1
|
Wen J, Wen K, Tao M, Zhou Z, He X, Wang W, Huang Z, Lin Q, Li H, Liu H, Yan Y, Xiao Z. Integrated analysis reveals an immune evasion prognostic signature for predicting the overall survival in patients with hepatocellular carcinoma. Cancer Cell Int 2025; 25:101. [PMID: 40102844 PMCID: PMC11916977 DOI: 10.1186/s12935-025-03743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND The development of immunotherapy has enriched the treatment of hepatocellular carcinoma (HCC), but the efficacy is not as expected, which may be due to immune evasion. Immune evasion is related to the immune microenvironment of HCC, but there is little research on it. METHODS We employed unsupervised clustering analysis to categorize patients from TCGA based on 182 immune evasion-related genes (IEGs). We utilized single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT to calculate differences in immune cell infiltration between clusters. The differences in immune cells and immune-related pathways were assessed using GSEA. We constructed an immune escape prognosis signature (IEPS) using univariate Cox and LASSO Cox algorithms and evaluated the predictive performance of IEPS with receiver operating characteristic (ROC) curves and survival curves. Additionally, we established a nomogram for clinical application based on IEPS. IHC validated the expression of Carbamoyl phosphate synthetase 2, Aspartate transcarbamylase, and Dihydroorotase (CAD) and Phosphatidylinositol Glycan Anchor Biosynthesis Class U (PIGU) in HCC. We transfected liver cancer cell lines with siRNA and overexpression plasmids, and confirmed the relationship between CAD, PIGU, and the potential downstream TGF-β1 in HCC using qRT-PCR and Western blot. Finally, we validated the tumor response of CAD overexpression using an animal model. RESULTS Unsupervised clustering analysis based on IEGs divided HCC patients from TCGA into two groups. There were significant differences in prognosis and immune characteristics between the two groups of patients. Scoring of TCGA patients using IEPS revealed that higher scores were associated with poorer overall survival (OS). Validation was performed using the ICGC database. TIME analysis indicated that patients in the high-IEPS group were in an immunosuppressive state, possibly due to a significant increase in Treg infiltration. Compared to normal liver cells, HCC cells expressed higher levels of CAD and PIGU. Cellular experimental results showed a positive correlation between CAD, PIGU and the potential downstream TGF-β1 expression. Animal experiments demonstrated that CAD significantly promoted tumor progression, with an increase in Treg infiltration. CONCLUSION IEPS has strong prognostic value for HCC patients, and CAD and PIGU provide perspectives on new biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Jiahua Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kai Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Meng Tao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xing He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Biliary and Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Weidong Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zian Huang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiaohong Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huoming Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haohan Liu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
2
|
Wang K, Lan Z, Zhou H, Fan R, Chen H, Liang H, You Q, Liang X, Zeng G, Deng R, Lan Y, Shen S, Chen P, Hou J, Bu P, Sun J. Long-chain acylcarnitine deficiency promotes hepatocarcinogenesis. Acta Pharm Sin B 2025; 15:1383-1396. [PMID: 40370557 PMCID: PMC12069247 DOI: 10.1016/j.apsb.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 05/16/2025] Open
Abstract
Despite therapy with potent antiviral agents, chronic hepatitis B (CHB) patients remain at high risk of hepatocellular carcinoma (HCC). While metabolites have been rediscovered as active drivers of biological processes including carcinogenesis, the specific metabolites modulating HCC risk in CHB patients are largely unknown. Here, we demonstrate that baseline plasma from CHB patients who later developed HCC during follow-up exhibits growth-promoting properties in a case-control design nested within a large-scale, prospective cohort. Metabolomics analysis reveals a reduction in long-chain acylcarnitines (LCACs) in the baseline plasma of patients with HCC development. LCACs preferentially inhibit the proliferation of HCC cells in vitro at a physiological concentration and prevent the occurrence of HCC in vivo without hepatorenal toxicity. Uptake and metabolism of circulating LCACs increase the intracellular level of acetyl coenzyme A, which upregulates histone H3 Lys14 acetylation at the promoter region of KLF6 gene and thereby activates KLF6/p21 pathway. Indeed, blocking LCAC metabolism attenuates the difference in KLF6/p21 expression induced by baseline plasma of HCC/non-HCC patients. The deficiency of circulating LCACs represents a driver of HCC in CHB patients with viral control. These insights provide a promising direction for developing therapeutic strategies to reduce HCC risk further in the antiviral era.
Collapse
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhixian Lan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Heqi Zhou
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rong Fan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huiyi Chen
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongyan Liang
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiuhong You
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xieer Liang
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ge Zeng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rui Deng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu Lan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sheng Shen
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Pengcheng Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Sun
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
3
|
Zhang M, Huang K, Yin Q, Wu X, Zhu M, Li M. Spatial heterogeneity of the hepatocellular carcinoma microenvironment determines the efficacy of immunotherapy. Discov Oncol 2025; 16:15. [PMID: 39775241 PMCID: PMC11706828 DOI: 10.1007/s12672-025-01747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge owing to its widespread incidence and high mortality. HCC has a specific immune tolerance function because of its unique physiological structure, which limits the efficacy of chemotherapy, radiotherapy, and molecular targeting. In recent years, new immune approaches, including adoptive cell therapy, tumor vaccines, and oncolytic virus therapy, have shown great potential. As the efficacy of immunotherapy mainly depends on the spatial heterogeneity of the tumor immune microenvironment, it is necessary to elucidate the crosstalk between the composition of the liver cancer immune environment, from which potential therapeutic targets can be selected to provide more appropriate individualized treatment programs. The role of spatial heterogeneity of immune cells in the microenvironment of HCC in the progression and influence of immunotherapy on improving the treatment and prognosis of HCC were comprehensively analyzed, providing new inspiration for the subsequent clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Minni Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
- The First Affiliated Hospital, Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer, Hainan Medical University, Haikou, 570102, Hainan, People's Republic of China
| | - Kailin Huang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Qiushi Yin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Xueqin Wu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, 570023, Hainan, People's Republic of China.
- Key Laboratory of Tropical Translational Medicine, Ministry of Education, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
4
|
Song G, Yu X, Shi H, Sun B, Amateau S. miRNAs in HCC, pathogenesis, and targets. Hepatology 2024:01515467-990000000-01097. [PMID: 39626210 DOI: 10.1097/hep.0000000000001177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Liver cancer is the third leading cause of cancer-related mortality worldwide. HCC, the most common type of primary liver cancer, is driven by complex genetic, epigenetic, and environmental factors. MicroRNAs, a class of naturally occurring small noncoding RNAs, play crucial roles in HCC by simultaneously modulating the expression of multiple genes in a fine-tuning manner. Significant progress has been made in understanding how miRNAs influence key oncogenic pathways, including cell proliferation, apoptosis, angiogenesis, and epithelial-mesenchymal transition (EMT), as well as their role in modulating the immune microenvironment in HCC. Due to the unexpected stability of miRNAs in the blood and fixed HCC tumors, recent advancements also highlight their potential as noninvasive diagnostic tools. Restoring or inhibiting specific miRNAs has offered promising strategies for targeted HCC treatment by suppressing malignant hepatocyte growth and enhancing antitumor immunity. In this comprehensive review, we consolidate previous research and provide the latest insights into how miRNAs regulate HCC and their therapeutic and diagnostic potential. We delve into the dysregulation of miRNA biogenesis in HCC, the roles of miRNAs in the proliferation and apoptosis of malignant hepatocytes, angiogenesis and metastasis of HCC, the immune microenvironment in HCC, and drug resistance. We also discuss the therapeutic and diagnostic potential of miRNAs and delivery approaches of miRNA drugs to overcome the limitations of current HCC treatment options. By thoroughly summarizing the roles of miRNAs in HCC, our goal is to advance the development of effective therapeutic drugs with minimal adverse effects and to establish precise tools for early diagnosis of HCC.
Collapse
Affiliation(s)
- Guisheng Song
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaofan Yu
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Hongtao Shi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan City, China
| | - Bo Sun
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Stuart Amateau
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Naghib SM, Ahmadi B, Mikaeeli Kangarshahi B, Mozafari MR. Chitosan-based smart stimuli-responsive nanoparticles for gene delivery and gene therapy: Recent progresses on cancer therapy. Int J Biol Macromol 2024; 278:134542. [PMID: 39137858 DOI: 10.1016/j.ijbiomac.2024.134542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Recent cancer therapy research has found that chitosan (Ch)-based nanoparticles show great potential for targeted gene delivery. Chitosan, a biocompatible and biodegradable polymer, has exceptional properties, making it an ideal carrier for therapeutic genes. These nanoparticles can respond to specific stimuli like pH, temperature, and enzymes, enabling precise delivery and regulated release of genes. In cancer therapy, these nanoparticles have proven effective in delivering genes to tumor cells, slowing tumor growth. Adjusting the nanoparticle's surface, encapsulating protective agents, and using targeting ligands have also improved gene delivery efficiency. Smart nanoparticles based on chitosan have shown promise in improving outcomes by selectively releasing genes in response to tumor conditions, enhancing targeted delivery, and reducing off-target effects. Additionally, targeting ligands on the nanoparticles' surface increases uptake and effectiveness. Although further investigation is needed to optimize the structure and composition of these nanoparticles and assess their long-term safety, these advancements pave the way for innovative gene-focused cancer therapies.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Bahar Ahmadi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
6
|
Duan Y, Deng M, Liu B, Meng X, Liao J, Qiu Y, Wu Z, Lin J, Dong Y, Duan Y, Sun Y. Mitochondria targeted drug delivery system overcoming drug resistance in intrahepatic cholangiocarcinoma by reprogramming lipid metabolism. Biomaterials 2024; 309:122609. [PMID: 38754290 DOI: 10.1016/j.biomaterials.2024.122609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The challenge of drug resistance in intrahepatic cholangiocarcinoma (ICC) is intricately linked with lipid metabolism reprogramming. The hepatic lipase (HL) and the membrane receptor CD36 are overexpressed in BGJ398-resistant ICC cells, while they are essential for lipid uptake, further enhancing lipid utilization in ICC. Herein, a metal-organic framework-based drug delivery system (OB@D-pMOF/CaP-AC, DDS), has been developed. The specifically designed DDS exhibits a successive targeting property, enabling it to precisely target ICC cells and their mitochondria. By specifically targeting the mitochondria, DDS produces reactive oxygen species (ROS) through its sonodynamic therapy effect, achieving a more potent reduction in ATP levels compared to non-targeted approaches, through the impairment of mitochondrial function. Additionally, the DDS strategically minimizes lipid uptake through the incorporation of the anti-HL drug, Orlistat, and anti-CD36 monoclonal antibody, reducing lipid-derived energy production. This dual-action strategy on both mitochondria and lipids can hinder energy utilization to restore drug sensitivity to BGJ398 in ICC. Moreover, an orthotopic mice model of drug-resistant ICC was developed, which serves as an exacting platform for evaluating the multifunction of designed DDS. Upon in vivo experiments with this model, the DDS demonstrated exceptional capabilities in suppressing tumor growth, reprogramming lipid metabolism and improving immune response, thereby overcoming drug resistance. These findings underscore the mitochondria-targeted DDS as a promising and innovative solution in ICC drug resistance.
Collapse
Affiliation(s)
- Yi Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Mengqiong Deng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Bin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Xianwei Meng
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinghan Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yijie Qiu
- Department of Ultrasound, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China
| | - Zhihua Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jiangtao Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China.
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Ying Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Chen W, Tan M, Zhang H, Gao T, Ren J, Cheng S, Chen J. Signaling molecules in the microenvironment of hepatocellular carcinoma. Funct Integr Genomics 2024; 24:146. [PMID: 39207523 DOI: 10.1007/s10142-024-01427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major fatal cancer that is known for its high recurrence and metastasis. An increasing number of studies have shown that the tumor microenvironment is closely related to the metastasis and invasion of HCC. The HCC microenvironment is a complex integrated system composed of cellular components, the extracellular matrix (ECM), and signaling molecules such as chemokines, growth factors, and cytokines, which are generally regarded as crucial molecules that regulate a series of important processes, such as the migration and invasion of HCC cells. Considering the crucial role of signaling molecules, this review aims to elucidate the regulatory effects of chemokines, growth factors, and cytokines on HCC cells in their microenvironment to provide important references for clarifying the development of HCC and exploring effective therapeutic targets.
Collapse
Affiliation(s)
- Wanjin Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Gao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
Qian J, Huang C, Wang M, Liu Y, Zhao Y, Li M, Zhang X, Gao X, Zhang Y, Wang Y, Huang J, Li J, Zhou Q, Liu R, Wang X, Cui J, Yang Y. Nuclear translocation of metabolic enzyme PKM2 participates in high glucose-promoted HCC metastasis by strengthening immunosuppressive environment. Redox Biol 2024; 71:103103. [PMID: 38471282 PMCID: PMC10945175 DOI: 10.1016/j.redox.2024.103103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Although some cohort studies have indicated a close association between diabetes and HCC, the underlying mechanism about the contribution of diabetes to HCC progression remains largely unknown. In the study, we applied a novel HCC model in SD rat with diabetes and a series of high glucose-stimulated cell experiments to explore the effect of a high glucose environment on HCC metastasis and its relevant mechanism. Our results uncovered a novel regulatory mechanism by which nuclear translocation of metabolic enzyme PKM2 mediated high glucose-promoted HCC metastasis. Specifically, high glucose-increased PKM2 nuclear translocation downregulates chemerin expression through the redox protein TRX1, and then strengthens immunosuppressive environment to promote HCC metastasis. To the best of our knowledge, this is the first report to elucidate the great contribution of a high glucose environment to HCC metastasis from a new perspective of enhancing the immunosuppressive microenvironment. Simultaneously, this work also highlights a previously unidentified non-metabolic role of PKM2 and opens a novel avenue for cross research and intervention for individuals with HCC and comorbid diabetes.
Collapse
Affiliation(s)
- Jiali Qian
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chuxin Huang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mimi Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Ying Liu
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xi Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiangyu Gao
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yawen Zhang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinya Huang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiajun Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Qiwen Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Rui Liu
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuanchun Wang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.
| | - Yehong Yang
- Department of endocrinology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Yuen JG, Hwang GR, Fesler A, Intriago E, Pal A, Ojha A, Ju J. Development of gemcitabine-modified miRNA mimics as cancer therapeutics for pancreatic ductal adenocarcinoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200769. [PMID: 38596306 PMCID: PMC10869788 DOI: 10.1016/j.omton.2024.200769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/23/2023] [Accepted: 01/19/2024] [Indexed: 04/11/2024]
Abstract
Despite the recent advancement in diagnosis and therapy, pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is still the most lethal cancer with a low five-year survival rate. There is an urgent need to develop new therapies to address this issue. In this study, we developed a treatment strategy by modifying tumor suppressor miRNAs, miR-15a and miR-194, with the chemotherapeutic gemcitabine (Gem) to create Gem-modified mimics, Gem-miR-15a and Gem-miR-194, respectively. In a panel of PDAC cell lines, we found that Gem-miR-15a and Gem-miR-194 induce cell-cycle arrest and apoptosis, and these mimics are potent inhibitors with IC50 values up to several hundred fold less than their native counterparts or Gem alone. Furthermore, we found that Gem-miR-15a and Gem-miR-194 retained miRNA function by downregulating the expression of several key targets including WEE1, CHK1, BMI1, and YAP1 for Gem-miR-15a, and FOXA1 for Gem-miR-194. We also found that our Gem-modified miRNA mimics exhibit an enhanced efficacy compared to Gem in patient-derived PDAC organoids. Furthermore, we observed that Gem-miR-15a significantly inhibits PDAC tumor growth in vivo without observing any noticeable signs of toxicity. Overall, our results demonstrate the therapeutic potential of Gem-modified miRNAs as a treatment strategy for PDAC.
Collapse
Affiliation(s)
- John G. Yuen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Medical Scientist Training Program, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ga-Ram Hwang
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Erick Intriago
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Amartya Pal
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Anushka Ojha
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- The Northport Veteran’s Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
10
|
Vianello C, Monti E, Leoni I, Galvani G, Giovannini C, Piscaglia F, Stefanelli C, Gramantieri L, Fornari F. Noncoding RNAs in Hepatocellular Carcinoma: Potential Applications in Combined Therapeutic Strategies and Promising Candidates of Treatment Response. Cancers (Basel) 2024; 16:766. [PMID: 38398157 PMCID: PMC10886468 DOI: 10.3390/cancers16040766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) is increasing, and 40% of patients are diagnosed at advanced stages. Over the past 5 years, the number of clinically available treatments has dramatically increased for HCC, making patient management particularly complex. Immune checkpoint inhibitors (ICIs) have improved the overall survival of patients, showing a durable treatment benefit over time and a different response pattern with respect to tyrosine kinase inhibitors (TKIs). Although there is improved survival in responder cases, a sizeable group of patients are primary progressors or are ineligible for immunotherapy. Indeed, patients with nonviral etiologies, such as nonalcoholic steatohepatitis (NASH), and alterations in specific driver genes might be less responsive to immunotherapy. Therefore, improving the comprehension of mechanisms of drug resistance and identifying biomarkers that are informative of the best treatment approach are required actions to improve patient survival. Abundant evidence indicates that noncoding RNAs (ncRNAs) are pivotal players in cancer. Molecular mechanisms through which ncRNAs exert their effects in cancer progression and drug resistance have been widely investigated. Nevertheless, there are no studies summarizing the synergistic effect between ncRNA-based strategies and TKIs or ICIs in the preclinical setting. This review aims to provide up-to-date information regarding the possible use of ncRNAs as therapeutic targets in association with molecular-targeted agents and immunotherapies and as predictive tools for the selection of optimized treatment options in advanced HCCs.
Collapse
Affiliation(s)
- Clara Vianello
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy; (C.V.); (E.M.); (I.L.); (G.G.)
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Elisa Monti
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy; (C.V.); (E.M.); (I.L.); (G.G.)
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Ilaria Leoni
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy; (C.V.); (E.M.); (I.L.); (G.G.)
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Giuseppe Galvani
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy; (C.V.); (E.M.); (I.L.); (G.G.)
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, University of Bologna, 40128 Bologna, Italy; (C.G.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, University of Bologna, 40128 Bologna, Italy; (C.G.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Claudio Stefanelli
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Francesca Fornari
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy; (C.V.); (E.M.); (I.L.); (G.G.)
