1
|
Liu T, Wang H, Zhao Y, Wang YX, Xing X, Gao P. Drug development for chronic hepatitis B functional cure: Recent progress. World J Hepatol 2025; 17:105797. [PMID: 40308829 PMCID: PMC12038417 DOI: 10.4254/wjh.v17.i4.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/21/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Chronic hepatitis B virus (HBV) infection affects approximately 254 million individuals globally, contributing to significant morbidity and mortality due to HBV-related liver failure and cirrhosis, which result in millions of fatalities each year. Although approved antiviral nucleos(t)ide analogues can effectively suppress HBV replication, their ability to reduce hepatitis B surface antigen (HBsAg) levels in plasma remains limited. The clinical application of the immunomodulator interferon-alpha is restricted by concerns regarding its safety and the severity of associated adverse reactions, rendering long-term administration challenging. Therefore, current drug development efforts for chronic hepatitis B aim to achieve a functional cure, which is defined as HBsAg serological clearance and sustained suppression of HBV DNA. This review discusses recent advancements in novel direct-acting therapeutic strategies for the treatment of chronic hepatitis B by focusing on the progresses in HBV entry inhibitors, monoclonal antibodies, RNA interferences, and other agents that directly target the virus. Furthermore, we discuss the development of immunomodulatory therapies, including TLR-7/8 agonists, immune checkpoint inhibitors, and therapeutic vaccines. In the end, we conclude by highlighting the importance of the rational combination-strategy design to improve the functional cure rate of HBV.
Collapse
Affiliation(s)
- Ting Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, Liaoning Province, China
| | - He Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, Liaoning Province, China
| | - Yue Zhao
- Graduate School Base Office, Dalian Medical University, Dalian 116000, Liaoning Province, China
| | - Ying-Xin Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, Liaoning Province, China
| | - Xue Xing
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, Liaoning Province, China
| | - Peng Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian 116021, Liaoning Province, China.
| |
Collapse
|
2
|
Starnawski P, Nowak K, Augustyn Z, Malicki D, Piąta A, Lorek D, Janczura J. Role of hepatotropic viruses in promoting hepatocellular carcinoma-current knowledge and recent advances. Med Oncol 2025; 42:111. [PMID: 40095313 DOI: 10.1007/s12032-025-02674-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, with chronic infections by hepatotropic viruses such as hepatitis B virus (HBV), and hepatitis C virus (HCV), being major risk factors. Chronic infections with these viruses are the leading cause of HCC worldwide, with HBV alone responsible for over 50% of cases. Despite advances in direct-acting antivirals (DAAs) for HCV and nucleos(t)ide analogues (NAs) for HBV, challenges remain in HCC prevention, early detection, and treatment. Recent research highlights the role of viral-induced metabolic alterations, such as the Warburg effect, mitochondrial dysfunction, and lipid dysregulation, in promoting HCC. Moreover, immune checkpoint inhibitors have emerged as effective treatments for advanced HCC, though responses vary between HBV- and HCV-related cancers. Additionally, novel therapeutic approaches and metabolic-targeted therapies offer promising avenues for virus-associated HCC treatment. Advancements in liquid biopsy biomarkers and artificial intelligence-driven diagnostics are improving HCC surveillance and risk stratification, potentially enabling earlier interventions. While HBV vaccination has significantly reduced HCC incidence, disparities in global vaccination coverage persist. Furthermore, antiviral therapies combined with structured surveillance programs have proven effective in reducing HCC incidence and mortality. This review highlights the complex connection between viral, genetic, and environmental factors in HCC development and underscores the importance of integrated prevention strategies to reduce its burden globally.
Collapse
Affiliation(s)
- Piotr Starnawski
- Collegium Medicum, Jan Kochanowski University, Aleja IX Wieków Kielc 19A, 25-317, Kielce, Poland
| | - Klaudia Nowak
- Collegium Medicum, Jan Kochanowski University, Aleja IX Wieków Kielc 19A, 25-317, Kielce, Poland
| | - Zuzanna Augustyn
- Collegium Medicum, Jan Kochanowski University, Aleja IX Wieków Kielc 19A, 25-317, Kielce, Poland
| | - Dominik Malicki
- Collegium Medicum, Jan Kochanowski University, Aleja IX Wieków Kielc 19A, 25-317, Kielce, Poland
| | - Aleksandra Piąta
- Collegium Medicum, Jan Kochanowski University, Aleja IX Wieków Kielc 19A, 25-317, Kielce, Poland
| | - Dominika Lorek
- Collegium Medicum, Jan Kochanowski University, Aleja IX Wieków Kielc 19A, 25-317, Kielce, Poland
| | - Jakub Janczura
- Collegium Medicum, Jan Kochanowski University, Aleja IX Wieków Kielc 19A, 25-317, Kielce, Poland.
| |
Collapse
|
3
|
Zhang M, Gao Y, Kong F, Gao H, Yi Y, Wu C, Xin Y, Zheng S, Lu J, Han T, Zhao Y, Hu P, Mao X, Xie Q, Zhang J, Hou J, Gao Z, Lian J, Chen L, Shang J, Xie W, Mu M, Jin Z, Wang M, Lin S, Rao H, Yang D, Gong H, Luo L, Chen Y, Zhuang Y, Zhang Y, Gish RG, Tan Y, Zhang J, Niu J. Efficacy and safety of GLS4 with entecavir vs entecavir alone in chronic hepatitis B patients: A multicenter clinical trial. J Infect 2025; 90:106446. [PMID: 39988055 DOI: 10.1016/j.jinf.2025.106446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/22/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
OBJECTIVES GLS4 is a first-in-class hepatitis B virus (HBV) capsid assembly modulator that inhibits HBV replication by interfering with assembly and disassembly of the virus nucleocapsid, this prospective, open-label, comparative, phase 2b trial evaluated the antiviral activity and safety of GLS4/ritonavir (RTV) combined with entecavir in hepatitis B e antigen-positive patients. METHODS 250 CHB patients were enrolled, including treatment-naïve patients and those interrupted anti-HBV drugs for ≥ 6 months (Part A, n=125), and patients who had taken ETV for ≥1 year and had achieved viral suppression (Part B, n=125). Patients were randomly allocated to receive 120 mg GLS4/100 mg RTV plus 0.5 mg ETV or 0.5 mg ETV monotherapy for 96 weeks. RESULTS In the mid-term, in Part A (n=122), greater least-squares mean (LSM) changes from baseline were observed in the GLS4/RTV plus ETV cohort than in ETV monotherapy cohort in HBV DNA (-6.28 vs -5.72 log10 IU/ml, p=0.0005), HBsAg (-0.87 vs -0.65 log10 IU/ml, p=0.0653), HBV pgRNA (-3.83 vs -1.91 log10 copies/ml, p<0.0001); The proportions of both HBV DNA and pgRNA negative patients were 17.3% (13/75, GLS4/RTV plus ETV) and 0% (0/30, ETV monotherapy). In Part B (n=123), greater mean LSM reductions in HBsAg (-0.17 vs -0.06 log10 IU/ml, p=0.0013), HBV pgRNA (-1.61 vs -0.28 log10 copies/ml, p<0.0001) were also observed in the GLS4/RTV+ETV cohort. the proportions of both HBV DNA and pgRNA-negative patients were 71.6% (48/67, GLS4/RTV plus ETV) and 18.9% (7/37, ETV monotherapy), respectively. No patients achieved HBsAg loss at week 48. GLS4/RTV + ETV were well tolerated, the most common adverse events were elevated alanine aminotransferase levels and hypertriglyceridemia, which were reversed by temporary GLS4/RTV discontinuation. CONCLUSIONS The primary analysis at week 48 showed that the antiviral efficacy of GLS4/RTV with ETV was clearly superior to that of ETV monotherapy. GLS4/RTV with ETV was well tolerated; further studies evaluating its safety and efficacy are ongoing. (clinical trial identifier: NCT04147208).
Collapse
Affiliation(s)
- Mingyuan Zhang
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun 130021, China; China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun 130021, China.
| | - Yanhang Gao
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun 130021, China; China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun 130021, China.
| | - Fei Kong
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun 130021, China; China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun 130021, China.
| | - Haibing Gao
- Infectious Disease Hospital, Mengchao Hepatobiliary Hospital, Fujian Medical University, Department of Infectious Diseases and Liver Diseases, 350028 Fuzhou, China.
| | - Yongxiang Yi
- The Second Hospital of Nanjing, Hepatology Department, 210003 Nanjing, China.
| | - Chao Wu
- Nanjing Drum Tower Hospital, 210003 Nanjing, China.
| | - Yongning Xin
- Qingdao Municipal Hospital, Department of Gastroenterology, 266000 Qingdao, China.
| | - Sujun Zheng
- Beijing YouAn Hospital, Capital Medical University, 100071 Beijing, China.
| | - Jiajie Lu
- West China hospital Sichuan University, 610041 Sichuan, China.
| | - Tao Han
- Tianjin Third Central Hospital, 300170 Tianjin, China.
| | - Yingren Zhao
- The First Affiliated Hospital of Xi'an Jiao Tong University, 710061 Xian, China.
| | - Peng Hu
- The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, China.
| | - Xiaorong Mao
- The First Hospital of Lanzhou University, 730030 Lanzhou, China.
| | - Qing Xie
- Ruijin Hospital Affiliated to The Shanghai Jiao Tong University Medical School, 200062 Shanghai, China.
| | - Jie Zhang
- Shanghai Putuo District Central Hospital, 200062 Shanghai, China.
| | - Jinlin Hou
- Nanfang Hospital, Southern Medical University, Department of Infectious Diseases, 510515 Guangzhou, China.
| | - Zhiliang Gao
- The Third Affiliated Hospital of Zhongshan University, 510405 Guangzhou, China.
| | - Jianqi Lian
- The Second Affiliated Hospital of Air Force Military Medical University, 710038 Xian, China.
| | - Liang Chen
- Shanghai Public Health Clinical Center, 201508 Shanghai, China.
| | - Jia Shang
- Henan Provincial People's Hospital, 450003 Henan, China.
| | - Wen Xie
- Beijing Ditan Hospital, 100015 Beijing, China.
| | - Mao Mu
- The Affiliated Hospital of Guizhou Medical University, 550004 Guizhou,China.
| | - Zhenjing Jin
- The Second Hospital of Jilin University, Hepatology Department, 130041 Changchun, China.
| | | | - Shide Lin
- Affiliated Hospital of Zunyi Medical University, 563099 Zunyi, China.
| | - Huiying Rao
- Peking University People's Hospital, 100044 Beijing, China.
| | - Dongliang Yang
- Union Hospital College Huazhong University of Science and Technology, 430023 Wuhan, China.
| | - Huanyu Gong
- The Third Xiangya Hospital of Central South University, 410000 Hunan, China.
| | - Lin Luo
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co, Ltd, 523871 Dongguan, Guangdong, China.
| | - Yunfu Chen
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co, Ltd, 523871 Dongguan, Guangdong, China.
| | - Yulei Zhuang
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co, Ltd, 523871 Dongguan, Guangdong, China.
| | - Yingjun Zhang
- The State Key Laboratory of Anti-Infective Drug Development (NO. 2015DQ780357), Sunshine Lake Pharma Co, Ltd, 523871 Dongguan, Guangdong, China.
| | - Robert G Gish
- Robert G. Gish Consultants, LLC, San Diego, CA, USA; Hepatitis B Foundation, Doylestown, PA, USA.
| | - Youwen Tan
- Zhenjiang Third People's Hospital, Hepatology Department, 212003 Zhenjiang, China.
| | - Jiming Zhang
- Huashan Hospital, Fudan University, Department of Infectious Diseases, 200040 Shanghai, China.
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun 130021, China; China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun 130021, China.
| |
Collapse
|
4
|
Mohebbi A, Nabavi SPT, Naderi M, Sharifian K, Behnezhad F, Mohebbi M, Gholami A, Askari FS, Mirarab A, Monavari SH. Computer-aided drug repurposing & discovery for Hepatitis B capsid protein. In Silico Pharmacol 2025; 13:35. [PMID: 40018383 PMCID: PMC11861453 DOI: 10.1007/s40203-025-00314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
The primary objective of this study is to harness computer-aided drug repurposing (CADR) techniques to identify existing FDA-approved drugs that can potentially disrupt the assembly of the Hepatitis B Virus (HBV) core protein (HBcAg), an essential process in the virus's life cycle. By targeting this critical step, our study aims to expand the repertoire of therapeutic options for managing chronic Hepatitis B infection, a major global health challenge. Utilizing a combination of computational methods, including the CavityPlus server for ability to analyze druggable protein cavities and extract pharmacophore features and LigandScout for pharmacophore-based virtual screening of a vast library of FDA-approved drugs was conducted. Molecular dynamic simulation (MDS) was employed to evaluate the stability of HBcAg, complexed with Heteroaryldihydropyrimidine (HAP) and statins exhibiting particularly strong binding energies and conformational compatibility. Our approach focused on identifying pharmacophore features that align with known HBcAg inhibitors. The study identified several promising candidates, including Ciclopirox olamine, Voriconazole, Enasidenib, and statins, demonstrating potential interactions with HBc protein residues. Molecular docking further validated these interactions. The significance of these findings lies in their potential to offer new, effective therapeutic strategies for HBV treatment, particularly as alternatives to current therapies that often suffer from issues of viral resistance and adverse side effects. MDS analysis verified the robustness of HAP and statins by showing a high level of binding energies and compatibility with HBcAg. Our results provide a foundation for further experimental validation and underscore the utility of computer-aided drug repurposing as a rapid, cost-effective approach to drug discovery in antiviral research. This study contributes to our understanding of HBV biology and opens avenues for developing novel anti-HBV therapies based on repurposed drugs. The highlighted compound may also enhance the challenges of drug resistance when used as a combination therapy.
