1
|
Jiang D, Wu X, Deng Y, Yang X, Wang Z, Tang Y, He L, He X. Single-Cell Profiling Reveals Conserved Differentiation and Partial EMT Programs Orchestrating Ecosystem-Level Antagonisms in Head and Neck Cancer. J Cell Mol Med 2025; 29:e70575. [PMID: 40318012 PMCID: PMC12049153 DOI: 10.1111/jcmm.70575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/27/2025] [Accepted: 04/19/2025] [Indexed: 05/07/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSC) exhibits profound intratumoral heterogeneity, driven by dynamic interactions between malignant cells and the tumour microenvironment (TME). Using consensus non-negative matrix factorisation (cNMF) on multi-site HNSC single-cell transcriptomes, we resolving conserved meta-programs define cellular ecosystems. Six major epithelial programmes emerged, including a differentiation-associated programme (Epi_Diff) correlated with SPDEF activity and favourable patient prognosis, and an invasive programme (Epi_pEMT) potentially controlled by TEAD4-mediated ECM remodelling, exhibiting partial EMT markers (VIM, TGFB1). Compartment-specific crosstalk analysis revealed Epi_pEMT cells may coordinate with mCAF1 fibroblasts and TAM(SPP1) through COL1A1-CD44 and SPP1-CD44 signalling, suggesting potential formation of a pro-invasive niche. Conversely, Epi_Diff cells may interact with NK/T cells through CEACAM5-CD8A and CCL5-ACKR2, and may contribute to inhibit immune infiltration. Multi-compartment correlation analysis revealed three ecosystem-level patterns: (1) Inverse association between Epi_Diff and Epi_pEMT (Spearman R = -0.43); (2) Negative correlation between mCAF1 abundance and cCAF frequency (R = -0.48); (3) TAM(SPP1) dominance inversely correlating with both TAM(C1Q) (R = -0.43) and NK/T infiltration (R = -0.36). These axes suggest a potential hierarchical ecology framework where lineage-specific polarisation and inter-compartment synergies may collectively govern disease progression.
Collapse
Affiliation(s)
- Donghui Jiang
- Department of Otolaryngology & Head and Neck SurgeryFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Xiaoguang Wu
- Department of Otolaryngology & Head and Neck SurgeryFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yuanyuan Deng
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Xi Yang
- Department of Otolaryngology & Head and Neck SurgeryFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Zhiqiang Wang
- Department of Radiation OncologyFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yong Tang
- Department of Otolaryngology & Head and Neck SurgeryFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Li He
- Department of DermatologyFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Xiaoguang He
- Department of Otolaryngology & Head and Neck SurgeryFirst Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
2
|
Lynch EB, Kapur N, Goretsky T, Bradford EM, Vekaria H, Bhogoju S, Hassan SA, Pauw E, Avdiushko MG, Lee G, Gao T, Sullivan PG, Barrett TA. Phosphatidylinositol 3-Kinase Signaling Enhances Intestinal Crypt Epithelial Cell Recovery after Radiation. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00151-8. [PMID: 40316215 DOI: 10.1016/j.ajpath.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/24/2025] [Accepted: 04/10/2025] [Indexed: 05/04/2025]
Abstract
Intestinal stem cell (ISC) signaling maintains the balance of self-renewal and differentiation. The role of phosphatidylinositol 3-kinase (PI3K) signaling in ISC responses to radiation was interrogated using Villin-Cre pik3r1lox/lox (p85ΔIEC) mice and p85α-deficient human enteroids (shp85α). Lethal whole-body irradiation in mice was performed to monitor PI3K-mediated survival responses. Rectal biopsies from patients with radiation proctitis were examined by immunohistochemistry for the PI3K/Akt- and Wnt-target survivin. The intestinal epithelial cells (IECs) from p85ΔIEC mice showed increased protein levels of phosphorylated phosphatase and tensin homolog, phosphorylated AktSer473, survivin, cyclin D1, and ρ-β-cateninSer552, as well as increased mRNA for ISC/progenitor cell. In situ hybridization showed that enhanced PI3K signaling reduced Lgr5+ cells but expansion of Axin2+ cells. The shp85α enteroids showed increased mRNA expression of Wnt targets and transcription factor ASCL2, needed for dedifferentiation-mediated restoration of ablated ISCs. The p85α-deficient enteroids showed reduced HES1 mRNA and increases in secretory (ATOH1/MATH1) signaling determinants GFI1 and SPDEF, indicative of reduced NOTCH signaling. Seahorse analyses and phosphorylated p38 staining in IECΔp85 mice indicated that enhanced PI3K signaling led to increased IEC mitochondrial respiration and reactive oxygen species generation. Expression of survivin correlated with the radiation injury in patients. The current data indicate that PI3K signaling increases mitochondrial reactive oxygen species generation and ISC activation that improves IEC recovery from radiation-induced injury. The results suggest that increasing PI3K signaling and induced mitochondrial respiration may improve mucosal healing from radiation injury in patients.
Collapse
Affiliation(s)
- Evan B Lynch
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky; Division of Plastic Surgery, Department of Surgery, University of Kentucky, Lexington, Kentucky; Division of Digestive Diseases and Nutrition, Department of Medicine, University of Kentucky, Lexington, Kentucky
| | - Neeraj Kapur
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Kentucky, Lexington, Kentucky; Lexington VA Healthcare System, Lexington, Kentucky
| | - Tatiana Goretsky
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Kentucky, Lexington, Kentucky; Lexington VA Healthcare System, Lexington, Kentucky
| | - Emily M Bradford
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Kentucky, Lexington, Kentucky; Lexington VA Healthcare System, Lexington, Kentucky
| | - Hemendra Vekaria
- Lexington VA Healthcare System, Lexington, Kentucky; Department of Neuroscience, University of Kentucky, Lexington, Kentucky
| | - Sarayu Bhogoju
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Kentucky, Lexington, Kentucky
| | - Syed A Hassan
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Kentucky, Lexington, Kentucky; Lexington VA Healthcare System, Lexington, Kentucky
| | - Emily Pauw
- College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Margarita G Avdiushko
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Kentucky, Lexington, Kentucky; Lexington VA Healthcare System, Lexington, Kentucky
| | - Goo Lee
- The University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, Alabama
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky
| | - Patrick G Sullivan
- Lexington VA Healthcare System, Lexington, Kentucky; Department of Neuroscience, University of Kentucky, Lexington, Kentucky
| | - Terrence A Barrett
- Division of Digestive Diseases and Nutrition, Department of Medicine, University of Kentucky, Lexington, Kentucky; Lexington VA Healthcare System, Lexington, Kentucky.
| |
Collapse
|
3
|
Zhang Z, Wu Y, Liang W, Liao Z, Liao H, Xing X, Yi W, Liu Z, Li Y, Shi M, Lin D, Gu T, Wu B, Zou M, Miao H, Wu X. Eurycomalactone switched hepatocellular carcinoma cells into quiescence through 5'tRF Ala/DVL/β-catenin pathway inhibition. Sci Rep 2025; 15:10106. [PMID: 40128187 PMCID: PMC11933253 DOI: 10.1038/s41598-025-86888-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/14/2025] [Indexed: 03/26/2025] Open
Abstract
Although tsRNA has been demonstrated to modulate various physiological processes analogous to miRNA, the potential regulatory functions and mechanisms of tsRNAs related to the pharmacological effects of small molecule drugs remain unclear. Herein, it is shown that eurycomalactone (ELT), a natural product, can reversibly switch hepatocellular carcinoma (HCC) PLC/PRF/5 and HUH7 cells into a quiescent state. This quiescence is characterized by cell proliferation inhibition without cytotoxicity, cell cycle arrest at the G0/G1 phase, and cell reactivation following the removal of ELT. Given the established role of β-catenin activity in mediating cancer cellular quiescence or proliferation, a notable reduction in total, cytoplasmic, and nuclear β-catenin expression, along with its downstream targets Survivin, c-myc, and Cyclin D1, was observed in ELT-treated cells. Subsequently, two new tsRNAs, namely 5'tRFAla and 5'tiRNAAla, which match well with the mRNAs of two pivotal upstream regulators (DVL2 and DVL3) of β-catenin based on bioinformatics analyses, were detected to be significantly decreased in ELT-treated PLC/PRF/5 cells using Arraystar small RNA microarray analyses. Consistently, the concentrations of the DVL2 and DVL3 proteins were also found to be reduced by ELT. The mimic of 5'tRFAla could increase the relative expression of DVL2 and DVL3 mRNA and rescue their decrease induced by ELT, while the mimic of 5'tiRNAAla could not. It therefore seems that ELT could down-regulate the expression of 5'tRFAla, leading to the suppression of DVL2 and DVL3 mRNA translation, consequently inhibiting the β-catenin signaling pathway and reversibly switching HCC cells into a quiescent state. Conclusively, our findings imply that tsRNAs, like miRNAs, might activate the translation of their matched mRNAs in non-dividing cells and provide a possible potential for repressing tumor cell growth, although further evidence is still needed.
Collapse
Affiliation(s)
- Zhipeng Zhang
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Yanmei Wu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Wenqiang Liang
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Zhifang Liao
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Marine Biomedical Research Institute, Guangdong Medical University, 524023, Zhanjiang, Guangdong Province, People's Republic of China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, 523808, Dongguan, Guangdong Province, People's Republic of China
| | - Hongbo Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, 523808, Dongguan, Guangdong Province, People's Republic of China
| | - Xingxing Xing
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Marine Biomedical Research Institute, Guangdong Medical University, 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Wenxin Yi
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Marine Biomedical Research Institute, Guangdong Medical University, 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Zixuan Liu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Yicheng Li
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Mengya Shi
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), 524023, Zhanjiang, Guangdong Province, People's Republic of China
| | - Dongling Lin
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Ting Gu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Biao Wu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China
| | - Mingzhi Zou
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China.
| | - Huilai Miao
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China.
| | - Xin Wu
- The Medical Interdisciplinary Science Research Center of Western Guangdong, The Second Affiliated Hospital of Guangdong Medical University, 524003, Zhanjiang, Guangdong Province, People's Republic of China.
- Dongguan Key Laboratory of Characteristic Research and Achievement Transformation of Integrated Chinese and Western Medicine for Prevention and Treatment to Common Diseases, First Dongguan Affiliated Hospital, Guangdong Medical University, 523106, Dongguan, Guangdong Province, People's Republic of China.
| |
Collapse
|
4
|
Wang S, Wan L, Zhang X, Fang H, Zhang M, Li F, Yan D. ETS-1 in tumor immunology: implications for novel anti-cancer strategies. Front Immunol 2025; 16:1526368. [PMID: 40181983 PMCID: PMC11965117 DOI: 10.3389/fimmu.2025.1526368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
ETS-1, a key member of the Erythroblast Transformation-Specific (ETS) transcription factor family, plays an important role in cell biology and medical research due to its wide expression profile and strong transcriptional regulation ability. It regulates fundamental biological processes, including cell proliferation, differentiation, and apoptosis, and is involved in tumorigenesis and metastasis, promoting malignant behaviors such as angiogenesis, matrix degradation, and cell migration. Given the association between ETS-1 overexpression and the aggressive characteristics of multiple malignancies, it represents a promising therapeutic target in cancer treatment. This study aims to systematically analyze the role of ETS-1 within the tumor immune microenvironment, elucidating its mechanisms in cancer initiation, progression, and metastasis. It also investigates the differential expression of ETS-1 across tumor tissues and adjacent normal tissues, exploring its potential as a molecular marker for tumor diagnosis and prognosis.
Collapse
Affiliation(s)
- SiYu Wang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - Lei Wan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - XiaoJun Zhang
- Academic Affairs Office, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - HaoXiang Fang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - MengYu Zhang
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - Feng Li
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| | - DaWei Yan
- Department of Rheumatology and Immunology, Anhui University of Chinese Medicine First Clinical Medical College, Hefei, Anhui, China
| |
Collapse
|
5
|
Jiang H, Xue Z, Zhao L, Wang B, Wang C, Song H, Sun J. SPDEF drives pancreatic adenocarcinoma progression via transcriptional upregulation of S100A16 and activation of the PI3K/AKT signaling pathway. BIOMOLECULES & BIOMEDICINE 2024; 24:1231-1243. [PMID: 38520747 PMCID: PMC11379002 DOI: 10.17305/bb.2024.10346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is a notably aggressive malignancy with limited treatment options and an unfavorable prognosis for patients. We aimed to investigate molecular mechanisms by which Sam's pointed domain-containing ETS transcription factor (SPDEF) exerts effects on PAAD progression. We analyzed differentially expressed genes (DEGs) and their integration with ETS family members using the The Cancer Genome Atlas (TCGA) database, hence identifying SPDEF as a core gene in PAAD. Kaplan-Meier survival analysis confirmed SPDEF's prognostic potential. In vitro experiments validated the association with cell proliferation and apoptosis, affecting pancreatic cancer cell dynamics. We detected increased SPDEF expression in PAAD tumor samples. Our in vitro studies revealed that SPDEF regulates mRNA and protein expression levels, and significantly affects cell proliferation. Moreover, SPDEF was associated with reduced apoptosis and enhanced cell migration and invasion. In-depth analysis of SPDEF-targeted genes revealed four crucial genes for advanced prognostic model, among which S100A16 was significantly correlated with SPDEF. Mechanistic analysis showed that SPDEF enhances the transcription of S100A16, which in turn enhances PAAD cell migration, proliferation, and invasion by activating the PI3K/AKT signaling pathway. Our study revealed the critical role of SPDEF in promoting PAAD by upregulating S100A16 transcription and stimulating the PI3K/AKT signaling pathway. This knowledge deepened our understanding of pancreatic cancer's molecular progression and unveiled potential therapeutic strategies targeting SPDEF-driven pathways.
Collapse
Affiliation(s)
- Hang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Zhiqian Xue
- Department of Hepatobiliary and Pancreatic Surgery, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Liping Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Boyuan Wang
- Shanghai Qibao Dwight High School, Shanghai, China
| | - Chenfei Wang
- Department of Emergency, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haihan Song
- Department of Hepatobiliary and Pancreatic Surgery, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
- Department of Immunology, DICAT Biomedical Computation Centre, Vancouver, BC, Canada
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - Jianjun Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Third People’s Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
6
|
Venz R, Goyala A, Soto-Gamez A, Yenice T, Demaria M, Ewald CY. In-vivo screening implicates endoribonuclease Regnase-1 in modulating senescence-associated lysosomal changes. GeroScience 2024; 46:1499-1514. [PMID: 37644339 PMCID: PMC10828269 DOI: 10.1007/s11357-023-00909-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Accumulation of senescent cells accelerates aging and age-related diseases, whereas preventing this accumulation extends the lifespan in mice. A characteristic of senescent cells is increased staining with β-galactosidase (β-gal) ex vivo. Here, we describe a progressive accumulation of β-gal staining in the model organism C. elegans during aging. We show that distinct pharmacological and genetic interventions targeting the mitochondria and the mTORC1 to the nuclear core complex axis, the non-canonical apoptotic, and lysosomal-autophagy pathways slow the age-dependent accumulation of β-gal. We identify a novel gene, rege-1/Regnase-1/ZC3H12A/MCPIP1, modulating β-gal staining via the transcription factor ets-4/SPDEF. We demonstrate that knocking down Regnase-1 in human cell culture prevents senescence-associated β-gal accumulation. Our data provide a screening pipeline to identify genes and drugs modulating senescence-associated lysosomal phenotypes.
Collapse
Affiliation(s)
- Richard Venz
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Abel Soto-Gamez
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Tugce Yenice
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland
| | - Marco Demaria
- European Institute for the Biology of Aging (ERIBA)/University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, CH-8603, Schwerzenbach, Switzerland.
| |
Collapse
|
7
|
Li J, Niu C, Ai H, Li X, Zhang L, Lang Y, Wang S, Gao F, Mei X, Yu C, Sun L, Huang Y, Zheng L, Wang G, Sun Y, Yang X, Song Z, Bao Y. TSP50 Attenuates DSS-Induced Colitis by Regulating TGF-β Signaling Mediated Maintenance of Intestinal Mucosal Barrier Integrity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305893. [PMID: 38189580 PMCID: PMC10953580 DOI: 10.1002/advs.202305893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/03/2023] [Indexed: 01/09/2024]
Abstract
The integrity of the intestinal mucosal barrier is crucial for protecting the intestinal epithelium against invasion by commensal bacteria and pathogens, thereby combating colitis. The investigation revealed that the absence of TSP50 compromised the integrity of the intestinal mucosal barrier in murine subjects. This disruption facilitated direct contact between intestinal bacteria and the intestinal epithelium, thereby increasing susceptibility to colitis. Mechanistic analysis indicated that TSP50 deficiency in intestinal stem cells (ISCs) triggered aberrant activation of the TGF-β signaling pathway and impeded the differentiation of goblet cells in mice, leading to impairment of mucosal permeability. By inhibiting the TGF-β pathway, the functionality of the intestinal mucosal barrier is successfully restored and mitigated colitis in TSP50-deficient mice. In conclusion, TSP50 played a crucial role in maintaining the intestinal mucosal barrier function and exhibited the preventive effect against the development of colitis by regulating the TGF-β signaling pathway.
