1
|
Awosika JA, Gulley JL, Pastor DM. Deficient Mismatch Repair and Microsatellite Instability in Solid Tumors. Int J Mol Sci 2025; 26:4394. [PMID: 40362635 PMCID: PMC12072705 DOI: 10.3390/ijms26094394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
The integrity of the genome is maintained by mismatch repair (MMR) proteins that recognize and repair base mismatches and insertion/deletion errors generated during DNA replication and recombination. A defective MMR system results in genome-wide instability and the progressive accumulation of mutations. Tumors exhibiting deficient MMR (dMMR) and/or high levels of microsatellite instability (termed "microsatellite instability high", or MSI-H) have been shown to possess fundamental differences in clinical, pathological, and molecular characteristics, distinguishing them from their "microsatellite stable" (MSS) counterparts. Molecularly, they are defined by a high mutational burden, genetic instability, and a distinctive immune profile. Their distinct genetic and immunological profiles have made dMMR/MSI-H tumors particularly amenable to treatment with immune checkpoint inhibitors (ICIs). The ongoing development of biomarker-driven therapies and the evaluation of novel combinations of immune-based therapies, with or without the use of conventional cytotoxic treatment regimens, continue to refine treatment strategies with the goals of maximizing therapeutic efficacy and survival outcomes in this distinct patient population. Moreover, the resultant knowledge of the mechanisms by which these features are suspected to render these tumors more responsive, overall, to immunotherapy may provide information regarding the potential optimization of this therapeutic approach in tumors with proficient MMR (pMMR)/MSS tumors.
Collapse
Affiliation(s)
- Joy A. Awosika
- Gastrointestinal Malignancies Section, Thoracic & GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James L. Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle M. Pastor
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Huang S, Liu S, Tan F, Chen H, Chen G. Construction and validation of a risk nomogram model for colorectal sessile serrated lesions. J Int Med Res 2025; 53:3000605251337577. [PMID: 40357909 PMCID: PMC12075987 DOI: 10.1177/03000605251337577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
ObjectiveThis study aimed to explore the risk factors for colorectal sessile serrated lesions and construct a risk nomogram model.MethodsPatients were enrolled retrospectively from the Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University from January 2019 to September 2023 and randomized to the training and validation sets at a ratio of 7:3. The predictors for constructing the nomogram model were screened via univariate analysis and multivariate logistic regression analysis. Subsequently, the performance of the model was evaluated.ResultsMultivariate logistic regression analysis revealed that age, history of smoking, history of alcohol consumption, and triglyceride-glucose index were independent risk factors for colorectal sessile serrated lesions (p < 0.05). The area under the curve values of the nomogram model in the training and validation sets were 0.715 (95% confidence interval: 0.676-0.753) and 0.742 (95% confidence interval: 0.669-0.815), respectively. The calibration curves showed good homogeneity between the predicted and actual values. Decision curve analysis showed that this nomogram model can achieve positive clinical benefits.ConclusionsAge, history of smoking, history of alcohol consumption, and triglyceride-glucose index are independent predictors of colorectal sessile serrated lesions. This nomogram model may predict the risk of colorectal sessile serrated lesions.
Collapse
Affiliation(s)
| | | | - Fang Tan
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, China
| | - Hu Chen
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, China
| | - Guangxia Chen
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, China
| |
Collapse
|
3
|
Reyila A, Gao X, Yu J, Nie Y. Insight into the role of DNA methylation in prognosis and treatment response prediction of gastrointestinal cancers. Epigenomics 2025; 17:475-488. [PMID: 40084815 PMCID: PMC12026041 DOI: 10.1080/17501911.2025.2476380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
Gastrointestinal (GI) cancers impose a significant disease burden, underscoring the critical importance of accurate prognosis prediction and treatment response evaluation. DNA methylation, one of the most extensively studied epigenetic modifications, has gained prominence due to its reliable measurement across various sample types. Numerous studies have reported that DNA methylation was linked to the diagnosis, prognosis and treatment response in malignancies, including GI cancers. While its diagnostic role in GI cancers has been comprehensively reviewed. Recent research has increasingly highlighted its potential in prognosis prediction and treatment response evaluation. However, no existing reviews have exclusively focused on these two aspects. In this review, we retrieved relevant studies and included 230 of them in our discussion, thereby providing an overview of the clinical applicability of aberrant DNA methylation in these two fields among patients with esophageal, gastric, colorectal, pancreatic cancers, and hepatocellular carcinomas. Additionally, we discuss the limitations of the current literature and propose directions for future research. Specifically, we emphasize the need for standardized DNA methylation methodologies and advocate for the integration of gene panels, rather than single genes, to address tumor heterogeneity more effectively.
Collapse
Affiliation(s)
- Abudurousuli Reyila
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi’an, Shaanxi, China
- National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xianchun Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi’an, Shaanxi, China
- National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jun Yu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi’an, Shaanxi, China
- National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi’an, Shaanxi, China
- National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Yang Y, Wang D, Li L, Song J, Yang X, Li J. Evolution of enteric viruses in the progression of colorectal cancer via the adenoma-carcinoma sequence pathway. Virus Res 2025; 355:199569. [PMID: 40180222 PMCID: PMC12005302 DOI: 10.1016/j.virusres.2025.199569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
The global incidence of colorectal cancer (CRC) is increasing. In the majority of CRC cases, colon cancer develops from alterations in the adenoma-carcinoma sequence pathway. Currently, there are few studies regarding the effects of enteric viruses on the adenoma-carcinoma sequence pathway, and subsequently, the progression and development of the CRC. Here, fecal and tissue samples from a normal control group, an adenomatous polyp group, and a colorectal adenocarcinoma group were collected to gain a deeper understanding of the variations in enteric viruses in CRC patients and to analyze their significance. With the progression of CRC from adenoma to adenocarcinoma, the number of DNA viruses in the virus-like particles (VLPs) of fecal and tissue samples gradually increased, and there were distinct differences in the composition of enteric viruses among the different groups. Multiple species correlation analysis revealed extensive interactions among viruses, bacteria, and fungi in fecal and tissue samples. Functional analysis also revealed that the functional pathways in fecal and tissue samples also underwent significant changes. In conclusion, the changes in the composition and function of enteric viruses in the progression of CRC via adenoma-carcinoma sequence pathway were analyzed in this study, and these changes hold certain importance for exploring the role of enteric viruses in the occurrence of this disease; however, their mode of action and specific mechanisms require further investigation.
Collapse
Affiliation(s)
- Ying Yang
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Dan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China; Department of Gastroenterology, Pidu District People's Hospital, Chengdu, Sichuan, China
| | - Longlin Li
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Jieyu Song
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Xianglan Yang
- Pengzhou Branch of the First Affiliated Hospital of Chengdu Medical College, Pengzhou Second People's Hospital, Chengdu, China
| | - Jun Li
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Zhao D, He F, Luo C, Huang H, Zhao Q. Influencing factors of colonoscopy screening in first-degree relatives of hospitalized colorectal cancer patients and preliminary clinical practices to improve the compliance. Front Oncol 2025; 15:1533475. [PMID: 40356753 PMCID: PMC12066328 DOI: 10.3389/fonc.2025.1533475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/01/2025] [Indexed: 05/15/2025] Open
Abstract
Objectives This study aimed to analyze the factors that influence colonoscopy screening in first-degree relatives (FDRs) of patients with colorectal cancer (CRC) and explore the feasibility to invite FDRs to undergo a colonoscopy to improve screening compliance. Methods Retrospective analysis based on a prospectively collected database of which FDRs of CRC patients who visited our center between April 2021 and October 2021 and received a questionnaire surgery. The questionnaire contained three aspects: demographic and lifestyle factors, health beliefs, and disease cognition. The FDRs were invited to undergo a colonoscopy and were followed-up by telephone regarding colonoscopy compliance one year later. Results In total, 303 FDRs from 256 patients with CRC were analyzed. Among them, 113 underwent colonoscopy, with a colonoscopy compliance rate of 37.3%. The results of the multivariate analysis showed that the FDRs who underwent colonoscopy were older (OR=2.32, p=0.006), had commercial insurance (OR=2.23, p=0.013), had multiple family members with CRC (OR=3.04, p=0.012), had higher cognition of CRC (OR=3.02, p=0.006), had high self-efficacy for disease screening (OR=1.14, p=0.026), and accepted colonoscopy appointment sheet to undergo colonoscopy screening (OR=4.51, p<0.001), which were influencing factors for CRC screening in FDRs. Conclusion This study found that FDRs who were ≥40 years old, had commercial insurance, had multiple family members with CRC, had higher cognition of CRC, had high self-efficacy for disease screening, and received a colonoscopy appointment while in the hospital were more willing to undergo colonoscopy screening. Studies could further validate the feasibility of this approach in the future.
Collapse
Affiliation(s)
- Dongqin Zhao
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fan He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Luo
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanhuan Huang
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghua Zhao
- Department of Nursing, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Plut S, Gavric A, Glavač D. Non-Coding RNAs as Potential Biomarkers for Colorectal Polyps and Cancer Detection. Int J Mol Sci 2025; 26:4106. [PMID: 40362348 PMCID: PMC12072050 DOI: 10.3390/ijms26094106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide. The precursor of CRC is a colorectal polyp, of which adenoma is the most common histological type. The initial step in CRC development is the gradual accumulation of a series of genetic and epigenetic alterations in the normal colonic epithelium. Genetic alterations play a major role in a subset of CRCs, but the pathophysiological contribution of epigenetic aberrations has recently attracted attention. Epigenetic marks occur early in cancer pathogenesis and are therefore important molecular hallmarks of cancer. This makes some epigenetic alterations clinically relevant for early detection not only of CRC but also of precancerous polyps. In this review we focus on three types of non-coding RNAs as epigenetic regulators: miRNA, lncRNA, and lncRNAs, highlighting their biomarker potential.
Collapse
Affiliation(s)
- Samo Plut
- Department of Gastroenterology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (S.P.); (A.G.)
- Ljubljana Digestive Endoscopy Research Group (LuDERG), Department of Gastroenterology, UMC Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Aleksandar Gavric
- Department of Gastroenterology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (S.P.); (A.G.)
- Ljubljana Digestive Endoscopy Research Group (LuDERG), Department of Gastroenterology, UMC Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
7
|
Äijälä VK, Sirniö P, Elomaa H, Karjalainen H, Kastinen M, Tapiainen VV, Ahtiainen M, Helminen O, Wirta EV, Rintala J, Meriläinen S, Saarnio J, Rautio T, Seppälä TT, Böhm J, Mecklin JP, Tuomisto A, Mäkinen MJ, Väyrynen JP. Significance of mucin-suspended tumor bud-like structures in colorectal cancer. Hum Pathol 2025; 158:105772. [PMID: 40239844 DOI: 10.1016/j.humpath.2025.105772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Tumor budding (TB) is an independent predictor of adverse prognosis in colorectal cancer (CRC), defined as clusters of fewer than 5 tumor cells at the invasive margin of cancer. According to the international consensus criteria (ITBCC), TB should be evaluated from the non-mucinous regions. However, some tumors also contain tumor bud-like structures within extracellular mucin pools, and the prognostic impact of these structures remains unclear. To assess this, we defined a modified tumor budding variable (TB-Muc), representing the highest number of tumor buds/bud-like structures observed in a hotspot (0.785 mm2) at the invasive margin, including extracellular mucin regions. We analyzed the prognostic significance of TB (ITBCC criteria) and TB-Muc in two CRC cohorts (N = 1876). TB-ITBCC was associated with advanced stage and lymphovascular invasion (p < 0.001) but also with shorter cancer-specific survival independent of other prognostic factors (Cohort 1: HR for high vs. low 1.99, 95 % CI 1.32-3.01, ptrend = 0.0007; Cohort 2: HR 1.35, 95 % CI 0.98-1.85, ptrend = 0.037). TB-Muc had a comparable independent association with shorter cancer-specific survival (Cohort 1: HR for high vs. low 1.77, 95 % CI 1.18-2.65, ptrend = 0.006; Cohort 2: HR 1.39, 95 % CI 1.02-1.89, ptrend = 0.019). Our results indicate that tumor bud-like structures in mucin do not provide additional prognostic value and should not be included in TB evaluation.