Collapse
Affiliation(s)
- Alireza Mohebbi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vista Aria Rena Gene, Inc., Gorgan, Golestan Province Iran
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Malihe Naderi
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Hiroshima Institute of Life Sciences, 7-21, Nishi Asahi-Machi, Minami-ku, Hiroshima-shi, Hiroshima 734-0002 Japan
| | - Kimia Sharifian
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzane Behnezhad
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohebbi
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amytis Gholami
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sana Askari
- Vista Aria Rena Gene, Inc., Gorgan, Golestan Province Iran
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azam Mirarab
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | |
Collapse
|
5
|
Li X, Xu J, Sun J, Liu J, Wu M, Zhang H, Zhu X, Li C, Zhang Y, Zhu J, Chen Y, Luo L, He Q, Zhuang Y, Chen Y, Niu J, Ding Y. Safety, Pharmacokinetics and Antiviral Efficacy of Capsid Assembly Modulator Freethiadine in Healthy Volunteers and Chronic Hepatitis B Patients. Liver Int 2025; 45:e16213. [PMID: 39673713 DOI: 10.1111/liv.16213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND AND AIMS Freethiadine is a novel hepatitis B virus capsid assembly modulator. Herein, we report the safety, tolerability, pharmacokinetics and 28-day antiviral activities of freethiadine. METHODS The study consisted of two parts. Part 1 involved a single-ascending-dose, a multiple-ascending-dose and a food effect study. Part 2 was a double-blind, double-dummy, randomised, entecavir-controlled, multi-dose escalation study in chronic hepatitis B (CHB) patients. RESULTS A total of 88 healthy subjects and 40 patients with CHB were enrolled in this study. Freethiadine was well tolerated by both healthy subjects and patients. Among freethiadine-treated patients with CHB, the most common drug-related adverse event was alanine aminotransferase elevation (28.1%) (mostly grade 1 or 2). Both HEC160208 and its active metabolite, HEC142106, were rapidly absorbed and eliminated in plasma. Food intake did not significantly influence the exposure of either analyte. Following 28 days of treatment, the mean maximum HBV DNA declines from baseline were -2.76, -3.47, -3.56, -2.89 and -2.55 log10 IU/mL for the 100 mg BID, 200 mg QD, 200 mg BID and 300 mg QD of freethiadine or entecavir control cohorts, respectively; simultaneously, the mean maximum pregenomic RNA (pgRNA) declines from baseline were -1.69, -2.26, -2.07, -1.47 and -0.06 log10 copies/mL, respectively. CONCLUSIONS Freethiadine has an acceptable safety profile and favourable antiviral activity in patients with CHB. These results support further investigations of freethiadine for the treatment of chronic HBV infection. TRIAL REGISTRATION www. CLINICALTRIALS gov identifier NCT05391360; www.chinadrugtrials.org.cn identifier CTR20212114.
Collapse
Affiliation(s)
- Xiaojiao Li
- Phase I Clinical Trial Center, the First Hospital of Jilin University, Jilin, China
| | - Jia Xu
- Phase I Clinical Trial Center, the First Hospital of Jilin University, Jilin, China
| | - Jixuan Sun
- Phase I Clinical Trial Center, the First Hospital of Jilin University, Jilin, China
| | - Jingrui Liu
- Phase I Clinical Trial Center, the First Hospital of Jilin University, Jilin, China
| | - Min Wu
- Phase I Clinical Trial Center, the First Hospital of Jilin University, Jilin, China
| | - Hong Zhang
- Phase I Clinical Trial Center, the First Hospital of Jilin University, Jilin, China
| | - Xiaoxue Zhu
- Phase I Clinical Trial Center, the First Hospital of Jilin University, Jilin, China
| | - Cuiyun Li
- Phase I Clinical Trial Center, the First Hospital of Jilin University, Jilin, China
| | - Yingjun Zhang
- Sunshine Lake Pharma Co. Ltd., Dongguan, China
- Enterprise Key Laboratory of Anti-Viral Drug Development, Dongguan, China
| | - Jing Zhu
- Sunshine Lake Pharma Co. Ltd., Dongguan, China
- Enterprise Key Laboratory of Anti-Viral Drug Development, Dongguan, China
| | - Yujie Chen
- Sunshine Lake Pharma Co. Ltd., Dongguan, China
- Enterprise Key Laboratory of Anti-Viral Drug Development, Dongguan, China
| | - Lin Luo
- Sunshine Lake Pharma Co. Ltd., Dongguan, China
- Enterprise Key Laboratory of Anti-Viral Drug Development, Dongguan, China
| | - Qingwei He
- Sunshine Lake Pharma Co. Ltd., Dongguan, China
- Enterprise Key Laboratory of Anti-Viral Drug Development, Dongguan, China
| | - Yulei Zhuang
- Sunshine Lake Pharma Co. Ltd., Dongguan, China
- Enterprise Key Laboratory of Anti-Viral Drug Development, Dongguan, China
| | - Yunfu Chen
- Sunshine Lake Pharma Co. Ltd., Dongguan, China
- Enterprise Key Laboratory of Anti-Viral Drug Development, Dongguan, China
| | - Junqi Niu
- Department of Hepatology, the First Hospital of Jilin University, Jilin, China
| | - Yanhua Ding
- Phase I Clinical Trial Center, the First Hospital of Jilin University, Jilin, China
| |
Collapse
|
6
|
Agarwal K, Buti M, van Bömmel F, Lampertico P, Janczewska E, Bourliere M, Vanwolleghem T, Lenz O, Verbinnen T, Kakuda TN, Mayer C, Jezorwski J, Muenz D, Beumont M, Kalmeijer R, Biermer M, Lonjon-Domanec I. JNJ-73763989 and bersacapavir treatment in nucleos(t)ide analogue-suppressed patients with chronic hepatitis B: REEF-2. J Hepatol 2024; 81:404-414. [PMID: 38583491 DOI: 10.1016/j.jhep.2024.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/06/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND & AIMS Functional cure for chronic hepatitis B (CHB) requires finite treatment. Two agents under investigation with the goal of achieving functional cure are the small-interfering RNA JNJ-73763989 (JNJ-3989) and the capsid assembly modulator JNJ-56136379 (JNJ-6379; bersacapavir). METHODS REEF-2, a phase IIb, double-blind, placebo-controlled, randomized study, enrolled 130 nucleos(t)ide analogue (NA)-suppressed hepatitis B e-antigen (HBeAg)-negative patients with CHB who received JNJ-3989 (200 mg subcutaneously every 4 weeks) + JNJ-6379 (250 mg oral daily) + NA (oral daily; active arm) or placebos for JNJ-3989 and JNJ-6379 +active NA (control arm) for 48 weeks followed by 48 weeks off-treatment follow-up. RESULTS At follow-up Week 24, no patients achieved the primary endpoint of functional cure (off-treatment hepatitis B surface antigen [HBsAg] seroclearance). No patients achieved functional cure at follow-up Week 48. There was a pronounced on-treatment reduction in mean HBsAg from baseline at Week 48 in the active arm vs. no decline in the control arm (1.89 vs. 0.06 log10 IU/ml; p = 0.001). At follow-up Week 48, reductions from baseline were >1 log10 IU/ml in 81.5% vs. 12.5% of patients in the active and control arms, respectively, and 38/81 (46.9%) patients in the active arm achieved HBsAg <100 IU/ml vs. 6/40 (15.0%) patients in the control arm. Off-treatment HBV DNA relapse and alanine aminotransferase increases were less frequent in the active arm, with 7/77 (9.1%) and 11/41 (26.8%) patients in the active and control arms, respectively, restarting NAs during follow-up. CONCLUSIONS Finite 48-week treatment with JNJ-3989 + JNJ-6379 + NA resulted in fewer and less severe post-treatment HBV DNA increases and alanine aminotransferase flares, and a higher proportion of patients with off-treatment HBV DNA suppression, with or without HBsAg suppression, but did not result in functional cure. IMPACT AND IMPLICATIONS Achieving a functional cure from chronic hepatitis B (CHB) with finite treatments is a major unmet medical need. The current study assessed the rate of functional cure and clinical outcome after controlled nucleos(t)ide analogue (NA) withdrawal in patients with low levels of HBsAg induced by 48 weeks of treatment with the small-interfering RNA JNJ-3989 and the capsid assembly modulator JNJ-6379 plus NA vs. patients who only received NA treatment. Though functional cure was not achieved by any patient in either arm, the 48-week treatment regimen of JNJ-3989, JNJ-6379, and NA did result in more patients achieving pronounced reductions in HBsAg, with clinically meaningful reductions maintained for up to 48 weeks off all treatments, as well as fewer off-treatment HBV DNA increases and alanine aminotransferase flares. These findings provide valuable insights for future studies investigating potential finite treatment options, while the reported efficacy and safety outcomes may be of interest to healthcare providers making treatment decisions for patients with NA-suppressed HBeAg-negative CHB. CLINICALTRIALS GOV IDENTIFIER NCT04129554.
Collapse
Affiliation(s)
- Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, England.
| | - Maria Buti
- Hospital General Universitari Valle Hebron and CIBER-EHD del Instituto Carlos III, Barcelona, Spain
| | - Florian van Bömmel
- Leipzig University Medical Center, Department of Medicine II, Division of Hepatology, Leipzig, Germany
| | - Pietro Lampertico
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy; CRC "A.M. and A. Migliavacca" Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Ewa Janczewska
- Faculty of Health Sciences, Medical University of Silesia, Katowice, Poland
| | | | - Thomas Vanwolleghem
- Antwerp University Hospital, Edegem, Belgium; Viral Hepatitis Research Group, Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | - John Jezorwski
- Janssen Research & Development, LLC, Titusville, NJ, USA
| | | | | | | | | | | |
Collapse
|
7
|
Yuen MF, Chuang WL, Peng CY, Jeng WJ, Su WW, Chang TT, Chen CY, Hsu YC, De La Rosa G, Ahmad A, Luo E, Conery AL. Phase 1 trial of the safety, pharmacokinetics, and antiviral activity of EDP-514 in untreated viremic chronic hepatitis B patients. Clin Mol Hepatol 2024; 30:375-387. [PMID: 38528825 PMCID: PMC11261219 DOI: 10.3350/cmh.2023.0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND/AIMS Oral EDP-514 is a potent core protein inhibitor of hepatitis B virus (HBV) replication, which produced a >4-log viral load reduction in HBV-infected chimeric mice with human liver cells. This study evaluated the safety, pharmacokinetics, and antiviral activity of three doses of EDP-514 in treatment-naive viremic patients with HBeAgpositive or -negative chronic HBV infection. METHODS Patients with HBsAg detectable at screening and at least 6 months previously were eligible. HBeAg-positive and -negative patients had a serum/plasma HBV DNA level ≥20,000 and ≥2,000 IU/mL, respectively. Twenty-five patients were randomized to EDP-514 200 (n=6), 400 (n=6) or 800 mg (n=7) or placebo (n=6) once daily for 28 days. RESULTS A dose-related increase in EDP-514 exposure (AUClast and Cmax) was observed across doses. At Day 28, mean reductions in HBV DNA were -2.9, -3.3, -3.5 and -0.2 log10 IU/mL with EDP-514 200 mg, 400 mg, 800 mg, and placebo groups, respectively. The corresponding mean change from baseline for HBV RNA levels was -2.9, -2.4, -2.0, and -0.02 log10 U/mL. No virologic failures were observed. No clinically meaningful changes from baseline were observed for HBsAg, HBeAg or HBcrAg. Nine patients reported treatment emergent adverse events of mild or moderate severity with no discontinuations, serious AEs or deaths. CONCLUSION In treatment-naïve viremic patients, oral EDP-514 was generally safe and well-tolerated, displayed PK profile supportive of once-daily dosing, and markedly reduced HBV DNA and HBV RNA.
Collapse
Affiliation(s)
- Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, Queen Mary Hospital, and State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Yuan Peng
- Center for Digestive Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wen-Juei Jeng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Branch, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Wen Su
- Department of Gastroenterology and Hepatology, Changhua Christian Hospital, Changhua, Taiwan
| | - Ting-Tsung Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Infectious Disease and Signaling Research Center, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Yi Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Yao-Chun Hsu
- Center for Liver Diseases and School of Medicine, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Guy De La Rosa
- Formerly Enanta Pharmaceuticals, Inc., Watertown, MA, USA
- Currently at Curevo Vaccine, Bothell, Washington, USA
| | - Alaa Ahmad
- Enanta Pharmaceuticals, Inc., Watertown, MA, USA
| | - Ed Luo
- Enanta Pharmaceuticals, Inc., Watertown, MA, USA
| | | |
Collapse
|
8
|
Gopalakrishna H, Ghany MG. Perspective on Emerging Therapies to Achieve Functional Cure of Chronic Hepatitis B. CURRENT HEPATOLOGY REPORTS 2024; 23:241-252. [PMID: 38699562 PMCID: PMC11062629 DOI: 10.1007/s11901-024-00652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 05/05/2024]
Abstract
Purpose of Review Advancements in our understanding of the hepatitis B viral (HBV) life cycle have paved the way for novel approaches to treat HBV infection. This review summarizes the various strategies being pursued to achieve a functional cure, defined as loss of hepatitis B surface antigen (HBsAg) and absence of viral replication 6 months off-therapy. Recent Findings Direct acting antiviral, host targeting antiviral, and immunological approaches are in various stages of development as treatment for chronic HBV infection. Summary Novel treatments are being developed in pursuit of a cure for HBV. Current evidence suggests a single therapeutic agent alone may be insufficient, necessitating the need for combination therapy targeting HBV and the host immune response. Ongoing research focused on identifying the best therapeutic combination holds promise in achieving functional cure for HBV.
Collapse
Affiliation(s)
- Harish Gopalakrishna
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Building 10, Room 9B-16, Bethesda, MD 20892‐1800, USA
| | - Marc G. Ghany
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Building 10, Room 9B-16, Bethesda, MD 20892‐1800, USA
| |
Collapse
|
9
|
Ignat MD, Balta AAS, Barbu RE, Draganescu ML, Nechita L, Voinescu DC, Nechita A, Stefanopol IA, Busila C, Baroiu L. Antiviral Therapy of Chronic Hepatitis B Virus between Present and Future. J Clin Med 2024; 13:2055. [PMID: 38610820 PMCID: PMC11012273 DOI: 10.3390/jcm13072055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Background/Objectives: The objective of this study was to analyze the results of clinical trials regarding long-term antiviral therapies in chronic hepatitis with HBV to compare current therapeutic protocols and to analyze the results of preliminary studies with new antiviral therapies for HBV. Methods: Clinical studies and meta-analyses from PubMed, Google Scholar, and Research Gate from 2011 to 2024 were analyzed on patients undergoing chronic antiviral therapy for HBV, and a retrospective observational study performed in our clinic on a group of 76 patients undergoing chronic therapy with entecavir was presented. Also, a summary of the results of preliminary studies with various innovative antiviral molecules for HBV was performed. Results: The results of extensive clinical trials reveal that current therapies for chronic HBV are well tolerated and maintain good viral suppression if the patient is adherent to therapy. Innovative therapies aim to eliminate HBsAg and, thus, significantly shorten the duration of treatment, and the preliminary results of the studies are promising. Conclusions: Being an asymptomatic condition that requires life-long therapy, adherence to therapy is a real problem. Also, the risk of decompensation of liver cirrhosis and adenocarcinoma remains important in these patients. Future research is needed to perfect some antiviral therapy schemes that shorten the treatment period but also decrease the rate of progression towards decompensated cirrhosis and liver adenocarcinoma.
Collapse
Affiliation(s)
- Mariana Daniela Ignat
- Doctoral School of Biomedical Sciences, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.D.I.); (R.E.B.)
| | | | - Raisa Eloise Barbu
- Doctoral School of Biomedical Sciences, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.D.I.); (R.E.B.)
| | - Miruna Luminita Draganescu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Cuv. Parascheva’ Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
| | - Luiza Nechita
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania
| | - Doina Carina Voinescu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Apostol Andrei’ Clinical Emergency County Hospital, 800578 Galati, Romania
| | - Aurel Nechita
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Ioan’ Clinical Hospital for Children, 800487 Galati, Romania;
| | - Ioana Anca Stefanopol
- ‘Sf. Ioan’ Clinical Hospital for Children, 800487 Galati, Romania;
- Clinical Surgical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania
| | - Camelia Busila
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Ioan’ Clinical Hospital for Children, 800487 Galati, Romania;
| | - Liliana Baroiu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, ‘Dunarea de Jos’ University, 800008 Galati, Romania; (M.L.D.); (L.N.); (D.C.V.); (A.N.); (C.B.); (L.B.)
