1
|
Solanki S, Taranto J, Rebernick R, Castillo C, Ponnusamy V, Sykes MM, Leiser SF, Lee JH, Schmidt T, Shah YM. Low Protein Diet Exacerbates Experimental Mouse Models of Colitis through Epithelial Autonomous and Nonautonomous Mechanisms. J Nutr 2025:S0022-3166(25)00186-5. [PMID: 40216295 DOI: 10.1016/j.tjnut.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/30/2025] [Accepted: 03/04/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Patients with inflammatory bowel diseases (IBDs) are at risk of protein malnutrition due to increased protein loss or reduced dietary intake. The consequences of protein malnutrition on intestinal epithelial metabolism and disease progression remain poorly understood. OBJECTIVES Given the critical role of the mechanistic target of rapamycin complex 1 (mTORC1) as an amino acid sensor and a key regulator of intestinal epithelial metabolism and homeostasis, along with the well-established influence of diet on the gut microbiota and IBD, we focused on accessing the role of dietary protein in modulating intestinal epithelial mTORC1, determine the contributions of specific amino acids such as leucine and arginine, and examine the interplay between protein malnutrition and gut microbiota driving IBD. METHODS C57BL/6 mice were assigned to a control (20% protein, n = 6), a low protein (4% protein, n = 7), or diets selectively deficient in leucine, arginine, and other essential amino acids (n = 5-6). Colitis was induced by administering 2.5% dextran sulfate sodium in drinking water for 6 d. Intestinal epithelial mTORC1 activity was assessed by immunoblotting. Gut microbiota composition was characterized using 16S sequencing, and the microbiota's role in colitis was evaluated through broad-spectrum antibiotic treatment. Disease severity was quantified by monitoring weight loss, colon shortening, histopathological damage, and inflammatory cytokine expression. RESULTS Protein restriction increased the severity of dextran sulfate sodium-induced colitis compared to the control diet (∗∗∗P < 0.001). Mice fed arginine-restricted diets exhibited increased colitis (∗P < 0.05). Protein restriction induced significant alterations in gut microbiota composition, and antibiotic-mediated microbiota depletion partially ameliorated colitis severity, revealing a microbiota-dependent mechanism underlying disease exacerbation. CONCLUSIONS Our study demonstrates a complex interplay between dietary protein, epithelial mTORC1 signaling, and gut microbiota in modulating IBD pathogenesis and highlights the potential for targeted dietary strategies, including amino acid supplementation, to improve disease management in patients with IBD.
Collapse
Affiliation(s)
- Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Joseph Taranto
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Ryan Rebernick
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Cristina Castillo
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Varun Ponnusamy
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Madeline M Sykes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Scott F Leiser
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Thomas Schmidt
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States; Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States.
| |
Collapse
|
2
|
Monge C, Waldrup B, Manjarrez S, Carranza FG, Velazquez‐Villarreal E. Detecting PI3K and TP53 Pathway Disruptions in Early-Onset Colorectal Cancer Among Hispanic/Latino Patients. Cancer Med 2025; 14:e70791. [PMID: 40165548 PMCID: PMC11959147 DOI: 10.1002/cam4.70791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/19/2025] [Accepted: 03/09/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study aims to characterize PI3K and TP53 pathway alterations in Hispanic/Latino patients with early-onset colorectal cancer (CRC), focusing on potential differences compared to non-Hispanic White patients. Understanding these differences may shed light on the molecular basis of CRC health disparities. METHODS Using cBioPortal, we conducted a bioinformatics analysis to evaluate CRC mutations within the PI3K and TP53 pathways. CRC patients were stratified by age and ethnicity: (1) early-onset (< 50 years) versus late-onset (≥ 50 years) and (2) early-onset in Hispanic/Latino patients compared to early-onset in non-Hispanic White patients. Mutation frequencies were assessed using descriptive statistics, with chi-squared tests comparing proportions between early-onset Hispanic/Latino and non-Hispanic White groups. Kaplan-Meier survival curves were generated to assess overall survival for early-onset Hispanic/Latino patients, stratified by the presence or absence of PI3K and TP53 pathway alterations. RESULTS Significant differences were noted when comparing early-onset CRC in Hispanic/Latino patients to early-onset CRC in non-Hispanic White patients. PI3K (47.1% vs. 35.2%, p = 9.39e-3) and TP53 (89.1% vs. 81.7%, p = 0.04) pathway alterations were more prevalent in early-onset CRC among Hispanic/Latino patients, with AKT1 (5.1% vs. 1.8%, p = 0.03), INPP4B (4.3% vs. 1.4%, p = 0.04), and TSC1 (7.2% vs. 3.1% p = 0.03) gene alterations also significantly higher in this group. Significant differences were observed in TP53 mutations between colon adenocarcinomas (90% vs. 79.1%, p = 0.03), with higher prevalence in Hispanic/Latino patients when stratified by tumor site. No significant differences were observed between early-onset and late-onset CRC patients within the Hispanic/Latino cohort. CONCLUSIONS These findings highlight the distinct role of PI3K and TP53 pathway disruptions in early-onset CRC among Hispanic/Latino patients, suggesting that pathway-specific mechanisms may drive cancer health disparities. Insights from this study could inform the potential development of precision medicine approaches and targeted therapies aimed at addressing these disparities.