Collapse
Affiliation(s)
- Ville K Äijälä
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Päivi Sirniö
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Hanna Elomaa
- Department of Education and Research, Well Being Services County of Central Finland, Jyväskylä, Finland
| | - Henna Karjalainen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Meeri Kastinen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Vilja V Tapiainen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Maarit Ahtiainen
- Central Finland Biobank, Hospital Nova of Central Finland, Well Being Services County of Central Finland, Jyväskylä, Finland
| | - Olli Helminen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland; Department of Surgery, Oulu University Hospital, Oulu, Finland
| | - Erkki-Ville Wirta
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland; Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Jukka Rintala
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland; Department of Surgery, Oulu University Hospital, Oulu, Finland
| | - Sanna Meriläinen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland; Department of Surgery, Oulu University Hospital, Oulu, Finland
| | - Juha Saarnio
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland; Department of Surgery, Oulu University Hospital, Oulu, Finland
| | - Tero Rautio
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland; Department of Surgery, Oulu University Hospital, Oulu, Finland
| | - Toni T Seppälä
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland; Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere University Hospital, Tampere, Finland; Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland; Applied Tumor Genomics, Research Program Unit, University of Helsinki, Helsinki, Finland
| | - Jan Böhm
- Department of Pathology, Hospital Nova of Central Finland, Well Being Services County of Central Finland, Jyväskylä, Finland
| | - Jukka-Pekka Mecklin
- Department of Education and Research, Well Being Services County of Central Finland, Jyväskylä, Finland; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Anne Tuomisto
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Markus J Mäkinen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland
| | - Juha P Väyrynen
- Translational Medicine Research Unit, Medical Research Center Oulu, Oulu University Hospital, and University of Oulu, Oulu, Finland.
| |
Collapse
|
8
|
Sigler GI, Murtha J, Varley PR. Diagnostic Advances and Novel Therapeutics in Peritoneal Metastasis. Surg Oncol Clin N Am 2025; 34:173-194. [PMID: 40015798 DOI: 10.1016/j.soc.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Appropriate assessment of disease burden in patients with peritoneal surface malignancy (PSM) is critical for treatment decision-making, and conventional cross-sectional imaging (computed tomography and/or MRI) often underestimates burden of disease. Advances in imaging for PSM include novel functional imaging modalities that target cells unique to the tumor microenvironment. Novel alternative methods of diagnosis and disease monitoring are also potentially applicable to management of PSM. These include forms of "liquid biopsy" targeting circulating tumor DNA. Novel regional therapies include both new therapeutic agents (immune-based and nanoparticle-based), as well as new methods of delivery such as pressurized intraperitoneal aerosolized chemotherapy.
Collapse
Affiliation(s)
- Gregory I Sigler
- Division of Surgical Oncology, Department of General Surgery, Complex General Surgical Oncology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Mail Code 7375, Madison, WI 53792, USA
| | - Jacqueline Murtha
- Department of General Surgery, General Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Mail Code 7375, Madison, WI 53792, USA
| | - Patrick R Varley
- Division of Surgical Oncology, Department of General Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Mail Code 7375, Madison, WI 53792, USA; William S. Middleton Memorial Veterans Affairs Hospital, Madison, WI, USA.
| |
Collapse
|
9
|
Wang H, Zhu W, Lei J, Liu Z, Cai Y, Wang S, Li A. Gut microbiome differences and disease risk in colorectal cancer relatives and healthy individuals. Front Cell Infect Microbiol 2025; 15:1573216. [PMID: 40196042 PMCID: PMC11973321 DOI: 10.3389/fcimb.2025.1573216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Given the heightened focus on high-risk populations, this study aimed to provide insights into early susceptibility and preventive strategies for colorectal cancer (CRC) by focusing on high-risk populations. In this research, fecal samples from 1,647 individuals across three discovery cohorts and nine external validation cohorts were sequenced using whole-genome metagenomic sequencing. A prediction model based on random forest was constructed using the nine external cohorts and independently validated with the three discovery cohorts. A disease probability (POD) model based on microbial biomarkers was developed to assess CRC risk. We found that the gut microbiome composition of CRC relatives differed from that of controls, with enrichment of species such as Fusobacterium and Bacteroides and a reduction in beneficial genera like Coprococcus and Roseburia. Additionally, dietary red meat intake emerged as a risk factor. The POD model indicated an elevated risk of CRC in unaffected relatives. The findings suggest that the POD for CRC may be increased in unaffected relatives or individuals living in shared environments, although this difference did not reach statistical significance. Our study introduces a novel framework for assessing the risk of colorectal cancer in ostensibly healthy individuals.
Collapse
Affiliation(s)
- Huifen Wang
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Zhu
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Lei
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhibo Liu
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yudie Cai
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuaifeng Wang
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Zhu X, Kao X, Liu L, Wang X, Li Y, Li Q. Daxx Variation as a Potential Predictive Marker of the Therapeutic Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Cancer Med 2025; 14:e70815. [PMID: 40130316 PMCID: PMC11933753 DOI: 10.1002/cam4.70815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/26/2025] Open
Abstract
OBJECTIVE The response to neoadjuvant chemoradiotherapy (NACRT) for locally advanced rectal cancer (LARC) varies from achieving a complete pathological response to encountering resistance to treatment. Therefore, biomarkers for predicting the NACRT responses should be identified. This prospective study aimed to identify key genomic biomarkers as the predictors of the NACRT response with LARC. METHODS Overall, 67 patients with LARC treated with NACRT and proctectomy were divided into two groups based on the tumor regression grade (TRG) for identifying key biomarkers. Patients with a TRG of 0 or 1 were assigned to the sensitive response group, and patients with a TRG of 2 or 3 were the resistant response group. Twenty-nine postsurgical tumor samples were collected for whole exome sequencing (WES) to identify genomic variation biomarkers. The other 38 pairs of tumor specimens from pretreatment and postsurgery samples were evaluated by immunohistochemistry (IHC) to examine the biomarker features. RESULTS In the WES subcohort, 11 genes showed copy number variation, including FNKBIA, ARID1A, CCND2, CDK4, LYN, MDM2, RAD51B, RARA, SPEN, STAT3, and Daxx, which has the highest copy number variation. For the IHC subcohort, Daxx was initially highly expressed in the nuclei of tumor cells, particularly in the sensitive response group, while varying its expression after NACRT, demonstrating that Daxx levels were related to treatment responses and the survival benefit, especially a better disease-free survival (DFS). CONCLUSION We identified multiple genomic variations between sensitive and resistant responders and verified that Daxx is a potential predictive biomarker of the response to NACRT in LARC.
Collapse
Affiliation(s)
- Xi Zhu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of General Surgery, Jinling HospitalNanjing Medical UniversityNanjingChina
| | - Xiaoming Kao
- Research Institute of General Surgery, Jinling HospitalNanjing Medical UniversityNanjingChina
| | - Leilei Liu
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xuan Wang
- Department of Pathology, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yang Li
- Research Institute of General Surgery, Jinling HospitalNanjing Medical UniversityNanjingChina
| | - Qiurong Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of General Surgery, Jinling HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
11
|
Haynes J, Manogaran P. Mechanisms and Strategies to Overcome Drug Resistance in Colorectal Cancer. Int J Mol Sci 2025; 26:1988. [PMID: 40076613 PMCID: PMC11901061 DOI: 10.3390/ijms26051988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related mortality worldwide, with a significant impact on public health. Current treatment options include surgery, chemotherapy, radiotherapy, molecular-targeted therapy, and immunotherapy. Despite advancements in these therapeutic modalities, resistance remains a significant challenge, often leading to treatment failure, poor progression-free survival, and cancer recurrence. Mechanisms of resistance in CRC are multifaceted, involving genetic mutations, epigenetic alterations, tumor heterogeneity, and the tumor microenvironment. Understanding these mechanisms at the molecular level is crucial for identifying novel therapeutic targets and developing strategies to overcome resistance. This review provides an overview of the diverse mechanisms driving drug resistance in sporadic CRC and discusses strategies currently under investigation to counteract this resistance. Several promising strategies are being explored, including targeting drug transport, key signaling pathways, DNA damage response, cell death pathways, epigenetic modifications, cancer stem cells, and the tumor microenvironment. The integration of emerging therapeutic approaches that target resistance mechanisms aims to enhance the efficacy of current CRC treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Jennifer Haynes
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA;
| | | |
Collapse
|
12
|
Catalano T, Selvaggi F, Cotellese R, Aceto GM. The Role of Reactive Oxygen Species in Colorectal Cancer Initiation and Progression: Perspectives on Theranostic Approaches. Cancers (Basel) 2025; 17:752. [PMID: 40075600 PMCID: PMC11899472 DOI: 10.3390/cancers17050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Altered levels of reactive oxygen species (ROS) are recognized as one of the key factors in mediating tumor cell survival in the tissue microenvironment, where they play a role in the initiation, progression and recurrence/relapse of colorectal cancer (CRC). Tumor cells can adapt to oxidative stress (OS) using genetic or metabolic reprogramming in the long or short term. In addition, tumor cells defend themselves through positive regulation of antioxidant molecules, enhancing ROS-driven proliferation. Balanced oxidative eustress levels can influence chemotherapy resistance, allowing tumor cells to survive treatment. Secondary effects of chemotherapy include increased ROS production and redox stress, which can kill cancer cells and eliminate drug resistance. Anticancer treatments based on manipulating ROS levels could represent the gold standard in CRC therapy. Therefore, exploring the modulation of the response to OS in deregulated signaling pathways may lead to the development of new personalized CRC treatments to overcome therapy resistance. In this review, we explore the role of ROS in the initiation and progression of CRC and their diagnostic implications as biomarkers of disease. Furthermore, we focused on the involvement of ROS in different CRC therapeutic options, such as surgery, radiotherapy, theranostic imaging, chemotherapy and immunotherapy and other precision medicine approaches.
Collapse
Affiliation(s)
- Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Federico Selvaggi
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
| | - Roberto Cotellese
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
| | - Gitana Maria Aceto
- Villa Serena Foundation for Research, 65013 Città Sant’Angelo, Italy; (F.S.); (R.C.)
- Department of Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
13
|
Díaz-Gay M, dos Santos W, Moody S, Kazachkova M, Abbasi A, Steele CD, Vangara R, Senkin S, Wang J, Fitzgerald S, Bergstrom EN, Khandekar A, Otlu B, Abedi-Ardekani B, de Carvalho AC, Cattiaux T, Penha RCC, Gaborieau V, Chopard P, Carreira C, Cheema S, Latimer C, Teague JW, Mukeriya A, Zaridze D, Cox R, Albert M, Phouthavongsy L, Gallinger S, Malekzadeh R, Niavarani A, Miladinov M, Erić K, Milosavljevic S, Sangrajrang S, Curado MP, Aguiar S, Reis RM, Reis MT, Romagnolo LG, Guimarães DP, Holcatova I, Kalvach J, Vaccaro CA, Piñero TA, Świątkowska B, Lissowska J, Roszkowska-Purska K, Huertas-Salgado A, Shibata T, Shiba S, Sangkhathat S, Chitapanarux T, Roshandel G, Ashton-Prolla P, Damin DC, de Oliveira FH, Humphreys L, Lawley TD, Perdomo S, Stratton MR, Brennan P, Alexandrov LB. Geographic and age-related variations in mutational processes in colorectal cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.13.25322219. [PMID: 40034755 PMCID: PMC11875255 DOI: 10.1101/2025.02.13.25322219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Colorectal cancer incidence rates vary geographically and have changed over time. Notably, in the past two decades, the incidence of early-onset colorectal cancer, affecting individuals under the age of 50 years, has doubled in many countries. The reasons for this increase are unknown. Here, we investigate whether mutational processes contribute to geographic and age-related differences by examining 981 colorectal cancer genomes from 11 countries. No major differences were found in microsatellite unstable cancers, but variations in mutation burden and signatures were observed in the 802 microsatellite-stable cases. Multiple signatures, most with unknown etiologies, exhibited varying prevalence in Argentina, Brazil, Colombia, Russia, and Thailand, indicating geographically diverse levels of mutagenic exposure. Signatures SBS88 and ID18, caused by the bacteria-produced mutagen colibactin, had higher mutation loads in countries with higher colorectal cancer incidence rates. SBS88 and ID18 were also enriched in early-onset colorectal cancers, being 3.3 times more common in individuals diagnosed before age 40 than in those over 70, and were imprinted early during colorectal cancer development. Colibactin exposure was further linked to APC driver mutations, with ID18 responsible for about 25% of APC driver indels in colibactin-positive cases. This study reveals geographic and age-related variations in colorectal cancer mutational processes, and suggests that early-life mutagenic exposure to colibactin-producing bacteria may contribute to the rising incidence of early-onset colorectal cancer.
Collapse
Affiliation(s)
- Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Digital Genomics Group, Structural Biology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Wellington dos Santos
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Mariya Kazachkova
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Ammal Abbasi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Christopher D Steele
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Sergey Senkin
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Stephen Fitzgerald
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Behnoush Abedi-Ardekani
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ana Carolina de Carvalho
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Thomas Cattiaux
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | | | - Valérie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Priscilia Chopard
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Christine Carreira
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Saamin Cheema
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Jon W Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Anush Mukeriya
- Clinical Epidemiology, N.N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - David Zaridze
- Clinical Epidemiology, N.N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Riley Cox
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Monique Albert
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Larry Phouthavongsy
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Niavarani
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marko Miladinov
- Clinic for Digestive Surgery - First Surgical Clinic, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Katarina Erić
- Department of Pathology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Sasa Milosavljevic
- International Organization for Cancer Prevention and Research, Belgrade, Serbia
| | | | - Maria Paula Curado
- Department of Epidemiology, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | - Samuel Aguiar
- Colon Cancer Reference Center, A.C. Camargo Cancer Center, Sao Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Minho University, Braga, Portugal
| | | | | | | | - Ivana Holcatova
- Institute of Public Health & Preventive Medicine, 2 Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Oncology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jaroslav Kalvach
- Surgery Department, 2 Faculty of Medicine, Charles University and Central Military Hospital, Prague, Czech Republic
- 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Institute of Animal Physiology and Genetics Czech Academy of Science, Libechov, Czech Republic
- Clinical Center ISCARE, Prague, Czech Republic
| | - Carlos Alberto Vaccaro
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)- CONICET- Universidad Hospital Italiano de Buenos Aires (UHIBA) y Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Tamara Alejandra Piñero
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB)- CONICET- Universidad Hospital Italiano de Buenos Aires (UHIBA) y Hospital Italiano de Buenos Aires (HIBA), Buenos Aires, Argentina
| | - Beata Świątkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - Jolanta Lissowska
- The Maria Sklodowska-Cure National Research Institute of Oncology, Warsaw, Poland
| | | | - Antonio Huertas-Salgado
- Oncological pathology group, Terry Fox National Tumor Bank (Banco Nacional de Tumores Terry Fox), National Cancer Institute, Bogotá, Colombia
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Satoshi Shiba
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Surasak Sangkhathat
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
- Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Taned Chitapanarux
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Gholamreza Roshandel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Patricia Ashton-Prolla
- Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniel C Damin
- Department of Surgery, Division of Colorectal Surgery, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Francine Hehn de Oliveira
- Department of Pathology, Anatomic Pathology, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Trevor D. Lawley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Sandra Perdomo
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Zou J, Shi X, Wu Z, Zuo S, Tang X, Zhou H, Huang Y. MRTX1133 attenuates KRAS G12D mutated-colorectal cancer progression through activating ferroptosis activity via METTL14/LINC02159/FOXC2 axis. Transl Oncol 2025; 52:102235. [PMID: 39657309 PMCID: PMC11683245 DOI: 10.1016/j.tranon.2024.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most commonly diagnosed cancer and the second leading cause of cancer-related deaths worldwide. Studies have shown that CRC patients with KRAS mutations, especially KRASG12D, have an increased risk of metastasis. Emerging evidence indicates that long non-coding RNAs (lncRNAs) are crucial in the carcinogenesis and progression of various cancers, regulating multiple biological processes but the link between KRASG12D mutations and lncRNAs in CRC remains unclear. Therefore, this study was designed to identify a novel lncRNA involved in KRASG12D-mutated CRC and to elucidate its molecular mechanisms. The analysis of differentially expressed lncRNAs in the GSE201412 dataset revealed that LINC02159 was significantly upregulated following treatment with the KRASG12D inhibitor MTRX1133 Data from the GTEx database indicated that LINC02159 is highly expressed in CRC tumour tissues and is associated with better patient outcomes. In vitro and in vivo experiments suggest that LINC02159 acts as a tumour suppressor in CRC progression. Specifically, LINC02159 knockdown negated the inhibitory effects of MRTX1133 on tumourigenesis and its promotive effect on ferroptosis in KRASG12D-mutated CRC cells. LINC02159 expression is regulated by METTL14, with METTL14 knockdown decreasing m6A methylation of LINC02159, leading to its increased expression in CRC cells. Additionally, LINC02159 stabilised FOXC2 expression through de-ubiquitination. Rescue experiments further clarified that the METTL14/LINC02159/FOXC2 signalling axis is crucial for the inhibitory effects of MRTX1133 in KRASG12D-mutated CRC. Our study provides novel insights into the therapeutic potential of MRTX1133 in treating KRASG12D-mutated CRC by identifying a METTL14/LINC02159/FOXC2 signalling axis that mediates drug response. Our findings highlight the importance of understanding the molecular mechanisms of lncRNAs in cancer to develop effective targeted therapies.
Collapse
Affiliation(s)
- Junwei Zou
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Xiuhua Shi
- Department of Radiotherapy & Oncology, The No.2 People's Hospital of Wuhu City, Wuhu, Anhui, China
| | - Zhaoying Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Siyuan Zuo
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui, China
| | - Xiaolei Tang
- Center for Translational Medicine, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Hailang Zhou
- Department of Gastroenterology, Lianshui People's Hospital of kangda college Affiliated to Nanjing Medical University, Huai'an, Jiangsu, China.
| | - Yong Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
15
|
Fan L, Guo X, Washington MK, Shi J, Ness RM, Liu Q, Wen W, Huang S, Liu X, Cai Q, Zheng W, Coffey RJ, Shrubsole MJ, Su T. Yes-associated protein plays oncogenic roles in human sporadic colorectal adenomas. Carcinogenesis 2025; 46:bgaf007. [PMID: 39977302 PMCID: PMC11923420 DOI: 10.1093/carcin/bgaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 02/22/2025] Open
Abstract
The role of Hippo-Yes-associated protein (YAP) in human colorectal cancer (CRC) presents contradictory results. We examined the function of YAP in the early stages of CRC by quantitatively measuring the expression of phospho-YAPS127 (p-YAP) and five APC-related proteins in 145 sporadic adenomas from the Tennessee Colorectal Polyp Study, conducting APC sequencing for 114 adenomas, and analyzing YAP-correlated cancer pathways using gene expression data from 326 adenomas obtained from Gene Expression Omnibus. The p-YAP expression was significantly correlated with YAP expression (r = 0.53, P < .0001) and nuclear β-catenin (r = 0.26, P = .0018) in adenoma tissues. Both p-YAP and nuclear β-catenin were associated with APC mutations (P = .05). A strong association was observed between p-YAP overexpression and advanced adenoma odds (OR = 12.62, 95% CI = 4.57-34.86, P trend < .001), which persisted after adjusting for covariates and biomarkers (OR = 12.31, 95% CI = 3.78-40.10, P trend < .0001). P-YAP exhibited a sensitivity of 77.4% and specificity of 78.2% in defining advanced versus nonadvanced adenomas. Additionally, synergistic interaction was noted between p-YAP positivity and nuclear β-catenin on advanced adenomas (OR = 16.82, 95% CI = 4.41-64.08, P < .0001). YAP-correlated genes were significantly enriched in autophagy, unfolded protein response, and sirtuin pathways showing predominantly pro-tumorigenic alterations. Collectively, YAP plays an oncogenic role in interacting with Wnt as well as other cancer pathways within human sporadic adenomas. P-YAP could be a potential biomarker for human high-risk sporadic adenomas.
Collapse
Affiliation(s)
- Lei Fan
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, United States
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, United States
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Avenue S., Nashville, TN 37212, United States
| | - Mary K Washington
- Department of Pathology, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Jiajun Shi
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, United States
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Avenue S., Nashville, TN 37212, United States
| | - Reid M Ness
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Qi Liu
- Center for Quantitative Sciences and Department of Biostatistics, Vanderbilt University School of Medicine, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, United States
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Avenue S., Nashville, TN 37212, United States
| | - Shuya Huang
- Department of Breast Surgery, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong 250031, China
| | - Xiao Liu
- Center for Quantitative Sciences and Department of Biostatistics, Vanderbilt University School of Medicine, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, United States
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Avenue S., Nashville, TN 37212, United States
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, United States
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Avenue S., Nashville, TN 37212, United States
| | - Robert J Coffey
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN 37232, United States
- Cell and Development Biology, Vanderbilt University, 1211 Medical Center Drive, Nashville, TN 37232, United States
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, United States
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Avenue S., Nashville, TN 37212, United States
| | - Timothy Su
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, 2525 West End Avenue, Nashville, TN 37203, United States
- GRECC, Department of Veterans Affairs, Tennessee Valley Healthcare System, 1310 24th Avenue S., Nashville, TN 37212, United States
| |
Collapse
|
16
|
Zhang R, Zhang X, Lau HCH, Yu J. Gut microbiota in cancer initiation, development and therapy. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2831-x. [PMID: 39821827 DOI: 10.1007/s11427-024-2831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
Cancer has long been associated with genetic and environmental factors, but recent studies reveal the important role of gut microbiota in its initiation and progression. Around 13% of cancers are linked to infectious agents, highlighting the need to identify the specific microorganisms involved. Gut microbiota can either promote or inhibit cancer growth by influencing oncogenic signaling pathways and altering immune responses. Dysbiosis can lead to cancer, while certain probiotics and their metabolites may help reestablish micro-ecological balance and improve anti-tumor immune responses. Research into targeted approaches that enhance therapy with probiotics is promising. However, the effects of probiotics in humans are complex and not yet fully understood. Additionally, methods to counteract harmful bacteria are still in development. Early clinical trials also indicate that modifying gut microbiota may help manage side effects of cancer treatments. Ongoing research is crucial to understand better how gut microbiota can be used to improve cancer prevention and treatment outcomes.
Collapse
Affiliation(s)
- Ruyi Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
17
|
Liu M, Liu Q, Hu K, Dong Y, Sun X, Zou Z, Ji D, Liu T, Yu Y. Colorectal cancer with BRAF V600E mutation: Trends in immune checkpoint inhibitor treatment. Crit Rev Oncol Hematol 2024; 204:104497. [PMID: 39245296 DOI: 10.1016/j.critrevonc.2024.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC) with BRAF V600E mutation presents a formidable scientific and clinical challenge due to its aggressive nature and poor response to standard therapeutic approaches. BRAF V600E mutation-induced conspicuous activation of the MAPK pathway contributes to the relentless tumor progression. Nevertheless, the efficacy of multi-targeted MAPK pathway inhibition remains suboptimal in clinical practice. Patients with high microsatellite instability (MSI-H) have shown favorable results with immune checkpoint inhibitors (ICIs). The combination of the MAPK pathway inhibition with ICIs has recently emerged as a promising regimen to improve clinical outcomes in the microsatellite stable (MSS) subgroup of BRAF V600E-mutant metastatic CRC patients. In this review, we elucidate the unique tumor biology of BRAF V600E-mutant CRC, with a particular focus on the immune features underlying the rationale for ICI treatments in the MSI-H and MSS subpopulations, then highlight the trends in clinical trials of the ICI therapy for BRAF V600E-mutant metastatic CRC.
Collapse
Affiliation(s)
- Mengling Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qing Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Keshu Hu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Dong
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xun Sun
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiguo Zou
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dingkun Ji
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yiyi Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
18
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
19
|
González A, Fullaondo A, Odriozola A. Host genetics-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:83-122. [PMID: 39396843 DOI: 10.1016/bs.adgen.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) represents the second leading cause of cancer incidence and the third leading cause of cancer deaths worldwide. There is currently a lack of understanding of the onset of CRC, hindering the development of effective prevention strategies, early detection methods and the selection of appropriate therapies. This article outlines the key aspects of host genetics currently known about the origin and development of CRC. The organisation of the colonic crypts is described. It discusses how the transformation of a normal cell to a cancer cell occurs and how that malignant cell can populate an entire colonic crypt, promoting colorectal carcinogenesis. Current knowledge about the cell of origin of CRC is discussed, and the two morphological pathways that can give rise to CRC, the classical and alternative pathways, are presented. Due to the molecular heterogeneity of CRC, each of these pathways has been associated with different molecular mechanisms, including chromosomal and microsatellite genetic instability, as well as the CpG island methylator phenotype. Finally, different CRC classification systems are described based on genetic, epigenetic and transcriptomic alterations, allowing diagnosis and treatment personalisation.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| |
Collapse
|
20
|
Su Z, El Hage M, Linnebacher M. Mutation patterns in colorectal cancer and their relationship with prognosis. Heliyon 2024; 10:e36550. [PMID: 39263143 PMCID: PMC11387246 DOI: 10.1016/j.heliyon.2024.e36550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background Colorectal cancer (CRC) is a prevalent malignancy and a leading cause of cancer-related mortality. Extensive research into the aetiology of CRC has revealed that somatic mutations in certain genes play a crucial role in CRC development.AIM: In this study, we utilized data from public databases to investigate prevalent mutation patterns in CRC and developed a prognostic predictive model for CRC patients based on mutant genetic characteristics and other relevant clinical features. Methods We initially gathered mutation information from CRC patients by analysing data from 15 datasets to identify genes with a mutation frequency of ≥10 %. Next, log-rank analyses were used to determine the relationship between prognosis and the mutational status of the most commonly mutated genes; the SIGnaling database was utilized to generate a protein‒protein interaction network. We consolidated and classified the gene mutation patterns of CRC patients in the database based on frequently mutated genes related to prognosis. A predictive nomogram was constructed, including age, sex, TNM stage, and mutation partner, based on available clinical, mutational, and prognostic information for CRC patients at our institution. Finally, the reliability of the model was verified using time-dependent ROC curve analysis. Results The top 7 genes somatically mutated ≥10 % in 4477 samples from 4255 patients were TP53 (67 %), APC (66 %), KRAS (43 %), PIK3CA (18 %), FBXW7 (14 %), SMAD4 (14 %), and BRAF (10 %). Log-rank analysis demonstrated that the mutation status of 5 genes, namely, TP53, APC, PIK3CA, SMAD4, and BRAF, correlated significantly with prognosis. Protein‒protein interaction analysis confirmed functional interactions between these 5 genes, implicating them in tumorigenesis. We exhaustively enumerated the mutation patterns involving these five genes in 4255 patients, resulting in identification of 32 mutational patterns. After consolidation and classification, these patterns were divided into 3 grades based on patient prognosis. Next, a predictive nomogram based on the clinical, mutational, and prognostic information of 107 CRC patients treated at University Medical Center Rostock was constructed. The area under the curve (AUC) values for the model for predicting 1-, 3-, and 5-year overall survival were 0.779, 0.721, and 0.815, respectively. Conclusion Common mutational patterns based on frequently mutated genes are associated with prognosis in CRC patients. Our study provides a valuable and concise prognostic predictor for determining outcomes in patients with CRC.
Collapse
Affiliation(s)
- Zhaoran Su
- Department of Gastrointestinal Surgery, People's Hospital of Tongling City, China
- College of Mathematics and Computer Science, Tongling University, Tongling 244000, China
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, University Medical Center Rostock, Rostock 18057, Germany
| | - Maria El Hage
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, University Medical Center Rostock, Rostock 18057, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Clinic of General Surgery, University Medical Center Rostock, Rostock 18057, Germany
| |
Collapse
|
21
|
Remonatto G, Ferreira Salles Pilar E, de-Paris F, Schaefer PG, Kliemann LM. Integrated molecular profiling of RAS, BRAF mutations, and mismatch repair status in advanced colorectal carcinoma: insights from gender and tumor laterality. J Gastrointest Oncol 2024; 15:1580-1591. [PMID: 39279928 PMCID: PMC11399832 DOI: 10.21037/jgo-23-1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/22/2024] [Indexed: 09/18/2024] Open
Abstract
Background Colorectal carcinoma (CRC) is one of the most frequently diagnosed forms of cancer worldwide. The RAS (KRAS, NRAS) and BRAF genes encode proteins that are important therapeutic targets for the treatment of CRC and, together with the mismatch repair (MMR) system, are closely related to patient prognosis and survival in advanced CRC. Here we evaluate the mutational profile and the frequency of mutations in the KRAS, NRAS and BRAF genes, along with the expression of MMR in advanced CRC, at a tertiary hospital in southern Brazil. Methods A cross-sectional retrospective study was carried out, where molecular analysis of mutations in the KRAS, NRAS and BRAF genes was carried out, as well as immunohistochemistry for MMR proteins. Results Next-generation sequencing (NGS) analysis of 310 tumors revealed that 202 patients (65.2%) had mutations. The KRAS gene (53.2%) was the most frequently mutated in our sample, with G12D being the most frequent, representing 30.5% of the mutations in this gene. The most frequent mutation found in BRAF was V600E (n=25; 89.3%) and differed significantly in women and in the right colon in patients with MMR deficiency. Among the 283 patients tested for MMR, the rate of loss of expression was 8.8% (25/283). Conclusions Deficiency in the MMR system is associated with the presence of the BRAF V600E mutation, tumors located in the right colon, and the female sex. In our case series, more than 60% of patients had at least one mutation in KRAS, NRAS, or BRAF. The presence of mutations in these genes is closely related to CRC prognosis and helps define the best therapeutic approach in patients with metastatic CRC.
Collapse
Affiliation(s)
| | | | - Fernanda de-Paris
- Transplant and Personalized Medicine Unit of the Laboratory Diagnostic Service, Hospital de Clínicas de Porto Alegre, RS, Brazil
| | | | - Lúcia Maria Kliemann
- Pathology Service, Hospital de Clínicas de Porto Alegre, RS, Brazil
- Department of Pathology, School of Medicine, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, Brazil
| |
Collapse
|
22
|
Wortmann E, Wylensek D, Basic M, Hermeling S, Bleich A, Haller D, Tolba R, Liebisch G, Janssen KP, Clavel T. Gut microbiota prevents small intestinal tumor formation due to bile acids in gnotobiotic mice. MICROBIOME RESEARCH REPORTS 2024; 3:44. [PMID: 39741948 PMCID: PMC11684917 DOI: 10.20517/mrr.2024.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/12/2024] [Accepted: 08/09/2024] [Indexed: 01/03/2025]
Abstract
Aim: The gut microbiota is implicated in the development of intestinal tumors. Furthermore, Western diet is a risk factor for colorectal cancer and induces alterations in both the microbiota and bile acid metabolism. Therefore, we aimed to investigate the causal role of Western diet-induced changes in the microbiota and secondary bile acid production, which were linked to disease exacerbation in APC 1311/+ pigs. Methods: We performed fecal microbiota transfer experiments by inoculating germfree Apc 1368N/+ mice with stool from genetically engineered APC 1311/+ pigs. A control group of Apc 1368N/+ mice stayed germfree. All mice were fed either a control diet, or the same diet supplemented with the primary bile acid cholic acid (CA) to stimulate secondary bile acid production. Results: Unexpectedly, the germfree mice fed CA had a high number of lesions in the upper small intestine, which was reduced by the colonization with microbes. The same mice (germfree, CA diet) were characterized by a remarkable lengthening of the small intestine (approximately +10 cm on average). Colonic lesions were rare and only observed in the mice that received stool from control pigs and fed the CA diet. Diversity and composition analyses showed that the microbiota transfer was incomplete. Nevertheless, mice receiving the Western diet-associated microbiota clustered separately from control animals. The effects of the CA diet on the microbiota were less pronounced and were observed primarily in mice that received stool from control pigs. Bile acid analysis in the recipient mice revealed associations between the phenotype and specific bile acid species in bile and cecum. Conclusion: This descriptive study highlights the importance of diet-microbiota-bile acid interactions in intestinal morphogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Esther Wortmann
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen 52074, Germany
| | - David Wylensek
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen 52074, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover 30625, Germany
| | - Sven Hermeling
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg 93053, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover 30625, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, School of Life Sciences, Technical University of Munich, Freising 85354, Germany
- ZIEL - Institute for Food and Health, Technical University of Munich, Freising 85354, Germany
| | - René Tolba
- Institute of Laboratory Animal Science, University Hospital of RWTH Aachen, Aachen 85354, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg 93053, Germany
| | - Klaus-Peter Janssen
- Technical University of Munich, School of Medicine and Health, Klinikum rechts der Isar, Department of Surgery, Munich 81675, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen 52074, Germany
| |
Collapse
|
23
|
Zamzam YA, Zamzam Y, Elsaka A, Fadaly LA, Haydara T, Amer AI. Potential carcinogenic role of Reg IV in ulcerative colitis-associated colorectal neoplasia. Ecancermedicalscience 2024; 18:1751. [PMID: 39421174 PMCID: PMC11484682 DOI: 10.3332/ecancer.2024.1751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 10/19/2024] Open
Abstract
Background Early detection of ulcerative colitis-associated neoplasia (UC-N) remains a clinical challenge. Identification of molecular biomarkers for colorectal dysplasia and cancer may be extremely beneficial in early detection and managing cancer risk in long-standing ulcerative colitis (UC) patients. Objective The aim of this work is to investigate the role of Reg IV in comparison to P53 and KRAS in UC-associated dysplasia and colorectal cancer (CRC) in order to evaluate the potential use of Reg IV for dysplasia and cancer screening in UC patients. Methods The study was conducted on 5 groups each 20 colonic endoscopic samples: 1) Normal colonic mucosa, 2) Active UC without dysplasia/carcinoma, 3) UC-associated dysplasia, 4) UC-associated CRC (UC-CRC), 5) Sporadic CRC. All included cases were subjected to Reg IV mRNA expression analysis by quantitative reverse transcription polymerase chain reaction, and immunostaining for Reg IV, P53 and KRAS. Results Reg IV mRNA expression levels were found to be significantly higher in groups 3 and 4 (mean: 3.37 and 5.70, respectively). Reg IV immunostaining was highly expressed in groups 3 and 4 (mean: 45.80 and 62.35, respectively). While P53 and KRAS immunostaining was highly expressed in group 5 (mean: 64.57 and 62.90). Furthermore, Reg IV immunoexpression had shown a negative correlation with P53 and KRAS immunoexpression in groups 4 and 5. Conclusion Higher expression of Reg IV in patients with UC-dysplasia and UC-CRC versus KRAS and P53 expression in sporadic CRC, suggests a potential role of Reg IV in UC carcinogenesis pathway. This could advocate the use of Reg IV as a screening biomarker for UC-N among patients with long-standing UC as well as a promising targeted therapeutic strategy.
Collapse
Affiliation(s)
| | - Yomna Zamzam
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta 31111, Egypt
- https://orcid.org/0000-0003-0270-3140
| | - Ayman Elsaka
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta 31111, Egypt
| | - Lamiaa Al Fadaly
- Clinical Pathology, National Cancer Institute, Cairo University, Giza 12511, Egypt
| | - Tamer Haydara
- Department of Internal Medicine, Faculty of Medicine, Kafr El Sheikh University, Kafr El-Sheikh 33511, Egypt
| | - Alaa Ibraheem Amer
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta 31111, Egypt
| |
Collapse
|
24
|
Gonzalez-Gutierrez L, Motiño O, Barriuso D, de la Puente-Aldea J, Alvarez-Frutos L, Kroemer G, Palacios-Ramirez R, Senovilla L. Obesity-Associated Colorectal Cancer. Int J Mol Sci 2024; 25:8836. [PMID: 39201522 PMCID: PMC11354800 DOI: 10.3390/ijms25168836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Colorectal cancer (CRC) affects approximately 2 million people worldwide. Obesity is the major risk factor for CRC. In addition, obesity contributes to a chronic inflammatory stage that enhances tumor progression through the secretion of proinflammatory cytokines. In addition to an increased inflammatory response, obesity-associated cancer presents accrued molecular factors related to cancer characteristics, such as genome instability, sustained cell proliferation, telomere dysfunctions, angiogenesis, and microbial alteration, among others. Despite the evidence accumulated over the last few years, the treatments for obesity-associated CRC do not differ from the CRC treatments in normal-weight individuals. In this review, we summarize the current knowledge on obesity-associated cancer, including its epidemiology, risk factors, molecular factors, and current treatments. Finally, we enumerate possible new therapeutic targets that may improve the conditions of obese CRC patients. Obesity is key for the development of CRC, and treatments resulting in the reversal of obesity should be considered as a strategy for improving antineoplastic CRC therapies.
Collapse
Affiliation(s)
- Lucia Gonzalez-Gutierrez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Omar Motiño
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Daniel Barriuso
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Juan de la Puente-Aldea
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Lucia Alvarez-Frutos
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Roberto Palacios-Ramirez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
| | - Laura Senovilla
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, 47003 Valladolid, Spain; (L.G.-G.); (O.M.); (D.B.); (J.d.l.P.-A.); (L.A.-F.); (R.P.-R.)
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| |
Collapse
|
25
|
Kashima H, Fischer A, Veronese-Paniagua DA, Gazit VA, Ma C, Yan Y, Levin MS, Madison BB, Rubin DC. A Novel CRISPR/Cas9-mediated Mouse Model of Colon Carcinogenesis. Cell Mol Gastroenterol Hepatol 2024; 18:101390. [PMID: 39128652 PMCID: PMC11462267 DOI: 10.1016/j.jcmgh.2024.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND & AIMS Human sporadic colorectal cancer (CRC) results from a multistep pathway with sequential acquisition of specific genetic mutations in the colorectal epithelium. Modeling CRC in vivo is critical for understanding the tumor microenvironment. To accurately recapitulate human CRC pathogenesis, mouse models must include these multi-step genetic abnormalities. The aim of this study was to generate a sporadic CRC model that more closely mimics this multi-step process and to use this model to study the role of a novel Let7 target PLAGL2 in CRC pathogenesis. METHODS We generated a CRISPR/Cas9 somatic mutagenesis mouse model that is inducible and multiplexed for simultaneous inactivation of multiple genes involved in CRC pathogenesis. We used both a doxycycline-inducible transcriptional activator and a doxycycline-inactivated transcriptional repressor to achieve tight, non-leaky expression of the Cas9 nickase. This mouse has transgenic expression of multiple guide RNAs to induce sporadic inactivation in the gut epithelium of 4 tumor suppressor genes commonly mutated in CRC, Apc, Pten, Smad4, and Trp53. These were crossed to Vil-LCL-PLAGL2 mice, which have Cre-inducible overexpression of PLAGL2 in the gut epithelium. RESULTS These mice exhibited random somatic mutations in all 4 targeted tumor suppressor genes, resulting in multiple adenomas and adenocarcinomas in the small bowel and colon. Crosses with Vil-LCL-PLAGL2 mice demonstrated that gut-specific PLAGL2 overexpression increased colon tumor growth. CONCLUSIONS This conditional model represents a new CRISPR/Cas9-mediated mouse model of colorectal carcinogenesis. These mice can be used to investigate the role of novel, previously uncharacterized genes in CRC, in the context of multiple commonly mutated tumor suppressor genes and thus more closely mimic human CRC pathogenesis.
Collapse
Affiliation(s)
- Hajime Kashima
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri; Current affiliation: Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Anthony Fischer
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri
| | - Daniel A Veronese-Paniagua
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri
| | - Vered A Gazit
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri
| | - Changqing Ma
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St Louis, Missouri
| | - Yan Yan
- Department of Surgery, Washington University in St. Louis School of Medicine, St Louis, Missouri
| | - Marc S Levin
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri; Veteran's Administration St. Louis Health Care System, St Louis, Missouri
| | - Blair B Madison
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri; Current affiliation: Poseida Therapeutics Inc, San Diego, California
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis School of Medicine, St Louis, Missouri; Department of Developmental Biology, Washington University in St. Louis School of Medicine, St Louis, Missouri.
| |
Collapse
|
26
|
Fu D, Zhang T, Liu J, Chang B, Zhang Q, Tan Y, Chen X, Tan L. Identification of adipocyte infiltration-related gene subtypes for predicting colorectal cancer prognosis and responses of immunotherapy/chemotherapy. Heliyon 2024; 10:e33616. [PMID: 39050460 PMCID: PMC11266998 DOI: 10.1016/j.heliyon.2024.e33616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Colorectal cancer (CRC) is a prevalent and aggressive malignancy characterized by a complex tumor microenvironment (TME). Given the variations in the level of adipocyte infiltration in TME, the prognosis may differ among CRC patients. Thus, there is an urgent need to establish a reliable method for identifying adipocyte subtypes in CRC in order to elucidate the impact of adipocyte infiltration on CRC treatment and prognosis. Herein, 144 adipocyte-infiltration-related genes (AIRGs) were identified as predictive markers for the immune-associated features and prognosis of CRC patients. Based on the 144 genes, the unsupervised clustering algorithm identified two distinct clusters of CRC patients with variations in molecular and signaling pathways, clinicopathological characteristics and responses to CRC chemotherapy and immunotherapy. Furthermore, an AIRG prognostic signature was constructed and validated in independent datasets. Overall, this study developed a prognostic signature based on AIRGs in CRC, which may contribute to the development of personalized treatment strategies and enhance prognostic prediction for CRC patients.