- ‘Sf. Cuv. Parascheva’ Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
| |
Collapse
|
10
|
Nasser N, Tonnerre P, Mansouri A, Asselah T. Hepatitis-B virus: replication cycle, targets, and antiviral approaches. Curr Opin Virol 2023; 63:101360. [PMID: 37696687 DOI: 10.1016/j.coviro.2023.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/13/2023]
Abstract
An estimated 257 million people are chronic carriers of hepatitis-B virus (HBV) infection, which resulted in around 1 million deaths, mainly due to hepatocellular carcinoma (HCC). Long-term nucleotide analog treatment of HBV infection is associated with favorable prognosis, no disease progression, and a reduction of HCC risk, but lifelong treatments are required. A better understanding of HBV replication cycle and the host immune response will likely improve the identification of new targets for drug development. Studies are ongoing to determine if it is possible to successfully combine direct-acting antivirals (DAA) with an immunomodulatory therapy to allow increased cure rates. This review will start with summarizing the HBV replication cycle, recall current treatments, and then discuss potential targets and antiviral approaches in development to optimistically reach the HBV cure.
Collapse
Affiliation(s)
- Nour Nasser
- Université Paris-Cité, Centre de recherche sur l'inflammation, Inserm U1149, Paris, France; Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Pierre Tonnerre
- Université Paris-Cité, Inserm UMR 976, Human Immunology, Pathophysiology and Immunotherapy (HIPI), team ATIP-Avenir, Paris, France
| | - Abdellah Mansouri
- Université Paris-Cité, Centre de recherche sur l'inflammation, Inserm U1149, Paris, France; Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France
| | - Tarik Asselah
- Université Paris-Cité, Centre de recherche sur l'inflammation, Inserm U1149, Paris, France; Department of Hepatology, AP-HP, Hôpital Beaujon, Clichy, France.
| |
Collapse
|
11
|
Korkmaz P, Asan A, Karakeçili F, Tekin S, Demirtürk N. New Treatment Options in Chronic Hepatitis B: How Close Are We to Cure? INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2023; 5:267-280. [PMID: 38633851 PMCID: PMC10986727 DOI: 10.36519/idcm.2023.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 04/19/2024]
Abstract
Hepatitis B virus (HBV) infection is the leading cause of chronic liver disease worldwide. HBV-infected patients are at a lifetime risk of developing liver cirrhosis and hepatocellular carcinoma (HCC). Today, pegylated interferon (Peg-IFN) and nucleos(t)ide analogs (NAs) are used in the treatment of patients with chronic hepatitis B (CHB). Both treatment options have limitations. Despite effective viral suppression, NAs have little effect on covalently closed circular DNA (cccDNA), the stable episomal form of the HBV genome in hepatocytes. Therefore, the cure rate with NAs is low, and long-term treatment is required. Although the cure rate is better with Peg-IFN, it is difficult to tolerate due to drug side effects. Therefore, new treatment options are needed in the treatment of HBV infection. We can group new treatments under two headings: those that interfere with the viral life cycle and spread and those that modulate the immune response. Clinical studies show that combinations of treatments that directly target the viral life cycle and treatments that regulate the host immune system will be among the important treatment strategies in the future. As new direct-acting antiviral (DAA) and immunomodulatory therapies continue to emerge and evolve, functional cures in HBV treatment may be an achievable goal.
Collapse
Affiliation(s)
- Pınar Korkmaz
- Department of Infectious Diseases and Clinical Microbiology, Kütahya Health Sciences University School of Medicine, Kütahya, Türkiye
| | - Ali Asan
- Department of Infectious Diseases and Clinical Microbiology, Bursa Health Sciences University School of Medicine, Bursa, Türkiye
| | - Faruk Karakeçili
- Department of Infectious Diseases and Clinical Microbiology, Erzincan Binali Yıldırım University School of Medicine, Erzincan, Türkiye
| | - Süda Tekin
- Department of Infectious Diseases and Clinical Microbiology, Koç University School of Medicine, İstanbul, Türkiye
| | - Neşe Demirtürk
- Department of Infectious Diseases and Clinical Microbiology, Afyonkarahisar Health Sciences University, School of Medicine, Afyonkarahisar, Türkiye
| |
Collapse
|
12
|
Nayak S, Gowda J, Abbas SA, Kim H, Han SB. Recent Advances in the Development of Sulfamoyl-Based Hepatitis B Virus Nucleocapsid Assembly Modulators. Viruses 2023; 15:2367. [PMID: 38140607 PMCID: PMC10747759 DOI: 10.3390/v15122367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Hepatitis B virus (HBV) is the primary contributor to severe liver ailments, encompassing conditions such as cirrhosis and hepatocellular carcinoma. Globally, 257 million people are affected by HBV annually and 887,000 deaths are attributed to it, representing a substantial health burden. Regrettably, none of the existing therapies for chronic hepatitis B (CHB) have achieved satisfactory clinical cure rates. This issue stems from the existence of covalently closed circular DNA (cccDNA), which is difficult to eliminate from the nucleus of infected hepatocytes. HBV genetic material is composed of partially double-stranded DNA that forms complexes with viral polymerase inside an icosahedral capsid composed of a dimeric core protein. The HBV core protein, consisting of 183 to 185 amino acids, plays integral roles in multiple essential functions within the HBV replication process. In this review, we describe the effects of sulfamoyl-based carboxamide capsid assembly modulators (CAMs) on capsid assembly, which can suppress HBV replication and disrupt the production of new cccDNA. We present research on classical, first-generation sulfamoyl benzocarboxamide CAMs, elucidating their structural composition and antiviral efficacy. Additionally, we explore newly identified sulfamoyl-based CAMs, including sulfamoyl bicyclic carboxamides, sulfamoyl aromatic heterocyclic carboxamides, sulfamoyl aliphatic heterocyclic carboxamides, cyclic sulfonamides, and non-carboxamide sulfomoyl-based CAMs. We believe that certain molecules derived from sulfamoyl groups have the potential to be developed into essential components of a well-suited combination therapy, ultimately yielding superior clinical efficacy outcomes in the future.
Collapse
Affiliation(s)
- Sandesha Nayak
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jayaraj Gowda
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Syed Azeem Abbas
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Hyejin Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Soo Bong Han
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
13
|
Kou B, Zhang Z, Han X, Zhou Z, Xu Z, Zhou X, Shen F, Zhou Y, Tian X, Yang G, Young JAT, Qiu H, Ottaviani G, Mayweg A, Zhu W, Shen HC, Liu H, Hu T. Discovery of 4,5,6,7-Tetrahydropyrazolo[1.5-a]pyrizine Derivatives as Core Protein Allosteric Modulators (CpAMs) for the Inhibition of Hepatitis B Virus. J Med Chem 2023; 66:14116-14132. [PMID: 37801325 DOI: 10.1021/acs.jmedchem.3c01145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Hepatitis B Virus (HBV) core protein allosteric modulators (CpAMs) are an attractive class of potential anti-HBV therapeutic agents. Here we describe the efforts toward the discovery of a series of 4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine (THPP) compounds as HBV CpAMs that effectively inhibit a broad range of nucleos(t)ide-resistant HBV variants. The lead compound 45 demonstrated inhibition of HBV DNA viral load in a HBV AAV mouse model by oral administration.
Collapse
Affiliation(s)
- Buyu Kou
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Zhisen Zhang
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Xingchun Han
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Zheng Zhou
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Lead Discovery, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Zhiheng Xu
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Lead Discovery, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Xue Zhou
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Discovery Virology, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Fang Shen
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Discovery Virology, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Yuan Zhou
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Discovery Virology, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Xiaojun Tian
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Discovery Virology, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Guang Yang
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Discovery Virology, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - John A T Young
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Discovery Virology, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Hongxia Qiu
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Pharmaceutical Sciences, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Giorgio Ottaviani
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Pharmaceutical Sciences, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Alexander Mayweg
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Wei Zhu
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Hong C Shen
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Haixia Liu
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Taishan Hu
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| |
Collapse
|
14
|
Olenginski LT, Attionu SK, Henninger EN, LeBlanc RM, Longhini AP, Dayie TK. Hepatitis B Virus Epsilon (ε) RNA Element: Dynamic Regulator of Viral Replication and Attractive Therapeutic Target. Viruses 2023; 15:1913. [PMID: 37766319 PMCID: PMC10534774 DOI: 10.3390/v15091913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatitis B virus (HBV) chronically infects millions of people worldwide, which underscores the importance of discovering and designing novel anti-HBV therapeutics to complement current treatment strategies. An underexploited but attractive therapeutic target is ε, a cis-acting regulatory stem-loop RNA situated within the HBV pregenomic RNA (pgRNA). The binding of ε to the viral polymerase protein (P) is pivotal, as it triggers the packaging of pgRNA and P, as well as the reverse transcription of the viral genome. Consequently, small molecules capable of disrupting this interaction hold the potential to inhibit the early stages of HBV replication. The rational design of such ligands necessitates high-resolution structural information for the ε-P complex or its individual components. While these data are currently unavailable for P, our recent structural elucidation of ε through solution nuclear magnetic resonance spectroscopy marks a significant advancement in this area. In this review, we provide a brief overview of HBV replication and some of the therapeutic strategies to combat chronic HBV infection. These descriptions are intended to contextualize our recent experimental efforts to characterize ε and identify ε-targeting ligands, with the ultimate goal of developing novel anti-HBV therapeutics.
Collapse
Affiliation(s)
- Lukasz T. Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Solomon K. Attionu
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| | - Erica N. Henninger
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| | - Regan M. LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| | - Andrew P. Longhini
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Theodore K. Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| |
Collapse
|
15
|
Yuen MF, Asselah T, Jacobson IM, Brunetto MR, Janssen HLA, Takehara T, Hou JL, Kakuda TN, Lambrecht T, Beumont M, Kalmeijer R, Guinard-Azadian C, Mayer C, Jezorwski J, Verbinnen T, Lenz O, Shukla U, Biermer M. Efficacy and safety of the siRNA JNJ-73763989 and the capsid assembly modulator JNJ-56136379 (bersacapavir) with nucleos(t)ide analogues for the treatment of chronic hepatitis B virus infection (REEF-1): a multicentre, double-blind, active-controlled, randomised, phase 2b trial. Lancet Gastroenterol Hepatol 2023; 8:790-802. [PMID: 37442152 DOI: 10.1016/s2468-1253(23)00148-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND JNJ-73763989 (JNJ-3989), a small interfering RNA, targets all hepatitis B virus (HBV) RNAs, reducing all HBV proteins. JNJ-56136379 (JNJ-6379; also known as bersacapavir), a capsid assembly modulator, inhibits HBV replication. We aimed to evaluate the efficacy (ie, antiviral activity) and safety of these therapeutics in combination with nucleos(t)ide analogues in patients with chronic hepatitis B. METHODS The REEF-1 multicentre, double-blind, active-controlled, randomised, phase 2b study was done at 108 hospitals or outpatient centres across 19 countries in Asia, Europe, and North and South America. We included patients aged 18-65 years with chronic hepatitis B (defined as HBsAg positivity at screening and at least 6 months before screening or alternative markers of chronicity [eg, HBV DNA]), including those not currently treated, virologically suppressed, HBeAg positive, and HBeAg negative. Patients were randomly assigned (1:1:2:2:2:2) via permuted block randomisation according to a computer-generated schedule to receive oral nucleos(t)ide analogues once per day plus placebo (control group); oral JNJ-6379 250 mg daily plus nucleos(t)ide analogues (JNJ-6379 dual group); nucleos(t)ide analogues plus subcutaneously injected JNJ-3989 at doses of 40 mg (JNJ-3989 dual 40 mg group), 100 mg (JNJ-3989 dual 100 mg group), or 200 mg (JNJ-3989 dual 200 mg group) every 4 weeks; or JNJ-6379 250 mg plus JNJ-3989 100 mg every 4 weeks plus nucleos(t)ide analogues (triple group) for 48 weeks followed by a follow-up phase. An interactive web response system provided concealed treatment allocation, and investigators remained masked to the intervention groups until the primary analysis at week 48. The primary endpoint was the proportion of patients meeting predefined nucleos(t)ide analogue-stopping criteria (alanine aminotransferase <3 × upper limit of normal, HBV DNA below the lower limit of quantitation, HBeAg negative, and HBsAg <10 IU/mL) at week 48. All patients who received at least one dose of study drug were included in the analysis population used for primary efficacy assessment, excluding those who withdrew because of COVID-19-related reasons, withdrew before week 44, or had no efficacy data (ie, the modified intention-to-treat population). Safety was assessed in all participants who received at least one dose of study drugs. This trial is registered with ClinicalTrials.gov, NCT03982186. The study has been completed. FINDINGS Between Aug 1, 2019, and April 26, 2022, 470 patients (310 [66%] male and 244 [52%] White) were randomly assigned: 45 to the control group, 48 to the JNJ-6379 dual group, 93 to the JNJ-3989 dual 40 mg group, 93 to the JNJ-3989 dual 100 mg group, 96 to the JNJ-3989 dual 200 mg group, and 95 to the triple group. At week 48, five (5%; 90% CI 2-11) of 91 patients in the JNJ-3989 dual 40 mg group, 15 (16%; 10-24) of 92 in the JNJ-3989 dual 100 mg group, 18 (19%; 13-27) of 94 in the JNJ-3989 dual 200 mg group, eight (9%; 4-15) of 94 in the triple group, and one (2%; 0-10) of 45 in the control group met nucleos(t)ide analogue stopping criteria. No patients in the JNJ-6379 dual group met stopping criteria. 38 (81%) patients who met nucleos(t)ide analogue-stopping criteria at week 48 were virologically suppressed and HBeAg negative at baseline. Ten (2%) of 470 patients had serious adverse events during the treatment phase, and two patients (one each from the JNJ-3989 dual 200 mg group [exercise-related rhabdomyolysis] and the triple group [increase in ALT or AST]) had serious adverse events related to study treatment. During follow-up, 12 (3%) of 460 patients had a serious adverse event; one (<1%), a gastric ulcer, was considered to be related to nucleos(t)ide analogues and occurred in a patient from the JNJ-3989 dual 200 mg group. 29 (6%) of 460 patients in the treatment phase and in ten (2%) of 460 patients in the follow-up phase had grade 3 or 4 adverse events. Five (1%) of 470 patients discontinued treatment due to adverse events, and there were no deaths. INTERPRETATION Although treatment with JNJ-3989 led to a dose-dependent response for meeting nucleos(t)ide analogue-stopping criteria, it rarely led to HBsAg seroclearance. However, most patients treated with JNJ-3989 had clinically meaningful reductions in HBsAg that might contribute to a liver environment conducive to better immune control and, in turn, might improve the response to immune-modulating therapies. FUNDING Janssen Research and Development.