Collapse
Affiliation(s)
- Jiawei Li
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchun130024China
- National Engineering Laboratory for Druggable Gene and Protein ScreeningNortheast Normal UniversityChangchun130117China
| | - Chunxue Niu
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchun130024China
- The Key Laboratory of Molecular Epigenetics of Ministry of EducationNortheast Normal UniversityChangchunJilin130024China
| | - Huihan Ai
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchun130024China
- Department of General SurgeryAffiliated Tumor Hospital of Zhengzhou UniversityZhengzhouHenan450000China
| | - Xiaoli Li
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchun130024China
| | - Linlin Zhang
- National Engineering Laboratory for Druggable Gene and Protein ScreeningNortheast Normal UniversityChangchun130117China
| | - Yan Lang
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchun130024China
| | - Shuyue Wang
- The Key Laboratory of Molecular Epigenetics of Ministry of EducationNortheast Normal UniversityChangchunJilin130024China
| | - Feng Gao
- National Engineering Laboratory for Druggable Gene and Protein ScreeningNortheast Normal UniversityChangchun130117China
| | - Xianglin Mei
- Department of PathologyThe Second Hospital of Jilin UniversityChangchun130041China
| | - Chunlei Yu
- The Key Laboratory of Molecular Epigenetics of Ministry of EducationNortheast Normal UniversityChangchunJilin130024China
| | - Luguo Sun
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchun130024China
| | - Yanxin Huang
- National Engineering Laboratory for Druggable Gene and Protein ScreeningNortheast Normal UniversityChangchun130117China
| | - Lihua Zheng
- National Engineering Laboratory for Druggable Gene and Protein ScreeningNortheast Normal UniversityChangchun130117China
| | - Guannan Wang
- National Engineering Laboratory for Druggable Gene and Protein ScreeningNortheast Normal UniversityChangchun130117China
| | - Ying Sun
- National Engineering Laboratory for Druggable Gene and Protein ScreeningNortheast Normal UniversityChangchun130117China
| | - Xiaoguang Yang
- The Key Laboratory of Molecular Epigenetics of Ministry of EducationNortheast Normal UniversityChangchunJilin130024China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein ScreeningNortheast Normal UniversityChangchun130117China
| | - Yongli Bao
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine ProductsNortheast Normal UniversityChangchun130024China
| |
Collapse
|
8
|
Li S, Zhang N, Yang Y, Liu T. Transcriptionally activates CCL28 expression to inhibit M2 polarization of macrophages and prevent immune escape in colorectal cancer cells. Transl Oncol 2024; 40:101842. [PMID: 38035446 PMCID: PMC10698578 DOI: 10.1016/j.tranon.2023.101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the potential molecular mechanism of SPDEF in immune evasion of colorectal cancer (CRC) and examine its impact on macrophage M2 polarization using the TCGA and GEO databases. METHODS By combining TCGA and GEO databases, differential gene expression between CRC samples and standard tissue samples was analyzed to screen for immune-related genes (IRGs) associated with the prognosis of CRC patients. A predictive risk model was constructed based on 18 key IRGs, which were then validated using the GEO dataset. The relationship between transcription factors and IRGs was further explored to investigate their regulatory network in CRC. In vivo and in vitro experiments were carried out to validate these regulatory relationships and explore the function of SPDEF and CCL28 in CRC. RESULTS Twelve key IRGs associated with clinical and pathological characteristics of CRC patients were identified. Among them, CCL28 significantly impacted macrophage infiltration in CRC cells and may be a critical factor in immune evasion. In both in vitro and in vivo experiments, overexpression of SPDEF upregulated CCL28 expression, thereby suppressing M2 polarization of macrophages and inhibiting CRC cell proliferation and tumor growth. Notably, interference with CCL28 could reverse the effect of SPDEF overexpression. CONCLUSION SPDEF can suppress immune evasion of CRC cells by activating CCL28, which is achieved through the modulation of M2 polarization of macrophages. This provides a new research direction and potential therapeutic target for immunotherapy in CRC.
Collapse
Affiliation(s)
- Shiquan Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Nan Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Yongping Yang
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, China
| | - Tongjun Liu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
9
|
Neto Í, Rocha J, Gaspar MM, Reis CP. Experimental Murine Models for Colorectal Cancer Research. Cancers (Basel) 2023; 15:2570. [PMID: 37174036 PMCID: PMC10177088 DOI: 10.3390/cancers15092570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide and in both sexes. Numerous animal models for CRC have been established to study its biology, namely carcinogen-induced models (CIMs) and genetically engineered mouse models (GEMMs). CIMs are valuable for assessing colitis-related carcinogenesis and studying chemoprevention. On the other hand, CRC GEMMs have proven to be useful for evaluating the tumor microenvironment and systemic immune responses, which have contributed to the discovery of novel therapeutic approaches. Although metastatic disease can be induced by orthotopic injection of CRC cell lines, the resulting models are not representative of the full genetic diversity of the disease due to the limited number of cell lines suitable for this purpose. On the other hand, patient-derived xenografts (PDX) are the most reliable for preclinical drug development due to their ability to retain pathological and molecular characteristics. In this review, the authors discuss the various murine CRC models with a focus on their clinical relevance, benefits, and drawbacks. From all models discussed, murine CRC models will continue to be an important tool in advancing our understanding and treatment of this disease, but additional research is required to find a model that can correctly reflect the pathophysiology of CRC.
Collapse
Affiliation(s)
- Íris Neto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Catarina P. Reis
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
10
|
Liu Z, Lei J, Wu T, Hu W, Zheng M, Wang Y, Song J, Ruan H, Xu L, Ren T, Xu W, Wen Z. Lipogenesis promotes mitochondrial fusion and maintains cancer stemness in human NSCLC. JCI Insight 2023; 8:158429. [PMID: 36809297 PMCID: PMC10070109 DOI: 10.1172/jci.insight.158429] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Cancer stem-like cells (CSCs) are critically involved in cancer metastasis and chemoresistance, acting as one major obstacle in clinical practice. While accumulating studies have implicated the metabolic reprogramming of CSCs, mitochondrial dynamics in such cells remain poorly understood. Here we pinpointed OPA1hi with mitochondrial fusion as a metabolic feature of human lung CSCs, licensing their stem-like properties. Specifically, human lung CSCs exerted enhanced lipogenesis, inducing OPA1 expression via transcription factor SAM Pointed Domain containing ETS transcription Factor (SPDEF). In consequence, OPA1hi promoted mitochondrial fusion and stemness of CSCs. Such lipogenesishi, SPDEFhi, and OPA1hi metabolic adaptions were verified with primary CSCs from lung cancer patients. Accordingly, blocking lipogenesis and mitochondrial fusion efficiently impeded CSC expansion and growth of organoids derived from patients with lung cancer. Together, lipogenesis regulates mitochondrial dynamics via OPA1 for controlling CSCs in human lung cancer.
Collapse
Affiliation(s)
- Zhen Liu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jiaxin Lei
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Tong Wu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Weijie Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ming Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ying Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jingdong Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hang Ruan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Lin Xu
- Department of Immunology, Zunyi Medical University, Zunyi, Guizhou, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, Guizhou, China
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Wang Y, Huang Z, Sun M, Huang W, Xia L. ETS transcription factors: Multifaceted players from cancer progression to tumor immunity. Biochim Biophys Acta Rev Cancer 2023; 1878:188872. [PMID: 36841365 DOI: 10.1016/j.bbcan.2023.188872] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
The E26 transformation specific (ETS) family comprises 28 transcription factors, the majority of which are involved in tumor initiation and development. Serving as a group of functionally heterogeneous gene regulators, ETS factors possess a structurally conserved DNA-binding domain. As one of the most prominent families of transcription factors that control diverse cellular functions, ETS activation is modulated by multiple intracellular signaling pathways and post-translational modifications. Disturbances in ETS activity often lead to abnormal changes in oncogenicity, including cancer cell survival, growth, proliferation, metastasis, genetic instability, cell metabolism, and tumor immunity. This review systematically addresses the basics and advances in studying ETS factors, from their tumor relevance to clinical translational utility, with a particular focus on elucidating the role of ETS family in tumor immunity, aiming to decipher the vital role and clinical potential of regulation of ETS factors in the cancer field.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
12
|
King CM, Marx OM, Ding W, Koltun WA, Yochum GS. TCF7L1 Regulates LGR5 Expression in Colorectal Cancer Cells. Genes (Basel) 2023; 14:481. [PMID: 36833408 PMCID: PMC9956233 DOI: 10.3390/genes14020481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Mutations in components of the Wnt/β-catenin signaling pathway drive colorectal cancer (CRC), in part, by deregulating expression of genes controlled by the T-cell factor (TCF) family of transcription factors. TCFs contain a conserved DNA binding domain that mediates association with TCF binding elements (TBEs) within Wnt-responsive DNA elements (WREs). Intestinal stem cell marker, leucine-rich-repeat containing G-protein-coupled receptor 5 (LGR5), is a Wnt target gene that has been implicated in CRC stem cell plasticity. However, the WREs at the LGR5 gene locus and how TCF factors directly regulate LGR5 gene expression in CRC have not been fully defined. Here, we report that TCF family member, TCF7L1, plays a significant role in regulating LGR5 expression in CRC cells. We demonstrate that TCF7L1 binds to a novel promoter-proximal WRE through association with a consensus TBE at the LGR5 locus to repress LGR5 expression. Using CRISPR activation and interference (CRISPRa/i) technologies to direct epigenetic modulation, we demonstrate that this WRE is a critical regulator of LGR5 expression and spheroid formation capacity of CRC cells. Furthermore, we found that restoring LGR5 expression rescues the TCF7L1-mediated reduction in spheroid formation efficiency. These results demonstrate a role for TCF7L1 in repressing LGR5 gene expression to govern the spheroid formation potential of CRC cells.
Collapse
Affiliation(s)
- Carli M. King
- Department of Biochemistry & Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA 17036, USA
- Department of Surgery, Division of Colon & Rectal Surgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17036, USA
| | - Olivia M. Marx
- Department of Biochemistry & Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA 17036, USA
- Department of Surgery, Division of Colon & Rectal Surgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17036, USA
| | - Wei Ding
- Department of Surgery, Division of Colon & Rectal Surgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17036, USA
| | - Walter A. Koltun
- Department of Surgery, Division of Colon & Rectal Surgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17036, USA
| | - Gregory S. Yochum
- Department of Biochemistry & Molecular Biology, College of Medicine, The Pennsylvania State University, Hershey, PA 17036, USA
- Department of Surgery, Division of Colon & Rectal Surgery, Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17036, USA
| |
Collapse
|
13
|
Shasha T, Gruijs M, van Egmond M. Mechanisms of colorectal liver metastasis development. Cell Mol Life Sci 2022; 79:607. [PMID: 36436127 PMCID: PMC9701652 DOI: 10.1007/s00018-022-04630-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/28/2022]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide, largely due to the development of colorectal liver metastases (CRLM). For the establishment of CRLM, CRC cells must remodel their tumor-microenvironment (TME), avoid the immune system, invade the underlying stroma, survive the hostile environment of the circulation, extravasate into the liver, reprogram the hepatic microenvironment into a permissive pre-metastatic niche, and finally, awake from a dormant state to grow out into clinically detectable CRLM. These steps form part of the invasion-metastasis cascade that relies on reciprocal interactions between the tumor and its ever-changing microenvironment. Such interplay provides a strong rational for therapeutically targeting the TME. In fact, several TME constituents, such as VEGF, TGF-β coreceptor endoglin, and CXCR4, are already targeted in clinical trials. It is, however, of utmost importance to fully understand the complex interactions in the invasion-metastasis cascade to identify novel potential therapeutic targets and prevent the establishment of CRLM, which may ultimately greatly improve patient outcome.
Collapse
Affiliation(s)
- Tal Shasha
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Mandy Gruijs
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, The Netherlands.
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Surgery, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Da W, Yinhang W, Jing Z, Jiamin X, Xinyi G, Yongmao S, Yuefen P. Immune-Related Biomarkers Associated with Lung Metastasis from the Colorectal Cancer Microenvironment. J Interferon Cytokine Res 2022; 42:220-234. [PMID: 35576491 PMCID: PMC9142768 DOI: 10.1089/jir.2021.0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immune-associated biomarkers can predict lung metastases from colorectal cancer. Differentially expressed genes (DEGs) were screened from sample data extracted from gene expression omnibus (GEO) database. The DEGs were screened from the lung metastasis (LM) and primary cancer (PC) groups of the Moffitt Cancer Center cohort dataset. Then, the tumor immune microenvironment and abundance of immune cell infiltration analyses were performed, and the immune-related DEGs were retrieved. In addition, the transcription factor (TF)-miRNA-mRNA network was constructed and enrichment analyses of the immune-related DEGs and upregulated and downregulated DEGs were carried out. Then, the protein-protein interaction (PPI) network was conducted and the drug-gene interaction was predicted. A total of 268 DEGs were screened. The Immune_Score of samples in the LM group was significantly higher compared with the PC group. The infiltration ratio of M0 macrophages and M2 macrophages of samples was higher than others. A total of 54 immune-related DEGs in M0 macrophages were screened. Moreover, the TF-miRNA-mRNA network was constructed among 8 miRNA-mRNA and 50 TF-mRNA, and the secreted phosphoprotein 1 was regulated by 12 TFs, and the oxidized low-density lipoprotein receptor 1 was regulated by 3 miRNAs and 3 TFs. The TF SAM pointed domain containing ETS TF was also a downregulated DEG. The Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the DEGs in the TF-miRNA-mRNA network were mainly involved in the interleukin-7 signaling pathway and cell adhesion molecules. In total, 23 protein interactions in this PPI network of M0 macrophage cells were involved in 27 mRNAs. There were 38 drug-gene interactions of immune-related DEGs of M0 macrophage cells predicted to contain 34 small molecule drugs and 8 mRNAs. Finally, the CON cohort dataset verified that the infiltration ratio of M0 and M2 macrophages of the samples was higher.
Collapse
Affiliation(s)
- Wang Da
- Department of Colorectal Surgery, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education (Key Laboratory of Molecular Biology in Medical Sciences); The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education (Key Laboratory of Molecular Biology in Medical Sciences); The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wu Yinhang
- Graduate School of Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuang Jing
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Xu Jiamin
- Department of Nursing, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Gao Xinyi
- Department of Nephrology, Zhejiang Provincial People's Hospital and Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Hangzhou, China
| | - Song Yongmao
- Department of Colorectal Surgery, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education (Key Laboratory of Molecular Biology in Medical Sciences); The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education (Key Laboratory of Molecular Biology in Medical Sciences); The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Yuefen
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, China
| |
Collapse
|
15
|
Li D, Cao Y, Wang J, Yang H, Liu W, Cui J, Wu W. Regulatory effect between HMGA2 and the Wnt/β-catenin signaling pathway in the carcinogenesis of sporadic colorectal tubular adenoma. Oncol Lett 2021; 22:849. [PMID: 34733367 PMCID: PMC8561620 DOI: 10.3892/ol.2021.13110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Due to the high incidence of colorectal cancer worldwide, the underlying molecular mechanisms have been extensively investigated. The Wnt/β-catenin signaling pathway plays a key role in the carcinogenesis of colorectal adenoma. In addition, the high mobility group AT-hook 2 (HMGA2) protein, which is involved in several biological processes, such as proliferation, differentiation, transformation and metastasis, is expressed at significantly high levels in colorectal cancer tissues compared with adjacent normal tissues. Currently, the role of HMGA2 in the carcinogenesis of sporadic colorectal tubular adenoma remains unclear. The downstream Wnt/β-catenin signaling molecule, T-cell factor/lymphoid enhancing factor (TCF/LEF), shares a similar domain with HMGA2, which enhances β-catenin transcriptional activity and TCF/LEF binding. Thus, the present study investigated the association between HMGA2 and the Wnt/β-catenin signaling pathway, and their role in the carcinogenesis of sporadic colorectal tubular adenoma via immunohistochemistry, siRNA, quantitative PCR and western blot analyses. The results demonstrated that the positive rate of HMGA2 expression gradually increased during tumor progression. Furthermore, HMGA2 expression was positively correlated with Wnt/β-catenin signaling protein expression [Wnt, β-catenin, cyclin-dependent kinase 4 (CDK4) and cyclin D1], suggesting its involvement in the carcinogenesis of sporadic colorectal tubular adenoma and its potential to synergistically interact with the Wnt/β-catenin signaling pathway. HMGA2 knockdown in the human colorectal cancer cell line, HCT 116 decreased β-catenin expression and its downstream targets, CDK4 and cyclin D1. Furthermore, silencing of Wnt or β-catenin decreased HMGA2 expression. Taken together, the results of the present study suggest the coordinated regulation of HMGA2 and the Wnt/β-catenin signaling pathway in the carcinogenesis of sporadic colorectal tubular adenoma.
Collapse
Affiliation(s)
- Dan Li
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yanan Cao
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Juan Wang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Haiyan Yang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Weina Liu
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jinfeng Cui
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wenxin Wu
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
16
|
Moriichi K, Fujiya M, Okumura T. The endoscopic diagnosis of mucosal healing and deep remission in inflammatory bowel disease. Dig Endosc 2021; 33:1008-1023. [PMID: 33020947 DOI: 10.1111/den.13863] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
The therapeutic goal in inflammatory bowel disease (IBD) patients has shifted from controlling the clinical activity alone to managing other associated problems. The concept of mucosal healing (MH) and deep remission (DR) are advocated and regarded as new therapeutic goals in IBD. However, the definition of MH still remains controversial. It is unclear whether or not the histological structures or functional factors should be included in the definition of DR in addition to clinical remission and MH. The classifications of white-light imaging (e.g. Mayo endoscopic subscore, UCEIS, CD Endoscopic Index of Severity, simple Endoscopic Score-CD) have been proposed and are now widely used to assess the severity as well as the MH of inflammation in IBD. In ulcerative colitis, magnifying chromoendoscopy has been shown to be useful to assess the MH of inflammation while other types of image-enhanced endoscopy, such as narrow-band imaging, have not. Endocytoscopy and confocal laser endomicroscopy (CLE) are also applied to assess the activity in IBD. These endoscopic procedures can estimate MH with more precision through observing the details of superficial structures, such as crypt openings. In addition, CLE can partially assess the mucosal function by detecting fluorescence leakage. Molecular imaging can possibly detect the molecules associated with inflammation, intestinal regeneration and differentiation, and various functions including the intestinal barrier and mucus secretion. These novel procedures may improve the diagnosis strategy of DR through the assessment of DR-associated factors such as the histological structures and functional factors in the near future.
Collapse
Affiliation(s)
- Kentaro Moriichi
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido, Japan
| | - Mikihiro Fujiya
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Hokkaido, Japan
| |
Collapse
|
17
|
SPDEF suppresses head and neck squamous cell carcinoma progression by transcriptionally activating NR4A1. Int J Oral Sci 2021; 13:33. [PMID: 34667150 PMCID: PMC8526567 DOI: 10.1038/s41368-021-00138-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/02/2023] Open
Abstract
SAM pointed domain containing E26 transformation-specific transcription factor (SPDEF) plays dual roles in the initiation and development of human malignancies. However, the biological role of SPDEF in head and neck squamous cell carcinoma (HNSCC) remains unclear. In this study, the expression level of SPDEF and its correlation with the clinical parameters of patients with HNSCC were determined using TCGA-HNSC, GSE65858, and our own clinical cohorts. CCK8, colony formation, cell cycle analysis, and a xenograft tumor growth model were used to determine the molecular functions of SPDEF in HNSCC. ChIP-qPCR, dual luciferase reporter assay, and rescue experiments were conducted to explore the potential molecular mechanism of SPDEF in HNSCC. Compared with normal epithelial tissues, SPDEF was significantly downregulated in HNSCC tissues. Patients with HNSCC with low SPDEF mRNA levels exhibited poor clinical outcomes. Restoring SPDEF inhibited HNSCC cell viability and colony formation and induced G0/G1 cell cycle arrest, while silencing SPDEF promoted cell proliferation in vitro. The xenograft tumor growth model showed that tumors with SPDEF overexpression had slower growth rates, smaller volumes, and lower weights. SPDEF could directly bind to the promoter region of NR4A1 and promoted its transcription, inducing the suppression of AKT, MAPK, and NF-κB signaling pathways. Moreover, silencing NR4A1 blocked the suppressive effect of SPDEF in HNSCC cells. Here, we demonstrate that SPDEF acts as a tumor suppressor by transcriptionally activating NR4A1 in HNSCC. Our findings provide novel insights into the molecular mechanism of SPDEF in tumorigenesis and a novel potential therapeutic target for HNSCC.
Collapse
|
18
|
Reehorst CM, Nightingale R, Luk IY, Jenkins L, Koentgen F, Williams DS, Darido C, Tan F, Anderton H, Chopin M, Schoffer K, Eissmann MF, Buchert M, Mouradov D, Sieber OM, Ernst M, Dhillon AS, Mariadason JM. EHF is essential for epidermal and colonic epithelial homeostasis, and suppresses Apc-initiated colonic tumorigenesis. Development 2021; 148:269265. [PMID: 34180969 DOI: 10.1242/dev.199542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023]
Abstract
Ets homologous factor (EHF) is a member of the epithelial-specific Ets (ESE) family of transcription factors. To investigate its role in development and epithelial homeostasis, we generated a series of novel mouse strains in which the Ets DNA-binding domain of Ehf was deleted in all tissues (Ehf-/-) or specifically in the gut epithelium. Ehf-/- mice were born at the expected Mendelian ratio, but showed reduced body weight gain, and developed a series of pathologies requiring most Ehf-/- mice to reach an ethical endpoint before reaching 1 year of age. These included papillomas in the facial skin, abscesses in the preputial glands (males) or vulvae (females), and corneal ulcers. Ehf-/-mice also displayed increased susceptibility to experimentally induced colitis, which was confirmed in intestinal-specific Ehf knockout mice. Gut-specific Ehf deletion also impaired goblet cell differentiation, induced extensive transcriptional reprogramming in the colonic epithelium and enhanced Apc-initiated adenoma development. The Ets DNA-binding domain of EHF is therefore essential for postnatal homeostasis of the epidermis and colonic epithelium, and its loss promotes colonic tumour development.
Collapse
Affiliation(s)
- Camilla M Reehorst
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Rebecca Nightingale
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Laura Jenkins
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | | | - David S Williams
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Charbel Darido
- Peter MacCallum Cancer Centre, Melbourne, 3000Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010Australia
| | - Fiona Tan
- Peter MacCallum Cancer Centre, Melbourne, 3000Australia
| | - Holly Anderton
- Walter and Eliza Hall Institute, Melbourne, 3052Australia
| | - Michael Chopin
- Walter and Eliza Hall Institute, Melbourne, 3052Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010Australia
| | - Kael Schoffer
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Moritz F Eissmann
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Michael Buchert
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | | | - Oliver M Sieber
- Walter and Eliza Hall Institute, Melbourne, 3052Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010Australia.,Department of Surgery, The University of Melbourne, Parkville, Victoria, 3010Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia
| | - Amardeep S Dhillon
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, 3216Australia
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, 3084Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, 3084Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, 3010Australia
| |
Collapse
|
19
|
Lo YH, Kolahi KS, Du Y, Chang CY, Krokhotin A, Nair A, Sobba WD, Karlsson K, Jones SJ, Longacre TA, Mah AT, Tercan B, Sockell A, Xu H, Seoane JA, Chen J, Shmulevich I, Weissman JS, Curtis C, Califano A, Fu H, Crabtree GR, Kuo CJ. A CRISPR/Cas9-Engineered ARID1A-Deficient Human Gastric Cancer Organoid Model Reveals Essential and Nonessential Modes of Oncogenic Transformation. Cancer Discov 2021; 11:1562-1581. [PMID: 33451982 PMCID: PMC8346515 DOI: 10.1158/2159-8290.cd-20-1109] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/02/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022]
Abstract
Mutations in ARID1A rank among the most common molecular aberrations in human cancer. However, oncogenic consequences of ARID1A mutation in human cells remain poorly defined due to lack of forward genetic models. Here, CRISPR/Cas9-mediated ARID1A knockout (KO) in primary TP53-/- human gastric organoids induced morphologic dysplasia, tumorigenicity, and mucinous differentiation. Genetic WNT/β-catenin activation rescued mucinous differentiation, but not hyperproliferation, suggesting alternative pathways of ARID1A KO-mediated transformation. ARID1A mutation induced transcriptional regulatory modules characteristic of microsatellite instability and Epstein-Barr virus-associated subtype human gastric cancer, including FOXM1-associated mitotic genes and BIRC5/survivin. Convergently, high-throughput compound screening indicated selective vulnerability of ARID1A-deficient organoids to inhibition of BIRC5/survivin, functionally implicating this pathway as an essential mediator of ARID1A KO-dependent early-stage gastric tumorigenesis. Overall, we define distinct pathways downstream of oncogenic ARID1A mutation, with nonessential WNT-inhibited mucinous differentiation in parallel with essential transcriptional FOXM1/BIRC5-stimulated proliferation, illustrating the general utility of organoid-based forward genetic cancer analysis in human cells. SIGNIFICANCE: We establish the first human forward genetic modeling of a commonly mutated tumor suppressor gene, ARID1A. Our study integrates diverse modalities including CRISPR/Cas9 genome editing, organoid culture, systems biology, and small-molecule screening to derive novel insights into early transformation mechanisms of ARID1A-deficient gastric cancers.See related commentary by Zafra and Dow, p. 1327.This article is highlighted in the In This Issue feature, p. 1307.
Collapse
Affiliation(s)
- Yuan-Hung Lo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
| | - Kevin S Kolahi
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| | - Chiung-Ying Chang
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Andrey Krokhotin
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California
| | - Ajay Nair
- Department of Systems Biology, Columbia University, New York, New York
| | - Walter D Sobba
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
| | - Kasper Karlsson
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
- Division of Oncology, Stanford University School of Medicine, Stanford, California
| | - Sunny J Jones
- Department of Systems Biology, Columbia University, New York, New York
| | - Teri A Longacre
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Amanda T Mah
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California
| | - Bahar Tercan
- Institute for Systems Biology, Seattle, Washington
| | - Alexandra Sockell
- Division of Oncology, Stanford University School of Medicine, Stanford, California
| | - Hang Xu
- Division of Oncology, Stanford University School of Medicine, Stanford, California
| | - Jose A Seoane
- Division of Oncology, Stanford University School of Medicine, Stanford, California
| | - Jin Chen
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
- Department of Pharmacology and Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Jonathan S Weissman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California
| | - Christina Curtis
- Division of Oncology, Stanford University School of Medicine, Stanford, California
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, New York
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, Georgia
| | - Gerald R Crabtree
- Department of Pathology, Stanford University School of Medicine, Stanford, California
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
20
|
Pu Y, Song Y, Zhang M, Long C, Li J, Wang Y, Xu Y, Pan F, Zhao N, Zhang X, Xu Y, Cui J, Wang H, Li Y, Zhao Y, Jin D, Zhang H. GOLM1 restricts colitis and colon tumorigenesis by ensuring Notch signaling equilibrium in intestinal homeostasis. Signal Transduct Target Ther 2021; 6:148. [PMID: 33850109 PMCID: PMC8044123 DOI: 10.1038/s41392-021-00535-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 02/02/2023] Open
Abstract
Intestinal epithelium serves as the first barrier against the infections and injuries that mediate colonic inflammation. Colorectal cancer is often accompanied with chronic inflammation. Differed from its well-known oncogenic role in many malignancies, we present here that Golgi membrane protein 1 (GOLM1, also referred to as GP73) suppresses colorectal tumorigenesis via maintenance of intestinal epithelial barrier. GOLM1 deficiency in mice conferred susceptibility to mucosal inflammation and colitis-induced epithelial damage, which consequently promoted colon cancer. Mechanistically, depletion of GOLM1 in intestinal epithelial cells (IECs) led to aberrant Notch activation that interfered with IEC differentiation, maturation, and lineage commitment in mice. Pharmacological inhibition of Notch pathway alleviated epithelial lesions and restrained pro-tumorigenic inflammation in GOLM1-deficient mice. Therefore, GOLM1 maintains IEC homeostasis and protects against colitis and colon tumorigenesis by modulating the equilibrium of Notch signaling pathway.
Collapse
Affiliation(s)
- Yang Pu
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ya Song
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China ,grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning China
| | - Mengdi Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Caifeng Long
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Li
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanan Wang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yinzhe Xu
- grid.414252.40000 0004 1761 8894Chinese PLA General Hospital, Beijing, China
| | - Fei Pan
- grid.414252.40000 0004 1761 8894Chinese PLA General Hospital, Beijing, China
| | - Na Zhao
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyu Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanan Xu
- grid.458458.00000 0004 1792 6416State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianxin Cui
- grid.414252.40000 0004 1761 8894Chinese PLA General Hospital, Beijing, China
| | - Hongying Wang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Li
- grid.16821.3c0000 0004 0368 8293Department of Anatomy and Physiology, College of Basic Medical Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Zhao
- grid.458458.00000 0004 1792 6416State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Di Jin
- grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning China
| | - Hongbing Zhang
- grid.506261.60000 0001 0706 7839State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Zhang T, Liu D, Wang Y, Sun M, Xia L. The E-Twenty-Six Family in Hepatocellular Carcinoma: Moving into the Spotlight. Front Oncol 2021; 10:620352. [PMID: 33585247 PMCID: PMC7873604 DOI: 10.3389/fonc.2020.620352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of morbidity and mortality worldwide. Although therapeutic strategies have recently advanced, tumor metastasis and drug resistance continue to pose challenges in the treatment of HCC. Therefore, new molecular targets are needed to develop novel therapeutic strategies for this cancer. E-twenty-six (ETS) transcription family has been implicated in human malignancies pathogenesis and progression, including leukemia, Ewing sarcoma, gastrointestinal stromal tumors. Recently, increasing studies have expanded its great potential as functional players in other cancers, including HCC. This review focuses primarily on the key functions and molecular mechanisms of ETS factors in HCC. Elucidating these molecular details may provide novel potential therapeutic strategies for cancers.
Collapse
Affiliation(s)
| | | | | | | | - Limin Xia
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Guo JC, Yang YJ, Guo M, Zhang JQ, Zheng JF, Liu Z. Involvement of CDK11B-mediated SPDEF ubiquitination and SPDEF-mediated microRNA-448 activation in the oncogenicity and self-renewal of hepatocellular carcinoma stem cells. Cancer Gene Ther 2020; 28:1136-1149. [PMID: 33328586 DOI: 10.1038/s41417-020-00261-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/25/2020] [Accepted: 11/10/2020] [Indexed: 11/09/2022]
Abstract
Increasing evidence has suggested the crucial role cyclin-dependent kinases (CDKs) in the biology of hepatocellular carcinoma (HCC), a lethal malignancy with high morbidity and mortality. Hence, this study explored the modulatory effect of the putative cyclin-dependent kinase 11B (CDK11B)-mediated ubiquitination on HCC stem cells. The expression of CDK11B, SAM pointed domain-containing ETS transcription factor (SPDEF) and DOT1-like histone lysine methyltransferase (DOT1L) was determined by RT-qPCR and western blot analysis in HCC tissues and cells. The interaction among CDK11B, SPDEF, miR-448, and DOT1L was analyzed by Co-IP, ubiquitination-IP and ChIP assays, whereas their effects on the biological characteristics of HCC stem cells were assessed by sphere formation and colony formation assays. An in vivo xenograft tumor model was developed for validating the regulation of CDK11B in oncogenicity of HCC stem cells. We characterized the aberrant upregulation of CDK11B and downregulation SPDEF in HCC tissues and cells. CDK11B degraded SPDEF through ubiquitin-proteasome pathway, whereas SPDEF could bind to the miR-448 promoter and inhibit the expression of DOT1L by activating miR-448, whereby promoting self-renewal of HCC stem cells. Knockdown of CDK11B attenuated the self-renewal capability of HCC stem cells and their oncogenicity in vivo. These findings highlighted that blocking the CDK11B-induced degradation of SPDEF and enhancing miR-448-dependent inhibition of DOT1L may delay the progression of HCC by restraining self-renewal capability of HCC stem cells, representing novel targets for HCC management.
Collapse
Affiliation(s)
- Jun-Cheng Guo
- Department of Hepatobiliary Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, P. R. China
| | - Yi-Jun Yang
- Department of Hepatobiliary Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, P. R. China.
| | - Min Guo
- Psychological Research Center, Hainan General Hospital, Haikou, 570311, P. R. China
| | - Jian-Quan Zhang
- Department of Hepatobiliary Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, P. R. China.
| | - Jin-Fang Zheng
- Department of Hepatobiliary Surgery, Hainan General Hospital, Haikou, 570311, P. R. China
| | - Zhuo Liu
- School of Public Health, Hainan Medical University, Haikou, 571199, P. R. China
| |
Collapse
|
23
|
Luo M, Li JF, Yang Q, Zhang K, Wang ZW, Zheng S, Zhou JJ. Stem cell quiescence and its clinical relevance. World J Stem Cells 2020; 12:1307-1326. [PMID: 33312400 PMCID: PMC7705463 DOI: 10.4252/wjsc.v12.i11.1307] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/28/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Quiescent state has been observed in stem cells (SCs), including in adult SCs and in cancer SCs (CSCs). Quiescent status of SCs contributes to SC self-renewal and conduces to averting SC death from harsh external stimuli. In this review, we provide an overview of intrinsic mechanisms and extrinsic factors that regulate adult SC quiescence. The intrinsic mechanisms discussed here include the cell cycle, mitogenic signaling, Notch signaling, epigenetic modification, and metabolism and transcriptional regulation, while the extrinsic factors summarized here include microenvironment cells, extracellular factors, and immune response and inflammation in microenvironment. Quiescent state of CSCs has been known to contribute immensely to therapeutic resistance in multiple cancers. The characteristics and the regulation mechanisms of quiescent CSCs are discussed in detail. Importantly, we also outline the recent advances and controversies in therapeutic strategies targeting CSC quiescence.
Collapse
Affiliation(s)
- Meng Luo
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Jin-Fan Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Qi Yang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Kun Zhang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Zhan-Wei Wang
- Department of Breast Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313003, Zhejiang Province, China
| | - Shu Zheng
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Jiao-Jiao Zhou
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
24
|
Li L, Wang A, Cai M, Tong M, Chen F, Huang L. Identification of stool miR-135b-5p as a non-invasive diaognostic biomarker in later tumor stage of colorectal cancer. Life Sci 2020; 260:118417. [DOI: 10.1016/j.lfs.2020.118417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
|
25
|
Targeting the β-catenin signaling for cancer therapy. Pharmacol Res 2020; 160:104794. [DOI: 10.1016/j.phrs.2020.104794] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
|
26
|
Bajkowska K, Sumardika IW, Tomonobu N, Chen Y, Yamamoto KI, Kinoshita R, Murata H, Gede Yoni Komalasari NL, Jiang F, Yamauchi A, Winarsa Ruma IM, Kasano-Camones CI, Inoue Y, Sakaguchi M. Neuroplastinβ-mediated upregulation of solute carrier family 22 member 18 antisense (SLC22A18AS) plays a crucial role in the epithelial-mesenchymal transition, leading to lung cancer cells' enhanced motility. Biochem Biophys Rep 2020; 22:100768. [PMID: 32490214 PMCID: PMC7261704 DOI: 10.1016/j.bbrep.2020.100768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/13/2020] [Accepted: 05/04/2020] [Indexed: 01/01/2023] Open
Abstract
Our recent study revealed an important role of the neuroplastin (NPTN)β downstream signal in lung cancer dissemination in the lung. The molecular mechanism of the signal pathway downstream of NPTNβ is a serial activation of the key molecules we identified: tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) adaptor, nuclear factor (NF)IA/NFIB heterodimer transcription factor, and SAM pointed-domain containing ETS transcription factor (SPDEF). The question of how dissemination is controlled by SPDEF under the activated NPTNβ has not been answered. Here, we show that the NPTNβ-SPDEF-mediated induction of solute carrier family 22 member 18 antisense (SLC22A18AS) is definitely required for the epithelial-mesenchymal transition (EMT) through the NPTNβ pathway in lung cancer cells. In vitro, the induced EMT is linked to the acquisition of active cellular motility but not growth, and this is correlated with highly disseminative tumor progression in vivo. The publicly available data also show the poor survival of SLC22A18AS-overexpressing lung cancer patients. Taken together, these data highlight a crucial role of SLC22A18AS in lung cancer dissemination, which provides novel input of this molecule to the signal cascade of NPTNβ. Our findings contribute to a better understanding of NPTNβ-mediated lung cancer metastasis.
Collapse
Affiliation(s)
- Karolina Bajkowska
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- University of Surrey, 11 Osterley Court, London TW7 4PX, England, UK
| | - I. Wayan Sumardika
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- Faculty of Medicine, Udayana University, Denpasar 80232, Bali, Indonesia
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Youyi Chen
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- Department of General Surgery & Bio-Bank of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ken-ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Ni Luh Gede Yoni Komalasari
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
- Faculty of Medicine, Udayana University, Denpasar 80232, Bali, Indonesia
| | - Fan Jiang
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima, Kurashiki-shi, Okayama 701-0192, Japan
| | | | - Carlos Ichiro Kasano-Camones
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| | - Yusuke Inoue
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| |
Collapse
|
27
|
Herath M, Hosie S, Bornstein JC, Franks AE, Hill-Yardin EL. The Role of the Gastrointestinal Mucus System in Intestinal Homeostasis: Implications for Neurological Disorders. Front Cell Infect Microbiol 2020; 10:248. [PMID: 32547962 PMCID: PMC7270209 DOI: 10.3389/fcimb.2020.00248] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
Mucus is integral to gut health and its properties may be affected in neurological disease. Mucus comprises a hydrated network of polymers including glycosylated mucin proteins. We propose that factors that influence the nervous system may also affect the volume, viscosity, porosity of mucus composition and subsequently, gastrointestinal (GI) microbial populations. The gut has its own intrinsic neuronal network, the enteric nervous system, which extends the length of the GI tract and innervates the mucosal epithelium. The ENS regulates gut function including mucus secretion and renewal. Both dysbiosis and gut dysfunction are commonly reported in several neurological disorders such as Parkinson's and Alzheimer's disease as well in patients with neurodevelopmental disorders including autism. Since some microbes use mucus as a prominent energy source, changes in mucus properties could alter, and even exacerbate, dysbiosis-related gut symptoms in neurological disorders. This review summarizes existing knowledge of the structure and function of the mucus of the GI tract and highlights areas to be addressed in future research to better understand how intestinal homeostasis is impacted in neurological disorders.
Collapse
Affiliation(s)
- Madushani Herath
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Suzanne Hosie
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Ashley E Franks
- School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Elisa L Hill-Yardin
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
28
|
Bonjoch L, Mur P, Arnau-Collell C, Vargas-Parra G, Shamloo B, Franch-Expósito S, Pineda M, Capellà G, Erman B, Castellví-Bel S. Approaches to functionally validate candidate genetic variants involved in colorectal cancer predisposition. Mol Aspects Med 2019; 69:27-40. [PMID: 30935834 DOI: 10.1016/j.mam.2019.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Most next generation sequencing (NGS) studies identified candidate genetic variants predisposing to colorectal cancer (CRC) but do not tackle its functional interpretation to unequivocally recognize a new hereditary CRC gene. Besides, germline variants in already established hereditary CRC-predisposing genes or somatic variants share the same need when trying to categorize those with relevant significance. Functional genomics approaches have an important role in identifying the causal links between genetic architecture and phenotypes, in order to decipher cellular function in health and disease. Therefore, functional interpretation of identified genetic variants by NGS platforms is now essential. Available approaches nowadays include bioinformatics, cell and molecular biology and animal models. Recent advances, such as the CRISPR-Cas9, ZFN and TALEN systems, have been already used as a powerful tool with this objective. However, the use of cell lines is of limited value due to the CRC heterogeneity and its close interaction with microenvironment. Access to tridimensional cultures or organoids and xenograft models that mimic the in vivo tissue architecture could revolutionize functional analysis. This review will focus on the application of state-of-the-art functional studies to better tackle new genes involved in germline predisposition to this neoplasm.
Collapse
Affiliation(s)
- Laia Bonjoch
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Pilar Mur
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Coral Arnau-Collell
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Gardenia Vargas-Parra
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Bahar Shamloo
- Molecular Biology, Genetics, and Bioengineering Department, Legacy Research Institute, Portland, OR, USA
| | - Sebastià Franch-Expósito
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Gabriel Capellà
- Hereditary Cancer Program, Catalan Institute of Oncology, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), ONCOBELL Program, L'Hospitalet de Llobregat, Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Batu Erman
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
29
|
Martins-Neves SR, Cleton-Jansen AM, Gomes CMF. Therapy-induced enrichment of cancer stem-like cells in solid human tumors: Where do we stand? Pharmacol Res 2018; 137:193-204. [PMID: 30316903 DOI: 10.1016/j.phrs.2018.10.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
The development of local recurrence and metastatic disease, most probably attributable to the intrinsic or acquired resistance of tumor cells to standard therapy, still constitute the major clinical problem preventing the cure of cancer patients. Despite progress in the research of new therapeutic targets and compounds, resistant cells displaying stem-like properties seem to play a leading role in therapeutic failures and to be the culprit cells responsible for associated tumor recurrence. A whole new plethora of research studies suggest that drug-tolerant cancer stem cells may be induced by conventional cancer chemotherapeutics such as doxorubicin, cisplatinum and ionizing radiation. This phenotypic plasticity and transition from a differentiated to stem-like cell state associates with the activation of diverse stem cell self-renewal (e.g. Notch, Hedgehog, Wnt), drug efflux (e.g. ABC transporters) and survival-related pathways (e.g. TGF-β, ERK, AKT), which may confer resistance and treatment failures in solid tumors. Therefore, combined therapeutic strategies aiming to simultaneously target drug-sensitive tumor cells and their capacity of phenotypic switching may lead to survival benefits and meaningful disease remissions. This knowledge can be applicable to the clinic and contribute to better therapeutic outcomes and prevent tumor recurrence.
Collapse
Affiliation(s)
- Sara R Martins-Neves
- Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Sta. Comba, Celas, 3000-354 Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal; CIMAGO, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Department of Pathology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Anne-Marie Cleton-Jansen
- Department of Pathology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Célia M F Gomes
- Institute of Pharmacology and Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Azinhaga de Sta. Comba, Celas, 3000-354 Coimbra, Portugal; CNC.IBILI, University of Coimbra, Coimbra, Portugal; CIMAGO, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
30
|
Li T, Jian X, He H, Lai Q, Li X, Deng D, Liu T, Zhu J, Jiao H, Ye Y, Wang S, Yang M, Zheng L, Zhou W, Ding Y. MiR-452 promotes an aggressive colorectal cancer phenotype by regulating a Wnt/β-catenin positive feedback loop. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:238. [PMID: 30253791 PMCID: PMC6156870 DOI: 10.1186/s13046-018-0879-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/15/2018] [Indexed: 01/20/2023]
Abstract
Background Aberrant activation of Wnt/β-catenin signaling pathway is considered to be an important issue in progression and metastasis of various human cancers, especially in colorectal cancer (CRC). MiR-452 could activate of Wnt/β-catenin signaling. But the mechanism remains unclear. Methods The expression of miR-452 in CRC and normal tissues was detected by real-time quantitative PCR. The effect of miR-452 on CRC growth and invasion was conducted by functional experiments in vitro and in vivo. Bioinformatics and cell luciferase function studies verified the direct regulation of miR-452 on the 3’-UTR of the GSK3β, which leads to the activation of Wnt/β-catenin signaling. Results MiR-452 was upregulated in CRC compared with normal tissues and was correlated with clinical significance. The luciferase reporter system studies affirmed the direct regulation of miR-452 on the 3’-UTR of the GSK3β, which activate the Wnt/β-catenin signaling. The ectopic upregulation of miR-452 significantly inhibited the expression of GSK3β and enhanced CRC proliferation and invasion in vitro and in vivo. Meanwhile, knockdown of miR-452 significantly recovered the expression of GSK3β and attenuated Wnt/β-catenin-mediated cell metastasis and proliferation. More important, T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors, which are crucial downstream molecules of the Wnt/β-catenin signaling pathway was verified as a valid transcription factor of miR-452’s promoter. Conclusions Our findings first demonstrate that miR-452-GSK3β-LEF1/TCF4 positive feedback loop induce CRC proliferation and migration. Electronic supplementary material The online version of this article (10.1186/s13046-018-0879-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tingting Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Xiangyu Jian
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Han He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiuhua Lai
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianzheng Li
- Medical genetic center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Danling Deng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Tengfei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Jiehong Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Hongli Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Shuyang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Minhui Yang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Lin Zheng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China. .,Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
31
|
Luk IY, Reehorst CM, Mariadason JM. ELF3, ELF5, EHF and SPDEF Transcription Factors in Tissue Homeostasis and Cancer. Molecules 2018; 23:molecules23092191. [PMID: 30200227 PMCID: PMC6225137 DOI: 10.3390/molecules23092191] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
Abstract
The epithelium-specific ETS (ESE) transcription factors (ELF3, ELF5, EHF and SPDEF) are defined by their highly conserved ETS DNA binding domain and predominant epithelial-specific expression profile. ESE transcription factors maintain normal cell homeostasis and differentiation of a number of epithelial tissues, and their genetic alteration and deregulated expression has been linked to the progression of several epithelial cancers. Herein we review the normal function of the ESE transcription factors, the mechanisms by which they are dysregulated in cancers, and the current evidence for their role in cancer progression. Finally, we discuss potential therapeutic strategies for targeting or reactivating these factors as a novel means of cancer treatment.
Collapse
Affiliation(s)
- Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - Camilla M Reehorst
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia.
- School of Cancer Medicine, La Trobe University, Bundoora, Victoria 3086, Australia.
| |
Collapse
|
32
|
Katoh M. Multi‑layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β‑catenin signaling activation (Review). Int J Mol Med 2018; 42:713-725. [PMID: 29786110 PMCID: PMC6034925 DOI: 10.3892/ijmm.2018.3689] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
β-catenin/CTNNB1 is an intracellular scaffold protein that interacts with adhesion molecules (E-cadherin/CDH1, N-cadherin/CDH2, VE-cadherin/CDH5 and α-catenins), transmembrane-type mucins (MUC1/CD227 and MUC16/CA125), signaling regulators (APC, AXIN1, AXIN2 and NHERF1/EBP50) and epigenetic or transcriptional regulators (BCL9, BCL9L, CREBBP/CBP, EP300/p300, FOXM1, MED12, SMARCA4/BRG1 and TCF/LEF). Gain-of-function CTTNB1 mutations are detected in bladder cancer, colorectal cancer, gastric cancer, liver cancer, lung cancer, pancreatic cancer, prostate cancer and uterine cancer, whereas loss-of-function CTNNB1 mutations are also detected in human cancer. ABCB1, ALDH1A1, ASCL2, ATF3, AXIN2, BAMBI, CCND1, CD44, CLDN1, CTLA4, DKK1, EDN1, EOMES, FGF18, FGF20, FZD7, IL10, JAG1, LEF1, LGR5, MITF, MSX1, MYC, NEUROD1, NKD1, NODAL, NOTCH2, NOTUM, NRCAM, OPN, PAX3, PPARD, PTGS2, RNF43, SNAI1, SP5, TCF7, TERT, TNFRSF19, VEGFA and ZNRF3 are representative β-catenin target genes. β-catenin signaling is involved in myofibroblast activation and subsequent pulmonary fibrosis, in addition to other types of fibrosis. β-catenin and NF-κB signaling activation are involved in field cancerization in the stomach associated with Helicobacter pylori (H. pylori) infection and in the liver associated with hepatitis C virus (HCV) infection and other etiologies. β-catenin-targeted therapeutics are functionally classified into β-catenin inhibitors targeting upstream regulators (AZ1366, ETC-159, G007-LK, GNF6231, ipafricept, NVP-TNKS656, rosmantuzumab, vantictumab, WNT-C59, WNT974 and XAV939), β-catenin inhibitors targeting protein-protein interactions (CGP049090, CWP232228, E7386, ICG-001, LF3 and PRI-724), β-catenin inhibitors targeting epigenetic regulators (PKF118-310), β-catenin inhibitors targeting mediator complexes (CCT251545 and cortistatin A) and β-catenin inhibitors targeting transmembrane-type transcriptional outputs, including CD44v6, FZD7 and LGR5. Eradicating H. pylori and HCV is the optimal approach for the first-line prevention of gastric cancer and hepatocellular carcinoma (HCC), respectively. However, β-catenin inhibitors may be applicable for the prevention of organ fibrosis, second-line HCC prevention and treating β-catenin-driven cancer. The multi-layered prevention and treatment strategy of β-catenin-related human diseases is necessary for the practice of personalized medicine and implementation of precision medicine.
Collapse
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center, Chuo Ward, Tokyo 104‑0045, Japan
| |
Collapse
|
33
|
Dempsey PJ. Role of ADAM10 in intestinal crypt homeostasis and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2017; 1864:2228-2239. [PMID: 28739265 PMCID: PMC5632589 DOI: 10.1016/j.bbamcr.2017.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022]
Abstract
A disintegrin and metalloproteinases (ADAMs) are a family of mSultidomain, membrane-anchored proteases that regulate diverse cellular functions, including cell adhesion, migration, proteolysis and other cell signaling events. Catalytically-active ADAMs act as ectodomain sheddases that proteolytically cleave type I and type II transmembrane proteins and some GPI-anchored proteins from the cellular surface. ADAMs can also modulate other cellular signaling events through a process known as regulated intramembrane proteolysis (RIP). Through their proteolytic activity, ADAMs can rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g. inflammation) and play a central role in coordinating intercellular communication. Dysregulation of these processes through aberrant expression, or sustained ADAM activity, is linked to chronic inflammation, inflammation-associated cancer and tumorigenesis. ADAM10 was the first disintegrin-metalloproteinase demonstrated to have proteolytic activity and is the prototypic ADAM associated with RIP activity (e.g. sequential Notch receptor processing). ADAM10 is abundantly expressed throughout the gastrointestinal tract and during normal intestinal homeostasis ADAM10 regulates many cellular processes associated with intestinal development, cell fate specification and maintenance of intestinal stem cell/progenitor populations. In addition, several signaling pathways that undergo ectodomain shedding by ADAM10 (e.g. Notch, EGFR/ErbB, IL-6/sIL-6R) help control intestinal injury/regenerative responses and may drive intestinal inflammation and colon cancer initiation and progression. Here, I review some of the proposed functions of ADAM10 associated with intestinal crypt homeostasis and tumorigenesis within the gastrointestinal tract in vivo. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Peter J Dempsey
- Graduate Program in Cell Biology, Stem Cells, and Development Program, University of Colorado Medical School, Aurora, CO 80045, United States; Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Colorado Medical School, Aurora, CO 80045, United States.
| |
Collapse
|
34
|
Fingleton B. Making Cancer Quiescent: SPDEF De-Cycles Beta-Catenin. Gastroenterology 2017; 153:10-12. [PMID: 28572010 DOI: 10.1053/j.gastro.2017.05.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Barbara Fingleton
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|