Collapse
Affiliation(s)
- Cecilia Monge
- Center for Cancer Research, National Cancer InstituteBethesdaMarylandUSA
| | - Brigette Waldrup
- Department of Integrative Translational SciencesCity of Hope, Beckman Research InstituteDuarteCaliforniaUSA
| | - Sophia Manjarrez
- Department of Integrative Translational SciencesCity of Hope, Beckman Research InstituteDuarteCaliforniaUSA
| | - Francisco G. Carranza
- Department of Integrative Translational SciencesCity of Hope, Beckman Research InstituteDuarteCaliforniaUSA
| | - Enrique Velazquez‐Villarreal
- Department of Integrative Translational SciencesCity of Hope, Beckman Research InstituteDuarteCaliforniaUSA
- City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| |
Collapse
|
3
|
Mao S, Yang M, Liu H, Wang S, Liu M, Hu S, Liu B, Ju H, Liu Z, Huang M, He S, Cheng M, Wu G. Serinc2 antagonizes pressure overload-induced cardiac hypertrophy via regulating the amino acid/mTORC1 signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167650. [PMID: 39756712 DOI: 10.1016/j.bbadis.2024.167650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Cardiac hypertrophy is characterized by the upregulation of fetal genes, increased protein synthesis, and enlargement of cardiac myocytes. The mechanistic target of rapamycin complex 1 (mTORC1), which responds to fluctuations in cellular nutrient and energy levels, plays a pivotal role in regulating protein synthesis and cellular growth. While attempts to inhibit mTORC1 activity, such as through the application of rapamycin and its analogs, have demonstrated limited efficacy, further investigation is warranted. METHODS AND RESULTS Here, we show that Serinc2 expression is downregulated in the transverse aortic constriction (TAC)-induced hypertrophic myocardium. Both in vivo and in vitro, the reduction of Serinc2 expression results in pathological hypertrophic growth, whereas Serinc2 overexpression exhibits a protective effect. RNA sequencing analysis following Serinc2 knockdown reveals a transcriptomic shift toward a pro-hypertrophic profile and suggests a significant interplay between Serinc2, amino acid, mTOR, and the lysosome, a hub for mTOR activation. Moreover, we show that Serinc2 localizes to lysosomes and hinders mTORC1 recruitment to the lysosomal membrane in response to amino acid stimulation, playing a critical role in regulating amino acid signaling pathway involved in the activation of p70S6K, S6, and 4EBP1 in Hela cells. And its deficiency exacerbates mTORC1 activity and mTORC1-dependent subsequent protein synthesis, which can be abrogated by rapamycin. In line with our in vitro findings, Serinc2 knockout mice subjected to TAC surgery exhibit elevated phosphorylation of p70S6K and 4EBP1, while inhibition of mTORC1 signaling through amino acid deprivation prevents this activation and impedes the progression to pathological cardiac remodeling. CONCLUSIONS We have illustrated that Serinc2 localizes to the lysosomal membrane and modulates amino acid /mTORC1 signaling in cardiomyocytes. Serinc2 therefore presents a potential therapeutic target for mitigating excessive protein synthesis and improving heart failure under hemodynamic stress.
Collapse
Affiliation(s)
- Shuai Mao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Manqi Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Huimin Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shun Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, China; Institute of Myocardial injury and Repair, Wuhan University, Wuhan, Hubei 430060, China
| | - Man Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Beilei Liu
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei 430060, China
| | - Hao Ju
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zheyu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Min Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shuijing He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
4
|
Du F, Wu X, He Y, Zhao S, Xia M, Zhang B, Tong J, Xia T. Identification of an Amino Acid Metabolism Reprogramming Signature for Predicting Prognosis, Immunotherapy Efficacy, and Drug Candidates in Colon Cancer. Appl Biochem Biotechnol 2025; 197:714-734. [PMID: 39222169 DOI: 10.1007/s12010-024-05049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Colon cancer ranked third among the most frequently diagnosed cancers worldwide. Amino acid metabolic reprogramming was related to the occurrence and development of colon cancer. We looked for the amino acid metabolism genes (AMGs) associated with amino acid metabolism from molecular signatures database as prognostic markers and constructed amino acid metabolism scoring model (AMS). According to AMS, the patients were divided into high AMS and low AMS groups, and the prognostic characteristics, molecular phenotypes, somatic cell mutation characteristics, immune cell infiltration characteristics, and immunotherapy effect of the two groups were systematically analyzed. Finally, the compounds targeting AMGs were also screened. We screen out 6 prognostic AMGs (P < 0.05) and construct an AMS model based on them. K-M curve indicated that OS in low AMS group was significantly higher than that in high group (P < 0.05), which were validated in multiple datasets. And different AMS groups had different molecular phenotypes, somatic cell mutation characteristics and immune cell infiltration characteristics. Low AMS group had a better effect for immunotherapy. In addition, we predicted potential therapeutic compounds that could bind to AMGs target proteins. AMS model can be used as a hierarchical tool to evaluate the prognosis, immune infiltration characteristics and immunotherapy response ability of colon cancer. And the compounds screened based on AMGs may become new anti-tumor drugs.
