cell transfer model were established in mice. Body weight, Disease Activity Index, and colon length were assessed, and histopathology was confirmed by hematoxylin and eosin staining. Colon tissue samples were collected to detect the frequencies of various immune cells, expression of cytokines, and tight junction-related proteins using flow cytometry, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay, respectively. 16S ribosomal DNA sequencing was performed to distinguish differential microbiota of fecal samples. RESULTS Severe chronic colitis was observed in mice after DSS exposure and in Rag1-/- mice reconstituted with CD45RBhighCD4+ T cells, as manifested by weight loss, hematochezia, and shortening and thickening of the colon, which were reversed by WMD treatment. WMD markedly suppressed intestinal mucosal CD4+ T cell differentiation and the secretion of proinflammatory cytokines (eg, tumor necrosis factor α, interleukin-1β, interferon γ, and IL-17A) by flow cytometry, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay, respectively. Moreover, WMD promoted the expression of occludin, zonula occludens-1, and E-cadherin, thereby maintaining the epithelial barrier function. Additionally, 16S ribosomal DNA sequencing revealed that WMD regulated the dysbiosis of gut microbiota in CD45RBhighCD4+ T cell-reconstituted Rag1-/- mice, evidenced by an increase of Allobaculum and Bacteroides and a decrease of Ileibacterium. CONCLUSIONS WMD ameliorates chronic colitis in mice induced by DSS or reconstituted with CD45RBhighCD4+ T cells through suppressing Th1/Th17 cell differentiation and the secretion of proinflammatory cytokines, maintaining epithelial barrier function, and improving the dysbiosis.
Collapse
Affiliation(s)
- Xiaohan Wu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huimin Chen
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Han Gao
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiong He
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gengfeng Li
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital, Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Zhanju Liu
- Center for IBD Research, Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Division of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
44
|
Hasler WL, Grabauskas G, Singh P, Owyang C. Mast cell mediation of visceral sensation and permeability in irritable bowel syndrome. Neurogastroenterol Motil 2022; 34:e14339. [PMID: 35315179 PMCID: PMC9286860 DOI: 10.1111/nmo.14339] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/09/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
Abnormalities of mast cell structure or function may play prominent roles in irritable bowel syndrome (IBS) symptom genesis. Mast cells show close apposition to sensory nerves and release bioactive substances in response to varied stimuli including infection, stress, and other neuroendocrine factors. Most studies focus on patients who develop IBS after enteric infection or who report diarrhea-predominant symptoms. Three topics underlying IBS pathogenesis have been emphasized in recent investigations. Visceral hypersensitivity to luminal stimulation is found in most IBS patients and may contribute to abdominal pain. Mast cell dysfunction also may disrupt epithelial barrier function which alters mucosal permeability potentially leading to altered bowel function and pain. Mast cell products including histamine, proteases, prostaglandins, and cytokines may participate in hypersensitivity and permeability defects, especially with diarrhea-predominant IBS. Recent experimental evidence indicates that the pronociceptive effects of histamine and proteases are mediated by the generation of prostaglandins in the mast cell. Enteric microbiome interactions including increased mucosal bacterial translocation may activate mast cells to elicit inflammatory responses underlying some of these pathogenic effects. Therapies to alter mast cell activity (mast cell stabilizers) or function (histamine antagonists) have shown modest benefits in IBS. Future investigations will seek to define patient subsets with greater potential to respond to therapies that address visceral hypersensitivity, epithelial permeability defects, and microbiome alterations secondary to mast cell dysfunction in IBS.