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy;
| |
Collapse
|
11
|
Chen J, Chan TTH, Zhou J. Lipid metabolism in the immune niche of tumor-prone liver microenvironment. J Leukoc Biol 2024; 115:68-84. [PMID: 37474318 DOI: 10.1093/jleuko/qiad081] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
The liver is a common primary site not only for tumorigenesis, but also for cancer metastasis. Advanced cancer patients with liver metastases also show reduced response rates and survival benefits when treated with immune checkpoint inhibitors. Accumulating evidence has highlighted the importance of the liver immune microenvironment in determining tumorigenesis, metastasis-organotropism, and immunotherapy resistance. Various immune cells such as T cells, natural killer and natural killer T cells, macrophages and dendritic cells, and stromal cells including liver sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, and hepatocytes are implicated in contributing to the immune niche of tumor-prone liver microenvironment. In parallel, as the major organ for lipid metabolism, the increased abundance of lipids and their metabolites is linked to processes crucial for nonalcoholic fatty liver disease and related liver cancer development. Furthermore, the proliferation, differentiation, and functions of hepatic immune and stromal cells are also reported to be regulated by lipid metabolism. Therefore, targeting lipid metabolism may hold great potential to reprogram the immunosuppressive liver microenvironment and synergistically enhance the immunotherapy efficacy in the circumstance of liver metastasis. In this review, we describe how the hepatic microenvironment adapts to the lipid metabolic alterations in pathologic conditions like nonalcoholic fatty liver disease. We also illustrate how these immunometabolic alterations promote the development of liver cancers and immunotherapy resistance. Finally, we discuss the current therapeutic options and hypothetic combination immunotherapies for the treatment of advanced liver cancers.
Collapse
Affiliation(s)
- Jintian Chen
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Thomas T H Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, SAR, P.R. China
| |
Collapse
|
12
|
Kim J, Pena JV, McQueen HP, Kong L, Michael D, Lomashvili EM, Cook PR. Downstream STING pathways IRF3 and NF-κB differentially regulate CCL22 in response to cytosolic dsDNA. Cancer Gene Ther 2024; 31:28-42. [PMID: 37990062 DOI: 10.1038/s41417-023-00678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/22/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Double-stranded DNA (dsDNA) in the cytoplasm of eukaryotic cells is abnormal and typically indicates the presence of pathogens or mislocalized self-DNA. Multiple sensors detect cytosolic dsDNA and trigger robust immune responses via activation of type I interferons. Several cancer immunotherapy treatments also activate cytosolic nucleic acid sensing pathways, including oncolytic viruses, nucleic acid-based cancer vaccines, and pharmacological agonists. We report here that cytosolic dsDNA introduced into malignant cells can robustly upregulate expression of CCL22, a chemokine responsible for the recruitment of regulatory T cells (Tregs). Tregs in the tumor microenvironment are thought to repress anti-tumor immune responses and contribute to tumor immune evasion. Surprisingly, we found that CCL22 upregulation by dsDNA was mediated primarily by interferon regulatory factor 3 (IRF3), a key transcription factor that activates type I interferons. This finding was unexpected given previous reports that type I interferon alpha (IFN-α) inhibits CCL22 and that IRF3 is associated with strong anti-tumor immune responses, not Treg recruitment. We also found that CCL22 upregulation by dsDNA occurred concurrently with type I interferon beta (IFN-β) upregulation. IRF3 is one of two transcription factors downstream of the STimulator of INterferon Genes (STING), a hub adaptor protein through which multiple dsDNA sensors transmit their signals. The other transcription factor downstream of STING, NF-κB, has been reported to regulate CCL22 expression in other contexts, and NF-κB has also been associated with multiple pro-tumor functions, including Treg recruitment. However, we found that NF-κB in the context of activation by cytosolic dsDNA contributed minimally to CCL22 upregulation compared with IRF3. Lastly, we observed that two strains of the same cell line differed profoundly in their capacity to upregulate CCL22 and IFN-β in response to dsDNA, despite apparent STING activation in both cell lines. This finding suggests that during tumor evolution, cells can acquire, or lose, the ability to upregulate CCL22. This study adds to our understanding of factors that may modulate immune activation in response to cytosolic DNA and has implications for immunotherapy strategies that activate DNA sensing pathways in cancer cells.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Jocelyn V Pena
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Hannah P McQueen
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Lingwei Kong
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Dina Michael
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Elmira M Lomashvili
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Pamela R Cook
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
13
|
Li M, Huang F, Zhu W, Peng Y, Xu F, Li W, Zhao Q, Liu L. Dynamic regulation of EXO1 promotes the progression from liver fibrosis to HCC through TGF-β1/Smad signaling feedback loop. Hepatol Commun 2024; 8:e0342. [PMID: 38126949 PMCID: PMC10749710 DOI: 10.1097/hc9.0000000000000342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND HSCs are the main stromal cells in the process of liver fibrosis and accelerate HCC progression. Previous studies determined that highly expressed exonuclease 1 (EXO1) increases the malignant behavior of HCC cells and is closely related to liver cirrhosis. This study aimed to explore the roles and mechanisms of EXO1 in the development of liver cirrhosis and HCC. METHODS We fully demonstrated that EXO1 expression was positively correlated with liver fibrosis and cirrhotic HCC by combining bioinformatics, hepatic fibrosis mouse models, and human HCC tissues. The role of EXO1 in a murine HCC model induced by activated forms of AKT and Ras oncogenes (AKT/Ras) was investigated by employing an adeno-associated virus-mediated EXO1 knockdown technique. RESULTS The knockdown of EXO1 promoted a regression of HCC in AKT/Ras mice and reduced the degree of liver fibrosis. Downregulated EXO1 inhibited LX-2 cell activation and inhibited the proliferation and migration of HCC cells. Moreover, conditioned medium of LX-2 cells with EXO1 overexpression increased the proliferation and migration of HCC cells, which was attenuated after EXO1 knockout in LX-2 cells. EXO1 knockdown attenuated the role of LX-2 in promoting HepG2 xenograft growth in vivo. Mechanistically, EXO1 promotes the activation of the downstream TGF-β-smad2/3 signaling in LX-2 and HCC cells. Interestingly, increased TGF-β-smad2/3 signaling had a feedback effect on EXO1, which sustains EXO1 expression and continuously stimulates the activation of HSCs. CONCLUSIONS EXO1 forms a positive feedback circuit with TGF-β-Smad2/3 signaling and promotes the activation of HSCs, which accelerates HCC progression. Those findings indicate EXO1 may be a promising target for the diagnosis and treatment of cirrhotic HCC.
Collapse
Affiliation(s)
- Mengting Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fengxing Huang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Weining Zhu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yanan Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Wenjie Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
14
|
Chen Y, Gan Y, Zhong H, Liu Y, Huang J, Wang W, Geng J. Gut microbe and hepatic macrophage polarization in non-alcoholic fatty liver disease. Front Microbiol 2023; 14:1285473. [PMID: 38125578 PMCID: PMC10731260 DOI: 10.3389/fmicb.2023.1285473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic hepatic disorder with the potential to progress to hepatic fibrosis, hepatic cirrhosis, and even hepatocellular carcinoma. Activation of hepatic macrophages, important innate immune cells predominantly composed of Kupffer cells, plays a pivotal role in NAFLD initiation and progression. Recent findings have underscored the regulatory role of microbes in both local and distal immune responses, including in the liver, emphasizing their contribution to NAFLD initiation and progression. Key studies have further revealed that gut microbes can penetrate the intestinal mucosa and translocate to the liver, thereby directly influencing hepatic macrophage polarization and NAFLD progression. In this review, we discuss recent evidence regarding the translocation of intestinal microbes into the liver, as well as their impact on hepatic macrophage polarization and associated cellular and molecular signaling pathways. Additionally, we summarize the potential mechanisms by which translocated microbes may activate hepatic macrophages and accelerate NAFLD progression.
Collapse
Affiliation(s)
- Yao Chen
- Department of Infectious Disease and Hepatic Disease, First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yumeng Gan
- Department of Infectious Disease and Hepatic Disease, First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Huijie Zhong
- Department of Infectious Disease and Hepatic Disease, First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yincong Liu
- Department of Infectious Disease and Hepatic Disease, First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jingdi Huang
- Department of Infectious Disease and Hepatic Disease, First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wenxue Wang
- Department of Infectious Disease and Hepatic Disease, First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiawei Geng
- Department of Infectious Disease and Hepatic Disease, First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
15
|
Yang Q, Tian H, Guo Z, Ma Z, Wang G. The role of noncoding RNAs in the tumor microenvironment of hepatocellular carcinoma. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1697-1706. [PMID: 37867435 PMCID: PMC10686793 DOI: 10.3724/abbs.2023231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/11/2023] [Indexed: 10/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the leading fatal malignancy worldwide. The tumor microenvironment (TME) can affect the survival, proliferation, migration, and even dormancy of cancer cells. Hypoxia is an important component of the TME, and hypoxia-inducible factor-1α (HIF-1α) is the most important transcriptional regulator. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), comprise a large part of the human transcriptome and play an important role in regulating the tumorigenesis of HCC. This review discusses the role of ncRNAs in hepatocarcinogenesis, epithelial-mesenchymal transition (EMT), and angiogenesis in a hypoxic microenvironment, as well as the interactions between ncRNAs and key components of the TME. It further discusses their use as biomarkers and the potential clinical value of drugs, as well as the challenges faced in the future.