Collapse
Affiliation(s)
- Fenqi Du
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China
| | - Xiangxin Wu
- Ganzhou Cancer Hospital, Ganzhou, Jiangxi Province, People's Republic of China
| | - Yibo He
- Department of Acupuncture Massage & Rehabilitation, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong Province, People's Republic of China
| | - Shihui Zhao
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China
| | - Mingyu Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China
| | - Bomiao Zhang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China
| | - Jinxue Tong
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China.
| | - Tianyi Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Medial University, Harbin, Heilongjiang Province, People's Republic of China.
| |
Collapse
|
5
|
Yu D, Zhong Q, Wang Y, Yin C, Bai M, Zhu J, Chen J, Li H, Hong W. Lactylation: The metabolic accomplice shaping cancer's response to radiotherapy and immunotherapy. Ageing Res Rev 2025; 104:102670. [PMID: 39864560 DOI: 10.1016/j.arr.2025.102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/09/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Protein lactylation, an emerging post-translational modification, is providing new insights into tumor biology and challenging our current understanding of cancer mechanisms. Our review illuminates the intricate roles of lactylation in carcinogenesis, tumor progression, and therapeutic responses, positioning it as a critical linchpin connecting metabolic reprogramming, epigenetic modulation, and treatment outcomes. We provide an in-depth analysis of lactylation's molecular mechanisms and its far-reaching impact on cell cycle regulation, immune evasion strategies, and therapeutic resistance within the complex tumor microenvironment. Notably, this review dissects the paradoxical nature of lactylation in cancer immunotherapy and radiotherapy. While heightened lactylation can foster immune suppression and radioresistance, strategically targeting lactylation cascades opens innovative avenues for amplifying the efficacy of current treatment paradigms. We critically evaluate lactylation's potential as a robust diagnostic and prognostic biomarker and explore frontier therapeutic approaches targeting lactylation. The synergistic integration of multi-omics data and artificial intelligence in lactylation research is catalyzing significant strides towards personalized cancer management. This review not only consolidates current knowledge but also charts a course for future investigations. Key research imperatives include deciphering tumor-specific lactylation signatures, optimizing synergistic strategies combining lactylation modulation with immune checkpoint inhibitors and radiotherapy, and comprehensively assessing the long-term physiological implications of lactylation intervention. As our understanding of lactylation's pivotal role in tumor biology continues to evolve, this burgeoning field promises to usher in transformative advancements in cancer diagnosis, treatment modalitie.
Collapse
Affiliation(s)
- Danqing Yu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qingping Zhong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yanlin Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Chang Yin
- Nursing Department, Shanghai Sixth People's Hospital, Shanghai 200233, China
| | - Minghua Bai
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ji Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jinggang Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Huaming Li
- Department of Gastroenterology, Hangzhou Third Peoples Hospital, Hangzhou 310000, China.
| | - Weifeng Hong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
6
|
Wang C, Lu M, Chen C, Chen J, Cai Y, Wang H, Tao L, Yin W, Chen J. Integrating scRNA-seq and Visium HD for the analysis of the tumor microenvironment in the progression of colorectal cancer. Int Immunopharmacol 2025; 145:113752. [PMID: 39642568 DOI: 10.1016/j.intimp.2024.113752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) development is a complex, multi-stage process, transitioning from normal to adenomatous tissue, and then to invasive carcinoma. Despite research, there's a knowledge gap on using high-resolution spatial omics to understand CRC's tumor microenvironment dynamics. METHODS We used single-cell transcriptomics to study major biological changes and cell interactions in CRC progression. Additionally, high-resolution spatial transcriptomics helped us examine the spatial distribution of cells with significant pathway changes, offering insights into the tumor microenvironment's development throughout CRC stages. RESULTS In the progression of CRC, plasma cells, neutrophils, and fibroblasts exhibit the most significant changes in hallmark pathways, while epithelial cells show the most pronounced alterations in metabolic pathways. We also identified a population of NOTUM + epithelial cells and IGHG1/3 + plasma cells that are concentrated at the boundary between normal tissue and adenomas. