1
|
Zhou X, Zhang C, Shen W, Zhuang R, Liu S, Liu J. Curzerene suppresses epithelial-mesenchymal transition in gastric precancerous lesion cells through targeted regulation of YAP via the long non-coding RNA AFAP1-AS1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156879. [PMID: 40414046 DOI: 10.1016/j.phymed.2025.156879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/27/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Curzerene, a bioactive compound from Curcuma zedoaria, exhibits anticancer effects, but its role in gastric precancerous lesions remains poorly understood. This study investigates the potential of Curzerene in inhibiting gastric precancerous lesions progression by regulating the long non-coding RNA (LncRNA) AFAP1-AS1 and the Hippo/YAP signaling pathway. METHODS In vitro, a gastric precancerous cell model (MC cells) was established by treating GES-1 cells with MNNG. The effects of Curzerene on cell proliferation, migration, and EMT were assessed using CCK-8, scratch assays, RT-PCR, and Western blot. In vivo, a gastric precancerous mouse model was induced by MNU, and the therapeutic effects of Curzerene (14 mg/kg and 28 mg/kg) were evaluated through histological and molecular analysis. RESULTS Curzerene treatment significantly inhibited MC cell proliferation, migration, and EMT, downregulating LncRNA AFAP1-AS1 and YAP while upregulating E-cadherin and downregulating N-cadherin. In vivo, Curzerene alleviated gastric mucosal damage, reduced cancer markers (P53 and CD133), and improved histopathology. Transcriptomic analysis identified the Hippo/YAP pathway as a key mediator of Curzerene's effects. YAP activation reversed Curzerene's inhibitory effects on EMT, confirming the involvement of this pathway. CONCLUSION Curzerene effectively inhibits gastric precancerous lesion progression by targeting the YAP signaling and the following LncRNA AFAP1-AS1 to suppress EMT. These findings suggest Curzerene's novel potential as a promising therapeutic agent for early intervention and prevention of gastric cancer.
Collapse
Affiliation(s)
- XiaoMing Zhou
- Department of spleen and stomach disease, Nantong Affiliated Hospital of Nanjing University of Traditional Chines Medicine, Nantong, 226000, China
| | - ChenXi Zhang
- Department of spleen and stomach disease, Nantong Affiliated Hospital of Nanjing University of Traditional Chines Medicine, Nantong, 226000, China
| | - Wen Shen
- Department of spleen and stomach disease, Nantong Affiliated Hospital of Nanjing University of Traditional Chines Medicine, Nantong, 226000, China
| | - RuiFei Zhuang
- Department of spleen and stomach disease, Nantong Affiliated Hospital of Nanjing University of Traditional Chines Medicine, Nantong, 226000, China
| | - ShenLin Liu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, 210000, China.
| | - JinDi Liu
- Department of spleen and stomach disease, Nantong Affiliated Hospital of Nanjing University of Traditional Chines Medicine, Nantong, 226000, China.
| |
Collapse
|
2
|
Yang C, Li Y, Wang Z, Shan H, Zhang G, Meng X, Wang G, Hou Z, Zhao X, Zhang X, Liu A, Bing Y, Lei G, Jin Y, Luo J, Guo L, Yin Y. Identification of a cancer stem cell-like subpopulation that promotes HCC metastasis. JHEP Rep 2025; 7:101302. [PMID: 40242316 PMCID: PMC11999271 DOI: 10.1016/j.jhepr.2024.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 04/18/2025] Open
Abstract
Background & Aims Cancer stem cells (CSCs) are well-established drivers of tumorigenesis, but their role in regulating tumor metastasis remains poorly understood. Here, we report the identification and characterization of a cluster of metastasis-promoting CSC-like cells in hepatocellular carcinoma (HCC). Methods CSC-like cells in HCC were identified through the analysis of single cell RNA-sequencing data from 19 HCC samples. The stemness and invasive characteristics of these cells were evaluated using bioinformatical analyses of nine clinical cohorts and experimental validations. Spatial transcriptomics sequencing of 12 HCC samples revealed the cellular interactions between the CSC-like cells and tumor microenvironments, which were validated through gene co-expression analyses and immunohistochemistry. Finally, signaling pathway blockade was used to assess the potential clinical application of CSC-like cells. Results Through comprehensive analyses of single cell RNA-sequencing data from 19 patients with HCC and spatial transcriptomics data from 12 patients with HCC, a metastasis-promoting CSC-like subpopulation was identified. These CSC-like cells expressed high levels of epithelial-mesenchymal transition genes and were associated with poor prognosis of HCC. Histologically, CSC-like cells were enriched in highly aggressive tumors, especially in intrahepatic disseminated foci, where they interacted with immune cells. Functionally, CSC-like cells induced macrophage M2 polarization and T cell exhaustion through the ICAM1 signaling pathway, forming immunosuppressive microenvironments. Downregulation of ICAM1 expression in CSC-like cells suppressed macrophage M2-polarization and T cell exhaustion, thereby reversing antitumor immune effects. Conclusions Our study identified a metastasis-promoting CSC subpopulation, providing a potential perspective for CSC-targeted therapies in HCC. Impact and implications The heterogeneity of CSCs in HCC has been identified, yet the identification and characterization of metastasis-promoting CSC subpopulations remain unexplored. Here, we identified a CSC-like tumor cell subpopulation that promotes HCC metastasis by increasing cell invasiveness and suppressing antitumor immune responses via the ICAM1 signaling pathway. Our study uncovers novel mechanisms of HCC metastasis from the perspective of CSCs, and proposes potential tumor therapeutic strategies by inhibiting cellular interactions between CSC-like cells and immune cells.