Collapse
Affiliation(s)
- Qianqian Yang
- Laboratory for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Hui Tian
- Department of GeriatricsZhongshan HospitalFudan UniversityShanghai200032China
| | - Ziyi Guo
- Laboratory for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Zhongliang Ma
- Laboratory for Noncoding RNA and CancerSchool of Life SciencesShanghai UniversityShanghai200444China
| | - Guangzhi Wang
- School of Medical ImagingWeifang Medical UniversityWeifang261053China
- Department of Medical Imaging CenterAffiliated Hospital of Weifang Medical UniversityWeifang261053China
| |
Collapse
|
16
|
Liu F, Liao Z, Zhang Z. MYC in liver cancer: mechanisms and targeted therapy opportunities. Oncogene 2023; 42:3303-3318. [PMID: 37833558 DOI: 10.1038/s41388-023-02861-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
MYC, a major oncogenic transcription factor, regulates target genes involved in various pathways such as cell proliferation, metabolism and immune evasion, playing a critical role in the tumor initiation and development in multiple types of cancer. In liver cancer, MYC and its signaling pathways undergo significant changes, exerting a profound impact on liver cancer progression, including tumor proliferation, metastasis, dedifferentiation, metabolism, immune microenvironment, and resistance to comprehensive therapies. This makes MYC an appealing target, despite it being previously considered an undruggable protein. In this review, we discuss the role and mechanisms of MYC in liver physiology, chronic liver diseases, hepatocarcinogenesis, and liver cancer progression, providing a theoretical basis for targeting MYC as an ideal therapeutic target for liver cancer. We also summarize and prospect the strategies for targeting MYC, including direct and indirect approaches to abolish the oncogenic function of MYC in liver cancer.
Collapse
Affiliation(s)
- Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
17
|
Zhang L, Liu J. miR-21-5p inhibits the growth of brain glioma cells through regulating the glycolysis mediated by PFKFB2. Funct Integr Genomics 2023; 23:322. [PMID: 37864733 PMCID: PMC10590297 DOI: 10.1007/s10142-023-01246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/23/2023]
Abstract
Brain glioma is a common gynecological tumor. MicroRNA (miRNA) plays a very important role in the pathogenesis and development of tumors. It was found that glycolysis played important regulatory roles in tumor growth. The present study aims to investigate the expression pattern of miR-21-5p in brain glioma cells. We examined miR-21-5p and PFKFB2 levels in brain glioma cells via qRT-PCR. Then we performed CCK-8 and Transwell migration assays and determined glucose uptake and lactose production to unveil the properties of miR-21-5p in invasion, cell viability, along with glycolysis in brain glioma cells. Luciferase activity assay was implemented to elucidate if PFKFB2 was a miR-21-5p target gene. Western blotting and qRT-PCR were executed to further validate that miR-21-5p targeted PFKFB2. We repeated these functional assays to observe whether miR-21-5p could impede the function of PFKFB2. qRT-PCR signified that miR-21-5p was elevated in brain glioma tissues in contrast to matching adjacent normal tissues. Functional assays disclosed that elevation of miR-21-5p promoted cell viability, invasion, together with glycolysis. Luciferase assay indicated that PFKFB2 was a miR-21-5p target gene. Moreover, miR-21-inhibit could hinder cell viability, invasion, and glycolysis triggered by overexpression of PFKFB2 in brain glioma cells. miR-21-5p level is elevated in brain glioma and can impede brain glioma cell growth via regulating the glycolysis mediated by PFKFB2, thus is a potential target of treating brain glioma.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jianmin Liu
- Department of Neurosurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China.
| |
Collapse
|
18
|
Afra F, Mahboobipour AA, Salehi Farid A, Ala M. Recent progress in the immunotherapy of hepatocellular carcinoma: Non-coding RNA-based immunotherapy may improve the outcome. Biomed Pharmacother 2023; 165:115104. [PMID: 37393866 DOI: 10.1016/j.biopha.2023.115104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most lethal cancer and a leading cause of cancer-related mortality worldwide. Immune checkpoint inhibitors (ICIs) significantly improved the prognosis of HCC; however, the therapeutic response remains unsatisfactory in a substantial proportion of patients or needs to be further improved in responders. Herein, other methods of immunotherapy, including vaccine-based immunotherapy, adoptive cell therapy, cytokine delivery, kynurenine pathway inhibition, and gene delivery, have been adopted in clinical trials. Although the results were not encouraging enough to expedite their marketing. A major proportion of human genome is transcribed into non-coding RNAs (ncRNAs). Preclinical studies have extensively investigated the roles of ncRNAs in different aspects of HCC biology. HCC cells reprogram the expression pattern of numerous ncRNAs to decrease the immunogenicity of HCC, exhaust the cytotoxic and anti-cancer function of CD8 + T cells, natural killer (NK) cells, dendritic cells (DCs), and M1 macrophages, and promote the immunosuppressive function of T Reg cells, M2 macrophages, and myeloid-derived suppressor cells (MDSCs). Mechanistically, cancer cells recruit ncRNAs to interact with immune cells, thereby regulating the expression of immune checkpoints, functional receptors of immune cells, cytotoxic enzymes, and inflammatory and anti-inflammatory cytokines. Interestingly, prediction models based on the tissue expression or even serum levels of ncRNAs could predict response to immunotherapy in HCC. Moreover, ncRNAs markedly potentiated the efficacy of ICIs in murine models of HCC. This review article first discusses recent advances in the immunotherapy of HCC, then dissects the involvement and potential application of ncRNAs in the immunotherapy of HCC.
Collapse
Affiliation(s)
- Fatemeh Afra
- Clinical Pharmacy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Mahboobipour
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Salehi Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Chen X, Huang C, Nie F, Hu M. Enzyme-free and sensitive method for single-stranded nucleic acid detection based on CHA and HCR. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4243-4251. [PMID: 37592315 DOI: 10.1039/d3ay00975k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Simple, rapid, and highly sensitive methods for single-stranded nucleic acid detection are of great significance in clinical testing. Meanwhile, common methods are inseparable from the participation of enzymes, which greatly increases their complexity. Herein, an enzyme-free and sensitive method combining HCR and CHA is established to detect single-stranded nucleic acid. A target induces the auxiliary hairpin strands to open their secondary structure, exposing partial sequences that can trigger catalytic hairpin assembly (CHA) and hybridization chain reactions (HCR), respectively. To avoid additional signaling substances, 2-aminopurines (which fluoresces differently in double-stranded DNA and G-quadruplex) are modified in the substrate chains of CHA and HCR. Compared with methods that adopt CHA or HCR alone, the sensitivity of this method is increased by nearly 10 times. Moreover, this method can effectively improve the specific recognition of the target. To "turn on" the method, two regions that can pair with H5 and H6 are required. Taking foot-and-mouth disease virus (FMDV) as the object, this method can specifically detect FMDV to 2.78 × 101 TCID50. Although the sensitivity is not as good as RT-qPCR, it owns the advantages of simplicity and speed. We think this method can be used for the primary screening of FMDV, and has application potential in some grassroots.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China.
| | - Chaowang Huang
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China.
| | - Fuping Nie
- State Key Laboratory of Cattle Diseases Detection (Chongqing), Chongqing Customs Technology Center, Chongqing, 400020, P. R. China
| | - Mingdong Hu
- Department of Geriatrics and Special Services Medicine, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China.
- Department of Health Management, Xinqiao Hospital, Army Military Medical University, Chongqing 400037, China
| |
Collapse
|
20
|
Ma Y, Xu X, Wang H, Liu Y, Piao H. Non-coding RNA in tumor-infiltrating regulatory T cells formation and associated immunotherapy. Front Immunol 2023; 14:1228331. [PMID: 37671150 PMCID: PMC10475737 DOI: 10.3389/fimmu.2023.1228331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 09/07/2023] Open
Abstract
Cancer immunotherapy has exhibited promising antitumor effects in various tumors. Infiltrated regulatory T cells (Tregs) in the tumor microenvironment (TME) restrict protective immune surveillance, impede effective antitumor immune responses, and contribute to the formation of an immunosuppressive microenvironment. Selective depletion or functional attenuation of tumor-infiltrating Tregs, while eliciting effective T-cell responses, represents a potential approach for anti-tumor immunity. Furthermore, it does not disrupt the Treg-dependent immune homeostasis in healthy organs and does not induce autoimmunity. Yet, the shared cell surface molecules and signaling pathways between Tregs and multiple immune cell types pose challenges in this process. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), regulate both cancer and immune cells and thus can potentially improve antitumor responses. Here, we review recent advances in research of tumor-infiltrating Tregs, with a focus on the functional roles of immune checkpoint and inhibitory Tregs receptors and the regulatory mechanisms of ncRNAs in Treg plasticity and functionality.
Collapse
Affiliation(s)
- Yue Ma
- Department of Gynecology, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
| | - Xin Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huaitao Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiyan Piao
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning, China
| |
Collapse
|
21
|
Yuen JG, Hwang GR, Fesler A, Intriago E, Pal A, Ojha A, Ju J. Development of Gemcitabine-Modified miRNA Mimics as Cancer Therapeutics for Pancreatic Ductal Adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553255. [PMID: 37645827 PMCID: PMC10462072 DOI: 10.1101/2023.08.14.553255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Pancreatic cancer, including its most common subtype, pancreatic adenocarcinoma (PDAC), has the lowest five-year survival rate among patients with pancreatic cancer in the United States. Despite advancements in anticancer treatment, the overall median survival for patients with PDAC has not dramatically improved. Therefore, there is an urgent need to develop new strategies of treatment to address this issue. Non-coding RNAs, including microRNAs (miRNAs), have been found to have major roles in carcinogenesis and the subsequent treatment of various cancer types like PDAC. In this study, we developed a treatment strategy by modifying tumor suppressor miRNAs, hsa-miRNA-15a (miR-15a) and hsa-miRNA-194-1 (miR-194), with the nucleoside analog chemotherapeutic gemcitabine (Gem) to create Gem-modified mimics of miR-15a (Gem-miR-15a) and miR-194 (Gem-miR-194). In a panel of PDAC cell lines, we found that Gem-miR-15a and Gem-miR-194 induce cell cycle arrest and apoptosis, and these mimics are potent inhibitors with IC 50 values up to several hundred fold less than their native counterparts or Gem alone. Furthermore, we found that Gem-miR-15a and Gem-miR-194 retained miRNA function by downregulating the expression of several key targets including WEE1, CHK1, BMI1, and YAP1 for Gem-miR-15a, and FOXA1 for Gem-miR-194. We also found that our Gem-modified miRNA mimics exhibit an enhanced efficacy compared to Gem alone in patient-derived PDAC organoids. Furthermore, we observed that Gem-miR-15a significantly inhibits PDAC tumor growth in vivo without observing any noticeable signs of toxicity. Overall, our results demonstrate the therapeutic potential of Gem-modified miRNAs as a treatment strategy for PDAC. One Sentence Summary Yuen and Hwang et. al. have developed a potent therapeutic strategy for patients with pancreatic cancer by modifying microRNAs with gemcitabine.