Collapse
Affiliation(s)
- Man-Fung Yuen
- Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, and State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| | - Tarik Asselah
- Université de Paris-Cité, Department of Hepatology, AP-HP Hôpital Beaujon, Clichy, INSERM UMR1148, France
| | - Ira M Jacobson
- Division of Gastroenterology and Hepatology, New York University Langone Health, New York, NY, USA
| | - Maurizia Rossana Brunetto
- Hepatology Unit and Laboratory of Molecular Genetics and Pathology of Hepatitis Viruses, University Hospital of Pisa, Pisa, Italy
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON, Canada; Erasmus Medical Center, Rotterdam, Netherlands
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Jin Lin Hou
- Department of Infectious Diseases, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | | | | | - Maria Beumont
- Janssen Research and Development, Titusville, NJ, USA
| | | | | | | | | | | | | | - Umesh Shukla
- Janssen Research and Development, Titusville, NJ, USA
| | | |
Collapse
|
16
|
Roma K, Chandler TM, Dossaji Z, Patel A, Gupta K, Minacapelli CD, Rustgi V, Gish R. A Review of the Systemic Manifestations of Hepatitis B Virus Infection, Hepatitis D Virus, Hepatocellular Carcinoma, and Emerging Therapies. GASTRO HEP ADVANCES 2023; 3:276-291. [PMID: 39129946 PMCID: PMC11308766 DOI: 10.1016/j.gastha.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/26/2023] [Indexed: 08/13/2024]
Abstract
Chronic hepatitis B virus (HBV) infection affects about 262 million people worldwide, leading to over 820,000 deaths each year primarily due to cirrhosis and hepatocellular carcinoma. The World Health Organization has pledged to eliminate HBV as a health threat by 2030, but currently, no countries are on track to achieve this goal. One of the barriers to HBV elimination is stigma, causing shame, denial, self-isolation, self-rejection, and depression leading to those with chronic HBV less likely to get tested or seek treatment and more likely to conceal their infection. Other barriers include limited access to care and complicated and restrictive clinical practice guidelines. Increasing public and political efforts are necessary to raise awareness, increase access to care, and change screening and treatment guidelines. The current guidance of the American Association for the Study of Liver Diseases (AASLD) recommends testing only if patients are considered at risk, but this has proven to be ineffective. We propose a simplified "test all and treat all" approach with a 5-line guideline for HBV infection. Universal screening and treatment of adults is cost-effective and can prevent transmission by effectively managing chronic HBV. All patients who are hepatitis B surface antigen (HBsAg) positive with detectable HBV-DNA should receive treatment until HBsAg is undetectable for 12 months, as HBV-DNA transmission via blood transfusion can occur even at low viral loads of 16 copies/mL, and mother-to-child transmission is still a risk even with passive-active immunoprophylaxis. Furthermore, clinical outcomes after HBsAg clearance are significantly better than the clinical outcomes of those who remain HBsAg positive.
Collapse
Affiliation(s)
- Katerina Roma
- Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, Nevada
| | - Toni-Marie Chandler
- Division of Gastroenterology and Hepatology, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
| | - Zahra Dossaji
- Internal Medicine, Kirk Kerkorian School of Medicine at the University of Nevada, Las Vegas, Nevada
| | - Ankoor Patel
- Internal Medicine, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), Rutgers University, New Brunswick, New Jersey
| | - Kapil Gupta
- Division of Gastroenterology and Hepatology, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
| | - Carlos D. Minacapelli
- Division of Gastroenterology and Hepatology, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
| | - Vinod Rustgi
- Division of Gastroenterology and Hepatology, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
- Center for Liver Diseases and Masses, Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences (RBHS), New Brunswick, New Jersey
| | - Robert Gish
- Hepatitis B Foundation, Doylestown, Pennsylvania
| |
Collapse
|
17
|
Feld JJ, Lok AS, Zoulim F. New Perspectives on Development of Curative Strategies for Chronic Hepatitis B. Clin Gastroenterol Hepatol 2023; 21:2040-2050. [PMID: 37080262 DOI: 10.1016/j.cgh.2023.02.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/24/2023] [Accepted: 02/28/2023] [Indexed: 04/22/2023]
Abstract
A functional cure of chronic hepatitis B defined as sustained hepatitis B surface antigen loss after finite course of therapy is rarely achieved with current therapy but is the goal of novel treatments. Understanding the virological and immunological mechanisms of hepatitis B virus persistence has enabled the identification of novel treatment targets, drug discovery, and the evaluation of novel agents in clinical trials. Lessons were learned from early phase 1 and phase 2 trials regarding the antiviral activity and safety profile of these agents. There is a strong rationale to combine agents to reduce viral replication, reduce viral antigen load, invigorate immune responses, and induce specific adaptive immune responses. Nucleos(t)ide analogs will likely remain an essential backbone of future combinations to control viral replication and prevent resistance to antiviral drugs. In this review, we discuss perspectives on approaches to achieving functional cure, with a review of virological and immunological strategies, highlighting challenges and unresolved questions with the various attempts to achieve cure, as well as exploring alternative endpoints such as partial cure and new noninvasive viral and immunological biomarkers to stratify patients and predict/monitor antiviral response.
Collapse
Affiliation(s)
- Jordan J Feld
- Toronto Centre for Liver Disease, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan
| | - Fabien Zoulim
- INSERM Unit 1052 - Cancer Research Center of Lyon, Lyon Hepatology Institute, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
18
|
Janssen HLA, Hou J, Asselah T, Chan HLY, Zoulim F, Tanaka Y, Janczewska E, Nahass RG, Bourgeois S, Buti M, Lampertico P, Lenz O, Verbinnen T, Vandenbossche J, Talloen W, Kalmeijer R, Beumont M, Biermer M, Shukla U. Randomised phase 2 study (JADE) of the HBV capsid assembly modulator JNJ-56136379 with or without a nucleos(t)ide analogue in patients with chronic hepatitis B infection. Gut 2023; 72:1385-1398. [PMID: 36697207 PMCID: PMC10313999 DOI: 10.1136/gutjnl-2022-328041] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE We present the final analysis results of the phase 2 JADE study (ClinicalTrials.gov Identifier: NCT03361956). DESIGN 232 patients with chronic hepatitis B (CHB) not currently treated at study start (NCT) at study start or virologically suppressed were randomised to receive 75 mg (part 1) or 250 mg (part 2) JNJ-56136379, a hepatitis B virus (HBV)-capsid assembly modulator, one time per day or placebo with nucleos(t)ide analogue (NA) (tenofovir disoproxil fumarate/entecavir) or JNJ-56136379 alone (NCT-only) for ≥24 and ≤48 weeks. RESULTS In patients who are NCT hepatitis B e-antigen (HBeAg) positive, JNJ-56136379 75 mg+NA and 250 mg+NA showed limited mean (SE) hepatitis B surface antigen (HBsAg) declines (0.14 (0.10) and 0.41 (0.15), respectively) from baseline at Week 24 (primary endpoint; placebo+NA: 0.25 (0.11) log10 international unit (IU)/mL).In patients who are NCT HBeAg positive, mean (SE) HBV DNA declines at Week 24 were 5.53 (0.23) and 5.88 (0.34) for JNJ-56136379 75 mg+NA and 250 mg+NA, respectively, versus 5.21 (0.42) log10 IU/mL for placebo+NA. In NCT patients, mean (SE) HBV RNA declines were 2.96 (0.23) and 3.15 (0.33) versus 1.33 (0.32) log10 copies/mL, respectively.Patients with HBsAg declines had HBeAg and hepatitis B core-related antigen (HBcrAg) declines and some early on-treatment isolated alanine aminotransferase flares. Viral breakthrough occurred with JNJ-56136379 monotherapy with the emerging resistant-variant T33N, but not with JNJ-56136379+NA. JNJ-56136379 treatment beyond Week 24 had a generally small additional effect on viral markers.No study treatment-related serious adverse events or clinically significant changes in laboratory parameters occurred. CONCLUSIONS In patients with non-cirrhotic CHB, JNJ-56136379+NA showed pronounced reductions in HBV DNA and HBV RNA, limited HBsAg or HBeAg declines in patients who are NCT HBeAg positive, and was well tolerated, but no clear benefit with regards to efficacy of JNJ-56136379 over NA was observed.
Collapse
Affiliation(s)
- Harry L A Janssen
- Toronto General Hospital, Toronto, Ontario, Canada
- Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Jinlin Hou
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tarik Asselah
- Université de Paris Cité, INSERM UMR1149, Hôpital Beaujon AP-HP, Clichy, France
| | - Henry L Y Chan
- The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fabien Zoulim
- Hospices Civils de Lyon and Lyon University & INSERM U1052-Cancer Research Institute of Lyon, Lyon, France
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Kumamoto University, Kumamoto, Japan
| | - Ewa Janczewska
- Faculty of Health Sciences in Bytom, Medical University of Silesia, Katowice, Poland
| | | | | | - Maria Buti
- Hospital Universitario Vall d'Hebrón and CIBERHED del Instituto Carlos III, Barcelona, Spain
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, CRC 'A. M. and A. Migliavacca' Center for Liver Disease, University of Milan, Milan, Italy
| | | | | | | | | | | | - Maria Beumont
- Janssen Pharmaceuticals R&D, Titusville, New Jersey, USA
| | | | - Umesh Shukla
- Janssen Pharmaceuticals R&D, Titusville, New Jersey, USA
| |
Collapse
|
19
|
Verbinnen T, Talloen W, Janssen HLA, Zoulim F, Shukla U, Vandenbossche JJ, Biermer M, De Meyer S, Lenz O. Viral sequence analysis of chronic hepatitis B patients treated with the capsid assembly modulator JNJ-56136379 in the JADE phase 2a study. Antiviral Res 2023:105660. [PMID: 37385475 DOI: 10.1016/j.antiviral.2023.105660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND & AIMS In the monotherapy arms of the phase 2 JADE study (ClinicalTrials.gov Identifier: NCT03361956) evaluating the safety and efficacy of JNJ-56136379 (capsid assembly modulator-class E) with/without nucleos(t)ide analogue (NA), viral breakthroughs (VBT) were observed, leading to JNJ-56136379 monotherapy discontinuation. We present the viral sequencing analysis of JNJ-56136379±NA-treated hepatitis B virus (HBV)-infected patients. METHODS The HBV full genome was sequenced using next generation sequencing. Baseline amino acid (aa) polymorphisms were defined as changes versus the universal HBV reference sequence (sequence read frequency >15%). Emerging mutations were defined as aa changes versus baseline sequence (frequency <1% at baseline and ≥15% post-baseline). RESULTS 6/28 JNJ-56136379 75 mg monotherapy arm patients experienced VBT; all 6 had emerging JNJ-56136379-resistant variants T33N (n = 5; fold change [FC] = 85) or F23Y (n = 1; FC = 5.2). 1/32 JNJ-56136379 250 mg arm patients (genotype-E) had <1 log10 IU/mL decline in HBV DNA at Week 4, experienced VBT at Week 8, and carried the I105T baseline polymorphism (FC = 7.9), but had no emerging variants. Eight additional monotherapy-treated patients had shallow second phases of their HBV DNA profile and emerging T33N (n = 7) or F23Y (n = 1) variants. NA initiation (switch [75 mg arm]; add-on [250 mg arm]) in all monotherapy patients with VBT resulted in HBV DNA decline in all patients. No VBT was observed during JNJ-56136379+NA combination therapy. CONCLUSIONS JNJ-56136379 monotherapy resulted in VBT and was associated with the selection of JNJ-56136379-resistant variants. Efficacy of NA treatment (de novo combination or rescue therapy for VBT) was not impacted, confirming the lack of cross-resistance between these drug classes. CLINICAL TRIAL NUMBER NCT03361956.
Collapse
Affiliation(s)
| | - Willem Talloen
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Harry L A Janssen
- Toronto General Hospital, 200 Elizabeth St, Toronto, ON, M5G 2C4, Canada; Erasmus MC University Hospital Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Fabien Zoulim
- INSERM Unit 1052-Cancer Research Institute of Lyon, Hospices Civils de Lyon, Lyon University, 69008, Lyon, France
| | - Umesh Shukla
- Janssen Pharmaceuticals Research & Development, LLC 1125 Trenton Harbourton Rd, Titusville, NJ, 08560, USA
| | | | - Michael Biermer
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Sandra De Meyer
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Oliver Lenz
- Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
20
|
Schlaak JF. Current Therapy of Chronic Viral Hepatitis B, C and D. J Pers Med 2023; 13:964. [PMID: 37373953 DOI: 10.3390/jpm13060964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/22/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The majority of chronic viral hepatitis cases are induced via infection with the hepatitis B virus (HBV), hepatitis C virus (HCV), or hepatitis D virus (HDV). These patients are at increased risk for progressive liver disease leading to cirrhosis as well as hepatocellular carcinoma (HCC). HBV infection is well controlled by the currently available nucleosides as well as nucleotides, and the development of cirrhosis can be prevented. Additionally, it has been shown that HBV-induced liver fibrosis can regress during successful antiviral treatment; however, a "functional cure", i.e., loss of HBsAg, is a rare event when these drugs are used. Therefore, novel therapeutic strategies are aiming at the selective suppression of HBsAg levels in combination with immunostimulation. The development of directly acting antivirals (DAAs) has revolutionized HCV therapy, as almost all patients can be cured via this treatment. Additionally, DAA therapy has few, if any, side effects, and is generally well tolerated by patients. HDV remains the most challenging type of chronic viral hepatitis. Although novel therapeutic options have recently been approved, response rates are still less favorable compared to HBV and HCV. This review discusses current and future options for the treatment of chronic HBV, HCV, and HDV infection.
Collapse
Affiliation(s)
- Jörg F Schlaak
- Department of Internal Medicine, Ameos Hospital Oberhausen, Wilhelmstr. 34, 46145 Oberhausen, Germany
| |
Collapse
|
21
|
Khan N, Almajed MR, Fitzmaurice MG, Jafri SM. Developments in pharmacotherapeutic agents for hepatitis B - how close are we to a functional cure? Expert Opin Pharmacother 2023; 24:1001-1011. [PMID: 37163255 DOI: 10.1080/14656566.2023.2211259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
INTRODUCTION Hepatitis B virus (HBV) remains a public health concern given its global prevalence and potential complications including hepatocellular carcinoma (HCC). Current therapies, including nucleos(t)ide analogs (NA) and interferons (IFN), are effective in chronic treatment of HBV but rarely provide a functional cure due to inadequate host response and the presence of viral DNA. Therefore, novel therapies that enhance the innate immune response while suppressing DNA transcription may provide definitive treatment of HBV. AREAS COVERED In this review, the authors provide a brief overview of commonly used agents and their efficacy in treatment of HBV. Newer therapies with direct antiviral agents such as bepirovirsen (antisense oligonucleotide (ASO)) and entry inhibitors such as bulevirtide have shown efficacy in reducing viral load but demonstrate further reductions in conjunction with immune modulators such as therapeutic vaccines. EXPERT OPINION Combination therapy is far superior to monotherapy alone, necessitating the need for both immunomodulators and direct antiviral agents in chronic treatment of HBV. Therapies that target covalently closed circular (cccDNA) with immunomodulators like therapeutic vaccines have shown promising results and may ultimately achieve functional cure. However, therapies need to be evaluated in the context of the patient, considering both financial and socioeconomic factors.
Collapse
Affiliation(s)
- Naoshin Khan
- Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| | - Mohamed Ramzi Almajed
- Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| | - Mary Grace Fitzmaurice
- Pharmacy Department and Transplant Institute, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| | - Syed-Mohammed Jafri
- Division of Gastroenterology and Hepatology, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202, USA
| |
Collapse
|
22
|
Ranga A, Gupta A, Yadav L, Kumar S, Jain P. Advancing beyond reverse transcriptase inhibitors: The new era of hepatitis B polymerase inhibitors. Eur J Med Chem 2023; 257:115455. [PMID: 37216809 DOI: 10.1016/j.ejmech.2023.115455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023]
Abstract
Hepatitis B virus (HBV) is a genetically diverse blood-borne virus responsible for chronic hepatitis B. The HBV polymerase plays a key role in viral genome replication within the human body and has been identified as a potential drug target for chronic hepatitis B therapeutics. However, available nucleotide reverse transcriptase inhibitors only target the reverse transcriptase domain of the HBV polymerase; they also pose resistance issues and require lifelong treatment that can burden patients financially. In this study, various chemical classes are reviewed that have been developed to target different domains of the HBV polymerase: Terminal protein, which plays a vital role in the formation of the viral DNA; Reverse transcriptase, which is responsible for the synthesis of the viral DNA from RNA, and; Ribonuclease H, which is responsible for degrading the RNA strand in the RNA-DNA duplex formed during the reverse transcription process. Host factors that interact with the HBV polymerase to achieve HBV replication are also reviewed; these host factors can be targeted by inhibitors to indirectly inhibit polymerase functionality. A detailed analysis of the scope and limitations of these inhibitors from a medicinal chemistry perspective is provided. The structure-activity relationship of these inhibitors and the factors that may affect their potency and selectivity are also examined. This analysis will be useful in supporting the further development of these inhibitors and in designing new inhibitors that can inhibit HBV replication more efficiently.
Collapse
Affiliation(s)
- Abhishek Ranga
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India
| | - Aarti Gupta
- Department of Pharmaceutical Biotechnology, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India
| | - Laxmi Yadav
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India.
| | - Priti Jain
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, MB Road, New Delhi, 110017, India.
| |
Collapse
|
23
|
Mak LY, Hui RWH, Cheung KS, Fung J, Seto WK, Yuen MF. Advances in determining new treatments for hepatitis B infection by utilizing existing and novel biomarkers. Expert Opin Drug Discov 2023; 18:401-416. [PMID: 36943183 DOI: 10.1080/17460441.2023.2192920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Chronic hepatitis B (CHB) infection is a major global health threat and accounts for significant liver-related morbidity and mortality. An improved understanding of how hepatitis B virus (HBV) interacts with the host immune system allows the discovery of novel biomarkers and new treatment options. Viral biomarkers including hepatitis B surface antigen (HBsAg) and newer ones like HBV RNA and hepatitis B core-related antigen appear to be useful to select patients who are likely to benefit from cessation of long-term antiviral therapy. These markers can also help to confirm target engagement for novel compounds, and efficacy in HBsAg reduction and seroclearance is deemed essential as this is how the current treatment endpoint of functional cure is defined. AREAS COVERED In this review, the authors discuss the current standard of care and the gaps between such standard and the ideal goals for treatment in CHB. The authors highlight novel viral and immunological biomarkers that are potentially useful to evaluate treatment response. Novel treatment approaches in relation to these novel biomarkers are also evaluated. EXPERT OPINION Novel serum viral biomarkers and immunological markers are indispensable in the HBV functional cure program. These will likely become part of standard monitoring soon.
Collapse
Affiliation(s)
- Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Rex Wan-Hin Hui
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
| | - Ka-Shing Cheung
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
| | - James Fung
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
24
|
Jia H, Mai J, Wu M, Chen H, Li X, Li C, Liu J, Liu C, Hu Y, Zhu X, Jiang X, Hua B, Xia T, Liu G, Deng A, Liang B, Guo R, Lu H, Wang Z, Chen H, Zhang Z, Zhang H, Niu J, Ding Y. Safety, tolerability, pharmacokinetics, and antiviral activity of the novel core protein allosteric modulator ZM-H1505R (Canocapavir) in chronic hepatitis B patients: a randomized multiple-dose escalation trial. BMC Med 2023; 21:98. [PMID: 36927420 PMCID: PMC10022191 DOI: 10.1186/s12916-023-02814-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) core protein-targeting antivirals (CpTAs) are promising therapeutic agents for treating chronic hepatitis B (CHB). In this study, the antiviral activity, pharmacokinetics (PK), and tolerability of ZM-H1505R (Canocapavir), a chemically unique HBV CpTA, were evaluated in patients with CHB. METHODS This study was a double-blind, randomized, placebo-controlled phase 1b trial in Chinese CHB patients. Noncirrhotic and treatment-naive CHB patients were divided into three cohorts (10 patients per cohort) and randomized within each cohort in a ratio of 4:1 to receive a single dose of 50, 100, or 200 mg of Canocapavir or placebo once a day for 28 consecutive days. RESULTS Canocapavir was well tolerated, with the majority of adverse reactions being grade I or II in severity. There were no serious adverse events, and no patients withdrew from the study. Corresponding to 50, 100, and 200 mg doses of Canocapavir, the mean plasma trough concentrations of the drug were 2.7-, 7.0-, and 14.6-fold of its protein-binding adjusted HBV DNA EC50 (135 ng/mL), respectively, with linear PK and a low-to-mild accumulation rate (1.26-1.99). After 28 days of treatment, the mean maximum HBV DNA declines from baseline were -1.54, -2.50, -2.75, and -0.47 log10 IU/mL for the 50, 100, and 200 mg of Canocapavir or placebo groups, respectively; and the mean maximum pregenomic RNA declines from baseline were -1.53, -2.35, -2.34, and -0.17 log10 copies/mL, respectively. CONCLUSIONS Canocapavir treatment is tolerated with efficacious antiviral activity in CHB patients, supporting its further development in treating HBV infection. TRIAL REGISTRATION ClinicalTrials.gov, number NCT05470829).
Collapse
Affiliation(s)
- Haiyan Jia
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
- Gynecology and Obstetrics Center, the First Hospital of Jilin University, Changchun, China
| | - Jiajia Mai
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Min Wu
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Hong Chen
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Xiaojiao Li
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Cuiyun Li
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Jingrui Liu
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Chengjiao Liu
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Yue Hu
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Xiaoxue Zhu
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China
| | - Xiuhong Jiang
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Bo Hua
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Tian Xia
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Gang Liu
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Aiyun Deng
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Bo Liang
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Ruoling Guo
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Hui Lu
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Zhe Wang
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Huanming Chen
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Zhijun Zhang
- Shanghai Zhimeng Biopharma, Inc, 1976 Gaoke Middle Road, Suite A-302, Pudong District, Shanghai, China
| | - Hong Zhang
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China.
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Disease and Pathogen Biology, The First Hospital of Jilin University, Changchun, China.
| | - Yanhua Ding
- Phase I Clinical Research Center, The First Hospital of Jilin University, No. 1 Xinmin Street, Changchun, Jilin Province, China.
| |
Collapse
|
25
|
Pan Y, Xia H, He Y, Zeng S, Shen Z, Huang W. The progress of molecules and strategies for the treatment of HBV infection. Front Cell Infect Microbiol 2023; 13:1128807. [PMID: 37009498 PMCID: PMC10053227 DOI: 10.3389/fcimb.2023.1128807] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023] Open
Abstract
Hepatitis B virus infections have always been associated with high levels of mortality. In 2019, hepatitis B virus (HBV)-related diseases resulted in approximately 555,000 deaths globally. In view of its high lethality, the treatment of HBV infections has always presented a huge challenge. The World Health Organization (WHO) came up with ambitious targets for the elimination of hepatitis B as a major public health threat by 2030. To accomplish this goal, one of the WHO's strategies is to develop curative treatments for HBV infections. Current treatments in a clinical setting included 1 year of pegylated interferon alpha (PEG-IFNα) and long-term nucleoside analogues (NAs). Although both treatments have demonstrated outstanding antiviral effects, it has been difficult to develop a cure for HBV. The reason for this is that covalently closed circular DNA (cccDNA), integrated HBV DNA, the high viral burden, and the impaired host immune responses all hinder the development of a cure for HBV. To overcome these problems, there are clinical trials on a number of antiviral molecules being carried out, all -showing promising results so far. In this review, we summarize the functions and mechanisms of action of various synthetic molecules, natural products, traditional Chinese herbal medicines, as clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR/Cas)-based systems, zinc finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), all of which could destroy the stability of the HBV life cycle. In addition, we discuss the functions of immune modulators, which can enhance or activate the host immune system, as well some representative natural products with anti-HBV effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Emerging Therapies for Chronic Hepatitis B and the Potential for a Functional Cure. Drugs 2023; 83:367-388. [PMID: 36906663 DOI: 10.1007/s40265-023-01843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 03/13/2023]
Abstract
Worldwide, an estimated 296 million people are living with chronic hepatitis B virus (HBV) infection, with a significant risk of morbidity and mortality. Current therapy with pegylated interferon (Peg-IFN) and indefinite or finite therapy with nucleoside/nucleotide analogues (Nucs) are effective in HBV suppression, hepatitis resolution, and prevention of disease progression. However, few achieve hepatitis B surface antigen (HBsAg) loss (functional cure), and relapse often occurs after the end of therapy (EOT) because these agents have no direct effect on durable template: covalently closed circular DNA (cccDNA) and integrated HBV DNA. Hepatitis B surface antigen loss rate increases slightly by adding or switching to Peg-IFN in Nuc-treated patients and this loss rate greatly increases up to 39% in 5 years with finite Nuc therapy with currently available Nuc(s). For this, great effort has been made to develop novel direct-acting antivirals (DAAs) and immunomodulators. Among the DAAs, entry inhibitors and capsid assembly modulators have little effect on reducing HBsAg levels; small interfering RNA, antisense oligonucleotides, and nucleic acid polymers in combination with Peg-IFN and Nuc may reduce HBsAg levels significantly, even a rate of HBsAg loss sustained for > 24 weeks after EOT up to 40%. Novel immunomodulators, including T-cell receptor agonists, check-point inhibitors, therapeutic vaccines, and monoclonal antibodies may restore HBV-specific T-cell response but not sustained HBsAg loss. The safety issues and the durability of HBsAg loss warrant further investigation. Combining agents of different classes has the potential to enhance HBsAg loss. Compounds directly targeting cccDNA would be more effective but are still in the early stage of development. More effort is required to achieve this goal.
Collapse
|
27
|
Yang H, Yao W, Yang J. Overview of the development of HBV small molecule inhibitors. Eur J Med Chem 2023; 249:115128. [PMID: 36709647 DOI: 10.1016/j.ejmech.2023.115128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/28/2023]
Abstract
Like tuberculosis and Acquired Immune Deficiency Syndrome (AIDS), hepatitis B is a globally recognized major public health threat. Although there are many small-molecule drugs for the treatment of hepatitis B, the approved drugs cannot eradicate the pathogenic culprit covalently closed circular DNA in patients, so the patients need long-term medication to control HBV amplification. Driven by a high unmet medical need, many pharmaceutical companies and research institutions have been engaged in the development of anti-HBV drugs to achieve a functional cure for chronic hepatitis B as soon as possible. This review summarizes the pathogenesis of hepatitis B virus and the research progress in the development of anti-HBV small molecule drugs, and introduces the cccDNA formation and transcription inhibitors and core inhibitors in detail, especially emphasizes the role of chinese herbal medicine in the treatment of chronic hepatitis B. Furthermore, this review proposes three potential strategies for cccDNA eradication in the future. We believe this review will provide meaningful guidance to achieve a functional cure for viral hepatitis B in the future.
Collapse
Affiliation(s)
- Huihui Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China
| | - Weiwei Yao
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China
| | - Jinfei Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China.
| |
Collapse
|
28
|
Kakuda TN, Halabi A, Klein G, Sanga M, Guinard-Azadian C, Kowalik M, Nedoschinsky K, Nangosyah J, Ediage EN, Hillewaert V, Verboven P, Goris I, Snoeys J, Palmer M, Biermer M. Pharmacokinetics of JNJ-73763989 and JNJ-56136379 (Bersacapavir) in Participants With Moderate Hepatic Impairment. J Clin Pharmacol 2023; 63:732-741. [PMID: 36786053 DOI: 10.1002/jcph.2214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
JNJ-73763989 is comprised of 2 short interfering RNAs (siRNAs), JNJ-73763976 and JNJ-73763924, that target hepatitis B virus (HBV) mRNAs for degradation, thereby inhibiting HBV replication. JNJ-56136379 is a capsid assembly modulator that inhibits HBV replication by inducing the formation of empty capsids (CAM-E). In 2 phase 1, open-label, non-randomized, single-center studies, the single-dose pharmacokinetics, safety, and tolerability of JNJ-73763989 or JNJ-56136379 were assessed in participants with moderate hepatic impairment (Child-Pugh Class B) versus participants with normal liver function. Participants in both studies received a single subcutaneous dose of JNJ-73763989 200 mg or oral JNJ-56136379 250 mg, followed by an evaluation of plasma pharmacokinetic parameters and safety assessments. Plasma exposure to JNJ-73763976, JNJ-73763924, and JNJ-56136379 was 1.3- to 1.4-, 1.8- to 2.2-, and 1.1- to 1.3-fold higher in participants with moderate hepatic impairment versus participants with normal liver function; however, these increases were not considered clinically relevant. Both drugs were well tolerated and safe, with 7 (21.9%) participants experiencing 1 or more treatment-emergent adverse events, 3 of which were related to JNJ-56136379. Overall, the plasma exposures of JNJ-73763989 and JNJ-56136379 were higher in participants with moderate hepatic impairment, but both were well tolerated. Further studies are needed to evaluate the effect of hepatic impairment under multiple-dose administration.