Collapse
Affiliation(s)
- William L. Hasler
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Gintautas Grabauskas
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Prashant Singh
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| | - Chung Owyang
- Division of Gastroenterology and HepatologyUniversity of Michigan Health SystemAnn ArborMichiganUSA
| |
Collapse
|
45
|
Tang T, Wang J, Jiang Y, Zhu X, Zhang Z, Wang Y, Shu X, Deng Y, Zhang F. Bifidobacterium lactis TY-S01 Prevents Loperamide-Induced Constipation by Modulating Gut Microbiota and Its Metabolites in Mice. Front Nutr 2022; 9:890314. [PMID: 35845767 PMCID: PMC9277448 DOI: 10.3389/fnut.2022.890314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Probiotics have received widespread attention as a healthy ingredient. The preventive effect of Bifidobacterium lactis TY-S01 on loperamide-induced constipation in mice was investigated in this study. TY-S01 accelerated the peristalsis of intestine, maintained the humidity of faeces, and prevented the destruction of gut barrier. TY-S01 also maintained the 5-HT, MTL and SP at normal levels in constipated mice. Simultaneously, TY-S01 up-regulated the mRNA expressions of 5-HT4R, SERT, and MUC-2, while down-regulated the mRNA expressions of pro-inflammatory genes remarkably. The levels of short-chain fatty acids in the feces of constipated mice were also increased because of the intervention with TY-S01. Moreover, TY-S01 prevented gut microbiological dysbiosis in constipated mice. Spearman’s correlation analysis revealed that there was an obvious association between metabolic biomarkers and gut microbiota. In summary, TY-S01 regulated gut microbiota and the production of intestinal metabolites to prevent loperamide-induced constipation.
Collapse
|
46
|
Zhou Q, Verne GN. Disruption of the Mucosal Serotonin Reuptake Transporter (SERT) Through Gut Dysbiosis. Gastroenterology 2022; 162:1833-1834. [PMID: 35341788 DOI: 10.1053/j.gastro.2022.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Qiqi Zhou
- Department of Medicine, University of Tennessee College of Medicine, Memphis, Tennessee; Research Service, Memphis Veterans Affairs Medical Center, Memphis, Tennessee
| | - George Nicholas Verne
- Department of Medicine, University of Tennessee College of Medicine, Memphis, Tennessee; Research Service, Memphis Veterans Affairs Medical Center, Memphis, Tennessee.
| |
Collapse
|
47
|
Liao S, Luo J, Kadier T, Ding K, Chen R, Meng Q. Mitochondrial DNA Release Contributes to Intestinal Ischemia/Reperfusion Injury. Front Pharmacol 2022; 13:854994. [PMID: 35370747 PMCID: PMC8966724 DOI: 10.3389/fphar.2022.854994] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondria release many damage-associated molecular patterns (DAMPs) when cells are damaged or stressed, with mitochondrial DNA (mtDNA) being. MtDNA activates innate immune responses and induces inflammation through the TLR-9, NLRP3 inflammasome, and cGAS-STING signaling pathways. Released inflammatory factors cause damage to intestinal barrier function. Many bacteria and endotoxins migrate to the circulatory system and lymphatic system, leading to systemic inflammatory response syndrome (SIRS) and even damaging the function of multiple organs throughout the body. This process may ultimately lead to multiple organ dysfunction syndrome (MODS). Recent studies have shown that various factors, such as the release of mtDNA and the massive infiltration of inflammatory factors, can cause intestinal ischemia/reperfusion (I/R) injury. This destroys intestinal barrier function, induces an inflammatory storm, leads to SIRS, increases the vulnerability of organs, and develops into MODS. Mitophagy eliminates dysfunctional mitochondria to maintain cellular homeostasis. This review discusses mtDNA release during the pathogenesis of intestinal I/R and summarizes methods for the prevention or treatment of intestinal I/R. We also discuss the effects of inflammation and increased intestinal barrier permeability on drugs.
Collapse
Affiliation(s)
- Shishi Liao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Luo
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tulanisa Kadier
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Ding
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingtao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
48
|
Rastgoo S, Ebrahimi-Daryani N, Agah S, Karimi S, Taher M, Rashidkhani B, Hejazi E, Mohseni F, Ahmadzadeh M, Sadeghi A, Hekmatdoost A. Glutamine Supplementation Enhances the Effects of a Low FODMAP Diet in Irritable Bowel Syndrome Management. Front Nutr 2021; 8:746703. [PMID: 34977110 PMCID: PMC8716871 DOI: 10.3389/fnut.2021.746703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Aims: Although irritable bowel syndrome is one of the most common gastrointestinal disorders presented to gastroenterologists, therapeutic strategies are not yet well-established. Accordingly, we conducted a randomized, double-blind, placebo-controlled, clinical trial to evaluate the possible superiority of adding glutamine supplement to low fermentable oligo- di- monosaccharides and polyols (FODMAP) diet in patients with irritable bowel syndrome (IBS). Methods: Eligible adults were randomized to receive a low FODMAP diet either with glutamine (15 g/day) or a placebo for 6 weeks. The primary endpoint was a significant reduction in IBS-symptom severity score (IBS-SSS). Secondary endpoints were changes in IBS symptoms, stool frequency, consistency, and quality of life. Results: The study group enrolled 50 patients, among which 22 participants from each group completed the study protocol. The glutamine group had significant changes in total IBS-severity score, dissatisfaction of bowel habit and interference with community function (58% reduction; P < 0.001, 57% reduction; P < 0.001, 51% reduction; P = 0.043, respectively). Improvement in IBS-severity score of more than 45% was observed in 22 of 25 participants (88%) in the glutamine group, while it was only 15 of 25 participants (60%) in the control group (p = 0.015). No serious adverse events were observed. Conclusions: Our findings indicated the superiority of adding glutamine supplementation to a low FODMAP diet in amelioration of IBS symptoms while confirming the beneficial effects of a low FODMAP diet in IBS management.
Collapse
Affiliation(s)
- Samira Rastgoo
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasser Ebrahimi-Daryani
- Department of Gastroenterology and Hepatology, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Karimi
- Department of Gastroenterology and Hepatology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taher
- Department of Gastroenterology and Hepatology, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Rashidkhani
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Hejazi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mohseni
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Ahmadzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Gao Y, Xu Y, Gao M, Huang A, Chi P. A three-phase trans-ethnic study reveals B7-H3 expression is a significant and independent biomarker associated with colon cancer overall survival. J Gastrointest Oncol 2021; 12:2891-2905. [PMID: 35070416 PMCID: PMC8748050 DOI: 10.21037/jgo-21-821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/20/2021] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND There have been inconsistent results and conflicting conclusions among the existing prognostic studies of B7-H3 expression in colon cancer patients. Therefore, the association between B7-H3 expression and colon cancer survival has remained largely unclear. METHODS We performed a three-phase and trans-ethnic prognostic study of B7-H3 expression in colon cancer patients involving perhaps the largest population to date. In the discovery phase, we utilized a Cox proportional hazards model adjusted for covariates to test the association between B7-H3 expression and colon cancer overall survival (OS) time in a European population from The Cancer Genome Atlas (TCGA) cohort (n=433). In the validation phase I, the association was replicated in a European population from Gene Expression Omnibus (GEO) cohort (n=811). In the validation phase II, we again confirmed the significant association in an Asian population from Fujian Medical University Union Hospital (UNION) cohort (n=179). Furthermore, a series of Kaplan-Meier analysis, bioinformatics analysis of tumor immune microenvironment (TIME), and immune checkpoint prognostic prediction analysis, as well as sensitivity analysis, were also conducted. RESULTS Highly expressed B7-H3 was a significant and robust biomarker to colon cancer survival, with a large hazard ratio (HR) [HRTCGA =4.60, 95% confidence interval (CI): 2.15 to 9.83, P=8.37×10-05; HRGEO =1.47, 95% CI: 1.12 to 1.94, P=0.0056; HRUNION =1.63, 95% CI: 1.36 to 1.95, P=7.91×10-08]. We detected an involvement of B7-H3 in the tumor immune microenvironment (TIME). Meanwhile, B7-H3 was significantly and weakly correlated with 6 out of 27 well-recognized immune checkpoint genes. Even after adjusting for effects of other immune checkpoint genes, B7-H3 still exhibited a harmful effect on colon cancer survival using samples from TCGA and GEO cohorts (HR =1.47, 95% CI: 1.07 to 2.02, P=0.0184), indicating that it was an independent prognostic factor of colon cancer. We also proposed an immune checkpoint prognostic risk score which possessed the capability to identify colon cancers with high risk of mortality. CONCLUSIONS The expression of B7-H3 is a significant, robust, and independent prognostic factor to colon cancer OS.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yu Xu
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Institute of Oncology of Fujian Medical University, Fuzhou, China
| | - Meiqin Gao
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Institute of Oncology of Fujian Medical University, Fuzhou, China
| | - Aimin Huang
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Institute of Oncology of Fujian Medical University, Fuzhou, China
| | - Pan Chi
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
50
|
Soares E, Soares AC, Trindade PL, Monteiro EB, Martins FF, Forgie AJ, Inada KOP, de Bem GF, Resende A, Perrone D, Souza-Mello V, Tomás-Barberán F, Willing BP, Monteiro M, Daleprane JB. Jaboticaba (Myrciaria jaboticaba) powder consumption improves the metabolic profile and regulates gut microbiome composition in high-fat diet-fed mice. Biomed Pharmacother 2021; 144:112314. [PMID: 34634561 DOI: 10.1016/j.biopha.2021.112314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
The consumption of a high-fat diet can cause metabolic syndrome and induces host gut microbial dysbiosis and non-alcoholic fatty liver disease (NAFLD). We evaluated the effect of polyphenol-rich jaboticaba peel and seed powder (JPSP) on the gut microbial community composition and liver health in a mouse model of NAFLD. Three-month-old C57BL/6 J male mice, received either a control (C, 10% of lipids as energy, n = 16) or high-fat (HF, 50% of lipids as energy, n = 64) diet for nine weeks. The HF mice were randomly subdivided into four groups (n = 16 in each group), three of which (HF-J5, HF-J10, and HF-J15) were supplemented with dietary JPSP for four weeks (5%, 10%, and 15%, respectively). In addition to attenuating weight gain, JPSP consumption improved dyslipidemia and insulin resistance. In a dose-dependent manner, JPSP consumption ameliorated the expression of hepatic lipogenesis genes (AMPK, SREBP-1, HGMCoA, and ABCG8). The effects on the microbial community structure were determined in all JPSP-supplemented groups; however, the HF-J10 and HF-J15 diets led to a drastic depletion in the species of numerous bacterial families (Bifidobacteriaceae, Mogibacteriaceae, Christensenellaceae, Clostridiaceae, Dehalobacteriaceae, Peptococcaceae, Peptostreptococcaceae, and Ruminococcaceae) compared to the HF diet, some of which represented a reversal of increases associated with HF. The Lachnospiraceae and Enterobacteriaceae families and the Parabacteroides, Sutterella, Allobaculum, and Akkermansia genera were enriched more in the HF-J10 and HF-J15 groups than in the HF group. In conclusion, JPSP consumption improved obesity-related metabolic profiles and had a strong impact on the microbial community structure, thereby reversing NAFLD and decreasing its severity.
Collapse
Affiliation(s)
- Elaine Soares
- Laboratory for studies of Interactions between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Aruanna C Soares
- Laboratory for studies of Interactions between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Patricia Leticia Trindade
- Laboratory for studies of Interactions between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Elisa B Monteiro
- Laboratory for studies of Interactions between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Fabiane F Martins
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Andrew J Forgie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kim O P Inada
- Laboratory for studies of Interactions between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Graziele F de Bem
- Laboratory of Cardiovascular Pharmacology and Medicinal Plants, Department of Pharmacology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Angela Resende
- Laboratory of Cardiovascular Pharmacology and Medicinal Plants, Department of Pharmacology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Daniel Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Chemistry Institute, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528 A, 21941-909 Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism, and Cardiovascular Disease, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Francisco Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Mariana Monteiro
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio B Daleprane
- Laboratory for studies of Interactions between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|