Collapse
Affiliation(s)
- Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bingcheng Chang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550003, China
| | - Qingqing Zhang
- Haiyan County Hospital of Traditional Chinese Medicine, JiaXing, 314399, China
| | - Yuyan Tan
- Department of Breast and Thyroid Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lulu Tan
- Department of Breast and Thyroid Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, China
| |
Collapse
|
27
|
Song CH, Kim N, Nam RH, Choi SI, Jang JY, Kim EH, Choi J, Choi Y, Yoon H, Lee SM, Seok YJ. The Possible Preventative Role of Lactate- and Butyrate-Producing Bacteria in Colorectal Carcinogenesis. Gut Liver 2024; 18:654-666. [PMID: 38030382 PMCID: PMC11249946 DOI: 10.5009/gnl230385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background/Aims : The gut microbiome has emerged as a key player that mechanistically links various risk factors to colorectal cancer (CRC) etiology. However, the role of the gut microbiome in CRC pathogenesis remains unclear. This study aimed to characterize the gut microbiota in healthy controls (HCs) and patients with colorectal adenoma (AD) and CRC in subgroups based on sex and age. Methods : Study participants who visited the hospital for surveillance of CRC or gastrointestinal symptoms were prospectively enrolled, and the gut microbiome was analyzed based on fecal samples. Results : In terms of HC-AD-CRC sequence, commensal bacteria, including lactate-producing (Streptococcus salivarius) and butyrate-producing (Faecalibacterium prausnitzii, Anaerostipes hadrus, and Eubacterium hallii) bacteria, were more abundant in the HC group than in the AD and CRC groups. In the sex comparison, the female HC group had more lactate-producing bacteria (Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Lactobacillus ruminis) than the male HC group. In age comparison, younger subjects had more butyrate-producing bacteria (Agathobaculum butyriciproducens and Blautia faecis) than the older subjects in the HC group. Interestingly, lactate-producing bacteria (B. catenulatum) were more abundant in females than males among younger HC group subjects. However, these sex- and age-dependent differences were not observed in the AD and CRC groups. Conclusions : The gut microbiome, specifically lactate- and butyrate-producing bacteria, which were found to be abundant in the HC group, may play a role in preventing the progression of CRC. In particular, lactate-producing bacteria, which were found to be less abundant in healthy male controls may contribute to the higher incidence of CRC in males.
Collapse
Affiliation(s)
- Chin-Hee Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Soo In Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae Young Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun Hye Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jina Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yonghoon Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sun Min Lee
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, Korea
| | - Yeong-Jae Seok
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| |
Collapse
|
28
|
Liang Q, Mukama T, Sundquist K, Sundquist J, Brenner H, Kharazmi E, Fallah M. Longer Interval Between First Colonoscopy With Negative Findings for Colorectal Cancer and Repeat Colonoscopy. JAMA Oncol 2024; 10:866-873. [PMID: 38696176 PMCID: PMC11066766 DOI: 10.1001/jamaoncol.2024.0827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/14/2023] [Indexed: 05/05/2024]
Abstract
Importance For individuals without a family history of colorectal cancer (CRC), colonoscopy screening every 10 years is recommended to reduce CRC incidence and mortality. However, debate exists about whether and for how long this 10-year interval could be safely expanded. Objective To assess how many years after a first colonoscopy with findings negative for CRC a second colonoscopy can be performed. Design, Setting, and Participants This cohort study leveraged Swedish nationwide register-based data to examine CRC diagnoses and CRC-specific mortality among individuals without a family history of CRC. The exposed group included individuals who had a first colonoscopy with findings negative for CRC at age 45 to 69 years between 1990 and 2016. The control group included individuals matched by sex, birth year, and baseline age (ie, the age of their matched exposed individual when the exposed individual's first colonoscopy with findings negative for CRC was performed). Individuals in the control group either did not have a colonoscopy during the follow-up or underwent colonoscopy that resulted in a CRC diagnosis. Up to 18 controls were matched with each exposed individual. Individuals were followed up from 1990 to 2018, and data were analyzed from November 2022 to November 2023. Exposure A first colonoscopy with findings negative for CRC, defined as a first colonoscopy without a diagnosis of colorectal polyp, adenoma, carcinoma in situ, or CRC before or within 6 months after screening. Main Outcomes and Measures The primary outcomes were CRC diagnosis and CRC-specific death. The 10-year standardized incidence ratio and standardized mortality ratio were calculated to compare risks of CRC and CRC-specific death in the exposed and control groups based on different follow-up screening intervals. Results The sample included 110 074 individuals (65 147 females [59.2%]) in the exposed group and 1 981 332 (1 172 646 females [59.2%]) in the control group. The median (IQR) age for individuals in both groups was 59 (52-64) years. During up to 29 years of follow-up of individuals with a first colonoscopy with findings negative for CRC, 484 incident CRCs and 112 CRC-specific deaths occurred. After a first colonoscopy with findings negative for CRC, the risks of CRC and CRC-specific death in the exposed group were significantly lower than those in their matched controls for 15 years. At 15 years after a first colonoscopy with findings negative for CRC, the 10-year standardized incidence ratio was 0.72 (95% CI, 0.54-0.94) and the 10-year standardized mortality ratio was 0.55 (95% CI, 0.29-0.94). In other words, the 10-year cumulative risk of CRC in year 15 in the exposed group was 72% that of the 10-year cumulative risk of CRC in the control group. Extending the colonoscopy screening interval from 10 to 15 years in individuals with a first colonoscopy with findings negative for CRC could miss the early detection of only 2 CRC cases and the prevention of 1 CRC-specific death per 1000 individuals, while potentially avoiding 1000 colonoscopies. Conclusions and Relevance This cohort study found that for the population without a family history of CRC, the 10-year interval between colonoscopy screenings for individuals with a first colonoscopy with findings negative for CRC could potentially be extended to 15 years. A longer interval between colonoscopy screenings could be beneficial in avoiding unnecessary invasive examinations.
Collapse
Affiliation(s)
- Qunfeng Liang
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Trasias Mukama
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Disease Control and Environmental Health, School of Public Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Community-based Healthcare Research and Education, Department of Functional Pathology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
- Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Community-based Healthcare Research and Education, Department of Functional Pathology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Hermann Brenner
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elham Kharazmi
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Mahdi Fallah
- Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
- Institute of Primary Health Care, University of Bern, Bern, Switzerland
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
29
|
He D, Wang K, Zhang Y, Jiang X, Chen H, Chen J, Liu D, Li G, Hu J, He X. Risk of advanced neoplasia after removal of colorectal adenomas with high-grade dysplasia. Surg Endosc 2024; 38:3783-3798. [PMID: 38806955 PMCID: PMC11219408 DOI: 10.1007/s00464-024-10898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Many studies reported the presence of adenomas with high-grade dysplasia (HGD) at index colonoscopy increased the incidence of advanced neoplasia (AN) and colorectal cancer (CRC) following. However, the conclusion remains obscure due to lack of studies on the specific population of adenomas with HGD. This study aimed to assess the long-term risk of AN and CRC after removal of adenomas with HGD. METHODS A total of 814 patients who underwent adenomas with HGD removal between 2010 and 2019 were retrospectively analyzed. The outcomes were the incidences of AN and CRC during surveillance colonoscopy. Cox proportional hazards models were utilized to identify risk factors associated with AN and CRC. RESULTS During more than 2000 person-years of follow-up, we found that AN and CRC incidence densities were 44.3 and 4.4 per 1000 person-years, respectively. The 10-year cumulative incidence of AN and CRC were 39.1% and 5.5%, respectively. In the multivariate model, synchronous low-risk polyps (HR 1.80, 95% CI 1.10-2.93) and synchronous high-risk polyps (HR 3.99, 95% CI 2.37-6.72) were risk factors for AN, whereas participation in surveillance colonoscopy visits (HR 0.56, 95% CI 0.36-0.88 for 1 visit; HR 0.10, 95% CI 0.06-0.19 for ≥ 2 visits) were associated with decreased AN incidence. Additionally, elevated baseline carcinoembryonic antigen (CEA) level (HR 10.19, 95% CI 1.77-58.59) was a risk factor for CRC, while participation in ≥ 2 surveillance colonoscopy visits (HR 0.11, 95% CI 0.02-0.56) were associated with decreased CRC incidence. Interestingly, for 11 patients who developed CRC after removal of adenomas with HGD, immunohistochemistry revealed that 8 cases (73%) were deficient mismatch repair CRCs. CONCLUSIONS Patients who have undergone adenoma with HGD removal are at higher risk of developing AN and CRC, while surveillance colonoscopy can reduce the risk. Patients with synchronous polyps, or with elevated baseline CEA level are considered high-risk populations and require more frequent surveillance.
Collapse
Affiliation(s)
- Degao He
- Department of Anorectal Surgery, Shenzhen Longhua District Central Hospital, Guanlan Avenue 187, Shenzhen, 518100, Guangdong, China.
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China.
| | - Kai Wang
- Department of Anaesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
| | - Yanhong Zhang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
| | - Xuefei Jiang
- Department of General Surgery (Institute of Gastroenterology), The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
| | - Hao Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
| | - Junguo Chen
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
| | - Danlin Liu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
| | - Guanman Li
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China
| | - Jiancong Hu
- Department of General Surgery (Endoscopic Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China.
| | - Xiaosheng He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
30
|
O'Connell RM, Hoti E. Challenges and Opportunities for Precision Surgery for Colorectal Liver Metastases. Cancers (Basel) 2024; 16:2379. [PMID: 39001441 PMCID: PMC11240734 DOI: 10.3390/cancers16132379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The incidence of colorectal cancer and colorectal liver metastases (CRLM) is increasing globally due to an interaction of environmental and genetic factors. A minority of patients with CRLM have surgically resectable disease, but for those who have resection as part of multimodal therapy for their disease, long-term survival has been shown. Precision surgery-the idea of careful patient selection and targeting of surgical intervention, such that treatments shown to be proven to benefit on a population level are the optimal treatment for each individual patient-is the new paradigm of care. Key to this is the understanding of tumour molecular biology and clinically relevant mutations, such as KRAS, BRAF, and microsatellite instability (MSI), which can predict poorer overall outcomes and a poorer response to systemic therapy. The emergence of immunotherapy and hepatic artery infusion (HAI) pumps show potential to convert previously unresectable disease to resectable disease, in addition to established systemic and locoregional therapies, but the surgeon must be wary of poor-quality livers and the spectre of post-hepatectomy liver failure (PHLF). Volume modulation, a cornerstone of hepatic surgery for a generation, has been given a shot in the arm with the advent of liver venous depletion (LVD) ensuring significantly more hypertrophy of the future liver remnant (FLR). The optimal timing of liver resection for those patients with synchronous disease is yet to be truly established, but evidence would suggest that those patients requiring complex colorectal surgery and major liver resection are best served with a staged approach. In the operating room, parenchyma-preserving minimally invasive surgery (MIS) can dramatically reduce the surgical insult to the patient and lead to better perioperative outcomes, with quicker return to function.
Collapse
Affiliation(s)
- Robert Michael O'Connell
- Department of Hepatopancreaticobiliary and Transplantation Surgery, Saint Vincent's University Hospital, D04 T6F4 Dublin, Ireland
| | - Emir Hoti
- Department of Hepatopancreaticobiliary and Transplantation Surgery, Saint Vincent's University Hospital, D04 T6F4 Dublin, Ireland
| |
Collapse
|
31
|
Colella M, Iannucci A, Maresca C, Albano F, Mazzoccoli C, Laudisi F, Monteleone I, Monteleone G. SMAD7 Sustains XIAP Expression and Migration of Colorectal Carcinoma Cells. Cancers (Basel) 2024; 16:2370. [PMID: 39001432 PMCID: PMC11240366 DOI: 10.3390/cancers16132370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The reorganization of the cell cytoskeleton and changes in the content of cell adhesion molecules are crucial during the metastatic spread of tumor cells. Colorectal cancer (CRC) cells express high SMAD7, a protein involved in the control of CRC cell growth. In the present study, we evaluated whether SMAD7 regulates the cytoskeleton reorganization and dynamics in CRC. Knockdown of SMAD7 with a specific antisense oligonucleotide (AS) in HCT116 and DLD1, two human CRC cell lines, reduced the migration rate and the content of F-ACTIN filaments. A gene array, real-time PCR, and Western blotting of SMAD7 AS-treated cells showed a marked down-regulation of the X-linked inhibitor of apoptosis protein (XIAP), a member of the inhibitor of apoptosis family, which has been implicated in cancer cell migration. IL-6 and IL-22, two cytokines that activate STAT3, enhanced XIAP in cancer cells, and such induction was attenuated in SMAD7-deficient cells. Finally, in human CRC, SMAD7 mRNA correlated with XIAP expression. Our data show that SMAD7 positively regulates XIAP expression and migration of CRC cells, and suggest a mechanism by which SMAD7 controls the architecture components of the CRC cell cytoskeleton.
Collapse
Affiliation(s)
- Marco Colella
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Andrea Iannucci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Claudia Maresca
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Francesco Albano
- Department of Biology, Laboratorio di Biologia Delle Cellule Staminali, University of Naples Federico II, 80126 Naples, Italy
| | - Carmela Mazzoccoli
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Gastroenterology Unit, Fondazione Policlinico "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
32
|
Devalle S, Aran V, Bastos Júnior CDS, Pannain VL, Brackmann P, Gregório ML, Ferreira Manso JE, Moura Neto V. A panorama of colon cancer in the era of liquid biopsy. THE JOURNAL OF LIQUID BIOPSY 2024; 4:100148. [PMID: 40027146 PMCID: PMC11863817 DOI: 10.1016/j.jlb.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/05/2025]
Abstract
Colon cancer (CC) is one of the most frequent cancers worldwide being responsible for over 500 thousand deaths in 2022. Its financial and human burden is expected to increase in the next decades accompanying the growing and aging of the global population. Much of this burden could be alleviated considering that the lethality of CC is mostly due to its late diagnosis and failure in the individualized management of patients. Coordinated government actions and implementation of better diagnostic tools capable of detecting CC earlier and of tracking tumoral evolution are mandatory to achieve a reduction in CC's social impact. CtDNA-based liquid biopsy (LB) has great potential to contribute to patients' screening adhesion, CC earlier detection, and to longitudinal tumor follow-up. In this review, we will discuss the latest epidemiological data on CC disease, diagnostic, subtypes, genetics, and treatment management focusing on the advantages and limitations of ctDNA-based LB, including important bottlenecks and solutions necessary for its clinical translation. The latest ctDNA-directed CC clinical trials will also be examined.
Collapse
Affiliation(s)
- Sylvie Devalle
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Veronica Aran
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | - Vera Lucia Pannain
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Brackmann
- Clínica de Coloproctologia do Hospital Naval Marcílio Dias - IPB/HNMD, Rio de Janeiro, Brazil
| | - Marcelo Leal Gregório
- Instituto de Pesquisas Biomédicas do Hospital Naval Marcílio Dias - IPB/HNMD, Rio de Janeiro, Brazil
| | - José Eduardo Ferreira Manso
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Sarmiento-Machado LM, Rodrigues MAM, Romualdo GR, Barbisan LF. An overview of chemically induced rodent models for sporadic colorectal cancer: Histopathological and translational perspectives. Histol Histopathol 2024; 39:691-702. [PMID: 38179656 DOI: 10.14670/hh-18-692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Globally, colorectal cancer (CRC) is one of the most frequently diagnosed human gastrointestinal neoplasia and the second leading cause of cancer-related death in both men and women. Despite considerable efforts currently devoted to the study of the biology and treatment of CRC, patient prognosis and survival are still poor. Sporadic CRC is a complex multistep disease and usually emerges in the setting of lifestyle and dietary changes mainly observed in industrialized countries with high human development index (HDI) (westernized style). The molecular pathogenesis of sporadic CRC presents genetic heterogeneity with APC, RAS, PIK3CA, TGFBR, SMAD4, and TP53 mutations usually detected during the progression of this malignancy. The establishment of sporadic CRC models has become essential for both basic and translational research to improve our understanding of the pathophysiology, unravel new molecular drivers, and preventive/therapeutic improvement of this malignancy. Chemically induced rodent models of sporadic CRC recapitulate most key morphological and genetic/epigenetic events observed during the promotion and progression of this malignancy, establishing effective diagnostic and prevention strategies to be translated into clinical practice. The present review gathers the main features of the state-of-the-art evidence on chemically induced rodent models, widely applied for translational modelling of sporadic CRC with a specific focus on histopathology and prevention perspectives. Our narrative review reinforces the persistent value of these bioassays and encourages the use of multimodel strategies for further investigations.
Collapse
Affiliation(s)
| | | | - Guilherme Ribeiro Romualdo
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
- Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu Medical School, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luís Fernando Barbisan
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil.
| |
Collapse
|
34
|
Zheng W, Guo Y, Kahar A, Bai J, Zhu Q, Huang X, Li Y, Xu B, Jia X, Wu G, Zhang C, Zhu Y. RUNX1-induced upregulation of PTGS2 enhances cell growth, migration and invasion in colorectal cancer cells. Sci Rep 2024; 14:11670. [PMID: 38778047 PMCID: PMC11111780 DOI: 10.1038/s41598-024-60296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
Colorectal cancer (CRC) arises via the progressive accumulation of dysregulation in key genes including oncogenes and tumor-suppressor genes. Prostaglandin-endoperoxide synthase 2 (PTGS2, also called COX2) acts as an oncogenic driver in CRC. Here, we explored the upstream transcription factors (TFs) responsible for elevating PTGS2 expression in CRC cells. The results showed that PTGS2 silencing repressed cell growth, migration and invasion in HCT116 and SW480 CRC cells. The two fragments (499-981 bp) and (1053-1434 bp) were confirmed as the core TF binding profiles of the PTGS2 promoter. PTGS2 expression positively correlated with RUNX1 level in colon adenocarcinoma (COAD) samples using the TCGA-COAD dataset. Furthermore, RUNX1 acted as a positive regulator of PTGS2 expression by promoting transcriptional activation of the PTGS2 promoter via the 1086-1096 bp binding motif. In conclusion, our study demonstrates that PTGS2 upregulation induced by the TF RUNX1 promotes CRC cell growth, migration and invasion, providing an increased rationale for the use of PTGS2 inhibitors in CRC prevention and treatment.
Collapse
Affiliation(s)
- Weiwei Zheng
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
- Hepatobiliary Gastrointestinal Surgery Department, Red Star Hospital of the 13th Division of Xinjiang Production and Construction Corps, Hami, 839000, The Xinjiang Uygur Autonomous Region, China, China
- The Affiliated People's Hospital of Xinxiang Medical College, Xinxiang, 453000, Henan, China
| | - Yingchang Guo
- Department of Interventional Therapy, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453000, Henan, China
| | - Aihemaiti Kahar
- Hepatobiliary Gastrointestinal Surgery Department, Red Star Hospital of the 13th Division of Xinjiang Production and Construction Corps, Hami, 839000, The Xinjiang Uygur Autonomous Region, China, China
| | - Junwei Bai
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Qinhui Zhu
- Department of General Surgery, Shangcai People's Hospital, Zhumadian, 463800, Henan, China
| | - Xinli Huang
- Department of General Surgery, Suiping People's Hospital, Zhumadian, 463100, Henan, China
| | - Yuan Li
- Department of Anesthesiology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Bingyi Xu
- Weihui People's Hospital, Weihui, 453100, Henan, China
| | - Xueshan Jia
- Development Department, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| | - Chao Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| | - Yuanzeng Zhu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
35
|
Sullivan BA, Lieberman DA. Colon Polyp Surveillance: Separating the Wheat From the Chaff. Gastroenterology 2024; 166:743-757. [PMID: 38224860 DOI: 10.1053/j.gastro.2023.11.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/17/2024]
Abstract
One goal of colorectal cancer (CRC) screening is to prevent CRC incidence by removing precancerous colonic polyps, which are detected in up to 50% of screening examinations. Yet, the lifetime risk of CRC is 3.9%-4.3%, so it is clear that most of these individuals with polyps would not develop CRC in their lifetime. It is, therefore, a challenge to determine which individuals with polyps will benefit from follow-up, and at what intervals. There is some evidence that individuals with advanced polyps, based on size and histology, benefit from intensive surveillance. However, a large proportion of individuals will have small polyps without advanced histologic features (ie, "nonadvanced"), where the benefits of surveillance are uncertain and controversial. Demand for surveillance will further increase as more polyps are detected due to increased screening uptake, recent United States recommendations to expand screening to younger individuals, and emergence of polyp detection technology. We review the current understanding and clinical implications of the natural history, biology, and outcomes associated with various categories of colon polyps based on size, histology, and number. Our aims are to highlight key knowledge gaps, specifically focusing on certain categories of polyps that may not be associated with future CRC risk, and to provide insights to inform research priorities and potential management strategies. Optimization of CRC prevention programs based on updated knowledge about the future risks associated with various colon polyps is essential to ensure cost-effective screening and surveillance, wise use of resources, and inform efforts to personalize recommendations.
Collapse
Affiliation(s)
- Brian A Sullivan
- Cooperative Studies Program Epidemiology Center-Durham, Durham VA Health Care System, Durham, North Carolina; Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina.
| | - David A Lieberman
- Portland Veteran Affairs Medical Center, Portland, Oregon; Division of Gastroenterology and Hepatology, School of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
36
|
Dosunmu GT, Shergill A. Colorectal Cancer: Genetic Underpinning and Molecular Therapeutics for Precision Medicine. Genes (Basel) 2024; 15:538. [PMID: 38790167 PMCID: PMC11120657 DOI: 10.3390/genes15050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Colorectal cancer (CRC) accounts for about 10% of all cancer cases and 9% of cancer-related deaths globally. In the United States alone, CRC represents approximately 12.6% of all cancer cases, with a mortality rate of about 8%. CRC is now the first leading cause of cancer death in men younger than age 50 and second in women younger than age 50. This review delves into the genetic landscape of CRC, highlighting key mutations and their implications in disease progression and treatment. We provide an overview of the current and emerging therapeutic strategies tailored to individual genomic profiles.
Collapse
Affiliation(s)
| | - Ardaman Shergill
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637, USA;
| |
Collapse
|
37
|
Tsumuraya H, Okayama H, Katagata M, Matsuishi A, Fukai S, Ito M, Sakamoto W, Saito M, Momma T, Nakajima S, Mimura K, Kono K. TGFβ-Responsive Stromal Activation Occurs Early in Serrated Colorectal Carcinogenesis. Int J Mol Sci 2024; 25:4626. [PMID: 38731846 PMCID: PMC11083568 DOI: 10.3390/ijms25094626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Activated TGFβ signaling in the tumor microenvironment, which occurs independently of epithelial cancer cells, has emerged as a key driver of tumor progression in late-stage colorectal cancer (CRC). This study aimed to elucidate the contribution of TGFβ-activated stroma to serrated carcinogenesis, representing approximately 25% of CRCs and often characterized by oncogenic BRAF mutations. We used a transcriptional signature developed based on TGFβ-responsive, stroma-specific genes to infer TGFβ-dependent stromal activation and conducted in silico analyses in 3 single-cell RNA-seq datasets from a total of 39 CRC samples and 12 bulk transcriptomic datasets consisting of 2014 CRC and 416 precursor samples, of which 33 were serrated lesions. Single-cell analyses validated that the signature was expressed specifically by stromal cells, effectively excluding transcriptional signals derived from epithelial cells. We found that the signature was upregulated during malignant transformation and cancer progression, and it was particularly enriched in CRCs with mutant BRAF compared to wild-type counterparts. Furthermore, across four independent precursor datasets, serrated lesions exhibited significantly higher levels of TGFβ-responsive stromal activation compared to conventional adenomas. This large-scale analysis suggests that TGFβ-dependent stromal activation occurs early in serrated carcinogenesis. Our study provides novel insights into the molecular mechanisms underlying CRC development via the serrated pathway.
Collapse
Affiliation(s)
- Hideaki Tsumuraya
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Masanori Katagata
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Akira Matsuishi
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Satoshi Fukai
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Misato Ito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
38
|
Kadhim DJ, Azari H, Sokhangouy SK, Hassanian SM, Alshekarchi HI, Goshayeshi L, Goshayeshi L, Abbaszadegan MR, Khojasteh-Leylakoohi F, Khazaei M, Gataa IS, Peters GJ, A. Ferns G, Batra J, Lam AKY, Giovannetti E, Avan A. G-Protein Signaling Modulator 2 as a Potential Biomarker in Colorectal Cancer: Integrative Analysis Using Genetic Profiling and Pan-Cancer Studies. Genes (Basel) 2024; 15:474. [PMID: 38674408 PMCID: PMC11050220 DOI: 10.3390/genes15040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) imposes a significant healthcare burden globally, prompting the quest for innovative biomarkers to enhance diagnostic and therapeutic strategies. This study investigates the G-protein signaling modulator (GPSM) family across several cancers and presents a comprehensive pan-cancer analysis of the GPSM2 gene across several gastrointestinal (GI) cancers. Leveraging bioinformatics methodologies, we investigated GPSM2 expression patterns, protein interactions, functional enrichments, prognostic implications, genetic alterations, and immune infiltration associations. Furthermore, the expression of the GPSM2 gene was analyzed using real-time analysis. Our findings reveal a consistent upregulation of GPSM2 expression in all GI cancer datasets analyzed, suggesting its potential as a universal biomarker in GI cancers. Functional enrichment analysis underscores the involvement of GPSM2 in vital pathways, indicating its role in tumor progression. The prognostic assessment indicates that elevated GPSM2 expression correlates with adverse overall and disease-free survival outcomes across multiple GI cancer types. Genetic alteration analysis highlights the prevalence of mutations, particularly missense mutations, in GPSM2. Furthermore, significant correlations between GPSM2 expression and immune cell infiltration are observed, suggesting its involvement in tumor immune evasion mechanisms. Collectively, our study underscores the multifaceted role of GPSM2 in GI cancers, particularly in CRC, emphasizing its potential as a promising biomarker for prognosis and therapeutic targeting. Further functional investigations are warranted to elucidate its clinical utility and therapeutic implications in CRC management.