Collapse
Affiliation(s)
- Thomas N Kakuda
- Janssen Research & Development, LLC, Brisbane, California, USA
| | - Atef Halabi
- Clinical Research Services Kiel GmbH, Kiel, Germany
| | | | - Madhu Sanga
- Janssen Research & Development, LLC, Brisbane, California, USA
| | | | - Monika Kowalik
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | | | | | | | | | - Ivo Goris
- Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jan Snoeys
- Janssen Pharmaceutica NV, Beerse, Belgium
| | - Martyn Palmer
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | |
Collapse
|
29
|
New hepatitis B drug development disillusions: time to reset? Lancet Gastroenterol Hepatol 2023; 8:192-197. [PMID: 36343654 DOI: 10.1016/s2468-1253(22)00341-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
After more than 5 years of intense preclinical and clinical research, the development of new hepatitis B virus (HBV) drugs appears to be stalling. The main reasons for this are the major limitations of the developmental path, including the use of inappropriate endpoints for clinical development, the standards for efficacy and approval being too strict (functional cure after short finite treatment duration), expecting compounds to do what they cannot do because of their known targets and mechanisms of action, and hoping that one size will fit all, despite the fact that HBV infection is heterogeneous. A functional HBV cure cannot be easily attained with only a few weeks or months of treatment with the classes of compounds that are currently in development. Therefore, researchers, drug developers, and regulators need to establish a new consensus about endpoints that are both clinically relevant and achievable, and redefine the objectives, timelines, and pathways of new HBV drug development.
Collapse
|
30
|
Durantel D. Therapies against chronic hepatitis B infections: The times they are a-changin', but the changing is slow! Antiviral Res 2023; 210:105515. [PMID: 36603773 DOI: 10.1016/j.antiviral.2022.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
PREAMBULAR NOTA BENE As a tribute to Dr Mike Bray, the following review of literature willbe mainly based on published data andconcepts, but will also contain my personal views, and in this respect could be more considered as a bioassay. Even though a cost-effective and excellent prophylactic vaccine exists since many years to protect against hepatitis B virus (HBV) infection, academic-researcher/drug-developers/stakeholders are still busy with the R&D of novel therapies that could eventually have an impact on its worldwide incidence. The Taiwanese experience have univocally demonstrated the effectiveness of constrained national HBV prophylactic vaccination programs to prevent the most dramatic HBV-induced end-stage liver disease, which is hepatocellular carcinoma; but yet the number of individuals chronically infected with the virus, for whom the existing prophylactic vaccine is no longer useful, remains high, with around 300 million individuals around the globe. In this review/bioassay, recent findings and novel concepts on prospective therapies against HBV infections will be discussed; yet it does not have the pretention to be exhaustive, as "pure immunotherapeutic concepts" will be mainly let aside (or referred to other reviews) due to a lack of expertise of this writer, but also due to the lack of, or incremental, positive results in clinical trials as-off today with these approaches.
Collapse
Affiliation(s)
- David Durantel
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, UMR_5308 CNRS-Université de Lyon (UCBL1), ENS de Lyon, Lyon, 69007, France.
| |
Collapse
|
31
|
Burdette D, Hyrina A, Song Z, Beran RK, Cheung T, Gilmore S, Kobayashi T, Li L, Liu Y, Niedziela-Majka A, Medley J, Mehra U, Morganelli P, Novikov N, Niu C, Tam D, Tang J, Wang J, Yue Q, Fletcher SP, Holdorf MM, Delaney WE, Feierbach B, Lazerwith S. Characterization of a Novel Capsid Assembly Modulator for the Treatment of Chronic Hepatitis B Virus Infection. Antimicrob Agents Chemother 2023; 67:e0134822. [PMID: 36519892 PMCID: PMC9872672 DOI: 10.1128/aac.01348-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
The standard of care for the treatment of chronic hepatitis B (CHB) is typically lifelong treatment with nucleos(t)ide analogs (NAs), which suppress viral replication and provide long-term clinical benefits. However, infectious virus can still be detected in patients who are virally suppressed on NA therapy, which may contribute to the failure of these agents to cure most CHB patients. Accordingly, new antiviral treatment options are being developed to enhance the suppression of hepatitis B virus (HBV) replication in combination with NAs ("antiviral intensification"). Here, we describe GS-SBA-1, a capsid assembly modulator (CAM) belonging to class CAM-E, that demonstrates potent inhibition of extracellular HBV DNA in vitro (EC50 [50% effective concentration] = 19 nM) in HBV-infected primary human hepatocytes (PHHs) as well as in vivo in an HBV-infected immunodeficient mouse model. GS-SBA-1 has comparable activities across HBV genotypes and nucleos(t)ide-resistant mutants in HBV-infected PHHs. In addition, GS-SBA-1 demonstrated in vitro additivity in combination with tenofovir alafenamide (TAF). The administration of GS-SBA-1 to PHHs at the time of infection prevents covalently closed circular DNA (cccDNA) formation and, hence, decreases HBV RNA and antigen levels (EC50 = 80 to 200 nM). Furthermore, GS-SBA-1 prevents the production of extracellular HBV RNA-containing viral particles in vitro. Collectively, these data demonstrate that GS-SBA-1 is a potent CAM that has the potential to enhance viral suppression in combination with an NA.
Collapse
Affiliation(s)
| | | | - Zhijuan Song
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Tara Cheung
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | - Li Li
- Gilead Sciences, Inc., Foster City, California, USA
| | - Yang Liu
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | | | | - Congrong Niu
- Gilead Sciences, Inc., Foster City, California, USA
| | - Danny Tam
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | - Qin Yue
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | | | |
Collapse
|
32
|
Yardeni D, Chang KM, Ghany MG. Current Best Practice in Hepatitis B Management and Understanding Long-term Prospects for Cure. Gastroenterology 2023; 164:42-60.e6. [PMID: 36243037 PMCID: PMC9772068 DOI: 10.1053/j.gastro.2022.10.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023]
Abstract
The hepatitis B virus (HBV) is a major cause of cirrhosis and hepatocellular carcinoma worldwide. Despite an effective vaccine, the prevalence of chronic infection remains high. Current therapy is effective at achieving on-treatment, but not off-treatment, viral suppression. Loss of hepatitis B surface antigen, the best surrogate marker of off-treatment viral suppression, is associated with improved clinical outcomes. Unfortunately, this end point is rarely achieved with current therapy because of their lack of effect on covalently closed circular DNA, the template of viral transcription and genome replication. Major advancements in our understanding of HBV virology along with better understanding of immunopathogenesis have led to the development of a multitude of novel therapeutic approaches with the prospect of achieving functional cure (hepatitis B surface antigen loss) and perhaps complete cure (clearance of covalently closed circular DNA and integrated HBV DNA). This review will cover current best practice for managing chronic HBV infection and emerging novel therapies for HBV infection and their prospect for cure.
Collapse
Affiliation(s)
- David Yardeni
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kyong-Mi Chang
- Medical Research, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania; Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marc G Ghany
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
33
|
Feld JJ, Lawitz E, Nguyen T, Lalezari J, Hassanein T, Martin P, Han SH, Dieterich D, Giard JM, De La Rosa G, Ahmad A, Luo E, Conery AL, Adda N. EDP-514 in healthy subjects and nucleos(t)ide reverse transcriptase inhibitor-suppressed patients with chronic hepatitis B. Antivir Ther 2022; 27:13596535221127848. [DOI: 10.1177/13596535221127848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Chronic hepatitis B (CHB) remains a major cause of morbidity and mortality. EDP-514 is a potent core inhibitor of hepatitis B virus (HBV) that reduces viral load reduction in HBV-infected chimeric mice. This first-in-human study evaluated the safety, tolerability, and pharmacokinetics (PK) of EDP-514 in healthy subjects and antiviral activity in patients with CHB. Methods In Part 1, 82 subjects received placebo or EDP-514 in fed or fasted state as single ascending doses of 50–800 mg and multiple ascending doses of 200–800 mg for 14 days. In Part 2, 24 HBV DNA-suppressed, nucleos(t)ide (NUC)-treated (i.e., NUC-suppressed) CHB patients received EDP-514 200–800 mg or placebo for 28 days. Results EDP-514 was well tolerated in healthy subjects and CHB patients with most adverse events of mild intensity. In Part 1, EDP-514 exposure increased in an approximately dose proportional manner up to 600 mg after single doses and up to 400 mg after 14-day dosing. In Part 2, EDP-514 exposure increased linearly with dose on Day 1 and Day 28, with some accumulation for Day 28 and median trough concentrations (Ctrough) approximately 20-fold above the protein-adjusted 50% effective concentration (EC50) for the dose range. Mean change in HBV RNA from baseline to Day 28 was −2.03, −1.67, −1.87, and −0.58 log U/mL in the 200 mg, 400 mg, 800 mg, and placebo CHB groups, respectively. Conclusions EDP-514 was well tolerated, had a PK profile supporting once daily dosing, and reduced HBV RNA levels in NUC-suppressed CHB patients.
Collapse
Affiliation(s)
- Jordan J Feld
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON, Canada
| | - Eric Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Tuan Nguyen
- Gastroenterology and Hepatology, San Diego, CA, USA
| | | | | | - Paul Martin
- Gastroenterology, University of Miami, Coral Gables, FL, USA
| | - Steven-Huy Han
- University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas Dieterich
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Alaa Ahmad
- Enanta Pharmaceuticals, Inc., Watertown, MA, USA
| | - Ed Luo
- Enanta Pharmaceuticals, Inc., Watertown, MA, USA
| | | | | |
Collapse
|
34
|
Vandenbossche J, Yogaratnam J, Hillewaert V, Rasschaert F, Talloen W, Biewenga J, Snoeys J, Kakuda TN, Palmer M, Nangosyah J, Biermer M. Drug-Drug Interactions With the Hepatitis B Virus Capsid Assembly Modulator JNJ-56136379 (Bersacapavir). Clin Pharmacol Drug Dev 2022; 11:1419-1429. [PMID: 36062869 PMCID: PMC10087559 DOI: 10.1002/cpdd.1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023]
Abstract
The capsid assembly modulator JNJ-56136379 (bersacapavir) disrupts hepatitis B virus replication. It is metabolized via cytochrome P450 (CYP) 3A, but little is known about the drug-drug interactions of JNJ-56136379 when combined with drugs that inhibit or are metabolized by CYP3A. In a phase 1, open-label trial (NCT03945539), healthy adults received 1 dose of JNJ-56136379 with and without 21 days of prior exposure to itraconazole 200 mg (CYP3A inhibitor). In a second phase 1, open-label trial (NCT03111511), healthy women received 1 dose of drospirenone/ethinyl estradiol and midazolam before and after 15 days of JNJ-56136379. Itraconazole increased the area under the plasma concentration-time curve (AUC) of JNJ-56136379 by 38%. JNJ-56136379 reduced the maximum observed concentration and AUC of midazolam (CYP3A substrate) by 42%-54%, increased AUC of ethinyl estradiol by 1.6-fold, but had no effect on drospirenone pharmacokinetics. Overall, these results demonstrated that a strong CYP3A inhibitor (itraconazole) modestly increased JNJ-56136379 exposure. Furthermore, JNJ-56136379 was a weak inducer of CYP3A (midazolam) and increased ethinyl estradiol exposure; coadministration of high-dose estrogen-based contraceptives and JNJ-56136379 is not recommended.
Collapse
Affiliation(s)
| | - Jeysen Yogaratnam
- Janssen Research & Development, South San Francisco, California, USA
| | | | | | | | | | - Jan Snoeys
- Janssen Pharmaceutica NV, Beerse, Belgium
| | - Thomas N Kakuda
- Janssen Research & Development, South San Francisco, California, USA
| | - Martyn Palmer
- Janssen Research & Development, Spring House, Pennsylvania, USA
| | | | | |
Collapse
|
35
|
Papatheodoridi M, Papatheodoridis GV. State-of-the-art and emerging antivirals for chronic hepatitis B infection. Expert Opin Pharmacother 2022; 23:1999-2012. [DOI: 10.1080/14656566.2022.2144219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Margarita Papatheodoridi
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, Athens, Greece
| | - George V. Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, Athens, Greece
| |
Collapse
|
36
|
Sulkowski MS, Agarwal K, Ma X, Nguyen TT, Schiff ER, Hann HWL, Dieterich DT, Nahass RG, Park JS, Chan S, Han SHB, Gane EJ, Bennett M, Alves K, Evanchik M, Yan R, Huang Q, Lopatin U, Colonno R, Ma J, Knox SJ, Stamm LM, Bonacini M, Jacobson IM, Ayoub WS, Weilert F, Ravendhran N, Ramji A, Kwo PY, Elkhashab M, Hassanein T, Bae HS, Lalezari JP, Fung SK, Yuen MF. Safety and efficacy of vebicorvir administered with entecavir in treatment-naïve patients with chronic hepatitis B virus infection. J Hepatol 2022; 77:1265-1275. [PMID: 35697332 DOI: 10.1016/j.jhep.2022.05.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/20/2022] [Accepted: 05/17/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Nucleos(t)ide reverse transcriptase inhibitors do not completely suppress HBV DNA in chronic HBV infection (cHBV). Vebicorvir (VBR) is an investigational core inhibitor that interferes with multiple aspects of HBV replication. This phase II trial evaluated the safety and efficacy of VBR in combination with entecavir (ETV) in treatment-naïve patients with cHBV. METHODS HBeAg-positive, treatment-naïve patients without cirrhosis were randomised 1:1 in a double-blind manner to once-daily VBR 300 mg+ETV 0.5 mg or placebo (PBO)+ETV 0.5 mg for 24 weeks. The primary endpoint was change in mean log10 HBV DNA from Baseline to Week 12 and 24. RESULTS All patients in both treatment groups (PBO+ETV: 12/12; VBR+ETV: 13/13) completed the study. At Week 12, VBR+ETV led to a greater mean (SD) reduction from Baseline in log10 IU/ml HBV DNA (-4.45 [1.03]) vs. PBO+ETV (-3.30 [1.18]; p = 0.0077). At Week 24, VBR+ETV led to a greater reduction from Baseline in log10 IU/ml HBV DNA (-5.33 [1.59]) vs. PBO+ETV (-4.20 [0.98]; p = 0.0084). Greater mean reductions in pregenomic RNA were observed at Week 12 and 24 in patients receiving VBR+ETV vs. PBO+ETV (p <0.0001 and p <0.0001). Changes in viral antigens were similar in both groups. No drug interaction between VBR and ETV was observed. Two patients experienced HBV DNA rebound during treatment, with no resistance breakthrough detected. The safety of VBR+ETV was similar to PBO+ETV. All treatment-emergent adverse events and laboratory abnormalities were Grade 1/2. There were no deaths, serious adverse events, or evidence of drug-induced liver injury. CONCLUSIONS In this 24-week study, VBR+ETV provided additive antiviral activity over PBO+ETV in treatment-naïve patients with cHBV, with a favourable safety and tolerability profile. CLINICAL TRIAL NUMBER NCT03577171 LAY SUMMARY: Hepatitis B is a long-lasting viral infection of the liver. Current treatments can suppress hepatitis B virus but do not offer the opportunity of cure, hence, new treatment approaches are required. Herein, we show that the combination of the novel core inhibitor vebicorvir with an existing antiviral (entecavir) in treatment-naïve patients chronically infected with hepatitis B virus demonstrated greater antiviral activity than entecavir alone. Additionally, vebicorvir was safe and well tolerated. Thus, further studies evaluating its potential role in the treatment of chronic hepatitis B are warranted.
Collapse
Affiliation(s)
- Mark S Sulkowski
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Xiaoli Ma
- Office of Xiaoli Ma, Philadelphia, PA, USA
| | - Tuan T Nguyen
- T Nguyen Research and Education, Inc., San Diego, CA, USA
| | - Eugene R Schiff
- Schiff Center for Liver Diseases, University of Miami School of Medicine, Miami, FL, USA
| | - Hie-Won L Hann
- Department of Medicine, Division of Gastroenterology and Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Douglas T Dieterich
- Department of Medicine, Division of Liver Diseases, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| | | | | | | | - Steven-Huy B Han
- Pfleger Liver Institute, University of California, Los Angeles, CA, USA
| | | | | | - Katia Alves
- Assembly Biosciences, South San Francisco, CA, USA
| | | | - Ran Yan
- Assembly Biosciences, South San Francisco, CA, USA
| | - Qi Huang
- Assembly Biosciences, South San Francisco, CA, USA
| | - Uri Lopatin
- Assembly Biosciences, South San Francisco, CA, USA
| | | | - Julie Ma
- Assembly Biosciences, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | - Alnoor Ramji
- Gastrointestinal Research Institute, Vancouver, BC, Canada
| | - Paul Yien Kwo
- Stanford University Medical Center, Stanford, CA, USA
| | | | | | - Ho S Bae
- Asian Pacific Liver Center, Los Angeles, CA, USA
| | | | | | - Man-Fung Yuen
- Department of Medicine and State Key Laboratory of Liver Research, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| |
Collapse
|
37
|
Deng R, Liu S, Shen S, Guo H, Sun J. Circulating HBV RNA: From biology to clinical applications. Hepatology 2022; 76:1520-1530. [PMID: 35342969 DOI: 10.1002/hep.32479] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/01/2023]
Abstract
Chronic HBV infection can hardly be cured due to the persistence of an intrahepatic pool of viral covalently closed circular DNA (cccDNA) transcription template, which is refractory to current antivirals. The direct analyses of cccDNA quantity and transcriptional activity require an invasive biopsy. Recently, circulating HBV RNA has been identified as a promising noninvasive surrogate marker of cccDNA and can be used for monitoring disease progression and predicting prognosis of patients with chronic HBV infection. To better understand this surrogate biomarker of cccDNA, we reviewed the current knowledge about the molecular characteristics and potential clinical applications of circulating HBV RNA. Specifically, we summarized the reported species and existing forms of circulating HBV RNA and discussed their biogenesis and the capacity of de novo infection by RNA virions. Moreover, we described the potential applications of circulating HBV RNA in different clinical scenarios, such as classifying the phases of chronic HBV infection, analyzing sustained on-treatment and off-treatment outcomes of treated patients, as well as predicting HCC development. Perspectives on future research of circulating HBV RNA were also proposed in this review.
Collapse
Affiliation(s)
- Rui Deng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shi Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sheng Shen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haitao Guo
- Cancer Virology Program, UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jian Sun
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Yuen MF, Locarnini S, Lim TH, Strasser SI, Sievert W, Cheng W, Thompson AJ, Given BD, Schluep T, Hamilton J, Biermer M, Kalmeijer R, Beumont M, Lenz O, De Ridder F, Cloherty G, Ka-Ho Wong D, Schwabe C, Jackson K, Lai CL, Gish RG, Gane E. Combination treatments including the small-interfering RNA JNJ-3989 induce rapid and sometimes prolonged viral responses in patients with CHB. J Hepatol 2022; 77:1287-1298. [PMID: 35870702 DOI: 10.1016/j.jhep.2022.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS RNA interference therapy has been shown to reduce hepatitis B surface antigen (HBsAg) levels in preclinical models, which could confer functional cure in patients with chronic hepatitis B. This phase IIa trial (ClinicalTrials.gov Identifier: NCT03365947) assessed the safety and efficacy of the small-interfering RNA JNJ-73763989 (JNJ-3989) plus a nucleos(t)ide analogue (NA), with/without the capsid assembly modulator JNJ-56136379 (JNJ-6379) in patients with chronic hepatitis B. METHODS Treatment-naïve and NA-suppressed patients received 3 subcutaneous JNJ-3989 doses every week (QW; 100, 200, or 300 mg), 2 weeks (Q2W; 100 mg) or 4 weeks (Q4W; 25, 50, 100, 200, 300, or 400 mg), or JNJ-3989 Q4W (200 mg) plus oral JNJ-6379 250 mg daily for 12 weeks. Patients received NAs throughout. RESULTS Eighty-four patients were recruited. All treatments were well tolerated, with all 5 serious adverse events considered unrelated to study drugs. JNJ-3989 100 to 400 mg Q4W resulted in HBsAg reductions ≥1 log10 IU/ml from baseline in 39/40 (97.5%) patients at the nadir. All patients receiving the triple combination (n = 12) had HBsAg reductions ≥1 log10 IU/ml from baseline at the nadir. HBsAg reductions were similar for HBeAg-positive (n = 21) and HBeAg-negative (n = 47) patients in all JNJ-3989 Q4W treatment arms, including the triple combination (n = 68). Smaller HBsAg reductions were seen with 25 mg (n = 8) and 50 mg (n = 8) than with 100 to 400 mg (n = 40). Shorter dosing intervals (QW [n = 12] and Q2W [n = 4]) did not improve response vs. Q4W dosing. HBsAg reductions ≥1 log10 IU/ml from baseline persisted in 38% of patients 336 days after the last JNJ-3989 dose. CONCLUSIONS JNJ-3989 plus an NA, with/without JNJ-6379, was well tolerated and resulted in HBsAg reductions up to 336 days after the last JNJ-3989 Q4W dose. CLINICAL TRIAL NUMBER NCT03365947. LAY SUMMARY Hepatitis B virus affects people's livers and produces particles called hepatitis B surface antigen (HBsAg) that damage a person's liver and can help the virus infect a person for a long time, known as chronic hepatitis B (CHB). In this study, a new treatment called JNJ-3989 was assessed (in combination with normal treatment known as nucleos(t)ide analogues), for its safety and effectiveness in reducing the number of HBsAg particles in people with CHB. The results of this study showed that treatment with JNJ-3989 could be safe for people with CHB, lowered their HBsAg levels, and kept HBsAg levels lowered for 336 days in 38% of patients after receiving their last dose of JNJ-3989.
Collapse
Affiliation(s)
- Man-Fung Yuen
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Stephen Locarnini
- Victorian Infectious Diseases Reference Laboratory, Victoria, Australia
| | - Tien Huey Lim
- Department of Gastroenterology, Middlemore Hospital, Auckland, New Zealand
| | - Simone I Strasser
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | - William Sievert
- Department of Gastroenterology, Monash Health and Monash University, Melbourne, Australia
| | - Wendy Cheng
- Department of Gastroenterology and Hepatology, Royal Perth Hospital, Perth, Australia; Linear Clinical Research, Perth, Australia
| | - Alex J Thompson
- Department of Gastroenterology, St. Vincent's Hospital, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | - Danny Ka-Ho Wong
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - Kathy Jackson
- Victorian Infectious Diseases Reference Laboratory, Victoria, Australia
| | - Ching Lung Lai
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - Edward Gane
- Auckland Clinical Studies, Auckland, New Zealand
| |
Collapse
|
39
|
Yuen M, Berliba E, Sukeepaisarnjaroen W, Ahn SH, Tanwandee T, Lim Y, Kim YJ, Poovorawan K, Tangkijvanich P, Schwabe C, Eley T, Brown J, Lee ACH, Thi EP, Paratala B, Mani N, Sofia MJ, Picchio G, Sims KD, Gane EJ. Safety, pharmacokinetics, and antiviral activity of the capsid inhibitor AB-506 from Phase 1 studies in healthy subjects and those with hepatitis B. Hepatol Commun 2022; 6:3457-3472. [PMID: 36194181 PMCID: PMC9701477 DOI: 10.1002/hep4.2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 01/21/2023] Open
Abstract
AB-506 is a potent, pan-genotypic small molecule capsid inhibitor that inhibits hepatitis B virus (HBV) pregenomic RNA encapsidation. We assessed the safety, pharmacokinetics, and antiviral activity of AB-506 in two randomized, double-blinded Phase 1 studies in healthy subjects (HS) and subjects with chronic HBV infection (CHB). Single ascending and multiple doses of AB-506 or placebo (30-1000 mg or 400 mg daily for 10 days) were assessed in HS. AB-506 or placebo was assessed at either 160 mg or 400 mg daily for 28 days in subjects with CHB. A second follow-up study examined AB-506 or placebo at 400 mg daily for 28 days in 14 Caucasian and 14 East-Asian HS. Twenty-eight days of AB-506 at 160 mg and 400 mg produced mean HBV-DNA declines from baseline of 2.1 log10 IU/ml and 2.8 log10 IU/ml, respectively. Four subjects with CHB (all Asian) had Grade 4 alanine aminotransferase (ALT) elevations (2 at each dose) as HBV DNA was declining; three events led to treatment discontinuation. In the second follow-up study, 2 Asian HS had serious transaminitis events leading to treatment and study termination. No subjects had bilirubin elevations or signs of hepatic decompensation. Conclusion: AB-506 demonstrated mean HBV-DNA declines of >2 log10 ; however, transient but severe ALT flares were observed in 4 Asian subjects with CHB. In the follow-up study in HS, 2 additional Asian HS had Grade 4 flares, suggesting that AB-506 hepatotoxicity contributed to the ALT elevations. The AB-506 development program was terminated because of these findings.
Collapse
Affiliation(s)
- Man‐Fung Yuen
- Department of MedicineUniversity of Hong Kong, Queen Mary HospitalHong KongChina
| | | | | | - Sang Hoon Ahn
- Department of MedicineYonsei University College of Medicine, Severance HospitalSeoulRepublic of Korea
| | - Tawesak Tanwandee
- Department of Medicine, Faculty of MedicineSiriraj Hospital, Mahidol UniversityBangkokThailand
| | - Young‐Suk Lim
- Department of GastroenterologyAsan Medical CenterSeoulRepublic of Korea
| | - Yoon Jun Kim
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Kittiyod Poovorawan
- Faculty of Tropical MedicineHospital for Tropical Diseases, Mahidol UniversityBangkokThailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver CancerChulalongkorn UniversityBangkokThailand
| | | | - Timothy Eley
- Clinical DevelopmentArbutus BiopharmaWarminsterPennsylvaniaUSA
| | - Joanne Brown
- Clinical DevelopmentArbutus BiopharmaWarminsterPennsylvaniaUSA
| | | | - Emily P. Thi
- DiscoveryArbutus BiopharmaWarminsterPennsylvaniaUSA
| | | | - Nagraj Mani
- DiscoveryArbutus BiopharmaWarminsterPennsylvaniaUSA
| | | | - Gaston Picchio
- Clinical DevelopmentArbutus BiopharmaWarminsterPennsylvaniaUSA
| | - Karen D. Sims
- Clinical DevelopmentArbutus BiopharmaWarminsterPennsylvaniaUSA
| | - Edward J. Gane
- Department of MedicineUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
40
|
Lok J, Dusheiko G, Carey I, Agarwal K. Review article: novel biomarkers in hepatitis B infection. Aliment Pharmacol Ther 2022; 56:760-776. [PMID: 35770458 DOI: 10.1111/apt.17105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Chronic hepatitis B remains a global health problem with an estimated 296 million people affected worldwide. Individuals are at risk of serious complications such as cirrhosis and hepatocellular carcinoma and accurately predicting these clinical endpoints has proven difficult. However, several viral biomarkers have recently been developed, including quantitative HBV surface antigen (qHBsAg), hepatitis B RNA (HBV RNA) and core-related antigen (HBcrAg), and shown promise in a range of clinical settings. AIMS To critically appraise these novel biomarkers, exploring their potential uses, availability of assays and areas for future development. METHODS We performed a literature search of PubMed, identifying articles published in the field of hepatitis B biomarkers between 2010 and 2022. RESULTS Novel biomarkers such as HBcrAg, HBV RNA and qHBsAg may be useful in predicting treatment outcomes, stratifying the risk of future complications and estimating off-treatment viral reactivation. Furthermore, HBV RNA and HBcrAg titres may accurately reflect cccDNA transcriptional activity, and this is particularly informative in the context of nucleoside analogue therapy. On a cautionary note, most studies have been performed in Caucasian or Asian populations, and methods for detecting HBV RNA lack standardisation. CONCLUSION Novel viral biomarkers have the potential to provide additional insights into the natural history of infection and allow a more bespoke, cost-effective framework of care. However, access remains limited, and further efforts are needed to validate their use in ethnically diverse populations, confirm predictive cut-off values, and establish their role in the era of novel antiviral therapies.
Collapse
Affiliation(s)
- James Lok
- Institute of Liver Studies, King's College Hospital, London, UK
| | | | - Ivana Carey
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, UK
| |
Collapse
|
41
|
Tan YC, Lee GH, Huang DQ, Lim SG. Future anti-HDV treatment strategies, including those aimed at HBV functional cure. Liver Int 2022; 43:1157-1169. [PMID: 35946084 DOI: 10.1111/liv.15387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 02/13/2023]
Abstract
HDV is a defective virus that uses the HBV surface antigen to enter hepatocytes. It is associated with an accelerated course of liver fibrosis progression and an increased risk of hepatocellular carcinoma. Negative HDV RNA 24 weeks after the end of therapy has been proposed as an endpoint but late relapses make this endpoint suboptimal, hence HBsAg loss appears to be more appropriate. Current HBV antiviral agents have poor activity against HDV hence the search for improved therapy. Drugs only active against HDV, such as lonafarnib, have shown efficacy in combination with nucleoside analogues and peginterferon, but do not lead to HBsAg loss. HBsAg loss sustained 24 weeks after the end of therapy with negative HBV DNA is termed functional cure. Agents that are being investigated for functional cure include those that inhibit replication such as entry inhibitors, polymerase inhibitors and capsid assembly modulators but seldom lead to functional cure. Agents that reduce HBV antigen load such as RNA interference and inhibitors of HBsAg secretion are promising. Immunomodulators on their own seldom achieve functional cure, hence these agents in combination to assess the optimal combination are being investigated. Consequently, agents leading to functional cure of HBV are ideal for both HBV and HDV.
Collapse
Affiliation(s)
- Yong Chuan Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Guan Huei Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Health System, Singapore
| | - Seng Gee Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Gastroenterology and Hepatology, National University Health System, Singapore
| |
Collapse
|
42
|
Surrogate Markers for Hepatitis B Virus Covalently Closed Circular DNA. Semin Liver Dis 2022; 42:327-340. [PMID: 35445388 DOI: 10.1055/a-1830-2741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chronic infection with the hepatitis B virus (HBV) is one of the most common causes of liver disease worldwide. Chronic HBV infection is currently incurable because of the persistence of the viral template for the viral transcripts, covalently closed circular deoxyribonucleic acid (cccDNA). Detecting changes in cccDNA transcriptional activity is key to understanding fundamental virology, determining the efficacy of new therapies, and deciding the optimal clinical management of HBV patients. In this review, we summarize surrogate circulating biomarkers that have been used to infer cccDNA levels and activity in people with chronic hepatitis B. Moreover, we outline the current shortcomings of the current biomarkers and highlight the clinical importance in improving them and expanding their use.