Collapse
|
22
|
Li H, Zhao S, Jiang M, Zhu T, Liu J, Feng G, Lu L, Dong J, Wu X, Chen X, Zhao Y, Fan S. Biomodified Extracellular Vesicles Remodel the Intestinal Microenvironment to Overcome Radiation Enteritis. ACS NANO 2023; 17:14079-14098. [PMID: 37399352 DOI: 10.1021/acsnano.3c04578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Ionizing radiation (IR) is associated with the occurrence of enteritis, and protecting the whole intestine from radiation-induced gut injury remains an unmet clinical need. Circulating extracellular vesicles (EVs) are proven to be vital factors in the establishment of tissue and cell microenvironments. In this study, we aimed to investigate a radioprotective strategy mediated by small EVs (exosomes) in the context of irradiation-induced intestinal injury. We found that exosomes derived from donor mice exposed to total body irradiation (TBI) could protect recipient mice against TBI-induced lethality and alleviate radiation-induced gastrointestinal (GI) tract toxicity. To enhance the protective effect of EVs, profilings of mouse and human exosomal microRNAs (miRNAs) were performed to identify the functional molecule in exosomes. We found that miRNA-142-5p was highly expressed in exosomes from both donor mice exposed to TBI and patients after radiotherapy (RT). Moreover, miR-142 protected intestinal epithelial cells from irradiation-induced apoptosis and death and mediated EV protection against radiation enteritis by ameliorating the intestinal microenvironment. Then, biomodification of EVs was accomplished via enhancing miR-142 expression and intestinal specificity of exosomes, and thus improved EV-mediated protection from radiation enteritis. Our findings provide an effective approach for protecting against GI syndrome in people exposed to irradiation.
Collapse
Affiliation(s)
- Hang Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Shuya Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Mian Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Tong Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Xin Wu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Xin Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P.R. China
| |
Collapse
|
23
|
Shi Y, Qiu P, Zhao K, Li X, Feng Y, Deng Z, Wang J. Identifying a novel cuproptosis-related necroptosis gene subtype-related signature for predicting the prognosis, tumor microenvironment, and immunotherapy of hepatocellular carcinoma. Front Mol Biosci 2023; 10:1165243. [PMID: 37287752 PMCID: PMC10242026 DOI: 10.3389/fmolb.2023.1165243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
Background: Cuproptosis and necroptosis represent two distinct programmed cell death modalities implicated in neoplastic progression; however, the role of combining cuproptosis and necroptosis in hepatocellular carcinoma (HCC) remains to be elucidated. Methods: A total of 29 cuproptosis-related necroptosis genes (CRNGs) were identified, followed by an extensive analysis of their mutational characteristics, expression patterns, prognostic implications, and associations with the tumor microenvironment (TME). Subsequently, a CRNG subtype-related signature was developed, and its value of prognostic prediction, TME, and therapeutic responses in HCC were thoroughly investigated. Last, quantitative real-time PCR and Western blotting were employed for investigating the signature gene expression in 15 paired clinical tissue samples. Results: Two distinct CRNG subtypes were discerned, demonstrating associations between CRNG expression patterns, clinicopathological attributes, prognosis, and the TME. A CRNG subtype-related prognostic signature, subjected to external validation, was constructed, serving as an independent prognostic factor for HCC patients, indicating poor prognosis for high-risk individuals. Concurrently, the signature's correlations with an immune-suppressive TME, mutational features, stemness properties, immune checkpoint genes, chemoresistance-associated genes, and drug sensitivity were observed, signifying its utility in predicting treatment responses. Subsequently, highly accurate and clinically convenient nomograms were developed, and the signature genes were validated via quantitative real-time PCR and Western blotting, further substantiating the stability and dependability of the CRNG subtype-related prognostic signature. Conclusion: Overall, this investigation presented an extensive panorama of CRNGs and developed the CRNG subtype-related prognostic signature, which holds potential for implementation in personalized treatment strategies and prognostic forecasting for HCC patients.
Collapse
Affiliation(s)
- Yuanxin Shi
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Qiu
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhao
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Li
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunxiang Feng
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengdong Deng
- Department of Pediatric Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery, Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Affiliated Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Karimi K, Mojtabavi S, Tehrany PM, Nejad MM, Rezaee A, Mohtashamian S, Hamedi E, Yousefi F, Salmani F, Zandieh MA, Nabavi N, Rabiee N, Ertas YN, Salimimoghadam S, Rashidi M, Rahmanian P, Hushmandi K, Yu W. Chitosan-based nanoscale delivery systems in hepatocellular carcinoma: Versatile bio-platform with theranostic application. Int J Biol Macromol 2023; 242:124935. [PMID: 37230442 DOI: 10.1016/j.ijbiomac.2023.124935] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The field of nanomedicine has provided a fresh approach to cancer treatment by addressing the limitations of current therapies and offering new perspectives on enhancing patients' prognoses and chances of survival. Chitosan (CS) is isolated from chitin that has been extensively utilized for surface modification and coating of nanocarriers to improve their biocompatibility, cytotoxicity against tumor cells, and stability. HCC is a prevalent kind of liver tumor that cannot be adequately treated with surgical resection in its advanced stages. Furthermore, the development of resistance to chemotherapy and radiotherapy has caused treatment failure. The targeted delivery of drugs and genes can be mediated by nanostructures in treatment of HCC. The current review focuses on the function of CS-based nanostructures in HCC therapy and discusses the newest advances of nanoparticle-mediated treatment of HCC. Nanostructures based on CS have the capacity to escalate the pharmacokinetic profile of both natural and synthetic drugs, thus improving the effectiveness of HCC therapy. Some experiments have displayed that CS nanoparticles can be deployed to co-deliver drugs to disrupt tumorigenesis in a synergistic way. Moreover, the cationic nature of CS makes it a favorable nanocarrier for delivery of genes and plasmids. The use of CS-based nanostructures can be harnessed for phototherapy. Additionally, the incur poration of ligands including arginylglycylaspartic acid (RGD) into CS can elevate the targeted delivery of drugs to HCC cells. Interestingly, smart CS-based nanostructures, including ROS- and pH-sensitive nanoparticles, have been designed to provide cargo release at the tumor site and enhance the potential for HCC suppression.
Collapse
Affiliation(s)
- Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Mohtashamian
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Erfan Hamedi
- Department of Aquatic Animal Health & Diseases, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
25
|
Gao Y, Yuan Y, Wen S, Chen Y, Zhang Z, Feng Y, Jiang B, Ma S, Hu R, Fang C, Ruan X, Yuan Y, Fang X, Luo C, Meng Z, Wang X, Guo X. Dual role of ANGPTL8 in promoting tumor cell proliferation and immune escape during hepatocarcinogenesis. Oncogenesis 2023; 12:26. [PMID: 37188659 PMCID: PMC10185523 DOI: 10.1038/s41389-023-00473-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
The interplay between hepatocellular carcinoma (HCC) cells and the tumor microenvironment is essential for hepatocarcinogenesis, but their contributions to HCC development are incompletely understood. We assessed the role of ANGPTL8, a protein secreted by HCC cells, in hepatocarcinogenesis and the mechanisms through which ANGPTL8 mediates crosstalk between HCC cells and tumor-associated macrophages. Immunohistochemical, Western blotting, RNA-Seq, and flow cytometry analyses of ANGPTL8 were performed. A series of in vitro and in vivo experiments were conducted to reveal the role of ANGPTL8 in the progression of HCC. ANGPTL8 expression was positively correlated with tumor malignancy in HCC, and high ANGPTL8 expression was associated with poor overall survival (OS) and disease-free survival (DFS). ANGPTL8 promoted HCC cell proliferation in vitro and in vivo, and ANGPTL8 KO inhibited the development of HCC in both DEN-induced and DEN-plus-CCL4-induced mouse HCC tumors. Mechanistically, the ANGPTL8-LILRB2/PIRB interaction promoted polarization of macrophages to the immunosuppressive M2 phenotype in macrophages and recruited immunosuppressive T cells. In hepatocytes, ANGPTL8-mediated stimulation of LILRB2/PIRB regulated the ROS/ERK pathway and upregulated autophagy, leading to the proliferation of HCC cells. Our data support the notion that ANGPTL8 has a dual role in promoting tumor cell proliferation and immune escape during hepatocarcinogenesis.
Collapse
Grants
- 82073232, 82101632, 81700769, 81641028 National Natural Science Foundation of China (National Science Foundation of China)
- The Hubei Science & Technology Department Foundation (2020CFB558, 2018ACA162), the Key Projects of Hubei Education (D20202103), the Department of Biomedical Research Foundation, Hubei University of Medicine (HBMUPI201803), the Department of Education Cultivating Project for Young Scholars at Hubei University of Medicine (2018QDJZR02), the Innovative Research Program for Graduates of Hubei University of Medicine (YC2020039, YC2020002, YC2019003, YC2019008), the Advantages Discipline Group (medicine) Project in Higher Education of Hubei Province (2022XKQT3,2022XKQY1) and the Scientific Research Project of Shiyan Science and Technology Bureau, 21Y06, 21Y38).Hubei Province’s Outstanding Medical Academic Leader Program.
Collapse
Affiliation(s)
- Yujiu Gao
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
- Department of Nephrology, Taihe Hospital, 442000, Shiyan, China
- Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, 442000, Shiyan, China
| | - Yue Yuan
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
- College of Pharmacy, Hubei University of Medicine, 442000, Shiyan, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Shu Wen
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Yanghui Chen
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Zongli Zhang
- Institute of Pediatric Disease, Taihe Hospital, 442000, Shiyan, China
| | - Ying Feng
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Bin Jiang
- Department of Hepatobiliary Pancreatic Surgery, Taihe Hospital, 442000, Shiyan, China
| | - Shinan Ma
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Rong Hu
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Chen Fang
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Xuzhi Ruan
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Yahong Yuan
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Xinggang Fang
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Chao Luo
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China
| | - Zhongji Meng
- Department of Infectious Diseases, Institute of Biomedical Research, Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, 442000, Shiyan, China.
| | - Xiaoli Wang
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China.
- Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, 442000, Shiyan, China.
| | - Xingrong Guo
- Department of Critical Care Medicine, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, China.
- Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, 442000, Shiyan, China.
| |
Collapse
|
26
|
Meng H, Jiang L, Jia P, Niu R, Bu F, Zhu Y, Pan X, Li J, Liu J, Zhang Y, Huang C, Lv X, Li J. Inhibition of circular RNA ASPH reduces the proliferation and promotes the apoptosis of hepatic stellate cells in hepatic fibrosis. Biochem Pharmacol 2023; 210:115451. [PMID: 36758707 DOI: 10.1016/j.bcp.2023.115451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Circular RNAs (circRNAs) are a newly identified form of non-coding RNA that play a crucial role in various pathological processes. However, the expression profile and function of circRNAs in hepatic fibrosis (HF) remain largely unknown. In this study, we showed that a novel circRNA ASPH (circASPH) mediates HF by targeting the miR-139-5p/Notch1 axis. We investigated the expression profile of circRNAs in hepatocyte exosomes of mice with HF using circRNA-sequencing and found significant upregulation of circASPH. Loss- and gain-of-function analysis of circASPH was performed to assess its role in HF. Furthermore, we performed luciferase reporter assay, RNA pull-down, and fluorescence in situ hybridization analyses and confirmed that circASPH directly binds to miR-139-5p. We also found that circASPH was upregulated in liver fibrogenesis. Downregulation of circASPH expression inhibited hepatic stellate cell (HSC) activation and proliferation, induced apoptosis, and attenuated mouse liver fibrogenic injury. Mechanistically, circASPH directly targeted miR-139-5p to regulate the expression of Notch1 in HF. Thus, downregulation of circASPH may suppress the activation of HSCs and HF through the circASPH/miR-139-5p/Notch1 axis. Our findings indicated that circASPH may be a potential biomarker for HF diagnosis and therapy.
Collapse
Affiliation(s)
- Hongwu Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lingfeng Jiang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Pengcheng Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ruowen Niu
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Fangtian Bu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yan Zhu
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xueyin Pan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juanjuan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jinyu Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yilong Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Xiongwen Lv
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
27
|
Suda T, Yokoo T, Kanefuji T, Kamimura K, Zhang G, Liu D. Hydrodynamic Delivery: Characteristics, Applications, and Technological Advances. Pharmaceutics 2023; 15:1111. [PMID: 37111597 PMCID: PMC10141091 DOI: 10.3390/pharmaceutics15041111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
The principle of hydrodynamic delivery was initially used to develop a method for the delivery of plasmids into mouse hepatocytes through tail vein injection and has been expanded for use in the delivery of various biologically active materials to cells in various organs in a variety of animal species through systemic or local injection, resulting in significant advances in new applications and technological development. The development of regional hydrodynamic delivery directly supports successful gene delivery in large animals, including humans. This review summarizes the fundamentals of hydrodynamic delivery and the progress that has been made in its application. Recent progress in this field offers tantalizing prospects for the development of a new generation of technologies for broader application of hydrodynamic delivery.
Collapse
Affiliation(s)
- Takeshi Suda
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minamiuonuma 949-7302, Niigata, Japan
| | - Takeshi Yokoo
- Department of Preemptive Medicine for Digestive Diseases and Healthy Active Life, School of Medicine, Niigata University, Niigata 951-8510, Niigata, Japan
| | - Tsutomu Kanefuji
- Department of Gastroenterology and Hepatology, Tsubame Rosai Hospital, Tsubame 959-1228, Niigata, Japan
| | - Kenya Kamimura
- Department of General Medicine, School of Medicine, Niigata University, Niigata 951-8510, Niigata, Japan
| | - Guisheng Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
28
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y, Huang C. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Res 2023; 11:11. [PMID: 36849442 PMCID: PMC9971189 DOI: 10.1038/s41413-023-00246-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023] Open
Abstract
Osteosarcoma, with poor survival after metastasis, is considered the most common primary bone cancer in adolescents. Notwithstanding the efforts of researchers, its five-year survival rate has only shown limited improvement, suggesting that existing therapeutic strategies are insufficient to meet clinical needs. Notably, immunotherapy has shown certain advantages over traditional tumor treatments in inhibiting metastasis. Therefore, managing the immune microenvironment in osteosarcoma can provide novel and valuable insight into the multifaceted mechanisms underlying the heterogeneity and progression of the disease. Additionally, given the advances in nanomedicine, there exist many advanced nanoplatforms for enhanced osteosarcoma immunotherapy with satisfactory physiochemical characteristics. Here, we review the classification, characteristics, and functions of the key components of the immune microenvironment in osteosarcoma. This review also emphasizes the application, progress, and prospects of osteosarcoma immunotherapy and discusses several nanomedicine-based options to enhance the efficiency of osteosarcoma treatment. Furthermore, we examine the disadvantages of standard treatments and present future perspectives for osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Hailong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Jiangjun Cao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Bowen Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Edouard C. Nice
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
29
|
Iglesias-Escudero M, Arias-González N, Martínez-Cáceres E. Regulatory cells and the effect of cancer immunotherapy. Mol Cancer 2023; 22:26. [PMID: 36739406 PMCID: PMC9898962 DOI: 10.1186/s12943-023-01714-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/02/2023] [Indexed: 02/06/2023] Open
Abstract
Several mechanisms and cell types are involved in the regulation of the immune response. These include mostly regulatory T cells (Tregs), regulatory macrophages (Mregs), myeloid suppressor cells (MDSCs) and other regulatory cell types such as tolerogenic dendritic cells (tolDCs), regulatory B cells (Bregs), and mesenchymal stem cells (MSCs). These regulatory cells, known for their ability to suppress immune responses, can also suppress the anti-tumor immune response. The infiltration of many regulatory cells into tumor tissues is therefore associated with a poor prognosis. There is growing evidence that elimination of Tregs enhances anti-tumor immune responses. However, the systemic depletion of Treg cells can simultaneously cause deleterious autoimmunity. Furthermore, since regulatory cells are characterized by their high level of expression of immune checkpoints, it is also expected that immune checkpoint inhibitors perform part of their function by blocking these molecules and enhancing the immune response. This indicates that immunotherapy does not only act by activating specific effector T cells but can also directly or indirectly attenuate the suppressive activity of regulatory cells in tumor tissues. This review aims to draw together our current knowledge about the effect of immunotherapy on the various types of regulatory cells, and how these effects may be beneficial in the response to immunotherapy.
Collapse
Affiliation(s)
- María Iglesias-Escudero
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Noelia Arias-González
- grid.411438.b0000 0004 1767 6330Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain
| | - Eva Martínez-Cáceres
- Immunology Division, LCMN, Germans Trias i Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, Spain. .,Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
30
|
Han Q, Wang M, Dong X, Wei F, Luo Y, Sun X. Non-coding RNAs in hepatocellular carcinoma: Insights into regulatory mechanisms, clinical significance, and therapeutic potential. Front Immunol 2022; 13:985815. [PMID: 36300115 PMCID: PMC9590653 DOI: 10.3389/fimmu.2022.985815] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a complex and heterogeneous malignancy with high incidence and poor prognosis. In addition, owing to the lack of diagnostic and prognostic markers, current multimodal treatment options fail to achieve satisfactory outcomes. Tumor immune microenvironment (TIME), angiogenesis, epithelial-mesenchymal transition (EMT), invasion, metastasis, metabolism, and drug resistance are important factors influencing tumor development and therapy. The intercellular communication of these important processes is mediated by a variety of bioactive molecules to regulate pathophysiological processes in recipient cells. Among these bioactive molecules, non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), account for a large part of the human transcriptome, and their dysregulation affects the progression of HCC. The purpose of this review is to evaluate the potential regulatory mechanisms of ncRNAs in HCC, summarize novel biomarkers from somatic fluids (plasma/serum/urine), and explore the potential of some small-molecule modulators as drugs. Thus, through this review, we aim to contribute to a deeper understanding of the regulatory mechanisms, early diagnosis, prognosis, and precise treatment of HCC.
Collapse
Affiliation(s)
- Qin Han
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mengchen Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xi Dong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Wei
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory for Research and Evaluation of Pharmacovigilance, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun,
| |
Collapse
|
31
|
Zhang CY, Liu S, Yang M. Regulatory T cells and their associated factors in hepatocellular carcinoma development and therapy. World J Gastroenterol 2022; 28:3346-3358. [PMID: 36158267 PMCID: PMC9346458 DOI: 10.3748/wjg.v28.i27.3346] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/27/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the third leading cause of cancer-related death worldwide with primary type hepatocellular carcinoma (HCC). Factors, including carcinogens, infection of hepatitis viruses, alcohol abuse, and non-alcoholic fatty liver disease (NAFLD), can induce HCC initiation and promote HCC progression. The prevalence of NAFLD accompanying the increased incidence of obesity and type 2 diabetes becomes the most increasing factor causing HCC worldwide. However, the benefit of current therapeutic options is still limited. Intrahepatic immunity plays critically important roles in HCC initiation, development, and progression. Regulatory T cells (Tregs) and their associated factors such as metabolites and secreting cytokines mediate the immune tolerance of the tumor microenvironment in HCC. Therefore, targeting Tregs and blocking their mediated factors may prevent HCC progression. This review summarizes the functions of Tregs in HCC-inducing factors including alcoholic and NAFLD, liver fibrosis, cirrhosis, and viral infections. Overall, a better understanding of the role of Tregs in the development and progression of HCC provides treatment strategies for liver cancer treatment.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
32
|
Lu Y, Ma S, Ding W, Sun P, Zhou Q, Duan Y, Sartorius K. Resident Immune Cells of the Liver in the Tumor Microenvironment. Front Oncol 2022; 12:931995. [PMID: 35965506 PMCID: PMC9365660 DOI: 10.3389/fonc.2022.931995] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
The liver is a central immunomodulator that ensures a homeostatic balance between protection and immunotolerance. A hallmark of hepatocellular carcinoma (HCC) is the deregulation of this tightly controlled immunological network. Immune response in the liver involves a complex interplay between resident innate, innate, and adaptive immune cells. The immune response in the liver is modulated by its continuous exposure to toxic molecules and microorganisms that requires a degree of immune tolerance to protect normal tissue from damage. In HCC pathogenesis, immune cells must balance a dual role that includes the elimination of malignant cells, as well as the repair of damaged liver tissue to maintain homeostasis. Immune response in the innate and adaptive immune systems extends to the cross-talk and interaction involving immune-regulating non-hematopoietic cells, myeloid immune cells, and lymphoid immune cells. In this review, we discuss the different immune responses of resident immune cells in the tumor microenvironment. Current FDA-approved targeted therapies, including immunotherapy options, have produced modest results to date for the treatment of advanced HCC. Although immunotherapy therapy to date has demonstrated its potential efficacy, immune cell pathways need to be better understood. In this review article, we summarize the roles of specific resident immune cell subsets and their cross-talk subversion in HCC pathogenesis, with a view to identifying potential new biomarkers and therapy options.
Collapse
Affiliation(s)
- Yunjie Lu
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Shiying Ma
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Wei Ding
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Pengcheng Sun
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Qi Zhou
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Yunfei Duan
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Kurt Sartorius
- Hepatitis Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
- Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- University of Kwazulu-Natal Gastrointestinal Cancer Research Unit (UKZN/GICRC), Durban, South Africa
| |
Collapse
|
33
|
Li N, Zhang X, Zhou J, Li W, Shu X, Wu Y, Long M. Multiscale biomechanics and mechanotransduction from liver fibrosis to cancer. Adv Drug Deliv Rev 2022; 188:114448. [PMID: 35820602 DOI: 10.1016/j.addr.2022.114448] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/08/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023]
Abstract
A growing body of multiscale biomechanical studies has been proposed to highlight the mechanical cues in the development of hepatic fibrosis and cancer. At the cellular level, changes in mechanical microenvironment induce phenotypic and functional alterations of hepatic cells, initiating a positive feedback loop that promotes liver fibrogenesis and hepatocarcinogenesis. Tumor mechanical microenvironment of hepatocellular carcinoma facilitates tumor cell growth and metastasis, and hinders the drug delivery and immunotherapy. At the molecular level, mechanical forces are sensed and transmitted into hepatic cells via allosteric activation of mechanoreceptors on the cell membrane, leading to the activation of various mechanotransduction pathways including integrin and YAP signaling and then regulating cell function. Thus, the application of mechanomedicine concept in the treatment of liver diseases is promising for rational design and cell-specific delivery of therapeutic drugs. This review mainly discusses the correlation between biomechanical cues and liver diseases from the viewpoint of mechanobiology.
Collapse
Affiliation(s)
- Ning Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhou
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wang Li
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Shu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wu
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
34
|
Czaja AJ. Epigenetic Aspects and Prospects in Autoimmune Hepatitis. Front Immunol 2022; 13:921765. [PMID: 35844554 PMCID: PMC9281562 DOI: 10.3389/fimmu.2022.921765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
The observed risk of autoimmune hepatitis exceeds its genetic risk, and epigenetic factors that alter gene expression without changing nucleotide sequence may help explain the disparity. Key objectives of this review are to describe the epigenetic modifications that affect gene expression, discuss how they can affect autoimmune hepatitis, and indicate prospects for improved management. Multiple hypo-methylated genes have been described in the CD4+ and CD19+ T lymphocytes of patients with autoimmune hepatitis, and the circulating micro-ribonucleic acids, miR-21 and miR-122, have correlated with laboratory and histological features of liver inflammation. Both epigenetic agents have also correlated inversely with the stage of liver fibrosis. The reduced hepatic concentration of miR-122 in cirrhosis suggests that its deficiency may de-repress the pro-fibrotic prolyl-4-hydroxylase subunit alpha-1 gene. Conversely, miR-155 is over-expressed in the liver tissue of patients with autoimmune hepatitis, and it may signify active immune-mediated liver injury. Different epigenetic findings have been described in diverse autoimmune and non-autoimmune liver diseases, and these changes may have disease-specificity. They may also be responses to environmental cues or heritable adaptations that distinguish the diseases. Advances in epigenetic editing and methods for blocking micro-ribonucleic acids have improved opportunities to prove causality and develop site-specific, therapeutic interventions. In conclusion, the role of epigenetics in affecting the risk, clinical phenotype, and outcome of autoimmune hepatitis is under-evaluated. Full definition of the epigenome of autoimmune hepatitis promises to enhance understanding of pathogenic mechanisms and satisfy the unmet clinical need to improve therapy for refractory disease.
Collapse
Affiliation(s)
- Albert J. Czaja
- *Correspondence: Albert J. Czaja, ; orcid.org/0000-0002-5024-3065
| |
Collapse
|
35
|
Fu J, Lei X. Identification of the Immune Subtype of Hepatocellular Carcinoma for the Prediction of Disease-Free Survival Time and Prevention of Recurrence by Integrated Analysis of Bulk- and Single-Cell RNA Sequencing Data. Front Immunol 2022; 13:868325. [PMID: 35734185 PMCID: PMC9207181 DOI: 10.3389/fimmu.2022.868325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
BackgroundThe main factors affecting the long-term prognosis of hepatocellular carcinoma (HCC) patients undergoing radical surgery are recurrence and metastasis. However, the methods for predicting disease-free survival (DFS) time and preventing postoperative recurrence of HCC are still very limited.MethodsIn this study, immune cell abundances in HCC samples were analyzed by single-sample gene set enrichment analysis (ssGSEA), while the prognostic values of immune cells for DFS time prediction were evaluated by the least absolute shrinkage and selection operator (LASSO) and subsequent univariate and multivariate Cox analyses. Next, a risk score was constructed based on the most prognostic immune cells and their corresponding coefficients. Interactions among prognostic immune cells and the specific targets for the prevention of recurrence were further identified by single-cell RNA (scRNA) sequencing data and CellMiner.ResultsA novel efficient T cell risk score (TCRS) was constructed based on data from the three most prognostic immune cell types (effector memory CD8 T cells, regulatory T cells and follicular helper T cells) for identifying an immune subtype of HCC patients with longer DFS times and inflammatory immune characteristics. Functional differences between the high- and low-score groups separated by TCRS were clarified, and the cell-cell communication among these immune cells was elucidated. Finally, fifteen hub genes that may be potential therapeutic targets for the prevention of recurrence were identified.ConclusionsWe constructed and verified a useful model for the prediction of DFS time of HCC after surgery. In addition, fifteen hub genes were identified as candidates for the prevention of recurrence, and a preliminarily investigation of potential drugs targeting these hub genes was carried out.
Collapse
Affiliation(s)
- Jie Fu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaohua Lei
- The First Affiliated Hospital, Department of Hepato-Biliary-Pancreatic Surgery, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Xiaohua Lei,
| |
Collapse
|
36
|
Ke RS, Huang KZ, Bao DS, Yang JR, Wang HX, Lv LZ, Jiang Y, Liu ZH, Zhang FX. miR-517b-3p promotes the progression of portal vein tumor thrombus via activating Wnt/β-catenin signaling pathway in hepatocellular carcinoma. Mol Biol Rep 2022; 49:7793-7805. [PMID: 35666423 DOI: 10.1007/s11033-022-07605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
AIMS This study was aimed to investigate the expression patterns and prognostic value of microRNA-517b-3p (miR-517b-3p) in hepatocellular carcinoma (HCC) patients with portal vein tumor thrombus (PVTT). METHODS The expression of miR-517b-3p in PVTT tissues and cells was estimated using qRT-PCR. Through Kaplan-Meier survival analysis, Cox regression assay and ROC analysis, the significance of miR-517b-3p was explored. In addition, cell experiments were performed to examine the functional role of miR-517b-3p during progression of PVTT. Moreover, the biological process and biological pathway analysis analyses were conducted through GSEA and FunRich. Besides, the protein-protein interaction (PPI) network of the DEGs was established through cBioPortal website. RESULTS Compared with the controls, the miR-517b-3p was upregulated in both PVTT tissues and cells. The upregulated miR-517b-3p, which served as a potential diagnostic biomarker to distinguish PVTT from PT and controls, was associated with poor overall survival and acted as an independent prognostic factor. The cell proliferation, migration and invasion were proved to be enhanced by overexpression of miR-517b-3p. Furthermore, Wnt/β-catenin signaling was suppressed by miR-517b-3p knockdown and might be involved in the progression of PVTT. CONCLUSION miR-517b-3p may promote PVTT cell proliferation, migration and invasion via activation of Wnt/β-catenin signaling pathway. Meanwhile, miR-517b-3p has overexpression in PVTT samples, and serves as a candidate diagnostic and prognostic biomarker in HCC patients with PVTT.
Collapse
Affiliation(s)
- Rui-Sheng Ke
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
| | - Kun-Zhai Huang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - De-Sheng Bao
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Jing-Rui Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, China
| | - Hua-Xiang Wang
- Department of Hepatobiliary Surgery, The Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, Fujian, China
| | - Li-Zhi Lv
- Department of Hepatobiliary Surgery, The Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, Fujian, China
| | - Yi Jiang
- Department of Hepatobiliary Surgery, The Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, Fujian, China
| | - Zhao-Hui Liu
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
| | - Fu-Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, No. 55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
| |
Collapse
|
37
|
Xue C, Gu X, Bao Z, Su Y, Lu J, Li L. The Mechanism Underlying the ncRNA Dysregulation Pattern in Hepatocellular Carcinoma and Its Tumor Microenvironment. Front Immunol 2022; 13:847728. [PMID: 35281015 PMCID: PMC8904560 DOI: 10.3389/fimmu.2022.847728] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
HCC is one of the most common malignant tumors and has an extremely poor prognosis. Accumulating studies have shown that noncoding RNA (ncRNA) plays an important role in hepatocellular carcinoma (HCC) development. However, the details of the related mechanisms remain unclear. The heterogeneity of the tumor microenvironment (TME) calls for ample research with deep molecular characterization, with the hope of developing novel biomarkers to improve prognosis, diagnosis and treatment. ncRNAs, particularly microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), have been found to be correlated with HCC neogenesis and progression. In this review, we summarized the aberrant epigenetic and genetic alterations caused by dysregulated ncRNAs and the functional mechanism of classical ncRNAs in the regulation of gene expression. In addition, we focused on the role of ncRNAs in the TME in the regulation of tumor cell proliferation, invasion, migration, immune cell infiltration and functional activation. This may provide a foundation for the development of promising potential prognostic/predictive biomarkers and novel therapies for HCC patients.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanshuai Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Cao J, Shao H, Hu J, Jin R, Feng A, Zhang B, Li S, Chen T, Jeungpanich S, Topatana W, Tian Y, Lu Z, Cai X, Chen M. Identification of invasion-metastasis associated MiRNAs in gallbladder cancer by bioinformatics and experimental validation. J Transl Med 2022; 20:188. [PMID: 35484565 PMCID: PMC9052523 DOI: 10.1186/s12967-022-03394-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/15/2022] [Indexed: 01/13/2023] Open
Abstract
Background Recent studies exploring the roles of invasion-metastasis associated miRNAs in gallbladder cancer (GBC) are limited. In the study, we aimed to identify the invasion-metastasis associated miRNAs in GBC by bioinformatics and experimental validation. Methods MiRNAs of different expression were identified by comparing GBC tumor samples with different survival from Gene Expression Omnibus database. MiRTarBase was used for identifying the potential target genes of miRNAs. Then, we performed Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. And miRNA-gene and protein–protein interaction (PPI) network were constructed for hub genes evaluation. We further explored and compared miR-642a-3p and miR-145-5p expression in both The Cancer Genome Atlas database and our hospital data. Finally, quantitative real-time PCR, wound healing assay, and Transwell assay were conducted to validate the invasion-metastasis associated miRNAs in GBC. Results In GSE104165 database, 25 up-regulated and 97 down-regulated miRNAs were detected with significantly different expression in GBC tumor samples. Then, 477 potential target genes were identified from the 2 most up-regulated miRNAs (miR-4430 and miR-642a-3p) and 268 genes from the 2 most down-regulated miRNAs (miR-451a and miR-145-5p). After GO and KEGG analysis, mTOR and PI3K-Akt signaling pathways were found associated with the potential target genes. Based on PPI network, the top 10 highest degree hub nodes were selected for hub genes. Furthermore, the miRNA-hub gene network showed significant miR-642a-3p up-regulation and miR-145-5p down-regulation in both GBC tissues and cell lines. In the experimental validation, miR-145-5p up-regulation and miR-642a-3p down-regulation were confirmed to suppress GBC invasion and metastasis. Conclusions MiR-642a-3p and miR-145-5p were identified as invasion-metastasis associated miRNAs via bioinformatics and experimental validation, and both up-regulation of miR-642a-3p and down-regulation of miR-145-5p would be served as novel treatment options for GBC in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03394-8.
Collapse
Affiliation(s)
- Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Huijiang Shao
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.,Department of Hepatobiliary and Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, 312000, Zhejiang Province, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Renan Jin
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Anyun Feng
- Health Management Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310022, China
| | - Bin Zhang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Tianen Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Sarun Jeungpanich
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Win Topatana
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Yitong Tian
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Ziyi Lu
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Province, China.
| |
Collapse
|
39
|
Braghini MR, Lo Re O, Romito I, Fernandez-Barrena MG, Barbaro B, Pomella S, Rota R, Vinciguerra M, Avila MA, Alisi A. Epigenetic remodelling in human hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:107. [PMID: 35331312 PMCID: PMC8943959 DOI: 10.1186/s13046-022-02297-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/19/2022] [Indexed: 04/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, being the sixth most commonly diagnosed cancer and the fourth leading cause of cancer-related death. As other heterogeneous solid tumours, HCC results from a unique synergistic combination of genetic alterations mixed with epigenetic modifications.In HCC the patterns and frequencies of somatic variations change depending on the nearby chromatin. On the other hand, epigenetic alterations often induce genomic instability prone to mutations. Epigenetics refers to heritable states of gene expression without alteration to the DNA sequence itself and, unlike genetic changes, the epigenetic modifications are reversible and affect gene expression more extensively than genetic changes. Thus, studies of epigenetic regulation and the involved molecular machinery are greatly contributing to the understanding of the mechanisms that underline HCC onset and heterogeneity. Moreover, this knowledge may help to identify biomarkers for HCC diagnosis and prognosis, as well as future new targets for more efficacious therapeutic approaches.In this comprehensive review we will discuss the state-of-the-art knowledge about the epigenetic landscape in hepatocarcinogenesis, including evidence on the diagnostic and prognostic role of non-coding RNAs, modifications occurring at the chromatin level, and their role in the era of precision medicine.Apart from other better-known risk factors that predispose to the development of HCC, characterization of the epigenetic remodelling that occurs during hepatocarcinogenesis could open the way to the identification of personalized biomarkers. It may also enable a more accurate diagnosis and stratification of patients, and the discovery of new targets for more efficient therapeutic approaches.
Collapse
Affiliation(s)
- Maria Rita Braghini
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Oriana Lo Re
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Ilaria Romito
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Barbara Barbaro
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Silvia Pomella
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Matias A Avila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy.
| |
Collapse
|
40
|
Zhang C, Liu S, Yang M. Hepatocellular Carcinoma and Obesity, Type 2 Diabetes Mellitus, Cardiovascular Disease: Causing Factors, Molecular Links, and Treatment Options. Front Endocrinol (Lausanne) 2021; 12:808526. [PMID: 35002979 PMCID: PMC8733382 DOI: 10.3389/fendo.2021.808526] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, which will affect more than a million people by the year 2025. However, current treatment options have limited benefits. Nonalcoholic fatty liver disease (NAFLD) is the fastest growing factor that causes HCC in western countries, including the United States. In addition, NAFLD co-morbidities including obesity, type 2 diabetes mellitus (T2DM), and cardiovascular diseases (CVDs) promote HCC development. Alteration of metabolites and inflammation in the tumor microenvironment plays a pivotal role in HCC progression. However, the underlying molecular mechanisms are still not totally clear. Herein, in this review, we explored the latest molecules that are involved in obesity, T2DM, and CVDs-mediated progression of HCC, as they share some common pathologic features. Meanwhile, several therapeutic options by targeting these key factors and molecules were discussed for HCC treatment. Overall, obesity, T2DM, and CVDs as chronic metabolic disease factors are tightly implicated in the development of HCC and its progression. Molecules and factors involved in these NAFLD comorbidities are potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, United States
| |
Collapse
|