Collapse
Affiliation(s)
- Doaa Jawad Kadhim
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran (H.A.); (S.M.H.); (F.K.-L.); (M.K.)
| | - Hanieh Azari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran (H.A.); (S.M.H.); (F.K.-L.); (M.K.)
| | - Saeideh Khorshid Sokhangouy
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (S.K.S.); (M.R.A.)
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran (H.A.); (S.M.H.); (F.K.-L.); (M.K.)
| | - Hawraa Ibrahim Alshekarchi
- Al-Zahraa Center for Medical and Pharmaceutical Research Sciences (ZCMRS), Al-Zahraa University for Women, Kerbala 56001, Iraq
| | - Ladan Goshayeshi
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran;
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48954, Iran
| | - Lena Goshayeshi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48954, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (S.K.S.); (M.R.A.)
| | - Fatemeh Khojasteh-Leylakoohi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran (H.A.); (S.M.H.); (F.K.-L.); (M.K.)
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran (H.A.); (S.M.H.); (F.K.-L.); (M.K.)
| | | | - Godefridus J. Peters
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland;
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, Vrije Universiteit, Department of Medical Oncology, 1081 HV Amsterdam, The Netherlands
| | - Gordon A. Ferns
- Department of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton BN1 9PH, UK;
| | - Jyotsna Batra
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
| | - Alfred King-Yin Lam
- Pathology, School of Medicine and Dentistry, Gold Coast Campus, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Elisa Giovannetti
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, Vrije Universiteit, Department of Medical Oncology, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Laboratory, AIRC Start Up Unit, Fondazione Pisana per La Scienza, 56017 Pisa, Italy
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91779-48564, Iran (H.A.); (S.M.H.); (F.K.-L.); (M.K.)
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
| |
Collapse
|
39
|
Yang L, Feng L, Zhu Y, Wang N, Lu X, Gu F, Zhang X, Ji J. Reducing the global cancer burden with gastrointestinal screening: China's 30 years practice. Cancer Biol Med 2024; 21:j.issn.2095-3941.2023.0516. [PMID: 38544481 PMCID: PMC10976323 DOI: 10.20892/j.issn.2095-3941.2023.0516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/22/2024] [Indexed: 08/21/2024] Open
Affiliation(s)
- Lei Yang
- Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Cancer Center, Hohhot 010020, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing Office for Cancer Prevention and Control, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Li Feng
- Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Cancer Center, Hohhot 010020, China
| | - Yong Zhu
- Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Cancer Center, Hohhot 010020, China
| | - Ning Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Beijing Office for Cancer Prevention and Control, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xinpu Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fanghui Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaotian Zhang
- Peking University Cancer Hospital (Inner Mongolia Campus)/Affiliated Cancer Hospital of Inner Mongolia Medical University, Inner Mongolia Cancer Center, Hohhot 010020, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
40
|
Pierantoni C, Cosentino L, Ricciardiello L. Molecular Pathways of Colorectal Cancer Development: Mechanisms of Action and Evolution of Main Systemic Therapy Compunds. Dig Dis 2024; 42:319-324. [PMID: 38531339 DOI: 10.1159/000538511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Colorectal cancer is known as one of the "big killers" in oncology given its burden in terms on morbidity and mortality. Since the second half of the last century, similarly to what happened for other solid tumors, a large series of cytotoxic molecules have been developed and tested to treat this disease. SUMMARY Following new discoveries in terms of colorectal cancer pathogenesis and specific pathways involved such as angiogenesis, a new series of drugs have been developed: targeted therapies. KEY MESSAGES In this review, we will briefly describe colorectal cancer molecular biology and its main pathways in order to retrace the main stages of oncological treatment development for colorectal cancer from the first available treatments to novel approaches to the disease.
Collapse
Affiliation(s)
- Chiara Pierantoni
- Policlinico di Sant'Orsola, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Lorenzo Cosentino
- Policlinico di Sant'Orsola, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Ricciardiello
- Policlinico di Sant'Orsola, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy,
| |
Collapse
|
41
|
Chi Y, Yuan H, Fan Q, Wang Z, Niu Z, Yu J, Yuan D. Clinical-Molecular characteristics and Post-Translational modifications of colorectal cancer in north China: Implications for future targeted therapies. Gene 2024; 899:148134. [PMID: 38185290 DOI: 10.1016/j.gene.2024.148134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
This study delineated the elucidate molecular changes and their post-translational modifications (PTMs) in heterogenetic colorectal cancer (CRC) for a deeper understanding of the CRC pathophysiology and identifying potential therapeutic targets. In this retrospective study, the profiles of 13 hot spot gene mutations were analyzed and the microsatellite instability (MSI) status was determined.Employing the Circulating Single-Molecule Amplification and Resequencing Technology (cSMART) assay, the clinical-pathological features of CRC were characterized in 249 Chinese patients. PTMs were quantified online.Among the patients with CRC, the mutation frequencies of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC genes were 47.8%, 3.6%, 4.8%, 13.7%, 55.8%, and 36.9%, respectively. The proportion of MSI-high (MSI-H) was 7.8%.Subsequent multiple logistic regression analysis showed significant associations including a link between lung metastasis and KRAS mutation, between liver metastasis and lymph node metastasis, between MSI-H and early-onset CRC (EOCRC) and KRAS mutation, between right-sided colon cancer and peritoneal metastasis, and between PIK3CA mutation and PTEN mutation. Patients with KRAS mutation presented with MSI-H, lung metastasis, and PIK3CA mutation. MSI-H, BRAF mutation, and PTEN mutation were more frequent in EOCRC. Phosphorylation and ubiquitylation were found in KRAS, BRAF, PTEN, and SMAD4; SUMOylation and ubiquitylation were observed in HRAS and NRAS; while phosphorylation was obvious in APC, P53, and MLH1. Notably, Phosphorylation and ubiquitylation were the two most common PTMs. The biological characteristics of CRC in Chinese patients have some unique clinical features, which can be explained by the genetic mutation profile, correlations among gene mutations and clinical characteristics. These distinctions set the Chinese patient population apart from their Western counterparts.
Collapse
Affiliation(s)
- Yajing Chi
- School of Medicine, Nankai University, Tianjin, China; Cancer Center, The General Hospital of the People's Liberation Army, Beijing, China
| | - Hongtu Yuan
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhendan Wang
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zuoxing Niu
- Department of Gastroenterology Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Dandan Yuan
- Department of Gastroenterology Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
42
|
Gómez-Matas J, Duran-Sanchon S, Lozano JJ, Ferrero G, Tarallo S, Pardini B, Naccarati A, Castells A, Gironella M. SnoRNA profiling in colorectal cancer and assessment of non-invasive biomarker capacity by ddPCR in fecal samples. iScience 2024; 27:109283. [PMID: 38450150 PMCID: PMC10915595 DOI: 10.1016/j.isci.2024.109283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/26/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) have been identified dysregulated in several pathologies, and these alterations can be detected in tissues and in circulation. The main aim of this study was to analyze the whole snoRNome in advanced colorectal neoplasms and to identify new potential non-invasive snoRNA-based biomarkers in fecal samples by different analytical approaches. SNORA51, SNORD15B, SNORA54, SNORD12B, SNORD12C, SNORD72, SNORD89, and several members of SNORD115 and SNORD116 clusters were consistently deregulated in both tissue sets. After technical validation, SNORA51 and SNORD15B were detected in FIT+ samples. SNORA51 was significantly upregulated in FIT+ samples from CRC patients compared to healthy controls. This upregulation, together with the fecal hemoglobin concentration, was sufficient to identify, among FIT+ individuals, patients with CRC (AUC = 0.86) and individuals with advanced adenomas (AUC = 0.68). These findings portray snoRNAs as an alternative source of candidates for further studies and SNORA51 appears as a potential non-invasive biomarker for CRC detection.
Collapse
Affiliation(s)
- Javier Gómez-Matas
- Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)/ Hospital Clínic Barcelona/ Fundació de Recerca Clínic Barcelona – Institut d’investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Catalonia, Spain
| | - Saray Duran-Sanchon
- Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)/ Hospital Clínic Barcelona/ Fundació de Recerca Clínic Barcelona – Institut d’investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Catalonia, Spain
| | | | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Antoni Castells
- Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)/ Hospital Clínic Barcelona/ Fundació de Recerca Clínic Barcelona – Institut d’investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Catalonia, Spain
| | - Meritxell Gironella
- Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)/ Hospital Clínic Barcelona/ Fundació de Recerca Clínic Barcelona – Institut d’investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Catalonia, Spain
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), Barcelona, Spain
| |
Collapse
|
43
|
Sawada A, Ohira M, Hatanaka KC, Matsui H, Ichikawa N, Yoshida T, Fukai M, Matsuno Y, Homma S, Hatanaka Y, Taketomi A. Expression Analysis of Early Metastatic Seeding of Colorectal Cancer. Ann Surg Oncol 2024; 31:2101-2113. [PMID: 38063988 DOI: 10.1245/s10434-023-14714-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/20/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND Distant metastasis is the leading cause of death in patients with colorectal cancer (CRC). Tumor dissemination for metastasis formation occurs in advanced cancers and also during early stages of tumorigenesis. Here, we investigated the genes involved in early metastatic seeding of CRC using gene expression analysis. PATIENTS AND METHODS We performed a cDNA microarray using specimens resected from stages I-II CRC with and without metachronous metastatic recurrence. For the candidate genes, we immunohistochemically validated protein expression using a tissue microarray of stages I-III CRC. RESULTS The expression of TROP2, VWCE, and BMP7 was upregulated in the recurrence group rather than in the non-recurrence group. Protein expression analysis revealed significant association of these genes with distant metastatic recurrence. The specimens with high expression of BMP7 showed worse recurrence-free survival (RFS; p = 0.02). Those with high expression of TROP2 and VWCE showed worse overall survival (OS) and RFS (TROP2: p = 0.01 and p = 0.03; VWCE: p < 0.05 and p < 0.001, respectively). In the multivariate analysis, high expression of VWCE and BMP7 was an independent predictor of recurrence [VWCE: hazard ratio (HR) 3.41, p < 0.001; BMP7: HR 2.93, p = 0.005]. In contrast, TROP2 was an independent prognostic factor for OS (HR 4.58, p = 0.03). CONCLUSIONS Gene expression analysis revealed that TROP2, VWCE, and BMP7 were involved in early metastatic seeding. The high expression of these genes may warrant careful surveillance or adjuvant therapy, even in stages I-II CRC cases.
Collapse
Affiliation(s)
- Akifumi Sawada
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masafumi Ohira
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kanako C Hatanaka
- Center for Development of Advanced Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Hiroki Matsui
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuki Ichikawa
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tadashi Yoshida
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Shigenori Homma
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yutaka Hatanaka
- Center for Development of Advanced Diagnostics, Hokkaido University Hospital, Sapporo, Japan
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
44
|
Lwin MW, Cheng CY, Calderazzo S, Schramm C, Schlander M. Would initiating colorectal cancer screening from age of 45 be cost-effective in Germany? An individual-level simulation analysis. Front Public Health 2024; 12:1307427. [PMID: 38454984 PMCID: PMC10919152 DOI: 10.3389/fpubh.2024.1307427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/08/2024] [Indexed: 03/09/2024] Open
Abstract
Background Colorectal cancer (CRC) screening has been shown to be effective and cost-saving. However, the trend of rising incidence of early-onset CRC challenges the current national screening program solely for people ≥50 years in Germany, where extending the screening to those 45-49 years might be justified. This study aims to evaluate the cost-effectiveness of CRC screening strategies starting at 45 years in Germany. Method DECAS, an individual-level simulation model accounting for both adenoma and serrated pathways of CRC development and validated with German CRC epidemiology and screening effects, was used for the cost-effectiveness analysis. Four CRC screening strategies starting at age 45, including 10-yearly colonoscopy (COL), annual/biennial fecal immunochemical test (FIT), or the combination of the two, were compared with the current screening offer starting at age 50 years in Germany. Three adherence scenarios were considered: perfect adherence, current adherence, and high screening adherence. For each strategy, a cohort of 100,000 individuals with average CRC risk was simulated from age 20 until 90 or death. Outcomes included CRC cases averted, prevented death, quality-adjusted life-years gained (QALYG), and total incremental costs considering both CRC treatment and screening costs. A 3% discount rate was applied and costs were in 2023 Euro. Result Initiating 10-yearly colonoscopy-only or combined FIT + COL strategies at age 45 resulted in incremental gains of 7-28 QALYs with incremental costs of €28,360-€71,759 per 1,000 individuals, compared to the current strategy. The ICER varied from €1,029 to €9,763 per QALYG, and the additional number needed for colonoscopy ranged from 129 to 885 per 1,000 individuals. Among the alternatives, a three times colonoscopy strategy starting at 45 years of age proves to be the most effective, while the FIT-only strategy was dominated by the currently implemented strategy. The findings remained consistent across probabilistic sensitivity analyses. Conclusion The cost-effectiveness findings support initiating CRC screening at age 45 with either colonoscopy alone or combined with FIT, demonstrating substantial gains in quality-adjusted life-years with a modest increase in costs. Our findings emphasize the importance of implementing CRC screening 5 years earlier than the current practice to achieve more significant health and economic benefits.
Collapse
Affiliation(s)
- Min Wai Lwin
- Division of Health Economics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Chih-Yuan Cheng
- Division of Health Economics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Silvia Calderazzo
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Schramm
- Clinics of Gastroenterology, Hepatology and Transplantation Medicine, Essen University Hospital, Essen, Germany
| | - Michael Schlander
- Division of Health Economics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
45
|
Jiang C, Tian Y, Xu C, Zhang H, Gu L. Landscape of N1-methyladenosin (m1A) modification pattern in colorectal cancer. Cancer Rep (Hoboken) 2024; 7:e1965. [PMID: 38115786 PMCID: PMC10849993 DOI: 10.1002/cnr2.1965] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/15/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND N1-methyladenosine (m1A) is a recently identified mRNA modification. However, it is still unclear that how m1A alteration affects the development of colorectal cancer (CRC). AIMS The landscape of m1A modification patterns regarding tumor immune microenvironment (TIME) in CRC is a lack of knowledge. Thus, this study will utilize the public database to comprehensively evaluate of multiple m1A methylation regulators in CRC. METHODS AND RESULTS We retrospectively analyzed 398 patients with CRC and 39 healthy people for negative control, using the The Cancer Genome Atlas (TCGA) database to evaluate m1A modification patterns regarding tumor immune microenvironment (TIME) in CRC. The m1Ascore was developed via principal component analysis. And its clinical value in prognosis of CRC was further explored. Our study revealed 12 key m1A-related DEGs including CLDN3, MUC2 and CCDC85B which are identified associated with invasion and metastasis in CRC. The most important biological processes linked to weak immune response and poor prognosis were the regulation of RNA metabolism and RNA biosynthesis. Furthermore, we found that compared to patients with low m1A scores, those with high m1A scores had higher percentage, larger tumor burdens, and worse prognosis. CONCLUSION Significantly diverse m1A modification patterns can be seen in CRC. Through its impact on TIME and immunological dysfunction, the heterogeneity of m1A alteration patterns influences the prognosis of CRC. This study provided novel insights into the m1A modification in CRC which might promote the development of personalized immunotherapy strategies.
Collapse
Affiliation(s)
- Chunhui Jiang
- Department of Gastrointestinal SurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yuan Tian
- Department of Gastrointestinal SurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chunjie Xu
- Department of Gastrointestinal SurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hao Zhang
- Department of Gastrointestinal SurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lei Gu
- Department of Gastrointestinal SurgeryRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
46
|
Rezkitha YAA, Panenggak NSR, Lusida MI, Rianda RV, Mahmudah I, Pradana AD, Uchida T, Miftahussurur M. Detecting colorectal cancer using genetic and epigenetic biomarkers: screening and diagnosis. J Med Life 2024; 17:4-14. [PMID: 38737656 PMCID: PMC11080499 DOI: 10.25122/jml-2023-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/01/2023] [Indexed: 05/14/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent types of cancer, with high incidence rates and mortality globally. The extended timeframe for developing CRC allows for the potential screening and early identification of the disease. Furthermore, studies have shown that survival rates for patients with cancer are increased when diagnoses are made at earlier stages. Recent research suggests that the development of CRC, including its precancerous lesion, is influenced not only by genetic factors but also by epigenetic variables. Studies suggest epigenetics plays a significant role in cancer development, particularly CRC. While this approach is still in its early stages and faces challenges due to the variability of CRC, it shows promise as a potential method for understanding and addressing the disease. This review examined the current evidence supporting genetic and epigenetic biomarkers for screening and diagnosis. In addition, we also discussed the feasibility of translating these methodologies into clinical settings. Several markers show promising potential, including the methylation of vimentin (VIM), syndecan-2 (SDC2), and septin 9 (SEPT9). However, their application as screening and diagnostic tools, particularly for early-stage CRC, has not been fully optimized, and their effectiveness needs validation in large, multi-center patient populations. Extensive trials and further investigation are required to translate genetic and epigenetic biomarkers into practical clinical use. biomarkers, diagnostic biomarkers.
Collapse
Affiliation(s)
- Yudith Annisa Ayu Rezkitha
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Nur Syahadati Retno Panenggak
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Maria Inge Lusida
- Institute of Tropical Disease, Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Universitas Airlangga, Surabaya, Indonesia
| | - Raissa Virgy Rianda
- Department of Child Health, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Isna Mahmudah
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aditya Doni Pradana
- Department of Emergency Services, Kendal Islamic Hospital, Kendal, Indonesia
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
47
|
CARETHERS JOHNM. THE JEREMIAH METZGER LECTURE: ENVIRONMENTAL INFLUENCES ON COLORECTAL CANCER. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2024; 134:181-199. [PMID: 39135583 PMCID: PMC11316861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Gene-environmental interactions create risk profiles for sporadic cancer development in patients with colorectal cancer (CRC). For instance, a person's socioeconomic status over their lifetime can affect their level of physical activity and type of diet, and their exposure to tobacco and alcohol may affect their gut microbiome and ultimate risk for developing CRC. Metabolic disease can independently or further change the gut microbiome and alter the typical timing of CRC development, such as is observed and linked with early-onset disease. Patients with microsatellite unstable tumors where DNA mismatch repair is defective have altered immune environments as a result of tumor hypermutability and neoantigen generation, allowing for immune checkpoint inhibitor susceptibility; in such cases, the genetics of the tumor changed the environment. The environment can also change the genetics, where interleukin-6-generated inflammation can inactivate MSH3 protein function that is associated with CRCs which are more metastatic, and patients show poor outcomes. Some specific aspects of the local microbial environment that may be influenced by diet and metabolism are associated with CRC risk, such as Fusobacterium nucleatum infection, and may affect the initiation, perpetuation, and spread of CRC. Overall, both the macro- and microenvironments associated with a person play a major role in CRC formation, progression, and metastases.
Collapse
|
48
|
Liu YM, Peng L, Chen C, Zhou P, Cheng B, Luo Y, Zhou MF, Xuan SX, Lin JD, Yin WG. Value of faecal exfoliated cells in colorectal tumour screening using SDC2 methylation test. Ann Med 2023; 55:2261111. [PMID: 37783044 PMCID: PMC10547446 DOI: 10.1080/07853890.2023.2261111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the diagnostic value of a non-invasive methylation gene test in clinical colorectal tumour screening. METHOD The quantitative methylation-specific PCR technique was used to detect faecal methylated syndecan-2 (mSDC2) in patients who received the screening of colorectal cancer (CRC).To evaluate the positive predictive value (PPV) of mSDC2 in patients with colorectal cancer, advanced adenoma (AA), and colorectal tumor (CRN) in risk factor stratification. RESULTS The PPV of CRC, CRC + AA and CRN in male patients were 28.03%, 43.55% and 56.24%, respectively, which were higher than female patients. The positive detection rate of mSDC2 and the PPV of CRC gradually increased with age; The PPV in patients aged over 80 years was up to 78.05%, which was more significant than in younger patients with CRC. The PPV of CRC, AA and CRN were 37.10%, 11.80% and 63.37%, respectively. mSDC2 has a high detection rate of 85-100% in AA with intramucosal carcinoma alone or in combination with severe atypical hyperplasia or villous adenoma. CONCLUSION The mSDC2 test has a higher PPV in patients with colorectal cancer and colorectal adenoma (AD), especially in high-risk groups over 50 years of age, and may help in the early diagnosis of colorectal tumours in the future.
Collapse
Affiliation(s)
- Yan-Mei Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, People’s Republic of China
| | - Lei Peng
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, People’s Republic of China
| | - Chen Chen
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, People’s Republic of China
| | - Peng Zhou
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, People’s Republic of China
| | - Bin Cheng
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, People’s Republic of China
| | - Ying Luo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, People’s Republic of China
| | - Mei-Fang Zhou
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, People’s Republic of China
| | - Shu-Xia Xuan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, People’s Republic of China
| | - Jin-Duan Lin
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, People’s Republic of China
| | - Wei-Guo Yin
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, People’s Republic of China
| |
Collapse
|
49
|
He C, Huang Q, Zhong S, Chen LS, Xiao H, Li L. Screening and identifying of biomarkers in early colorectal cancer and adenoma based on genome-wide methylation profiles. World J Surg Oncol 2023; 21:312. [PMID: 37779184 PMCID: PMC10544418 DOI: 10.1186/s12957-023-03189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Colorectal cancer is one of the most common malignant tumors worldwide with high morbidity and mortality. This study aimed to identify different methylation sites as new methylation markers in CRC and colorectal adenoma through tissue detection. METHODS DNA extraction and bisulfite modification as well as Infinium 450K methylation microarray detection were performed in 46 samples of sporadic colorectal cancer tissue, nine samples of colorectal adenoma, and 20 normal samples, and bioinformatic analysis was conducted involving genes enrichments of GO and KEGG. Pyrosequencing methylation detection was further performed in 68 sporadic colorectal cancer tissues, 31 samples of colorectal adenoma, and 49 normal colorectal mucosae adjacent to carcinoma to investigate the differentially methylated genes obtained from methylation microarray. RESULTS There were 65,535 differential methylation marker probes, among which 25,464 were hypermethylated markers and 40,071 were hypomethylated markers in the adenoma compared with the normal group, and 395,571 were differentially methylated markers in patients with sporadic colorectal cancer compared with the normal group, including 21,710 hypermethylated markers and 17,861 hypomethylated markers. Five hypermethylated genes including ZNF471, SND1, SPOCK1, FBLIM1, and OTX1 were detected and confirmed in 68 cases of colorectal cancer, 31 cases of adenoma, and 49 cases of normal control group. CONCLUSIONS Hypermethylated genes of ZNF471, SND1, SPOCK1, FBLIM1, and OTX1 were obtained from methylation chip detection and further confirm analysis in colorectal cancer and adenoma compared with normal tissue, which may be promising diagnostic markers of colorectal cancer and colorectal adenoma.
Collapse
Affiliation(s)
- Chungang He
- Department of Colorectal and Anal Surgery, the People's Hospital of Guangxi Zhuang Autonomous Region, Tao Yuan Road No.6, Nanning, 530021, Guangxi, China.
| | - Qinyuan Huang
- Nursing College of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shibiao Zhong
- Department of Gastrointestinal Surgery, Ruikang Hospital Affiliated to Guangxi University of Traditional Chinese Medicine, Nanning, 530011, Guangxi, China
| | - Li Sheng Chen
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Hewei Xiao
- Office of Academic Research, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Lei Li
- Department of Gastrointestinal Surgery, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| |
Collapse
|
50
|
Wu YJ, Huang ST, Chang YH, Lin SY, Lin WL, Chen YJ, Chien ST. SUMO-Activating Enzyme Subunit 1 Is Associated with Poor Prognosis, Tumor Progression, and Radio-Resistance in Colorectal Cancer. Curr Issues Mol Biol 2023; 45:8013-8026. [PMID: 37886949 PMCID: PMC10605852 DOI: 10.3390/cimb45100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Concurrent chemoradiotherapy is an effective treatment option for patients with low-grade colorectal cancer (CRC) in the local disease stage. At present, the principle of the Taiwan Medical Center is to treat CRC patients with combination radiotherapy and chemotherapy (high-dose 5-FU) for a period of about five weeks prior to surgery. Radical resection of the tumor is performed at least six to eight weeks after concurrent chemoradiotherapy (CCRT). However, this approach fails to produce the desired therapeutic effect in approximately 20% to 30% of patients, and such patients are unnecessarily exposed to the risks of radiation and drug toxicity posed by this therapy. Therefore, it is crucial to explore new biomarkers to predict the prognosis of CRC. SUMO-activating enzyme subunit 1 (SAE1) plays an important role in SUMOylation, a post-translational modification involved in cellular functions, such as cell proliferation, cell cycle, and apoptosis. In our study, to explore the clinical-pathological role of SAE1 protein in CRC, we evaluated the clinical data and paraffin sections from CRC patients. The expression of SAE1 was evaluated using immunohistochemical analysis, and clinical parameters were analyzed using chi-square and Kaplan-Meier survival tests. The results of in vitro proliferation and radiosensitive assays were compared between control groups and SAE1 siRNA groups. Western blotting was also used to detect the expressions of the SAE1, PARP, cyclin D1, p-NF-κB, and NF-κB proteins. Flow cytometry and colony formation assays were used to detect the effect of SAE-1 on radiosensitivity. In vivo, we detected the growth curve in a mouse xenograft model. The results showed that SAE-1 was revealed to be an independent prognostic biomarker of CRC. SAE1 knockdown inhibited CRC proliferation in vitro and in vivo, and led to the cleavage of PARP, downregulation of cyclin D1 protein expression, and downregulation of p-NF-κB/NF-κB. Additionally, SAE1 knockdown promoted radiosensitivity in CRC cells. Therefore, it was inferred that SAE1 may be used as a potential therapeutic target in CRC treatment.
Collapse
Affiliation(s)
- Yueh-Jung Wu
- Division of Colorectal Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
| | - Siang-Ting Huang
- Cancer Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
| | - Ya-Hui Chang
- Cancer Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
| | - Shih-Yi Lin
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
| | - Weng-Ling Lin
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
| | - Ying-Jung Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shang-Tao Chien
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
- Department of Nursing, Fooyin University, Kaohsiung 831, Taiwan
| |
Collapse
|