Collapse
Affiliation(s)
- Chunyuan Yang
- Institute of Systems Biomedicine, Department of Pathology, Center of Basic Medical Research, Institute of Medical Innovation and Research, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Yang Li
- Institute of Systems Biomedicine, Department of Pathology, Center of Basic Medical Research, Institute of Medical Innovation and Research, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Third Hospital, Peking University, Beijing 100191, China
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhaohai Wang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Hui Shan
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Guangze Zhang
- Institute of Systems Biomedicine, Department of Pathology, Center of Basic Medical Research, Institute of Medical Innovation and Research, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xiangyan Meng
- Institute of Systems Biomedicine, Department of Pathology, Center of Basic Medical Research, Institute of Medical Innovation and Research, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Guangxi Wang
- Institute of Systems Biomedicine, Department of Pathology, Center of Basic Medical Research, Institute of Medical Innovation and Research, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Zhiyuan Hou
- Institute of Systems Biomedicine, Department of Pathology, Center of Basic Medical Research, Institute of Medical Innovation and Research, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, Center of Basic Medical Research, Institute of Medical Innovation and Research, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xin Zhang
- Institute of Systems Biomedicine, Department of Pathology, Center of Basic Medical Research, Institute of Medical Innovation and Research, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Anhang Liu
- Institute of Systems Biomedicine, Department of Pathology, Center of Basic Medical Research, Institute of Medical Innovation and Research, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Yuntao Bing
- Institute of Systems Biomedicine, Department of Pathology, Center of Basic Medical Research, Institute of Medical Innovation and Research, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Guanglin Lei
- Senior Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, 100039 Beijing, China
| | - Yan Jin
- Institute of Systems Biomedicine, Department of Pathology, Center of Basic Medical Research, Institute of Medical Innovation and Research, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, School of Basic Medical Sciences Peking University, Beijing 100191, China
| | - Limei Guo
- Institute of Systems Biomedicine, Department of Pathology, Center of Basic Medical Research, Institute of Medical Innovation and Research, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, Center of Basic Medical Research, Institute of Medical Innovation and Research, School of Basic Medical Sciences, Peking-Tsinghua Center for Life Sciences, Peking University Third Hospital, Peking University, Beijing 100191, China
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
3
|
Jeong H, Kim SH, Kim J, Jeon D, Uhm C, Oh H, Cho K, Park IH, Oh J, Kim JJ, Jeong SH, Park JH, Park JW, Yun JW, Seo JY, Shin JS, Goldenring JR, Seong JK, Nam KT. Post-COVID-19 Effects on Chronic Gastritis and Gastric Cellular and Molecular Characteristics in Male Mice. Cell Mol Gastroenterol Hepatol 2025; 19:101511. [PMID: 40157534 PMCID: PMC12143792 DOI: 10.1016/j.jcmgh.2025.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUNDS & AIMS Since the Omicron variant emerged as a major severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, COVID-19-associated mortality has decreased remarkably. Nevertheless, patients with a history of SARS-CoV-2 infection have been suffering from an aftereffect commonly known as 'long COVID,' affecting diverse organs. However, the effect of SARS-CoV-2 on gastric cells and disease progression was not previously known. We aimed to investigate whether SARS-CoV-2 infection affects stomach cells and if post-COVID-19 conditions can lead to severe gastric disease. METHODS Stomach specimens obtained from male K18-hACE2 mice 7 days after SARS-CoV-2 infection were subjected to a transcriptomic analysis for molecular profiling. To investigate the putative role of SARS-CoV-2 in gastric carcinogenesis, K18-hACE2 mice affected by nonlethal COVID-19 were also inoculated with Helicobacter pylori SS1. RESULTS Despite the lack of viral dissemination and pathologic traits in the stomach, SARS-CoV-2 infection caused dramatic changes to the molecular profile and some immune subsets in this organ. Notably, the gene sets related to metaplasia and gastric cancer were significantly enriched after viral infection. As a result, chronic inflammatory responses and preneoplastic transitions were promoted in these mice. CONCLUSION SARS-CoV-2 infection indirectly leads to profound and post-acute COVID-19 alterations in the stomach at the cellular and molecular levels, resulting in adverse outcomes following co-infection with SARS-CoV-2 and Hpylori. Our results show that 2 prevalent pathogens of humans elicit a negative synergistic effect and provide evidence of the risk of severe chronic gastritis in the post-COVID-19 era.
Collapse
Affiliation(s)
- Haengdueng Jeong
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sung-Hee Kim
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jiseon Kim
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Donghun Jeon
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Chanyang Uhm
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Heeju Oh
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyungrae Cho
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - In Ho Park
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jooyeon Oh
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeong Jin Kim
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Ho Jeong
- Department of Surgery, Gyongsang National University Hospital, Jinju, Korea
| | - Ji-Ho Park
- Department of Surgery, Gyongsang National University Hospital, Jinju, Korea
| | - Jun Won Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Jun-Young Seo
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeon-Soo Shin
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea
| | - James R Goldenring
- Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, South Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, Brain Korea 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, South Korea; BIO-MAX Institute, Seoul National University, Seoul, South Korea; Interdisciplinary Program for Bioinformatics, Seoul National University, Seoul, South Korea.
| | - Ki Taek Nam
- Department of Biomedical Sciences, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
4
|
Jia YP, Liu DC, Cao TL, Jiang HZ, Li T, Li Y, Ding X. Advances and global trends of precancerous lesions of gastric cancer: A bibliometric analysis. World J Gastrointest Oncol 2025; 17:102111. [PMID: 40092937 PMCID: PMC11866257 DOI: 10.4251/wjgo.v17.i3.102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 12/30/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Precancerous lesions of gastric cancer (PLGC) represent a critical pathological stage in the development of intestinal gastric cancer. Early detection and diagnosis are key to reducing the incidence of gastric cancer. Substantial advancements have been made in PLGC research in recent years, making it necessary to provide updated reviews using bibliometric methods. We hypothesize that this review will identify emerging trends, key research areas, and gaps in PLGC research, providing insights that could guide future studies and enhance prevention strategies. AIM To comprehensively review the current state of research on PLGC, examining development trends and research hotspots. METHODS We conducted a bibliometric analysis of PLGC-related studies published between 2004 and 2023 using the Web of Science Core Collection database. We employed Software, including VOSviewer, CiteSpace, R software, and SCImago Graphica, to map scientific networks and visualize knowledge trends in terms of publication volume, countries/regions, institutions, journals, authors, and keywords. RESULTS A total of 4097 articles were included, and overall publication volume showed an increasing trend. Over the past two decades, China published the most articles, followed by the United States, Japan, South Korea, and Italy. Among the top 10 contributors, the United States ranked highest in institutions, authors, and citations and demonstrated the strongest international collaboration. Research keywords in this field were clustered into three main categories: Risk factors, pathogenesis, and diagnosis and treatment. Pathogenesis and molecular biomarkers remain key areas of focus. Future research should explore the mechanisms of gut microbiota, immune microenvironment, metabolic reprogramming, and epigenetics. Advanced technologies, including single-cell sequencing, spatially resolved analysis, multi-omics approaches, artificial intelligence, and machine learning, will likely accelerate in-depth investigations of PLGC. CONCLUSION PLGC research has rapidly developed in recent years, gaining considerable attention. This bibliometric analysis reveals research state and emerging trends over the past 20 years, providing insights for future studies.
Collapse
Affiliation(s)
- Yuan-Ping Jia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Dian-Chun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting-Lan Cao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui-Zhong Jiang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Tao Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuan Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
5
|
Guenther AA, Ahn S, Min J, Zhang C, Lee HJ, Yang HK, Sung BH, Weaver AM, Choi E. Cortactin Facilitates Malignant Transformation of Dysplastic Cells in Gastric Cancer Development. Cell Mol Gastroenterol Hepatol 2025; 19:101490. [PMID: 40054524 DOI: 10.1016/j.jcmgh.2025.101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND & AIMS Epithelial cancer onset occurs through sequential stages of cell lineage conversion and functional dysregulation. Dysplasia is a precancerous lesion defined as a direct precursor to cancer and is histologically defined as a transition stage between pre-cancer and cancer, but molecular and biological mechanisms controlling its transformation to malignancy are underdetermined. Here, we discover the crucial role of the actin stabilization and exosome secretion-regulatory protein cortactin in dysplastic cell transformation to adenocarcinoma. METHODS We engineered a CRISPR/Cas9-based cortactin knock-out (KO) dysplasia organoid model established from dysplastic tissue and examined malignant roles of cortactin during gastric cancer development in vitro and in vivo. RESULTS Although dysplastic cell identity remained unchanged, the cortactin KO organoids exhibited a decrease in cellular organization and multicellular protrusions, which are considered aggressive features when observed in vitro. When injected into the flank of nude mice, cortactin KO cells failed malignant transformation into adenocarcinoma and solid tumor formation with reduced recruitment of fibroblasts and macrophages. In addition, cortactin KO cells showed diminished exosome secretion levels, and adenocarcinoma development was impaired when exosome secretion was inhibited in cortactin wild-type dysplastic cells. CONCLUSIONS These data suggest that cortactin is a functional element of membrane dynamics, malignant changes, and exosome secretion in dysplastic cells, and solid gastric tumor formation associated with alteration of the tumor microenvironment.
Collapse
Affiliation(s)
- Alexis A Guenther
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Suyeon Ahn
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jimin Min
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Current affiliation: Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Changqing Zhang
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Bong Hwan Sung
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; The Vanderbilt Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; The Vanderbilt Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eunyoung Choi
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
6
|
Lian G, Malagola E, Wei C, Shi Q, Zhao J, Hata M, Kobayashi H, Ochiai Y, Zheng B, Zhi X, Wu F, Tu R, Nápoles OC, Su W, Li L, Jing C, Chen M, Zamechek L, Friedman R, Nowicki-Osuch K, Quante M, Que J, Wang TC. p53 mutation biases squamocolumnar junction progenitor cells towards dysplasia rather than metaplasia in Barrett's oesophagus. Gut 2025; 74:182-196. [PMID: 39353725 PMCID: PMC11741926 DOI: 10.1136/gutjnl-2024-332095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND While p53 mutations occur early in Barrett's oesophagus (BE) progression to oesophageal adenocarcinoma (EAC), their role in gastric cardia stem cells remains unclear. OBJECTIVE This study investigates the impact of p53 mutation on the fate and function of cardia progenitor cells in BE to EAC progression, particularly under the duress of chronic injury. DESIGN We used a BE mouse model (L2-IL1β) harbouring a Trp53 mutation (R172H) to study the effects of p53 on Cck2r+ cardia progenitor cells. We employed lineage tracing, pathological analysis, organoid cultures, single-cell RNA sequencing (scRNA-seq) and computational analyses to investigate changes in progenitor cell behaviour, differentiation patterns and tumour progression. Additionally, we performed orthotopic transplantation of sorted metaplastic and mutant progenitor cells to assess their tumourigenic potential in vivo. RESULTS The p53 mutation acts as a switch to expand progenitor cells and inhibit their differentiation towards metaplasia, but only amidst chronic injury. In L2-IL1β mice, p53 mutation increased progenitors expansion and lineage-tracing with a shift from metaplasia to dysplasia. scRNA-seq revealed dysplastic cells arise directly from mutant progenitors rather than progressing through metaplasia. In vitro, p53 mutation enhanced BE progenitors' organoid-forming efficiency, growth, DNA damage resistance and progression to aneuploidy. Sorted metaplastic cells grew poorly with no progression to dysplasia, while mutant progenitors gave rise to dysplasia in orthotopic transplantation. Computational analyses indicated that p53 mutation inhibited stem cell differentiation through Notch activation. CONCLUSIONS p53 mutation contributes to BE progression by increasing expansion and fitness of undifferentiated cardia progenitors and preventing their differentiation towards metaplasia.
Collapse
Affiliation(s)
- Guodong Lian
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qiongyu Shi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Masahiro Hata
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Hiroki Kobayashi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Yosuke Ochiai
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Biyun Zheng
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Xiaofei Zhi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Ruhong Tu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Osmel Companioni Nápoles
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Wenjing Su
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Man Chen
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Critical Care Medicine, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Leah Zamechek
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
| | - Richard Friedman
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Karol Nowicki-Osuch
- German Cancer Research Center (DKFZ) Heidelberg, Tumorigenesis and Molecular Cancer Prevention Group, Heidelberg, Germany
- Herbert and Florence Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Michael Quante
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Munchen, Germany
| | - Jianwen Que
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY, USA
- Columbia University Digestive and Disease Research Center, New York, NY, USA
| |
Collapse
|
7
|
Zhou R, Tang X, Wang Y. Emerging strategies to investigate the biology of early cancer. Nat Rev Cancer 2024; 24:850-866. [PMID: 39433978 DOI: 10.1038/s41568-024-00754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/23/2024]
Abstract
Early detection and intervention of cancer or precancerous lesions hold great promise to improve patient survival. However, the processes of cancer initiation and the normal-precancer-cancer progression within a non-cancerous tissue context remain poorly understood. This is, in part, due to the scarcity of early-stage clinical samples or suitable models to study early cancer. In this Review, we introduce clinical samples and model systems, such as autochthonous mice and organoid-derived or stem cell-derived models that allow longitudinal analysis of early cancer development. We also present the emerging techniques and computational tools that enhance our understanding of cancer initiation and early progression, including direct imaging, lineage tracing, single-cell and spatial multi-omics, and artificial intelligence models. Together, these models and techniques facilitate a more comprehensive understanding of the poorly characterized early malignant transformation cascade, holding great potential to unveil key drivers and early biomarkers for cancer development. Finally, we discuss how these new insights can potentially be translated into mechanism-based strategies for early cancer detection and prevention.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiwen Tang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Qian ST, Zhao HY, Xie FF, Liu QS, Cai DL. Streptococcus anginosus in the development and treatment of precancerous lesions of gastric cancer. World J Gastrointest Oncol 2024; 16:3771-3780. [PMID: 39350992 PMCID: PMC11438778 DOI: 10.4251/wjgo.v16.i9.3771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 09/09/2024] Open
Abstract
The microbiota is strongly association with cancer. Studies have shown significant differences in the gastric microbiota between patients with gastric cancer (GC) patients and noncancer patients, suggesting that the microbiota may play a role in the development of GC. Although Helicobacter pylori (H. pylori) infection is widely recognized as a primary risk factor for GC, recent studies based on microbiota sequencing technology have revealed that non-H. pylori microbes also have a significant impact on GC. A recent study discovered that Streptococcus anginosus (S. anginosus) is more prevalent in the gastric mucosa of patients with GC than in that of those without GC. S. anginosus infection can spontaneously induce chronic gastritis, mural cell atrophy, mucoid chemotaxis, and heterotrophic hyperplasia, which promote the development of precancerous lesions of GC (PLGC). S. anginosus also disrupts the gastric barrier function, promotes the proliferation of GC cells, and inhibits apoptosis. However, S. anginosus is underrepresented in the literature. Recent reports suggest that it may cause precancerous lesions, indicating its emerging pathogenicity. Modern novel molecular diagnostic techniques, such as polymerase chain reaction, genetic testing, and Ultrasensitive Chromosomal Aneuploidy Detection, can be used to gastric precancerous lesions via microbial markers. Therefore, we present a concise summary of the relationship between S. anginosus and PLGC. Our aim was to further investigate new methods of preventing and treating PLGC by exploring the pathogenicity of S. anginosus on PLGC.
Collapse
Affiliation(s)
- Su-Ting Qian
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China
| | - Hao-Yu Zhao
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China
| | - Fei-Fei Xie
- Department of Digestive, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China
| | - Qing-Sheng Liu
- Science and Education Section, Hangzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang Province, China
| | - Dan-Li Cai
- Intensive Care Unit, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 311122, Zhejiang Province, China
| |
Collapse
|
9
|
Liu Z, Hou P, Fang J, Shao C, Shi Y, Melino G, Peschiaroli A. Hyaluronic acid metabolism and chemotherapy resistance: recent advances and therapeutic potential. Mol Oncol 2024; 18:2087-2106. [PMID: 37953485 PMCID: PMC11467803 DOI: 10.1002/1878-0261.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023] Open
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix, providing essential mechanical scaffolding for cells and, at the same time, mediating essential biochemical signals required for tissue homeostasis. Many solid tumors are characterized by dysregulated HA metabolism, resulting in increased HA levels in cancer tissues. HA interacts with several cell surface receptors, such as cluster of differentiation 44 and receptor for hyaluronan-mediated motility, thus co-regulating important signaling pathways in cancer development and progression. In this review, we describe the enzymes controlling HA metabolism and its intracellular effectors emphasizing their impact on cancer chemotherapy resistance. We will also explore the current and future prospects of HA-based therapy, highlighting the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Zhanhong Liu
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Pengbo Hou
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Jiankai Fang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Yufang Shi
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Gerry Melino
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR)RomeItaly
| |
Collapse
|
10
|
Zhao Y, Li S, Zhu L, Huang M, Xie Y, Song X, Chen Z, Lau HCH, Sung JJY, Xu L, Yu J, Li X. Personalized drug screening using patient-derived organoid and its clinical relevance in gastric cancer. Cell Rep Med 2024; 5:101627. [PMID: 38964315 PMCID: PMC11293329 DOI: 10.1016/j.xcrm.2024.101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/16/2024] [Accepted: 06/07/2024] [Indexed: 07/06/2024]
Abstract
The efficacy of chemotherapy varies significantly among patients with gastric cancer (GC), and there is currently no effective strategy to predict chemotherapeutic outcomes. In this study, we successfully establish 57 GC patient-derived organoids (PDOs) from 73 patients with GC (78%). These organoids retain histological characteristics of their corresponding primary GC tissues. GC PDOs show varied responses to different chemotherapeutics. Through RNA sequencing, the upregulation of tumor suppression genes/pathways is identified in 5-fluorouracil (FU)- or oxaliplatin-sensitive organoids, whereas genes/pathways associated with proliferation and invasion are enriched in chemotherapy-resistant organoids. Gene expression biomarker panels, which could distinguish sensitive and resistant patients to 5-FU and oxaliplatin (area under the dose-response curve [AUC] >0.8), are identified. Moreover, the drug-response results in PDOs are validated in patient-derived organoids-based xenograft (PDOX) mice and are consistent with the actual clinical response in 91.7% (11/12) of patients with GC. Assessing chemosensitivity in PDOs can be utilized as a valuable tool for screening chemotherapeutic drugs in patients with GC.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shangru Li
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lefan Zhu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingle Huang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinming Song
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Harry Cheuk-Hay Lau
- Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joseph Jao-Yiu Sung
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jun Yu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
11
|
Won Y, Jang B, Lee SH, Reyzer ML, Presentation KS, Kim H, Caldwell B, Zhang C, Lee HS, Lee C, Trinh VQ, Tan MCB, Kim K, Caprioli RM, Choi E. Oncogenic Fatty Acid Metabolism Rewires Energy Supply Chain in Gastric Carcinogenesis. Gastroenterology 2024; 166:772-786.e14. [PMID: 38272100 PMCID: PMC11040571 DOI: 10.1053/j.gastro.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND & AIMS Gastric carcinogenesis develops within a sequential carcinogenic cascade from precancerous metaplasia to dysplasia and adenocarcinoma, and oncogenic gene activation can drive the process. Metabolic reprogramming is considered a key mechanism for cancer cell growth and proliferation. However, how metabolic changes contribute to the progression of metaplasia to dysplasia remains unclear. We have examined metabolic dynamics during gastric carcinogenesis using a novel mouse model that induces Kras activation in zymogen-secreting chief cells. METHODS We generated a Gif-rtTA;TetO-Cre;KrasG12D (GCK) mouse model that continuously induces active Kras expression in chief cells after doxycycline treatment. Histologic examination and imaging mass spectrometry were performed in the GCK mouse stomachs at 2 to 14 weeks after doxycycline treatment. Mouse and human gastric organoids were used for metabolic enzyme inhibitor treatment. The GCK mice were treated with a stearoyl- coenzyme A desaturase (SCD) inhibitor to inhibit the fatty acid desaturation. Tissue microarrays were used to assess the SCD expression in human gastrointestinal cancers. RESULTS The GCK mice developed metaplasia and high-grade dysplasia within 4 months. Metabolic reprogramming from glycolysis to fatty acid metabolism occurred during metaplasia progression to dysplasia. Altered fatty acid desaturation through SCD produces a novel eicosenoic acid, which fuels dysplastic cell hyperproliferation and survival. The SCD inhibitor killed both mouse and human dysplastic organoids and selectively targeted dysplastic cells in vivo. SCD was up-regulated during carcinogenesis in human gastrointestinal cancers. CONCLUSIONS Active Kras expression only in gastric chief cells drives the full spectrum of gastric carcinogenesis. Also, oncogenic metabolic rewiring is an essential adaptation for high-energy demand in dysplastic cells.
Collapse
Affiliation(s)
- Yoonkyung Won
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Bogun Jang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Jeju National University College of Medicine and Jeju National University Hospital, Jeju, Republic of Korea
| | - Su-Hyung Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michelle L Reyzer
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| | - Kimberly S Presentation
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hyesung Kim
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Brianna Caldwell
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Changqing Zhang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hye Seung Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Vincent Q Trinh
- The Digital Histology and Advanced Pathology Research, The Institute for Research in Immunology and Cancer (IRIC) of the Université de Montréal, Montréal, Québec, Canada
| | - Marcus C B Tan
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, Tennessee
| | - Eunyoung Choi
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
12
|
Stangis MM, Chen Z, Min J, Glass SE, Jackson JO, Radyk MD, Hoi XP, Brennen WN, Yu M, Dinh HQ, Coffey RJ, Shrubsole MJ, Chan KS, Grady WM, Yegnasubramanian S, Lyssiotis CA, Maitra A, Halberg RB, Dey N, Lau KS. The Hallmarks of Precancer. Cancer Discov 2024; 14:683-689. [PMID: 38571435 PMCID: PMC11170686 DOI: 10.1158/2159-8290.cd-23-1550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Research on precancers, as defined as at-risk tissues and early lesions, is of high significance given the effectiveness of early intervention. We discuss the need for risk stratification to prevent overtreatment, an emphasis on the role of genetic and epigenetic aging when considering risk, and the importance of integrating macroenvironmental risk factors with molecules and cells in lesions and at-risk normal tissues for developing effective intervention and health policy strategies.
Collapse
Affiliation(s)
- Mary M. Stangis
- Department of Oncology – McArdle Laboratory for Cancer Research, University of Wisconsin-Madison
- Department of Medicine – Gastroenterology Division, University of Wisconsin-Madison
- Carbone Cancer Center, University of Wisconsin-Madison
| | - Zhengyi Chen
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine
- Epithelial Biology Center, Vanderbilt University Medical Center
| | - Jimin Min
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center
| | - Sarah E. Glass
- Epithelial Biology Center, Vanderbilt University Medical Center
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine
| | - Jordan O. Jackson
- Department of Laboratory Medicine and Pathology, University of Washington
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center
| | - Megan D. Radyk
- Department of Molecular & Integrative Physiology, University of Michigan Medical School
| | - Xen Ping Hoi
- Department of Urology, Houston Methodist Research Institute
- Neal Cancer Center, Houston Methodist Research Institute
| | - W. Nathaniel Brennen
- Department of Oncology – Genitourinary Cancer Disease Division, Johns Hopkins Medicine
- Department of Pharmacology and Molecular Sciences, Johns Hopkins Medicine
- Department of Urology, Johns Hopkins Medicine
| | - Ming Yu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center
- Department of Medicine – Division of Gastroenterology, University of Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Center
| | - Huy Q. Dinh
- Department of Oncology – McArdle Laboratory for Cancer Research, University of Wisconsin-Madison
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison
| | - Robert J. Coffey
- Epithelial Biology Center, Vanderbilt University Medical Center
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine
- Department of Medicine – Division of Gastroenterology, Hepatology, & Nutrition, Vanderbilt University Medical Center
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center
| | - Martha J. Shrubsole
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center
- Department of Medicine – Division of Epidemiology, Vanderbilt University Medical Center
| | - Keith S. Chan
- Department of Urology, Houston Methodist Research Institute
- Neal Cancer Center, Houston Methodist Research Institute
| | - William M. Grady
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center
- Department of Medicine – Division of Gastroenterology, University of Washington
- Public Health Sciences Division, Fred Hutchinson Cancer Center
| | - Srinivasan Yegnasubramanian
- Department of Oncology – Genitourinary Cancer Disease Division, Johns Hopkins Medicine
- Radiation Oncology and Molecular Radiation Sciences – Molecular Radiation Science Division, Johns Hopkins Medicine
- Department of Pathology – Kidney-Urologic Pathology Division, Johns Hopkins Medicine
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School
- Internal Medicine – Division of Gastroenterology, University of Michigan Medical School
- Rogel Cancer Center, University of Michigan Medical School
| | - Anirban Maitra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center
- Sheikh Ahmed Center for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Center
| | - Richard B. Halberg
- Department of Oncology – McArdle Laboratory for Cancer Research, University of Wisconsin-Madison
- Department of Medicine – Gastroenterology Division, University of Wisconsin-Madison
- Carbone Cancer Center, University of Wisconsin-Madison
| | - Neelendu Dey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center
- Department of Medicine – Division of Gastroenterology, University of Washington
| | - Ken S. Lau
- Chemical and Physical Biology Program, Vanderbilt University School of Medicine
- Epithelial Biology Center, Vanderbilt University Medical Center
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center
- Department of Surgery, Vanderbilt University Medical Center
| |
Collapse
|
13
|
Yang C, Jin Y, Yin Y. Integration of single-cell transcriptome and chromatin accessibility and its application on tumor investigation. LIFE MEDICINE 2024; 3:lnae015. [PMID: 39872661 PMCID: PMC11749461 DOI: 10.1093/lifemedi/lnae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/25/2024] [Indexed: 01/30/2025]
Abstract
The advent of single-cell sequencing techniques has not only revolutionized the investigation of biological processes but also significantly contributed to unraveling cellular heterogeneity at unprecedented levels. Among the various methods, single-cell transcriptome sequencing stands out as the best established, and has been employed in exploring many physiological and pathological activities. The recently developed single-cell epigenetic sequencing techniques, especially chromatin accessibility sequencing, have further deepened our understanding of gene regulatory networks. In this review, we summarize the recent breakthroughs in single-cell transcriptome and chromatin accessibility sequencing methodologies. Additionally, we describe current bioinformatic strategies to integrate data obtained through these single-cell sequencing methods and highlight the application of this analysis strategy on a deeper understanding of tumorigenesis and tumor progression. Finally, we also discuss the challenges and anticipated developments in this field.
Collapse
Affiliation(s)
- Chunyuan Yang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences Peking University, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yan Jin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences Peking University, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences Peking University, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, China
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
14
|
Sun T, Li M, Liu Q, Yu A, Cheng K, Ma J, Murphy S, McNutt PM, Zhang Y. Insights into optimizing exosome therapies for acute skin wound healing and other tissue repair. Front Med 2024; 18:258-284. [PMID: 38216854 PMCID: PMC11283324 DOI: 10.1007/s11684-023-1031-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/15/2023] [Indexed: 01/14/2024]
Abstract
Exosome therapy holds great promise as a novel approach to improve acute skin wound healing. This review provides a comprehensive overview of the current understanding of exosome biology and its potential applications in acute skin wound healing and beyond. Exosomes, small extracellular vesicles secreted by various stem cells, have emerged as potent mediators of intercellular communication and tissue repair. One advantage of exosome therapy is its ability to avoid potential risks associated with stem cell therapy, such as immune rejection or stem cells differentiating into unwanted cell types. However, further research is necessary to optimize exosome therapy, not only in the areas of exosome isolation, characterization, and engineering, but also in determining the optimal dose, timing, administration, and frequency of exosome therapy. Thus, optimization of exosome therapy is critical for the development of more effective and safer exosome-based therapies for acute skin wound healing and other diseases induced by cancer, ischemia, or inflammation. This review provides valuable insights into the potential of exosome therapy and highlights the need for further research to optimize exosome therapy for clinical use.
Collapse
Affiliation(s)
- Tianjing Sun
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Mo Li
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China
| | - Qi Liu
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Anyong Yu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Jianxing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Sean Murphy
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Patrick Michael McNutt
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA
| | - Yuanyuan Zhang
- Wake Forest Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
15
|
Tong QY, Pang MJ, Hu XH, Huang XZ, Sun JX, Wang XY, Burclaff J, Mills JC, Wang ZN, Miao ZF. Gastric intestinal metaplasia: progress and remaining challenges. J Gastroenterol 2024; 59:285-301. [PMID: 38242996 DOI: 10.1007/s00535-023-02073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024]
Abstract
Most gastric cancers arise in the setting of chronic inflammation which alters gland organization, such that acid-pumping parietal cells are lost, and remaining cells undergo metaplastic change in differentiation patterns. From a basic science perspective, recent progress has been made in understanding how atrophy and initial pyloric metaplasia occur. However, pathologists and cancer biologists have long been focused on the development of intestinal metaplasia patterns in this setting. Arguably, much less progress has been made in understanding the mechanisms that lead to the intestinalization seen in chronic atrophic gastritis and pyloric metaplasia. One plausible explanation for this disparity lies in the notable absence of reliable and reproducible small animal models within the field, which would facilitate the investigation of the mechanisms underlying the development of gastric intestinal metaplasia (GIM). This review offers an in-depth exploration of the current state of research in GIM, shedding light on its pivotal role in tumorigenesis. We delve into the histological subtypes of GIM and explore their respective associations with tumor formation. We present the current repertoire of biomarkers utilized to delineate the origins and progression of GIM and provide a comprehensive survey of the available, albeit limited, mouse lines employed for modeling GIM and engage in a discussion regarding potential cell lineages that serve as the origins of GIM. Finally, we expound upon the myriad signaling pathways recognized for their activity in GIM and posit on their potential overlap and interactions that contribute to the ultimate manifestation of the disease phenotype. Through our exhaustive review of the progression from gastric disease to GIM, we aim to establish the groundwork for future research endeavors dedicated to elucidating the etiology of GIM and developing strategies for its prevention and treatment, considering its potential precancerous nature.