Collapse
|
43
|
Bhat S, Kazim SN. HBV cccDNA-A Culprit and Stumbling Block for the Hepatitis B Virus Infection: Its Presence in Hepatocytes Perplexed the Possible Mission for a Functional Cure. ACS OMEGA 2022; 7:24066-24081. [PMID: 35874215 PMCID: PMC9301636 DOI: 10.1021/acsomega.2c02216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Hepatitis B virus infection (HBV) is still a big health problem across the globe. It has been linked to the development of liver cirrhosis and hepatocellular carcinoma and can trigger different types of liver damage. Existing medicines are unable to disable covalently closed circular DNA (cccDNA), which may result in HBV persistence and recurrence. The current therapeutic goal is to achieve a functional cure, which means HBV-DNA no longer exists when treatment stops and the absence of HBsAg seroclearance. However, due to the presence of integrated HBV DNA and cccDNA functional treatment is now regarded to be difficult. In order to uncover pathways for potential therapeutic targets and identify medicines that could result in large rates of functional cure, a thorough understanding of the virus' biology is required. The proteins of the virus and episomal cccDNA are thought to be critical for the management and support of the HBV replication cycle as they interact directly with the host proteome to establish the best atmosphere for the virus while evading immune detection. The breakthroughs of host dependence factors, cccDNA transcription, epigenetic regulation, and immune-mediated breakdown have all produced significant progress in our understanding of cccDNA biology during the past decade. There are some strategies where cccDNA can be targeted either in a direct or indirect way and are presently at the point of discovery or preclinical or early clinical advancement. Editing of genomes, techniques targeting host dependence factors or epigenetic gene maintenance, nucleocapsid modulators, miRNA, siRNA, virion secretory inhibitors, and immune-mediated degradation are only a few examples. Though cccDNA approaches for direct targeting are still in the early stages of development, the assembly of capsid modulators and immune-reliant treatments have made it to the clinic. Clinical trials are currently being conducted to determine their efficiency and safety in patients, as well as their effect on viral cccDNA. The influence of recent breakthroughs in the development of new treatment techniques on cccDNA biology is also summarized in this review.
Collapse
Affiliation(s)
- Sajad
Ahmad Bhat
- Jamia Millia Islamia Central University, Centre for Interdisciplinary Research in Basic Sciences, New Delhi 110025, India
| | - Syed Naqui Kazim
- Jamia Millia Islamia Central University, Centre for Interdisciplinary Research in Basic Sciences, New Delhi 110025, India
| |
Collapse
|
44
|
Ma C, Liu WG, Liu WD, Xi CC, Xiong F, Zhang SP. Molecular Docking and 3D-QSAR Studies on a Series of Benzenesulfonamide Derivatives as a Hepatitis B Virus Capsid Assembly Inhibitor. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1871038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chao Ma
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Wen-guang Liu
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Wen-ding Liu
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Chang-cheng Xi
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Fei Xiong
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Shu-ping Zhang
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
45
|
Abstract
The last few years have seen a resurgence of activity in the hepatitis B drug pipeline, with many compounds in various stages of development. This review aims to provide a comprehensive overview of the latest advances in therapeutics for chronic hepatitis B (CHB). We will discuss the broad spectrum of direct-acting antivirals in clinical development, including capsids inhibitors, siRNA, HBsAg and polymerase inhibitors. In addition, host-targeted therapies (HTT) will be extensively reviewed, focusing on the latest progress in immunotherapeutics such as toll-like receptors and RIG-1 agonists, therapeutic vaccines and immune checkpoints modulators. A growing number of HTT in pre-clinical development directly target the key to HBV persistence, namely the covalently closed circular DNA (cccDNA) and hold great promise for HBV cure. This exciting area of HBV research will be highlighted, and molecules such as cyclophilins inhibitors, APOBEC3 deaminases and epigenetic modifiers will be discussed.
Collapse
Affiliation(s)
- Sandra Phillips
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| | - Ravi Jagatia
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| | - Shilpa Chokshi
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| |
Collapse
|
46
|
Wong GLH, Gane E, Lok ASF. How to achieve functional cure of HBV: Stopping NUCs, adding interferon or new drug development? J Hepatol 2022; 76:1249-1262. [PMID: 35589248 DOI: 10.1016/j.jhep.2021.11.024] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
Functional cure of hepatitis B is defined as sustained undetectable circulating HBsAg and HBV DNA after a finite course of treatment. Barriers to HBV cure include the reservoirs for HBV replication and antigen production (covalently closed circular DNA [cccDNA] and integrated HBV DNA), the high viral burden (HBV DNA and HBsAg) and the impaired host innate and adaptive immune responses against HBV. Current HBV therapeutics, 1 year of pegylated-interferon-α (PEG-IFNα) and long-term nucleos(t)ide analogues (NUCs), rarely achieve HBV cure. Stopping NUC therapy may lead to functional cure in some Caucasian patients but rarely in Asian patients. Switching from a NUC to IFN after HBV DNA suppression increases the chance of HBsAg clearance mainly in those with low HBsAg levels. Novel antiviral strategies that inhibit viral entry, translation and secretion of HBsAg, modulate capsid assembly, or target cccDNA transcription/degradation have shown promise in clinical trials. Novel immunomodulatory approaches including checkpoint inhibitors, metabolic modulation of T cells, therapeutic vaccines, adoptive transfer of genetically engineered T cells, and stimulation of innate and B-cell immune responses are being explored. These novel approaches may be further combined with NUCs or PEG-IFNα in personalised strategies, according to virologic and disease characteristics, to maximise the chance of HBV cure. The development of curative HBV therapies should be coupled with the development of standardised and validated virologic and immunologic assays to confirm target engagement and to assess response. In addition to efficacy, curative therapies must be safe and affordable to meet the goal of global elimination of hepatitis B.
Collapse
Affiliation(s)
- Grace L H Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, and Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong
| | - Ed Gane
- New Zealand Liver Transplant Unit, Auckland City Hospital, University of Auckland, New Zealand
| | - Anna S F Lok
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
47
|
Gane E, Yuen MF, Kakuda TN, Ogawa T, Takahashi Y, Goeyvaerts N, Lonjon-Domanec I, Vaughan T, Schluep T, Hamilton J, Njumbe Ediage E, Hillewaert V, Snoeys J, Lenz O, Talloen W, Biermer M. JNJ-73763989 pharmacokinetics and safety: Liver-targeted siRNAs against hepatitis B virus, in Japanese and non-Japanese healthy adults, and combined with JNJ-56136379 and a nucleos(t)ide analogue in patients with chronic hepatitis B. Antivir Ther 2022; 27:13596535221093856. [PMID: 35695169 DOI: 10.1177/13596535221093856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND JNJ-73763989 comprises two hepatitis B virus (HBV)-specific, liver-targeted N-galactosamine-conjugated short interfering RNA triggers, JNJ-73763976 and JNJ-73763924. JNJ-73763989 pharmacokinetics, safety and tolerability were assessed in two phase 1 studies: Japanese (NCT04002752), and non-Japanese healthy participants and chronic hepatitis B (CHB) patients also receiving the HBV capsid assembly modulator JNJ-56136379 and a nucleos(t)ide analogue (NA) (NCT03365947). METHODS Healthy participant cohorts were double-blind and randomized to receive a single subcutaneous JNJ-73763989 dose (non-Japanese participants, 35, 100, 200, 300 or 400 mg; Japanese participants, 25, 100 or 200 mg) or placebo. JNJ-73763976 and JNJ-73763924 plasma concentrations were assessed over 48 h. CHB patients received JNJ-73763989 200 mg every 4 weeks plus daily oral JNJ-56136379 250 mg and NA in an open-label fashion. Safety and tolerability were assessed through Day 28 (healthy participants) or Day 112 (patients). RESULTS Thirty non-Japanese (n = 4/dose; placebo, n = 10) and 24 Japanese healthy participants (n = 6/dose; placebo, n = 6) were randomized. JNJ-73763976 and JNJ-73763924 exposure generally increased in a dose-proportional manner. Mean plasma half-life was 4-9 h. No differences between pharmacokinetic parameters were apparent between non-Japanese and Japanese healthy participants. In the 12 CHB patients, mean JNJ-73763976, JNJ-73763924 and JNJ-56136379 plasma concentrations 2 h post-dose on Day 29 were 663, 269 and 14,718 ng/mL, respectively. In both studies, all adverse events were mild/moderate. CONCLUSION JNJ-73763976 and JNJ-73763924 had short plasma half-lives and exposure generally increased in a dose-proportional manner; there were no pharmacokinetic differences between Japanese and non-Japanese healthy adults. JNJ-73763989 with or without JNJ-56136379 and NA was generally safe and well tolerated.
Collapse
Affiliation(s)
- Ed Gane
- New Zealand Liver Transplant Unit, University of Auckland, Auckland, New Zealand
| | - Man-Fung Yuen
- Department of Medicine, 25809The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | - Jan Snoeys
- 50148Janssen Pharmaceutica NV, Beerse, Belgium
| | - Oliver Lenz
- 50148Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | |
Collapse
|
48
|
Wu S, Yi W, Gao Y, Deng W, Bi X, Lin Y, Yang L, Lu Y, Liu R, Chang M, Shen G, Hu L, Zhang L, Li M, Xie Y. Immune Mechanisms Underlying Hepatitis B Surface Antigen Seroclearance in Chronic Hepatitis B Patients With Viral Coinfection. Front Immunol 2022; 13:893512. [PMID: 35634301 PMCID: PMC9130599 DOI: 10.3389/fimmu.2022.893512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
It is considered that chronic hepatitis B patients have obtained functional cure if they get hepatitis B surface antigen (HBsAg) seroclearance after treatment. Serum HBsAg is produced by cccDNA that is extremely difficult to clear and dslDNA that is integrated with host chromosome. High HBsAg serum level leads to failure of host immune system, which makes it unable to produce effective antiviral response required for HBsAg seroclerance. Therefore, it is very difficult to achieve functional cure, and fewer than 1% of chronic hepatitis B patients are cured with antiviral treatment annually. Some chronic hepatitis B patients are coinfected with other chronic viral infections, such as HIV, HCV and HDV, which makes more difficult to cure. However, it is found that the probability of obtaining HBsAg seroclearance in patients with coinfection is higher than that in patients with HBV monoinfection, especially in patients with HBV/HIV coinfection who have an up to 36% of HBsAg 5-year-seroclerance rate. The mechanism of this interesting phenomenon is related to the functional reconstruction of immune system after antiretroviral therapy (ART). The quantity increase and function recovery of HBV specific T cells and B cells, and the higher level of cytokines and chemokines such as IP-10, GM-CSF, promote HBsAg seroclearance. This review summarizes recent studies on the immune factors that have influence on HBsAg seroconversion in the chronic hepatitis B patients with viral coinfection, which might provide new insights for the development of therapeutic approaches to partially restore the specific immune response to HBV and other viruses.
Collapse
Affiliation(s)
- Shuling Wu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuanjiao Gao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ruyu Liu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Min Chang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ge Shen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Leiping Hu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
49
|
Akbar SMF, Al Mahtab M, Khan S, Yoshida O, Aguilar JC, Gerardo GN, Hiasa Y. Innovative Therapies Targeting the Virus and the Host for Treating Chronic Hepatitis B Virus Infection: From Bench to Bedside. Vaccines (Basel) 2022; 10:vaccines10050746. [PMID: 35632502 PMCID: PMC9144882 DOI: 10.3390/vaccines10050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic hepatitis B (CHB) is a highly complicated pathological process in which the disease is initiated by the hepatitis B virus (HBV); however, host immune responses are primarily responsible for variable extents of liver damage. If the patients with CHB remain untreated, many CHB patients will eventually develop complications like cirrhosis of the liver (LC) and hepatocellular carcinoma (HCC). In 2019, an estimated 882,000 patients died due to HBV-related complications worldwide. Accordingly, several drugs with antiviral properties have been used to treat CHB patients during the last four decades. However, the treatment outcome is not satisfactory because viral suppression is not usually related to the containment of progressive liver damage. Although proper reconstruction of host immunity is essential in CHB patients, as of today, there is no acceptable immune therapeutic protocol for them. These realities have exposed new, novel, and innovative therapeutic regimens for the management of CHB patients. This review will update the scope and limitation of the different innovative antiviral and immune therapeutic approaches for restoring effective host immunity and containing the virus in CHB patients to block progression to LC and HCC.
Collapse
Affiliation(s)
- Sheikh Mohammad Fazle Akbar
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan; (O.Y.); (Y.H.)
- Correspondence: ; Tel.: +81-89-960-5308; Fax: +81-89-960-5310
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, BSMMU, Dhaka 1000, Bangladesh;
| | - Sakirul Khan
- Department of Microbiology, Oita University, Oita 879-5593, Japan;
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan; (O.Y.); (Y.H.)
| | - Julio Cesar Aguilar
- Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (J.C.A.); (G.N.G.)
| | - Guillen Nieto Gerardo
- Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (J.C.A.); (G.N.G.)
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Graduate School of Medicine, Ehime University, Ehime 791-0295, Japan; (O.Y.); (Y.H.)
| |
Collapse
|
50
|
Hui RWH, Mak LY, Seto WK, Yuen MF. Assessing the developing pharmacotherapeutic landscape in hepatitis B treatment: A spotlight on drugs at phase II clinical trials. Expert Opin Emerg Drugs 2022; 27:127-140. [PMID: 35511483 DOI: 10.1080/14728214.2022.2074977] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Functional cure, defined as sustained HBsAg seroclearance, is associated with favorable outcomes in chronic hepatitis B (CHB). While nucleos(t)ide analogues (NAs) are effective in suppressing HBV replication, NAs are unable to induce functional cure at high rates. A range of novel HBV antivirals, aiming to induce functional cure, are currently under development. AREAS COVERED This article covered novel hepatitis B virus (HBV) antivirals that have entered phase II trials. Virus-directing agents covered include entry inhibitors, transcription inhibitors, RNA silencers, core protein allosteric modulators, non-competitive polymerase inhibitors, and viral protein export inhibitors. Immunomodulators covered include innate immune stimulators, T-cell modulators, therapeutic vaccines, and monoclonal antibodies. Upcoming developmental directions would also be discussed. EXPERT OPINION Among novel HBV antivirals, RNA silencers, viral protein export inhibitors (with pegylated interferon) and entry inhibitors (with pegylated interferon) appear to be effective in suppressing HBsAg and may even induce functional cure. The other virus-targeting agents have variable effects on HBV DNA, HBsAg, HBeAg and HBcrAg. Immunomodulators have modest effects on HBsAg, but may have important roles in combination therapy. Upcoming trials will answer important questions on ideal dosing, long-term drug effects, and efficacy of combination regimens.
Collapse
Affiliation(s)
- Rex Wan-Hin Hui
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Lung Yi Mak
- Department of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Man-Fung Yuen
- Department of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| |
Collapse
|