Collapse
Affiliation(s)
- Qi-Yue Tong
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Min-Jiao Pang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xiao-Hai Hu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xuan-Zhang Huang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Jing-Xu Sun
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xin-Yu Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Joseph Burclaff
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Departments of Pathology and Immunology, Molecular and Cellular Biology, Baylor College of Medicine, Houston, USA
| | - Zhen-Ning Wang
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| | - Zhi-Feng Miao
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, 155 N. Nanjing Street, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
16
|
Kim H, Jang B, Zhang C, Caldwell B, Park DJ, Kong SH, Lee HJ, Yang HK, Goldenring JR, Choi E. Targeting Stem Cells and Dysplastic Features With Dual MEK/ERK and STAT3 Suppression in Gastric Carcinogenesis. Gastroenterology 2024; 166:117-131. [PMID: 37802423 PMCID: PMC10841458 DOI: 10.1053/j.gastro.2023.09.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUNDS & AIMS Precancerous metaplasia progression to dysplasia can increase the risk of gastric cancers. However, effective strategies to specifically target these precancerous lesions are currently lacking. To address this, we aimed to identify key signaling pathways that are upregulated during metaplasia progression and critical for stem cell survival and function in dysplasia. METHODS To assess the response to chemotherapeutic drugs, we used metaplastic and dysplastic organoids derived from Mist1-Kras mice and 20 human precancerous organoid lines established from patients with gastric cancer. Phospho-antibody array analysis and single-cell RNA-sequencing were performed to identify target cell populations and signaling pathways affected by pyrvinium, a putative anticancer drug. Pyrvinium was administered to Mist1-Kras mice to evaluate drug effectiveness in vivo. RESULTS Although pyrvinium treatment resulted in growth arrest in metaplastic organoids, it induced cell death in dysplastic organoids. Pyrvinium treatment significantly downregulated phosphorylation of ERK and signal transducer and activator of transcription 3 (STAT3) as well as STAT3-target genes. Single-cell RNA-sequencing data analyses revealed that pyrvinium specifically targeted CD133+/CD166+ stem cell populations, as well as proliferating cells in dysplastic organoids. Pyrvinium inhibited metaplasia progression and facilitated the restoration of normal oxyntic glands in Mist1-Kras mice. Furthermore, pyrvinium exhibited suppressive effects on the growth and survival of human organoids with dysplastic features, through simultaneous blocking of the MEK/ERK and STAT3 signaling pathways. CONCLUSIONS Through its dual blockade of MEK/ERK and STAT3 signaling pathways, pyrvinium can effectively induce growth arrest in metaplasia and cell death in dysplasia. Therefore, our findings suggest that pyrvinium is a promising chemotherapeutic agent for reprogramming the precancerous milieu to prevent gastric cancer development.
Collapse
Affiliation(s)
- Hyesung Kim
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Bogun Jang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Changqing Zhang
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brianna Caldwell
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Do-Joong Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - James R Goldenring
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Eunyoung Choi
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee.
| |
Collapse
|
17
|
Jang B, Kim H, Lee S, Won Y, Kaji I, Coffey RJ, Choi E, Goldenring JR. Dynamic tuft cell expansion during gastric metaplasia and dysplasia. J Pathol Clin Res 2024; 10:e352. [PMID: 38117182 PMCID: PMC10766036 DOI: 10.1002/cjp2.352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
Tuft cells are chemosensory cells associated with luminal homeostasis, immune response, and tumorigenesis in the gastrointestinal tract. We aimed to elucidate alterations in tuft cell populations during gastric atrophy and tumorigenesis in humans with correlative comparison to relevant mouse models. Tuft cell distribution was determined in human stomachs from organ donors and in gastric pathologies including Ménétrier's disease, Helicobacter pylori gastritis, intestinal metaplasia (IM), and gastric tumors. Tuft cell populations were examined in Lrig1-KrasG12D , Mist1-KrasG12D , and MT-TGFα mice. Tuft cells were evenly distributed throughout the entire normal human stomach, primarily concentrated in the isthmal region in the fundus. Ménétrier's disease stomach showed increased tuft cells. Similarly, Lrig1-Kras mice and mice overexpressing TGFα showed marked foveolar hyperplasia and expanded tuft cell populations. Human stomach with IM or dysplasia also showed increased tuft cell numbers. Similarly, Mist1-Kras mice had increased numbers of tuft cells during metaplasia and dysplasia development. In human gastric cancers, tuft cells were rarely observed, but showed positive associations with well-differentiated lesions. In mouse gastric cancer xenografts, tuft cells were restricted to dysplastic well-differentiated mucinous cysts and were lost in less differentiated cancers. Taken together, tuft cell populations increased in atrophic human gastric pathologies, metaplasia, and dysplasia, but were decreased in gastric cancers. Similar findings were observed in mouse models, suggesting that, while tuft cells are associated with precancerous pathologies, their loss is most associated with the progression to invasive cancer.
Collapse
Affiliation(s)
- Bogun Jang
- Section of Surgical SciencesVanderbilt University Medical CenterNashvilleTNUSA
- Jeju National University College of MedicineJejuRepublic of Korea
- Department of PathologyJeju National University HospitalJejuRepublic of Korea
| | - Hyesung Kim
- Section of Surgical SciencesVanderbilt University Medical CenterNashvilleTNUSA
- Jeju National University College of MedicineJejuRepublic of Korea
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
| | - Su‐Hyung Lee
- Section of Surgical SciencesVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Yoonkyung Won
- Section of Surgical SciencesVanderbilt University Medical CenterNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Izumi Kaji
- Section of Surgical SciencesVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - Robert J Coffey
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Department of Internal MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Eunyoung Choi
- Section of Surgical SciencesVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
| | - James R Goldenring
- Section of Surgical SciencesVanderbilt University Medical CenterNashvilleTNUSA
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTNUSA
- Epithelial Biology CenterVanderbilt University Medical CenterNashvilleTNUSA
- Nashville VA Medical CenterNashvilleTNUSA
| |
Collapse
|
18
|
Liu M, Liu Q, Zou Q, Li J, Chu Z, Xiang J, Chen WQ, Miao ZF, Wang B. The composition and roles of gastric stem cells in epithelial homeostasis, regeneration, and tumorigenesis. Cell Oncol (Dordr) 2023; 46:867-883. [PMID: 37010700 DOI: 10.1007/s13402-023-00802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/04/2023] Open
Abstract
The epithelial lining of the stomach undergoes rapid turnover to preserve its structural and functional integrity, a process driven by long-lived stem cells residing in the antral and corpus glands. Several subpopulations of gastric stem cells have been identified and their phenotypic and functional diversities linked to spatiotemporal specification of stem cells niches. Here, we review the biological features of gastric stem cells at various locations of the stomach under homeostatic conditions, as demonstrated by reporter mice, lineage tracing, and single cell sequencing. We also review the role of gastric stem cells in epithelial regeneration in response to injury. Moreover, we discuss emerging evidence demonstrating that accumulation of oncogenic drivers or alteration of stemness signaling pathways in gastric stem cells promotes gastric cancer. Given a fundamental role of the microenvironment, this review highlights the role reprogramming of niche components and signaling pathways under pathological conditions in dictating stem cell fate. Several outstanding issues are raised, such as the relevance of stem cell heterogeneity and plasticity, and epigenetic regulatory mechanisms, to Helicobacter pylori infection-initiated metaplasia-carcinogenesis cascades. With the development of spatiotemporal genomics, transcriptomics, and proteomics, as well as multiplexed screening and tracing approaches, we anticipate that more precise definition and characterization of gastric stem cells, and the crosstalk with their niche will be delineated in the near future. Rational exploitation and proper translation of these findings may bring forward novel modalities for epithelial rejuvenation and cancer therapeutics.
Collapse
Affiliation(s)
- Meng Liu
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing University Medical School, Chongqing, 400030, P. R. China
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
| | - Qin Liu
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
| | - Qiang Zou
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing University Medical School, Chongqing, 400030, P. R. China
| | - Jinyang Li
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
| | - Zhaole Chu
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
| | - Junyu Xiang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China
| | - Wei-Qing Chen
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing University Medical School, Chongqing, 400030, P. R. China.
| | - Zhi-Feng Miao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, 110001, P. R. China.
| | - Bin Wang
- Department of Gastroenterology & Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, P. R. China.
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China.
- Jinfeng Laboratory, Chongqing, 401329, P. R. China.
| |
Collapse
|
19
|
Yan HHN, Chan AS, Lai FPL, Leung SY. Organoid cultures for cancer modeling. Cell Stem Cell 2023; 30:917-937. [PMID: 37315564 DOI: 10.1016/j.stem.2023.05.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Organoids derived from adult stem cells (ASCs) and pluripotent stem cells (PSCs) are important preclinical models for studying cancer and developing therapies. Here, we review primary tissue-derived and PSC-derived cancer organoid models and detail how they have the potential to inform personalized medical approaches in different organ contexts and contribute to the understanding of early carcinogenic steps, cancer genomes, and biology. We also compare the differences between ASC- and PSC-based cancer organoid systems, discuss their limitations, and highlight recent improvements to organoid culture approaches that have helped to make them an even better representation of human tumors.
Collapse
Affiliation(s)
- Helen H N Yan
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
| | - April S Chan
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Frank Pui-Ling Lai
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Suet Yi Leung
- Department of Pathology, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong SAR, China; Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China; Jockey Club Centre for Clinical Innovation and Discovery, LKS Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong SAR, China; Centre for PanorOmic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
20
|
Goldenring JR. Spasmolytic polypeptide-expressing metaplasia (SPEM) cell lineages can be an origin of gastric cancer. J Pathol 2023; 260:109-111. [PMID: 37145865 PMCID: PMC10251156 DOI: 10.1002/path.6089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/06/2023]
Abstract
Intestinal-type gastric cancer arises in a field of precancerous metaplastic lineages. Two types of metaplastic glands are found in the stomachs of humans with the characteristics of pyloric metaplasia or intestinal metaplasia. While spasmolytic polypeptide-expressing metaplasia (SPEM) cell lineages have been identified in both pyloric metaplasia and incomplete intestinal metaplasia, it has been unclear whether SPEM lineages or intestinal lineages can give rise to dysplasia and cancer. A recent article published in The Journal of Pathology describes a patient with evidence of an activating Kras(G12D) mutation in SPEM that is propagated into adenomatous and cancerous lesions which manifest further oncogenic mutations. This case therefore supports the concept that SPEM lineages can serve as a direct precursor for dysplasia and intestinal-type gastric cancer. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- James R. Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical
Center, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical
Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt
University School of Medicine, Nashville, Tennessee, USA
- Nashville VA Medical Center, Nashville, Tennessee,
USA
| |
Collapse
|
21
|
Dysplastische Stammzellen initiieren Magenkrebs. ZEITSCHRIFT FÜR GASTROENTEROLOGIE 2023. [DOI: 10.1055/a-1963-5227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Das KK, Brown JW. 3'-sulfated Lewis A/C: An oncofetal epitope associated with metaplastic and oncogenic plasticity of the gastrointestinal foregut. Front Cell Dev Biol 2023; 11:1089028. [PMID: 36866273 PMCID: PMC9971977 DOI: 10.3389/fcell.2023.1089028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023] Open
Abstract
Metaplasia, dysplasia, and cancer arise from normal epithelia via a plastic cellular transformation, typically in the setting of chronic inflammation. Such transformations are the focus of numerous studies that strive to identify the changes in RNA/Protein expression that drive such plasticity along with the contributions from the mesenchyme and immune cells. However, despite being widely utilized clinically as biomarkers for such transitions, the role of glycosylation epitopes is understudied in this context. Here, we explore 3'-Sulfo-Lewis A/C, a clinically validated biomarker for high-risk metaplasia and cancer throughout the gastrointestinal foregut: esophagus, stomach, and pancreas. We discuss the clinical correlation of sulfomucin expression with metaplastic and oncogenic transformation, as well as its synthesis, intracellular and extracellular receptors and suggest potential roles for 3'-Sulfo-Lewis A/C in contributing to and maintaining these malignant cellular transformations.
Collapse
Affiliation(s)
- Koushik K Das
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Jeffrey W Brown
- Division of Gastroenterology, Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| |
Collapse
|
23
|
Schultz CW, Nevler A. Pyrvinium Pamoate: Past, Present, and Future as an Anti-Cancer Drug. Biomedicines 2022; 10:3249. [PMID: 36552005 PMCID: PMC9775650 DOI: 10.3390/biomedicines10123249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Pyrvinium, a lipophilic cation belonging to the cyanine dye family, has been used in the clinic as a safe and effective anthelminthic for over 70 years. Its structure, similar to some polyaminopyrimidines and mitochondrial-targeting peptoids, has been linked with mitochondrial localization and targeting. Over the past two decades, increasing evidence has emerged showing pyrvinium to be a strong anti-cancer molecule in various human cancers in vitro and in vivo. This efficacy against cancers has been attributed to diverse mechanisms of action, with the weight of evidence supporting the inhibition of mitochondrial function, the WNT pathway, and cancer stem cell renewal. Despite the overwhelming evidence demonstrating the efficacy of pyrvinium for the treatment of human cancers, pyrvinium has not yet been repurposed for the treatment of cancers. This review provides an in-depth analysis of the history of pyrvinium as a therapeutic, the rationale and data supporting its use as an anticancer agent, and the challenges associated with repurposing pyrvinium as an anti-cancer agent.
Collapse
Affiliation(s)
- Christopher W. Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Avinoam Nevler
- Jefferson Pancreas, Biliary, and Related Cancer Center, Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|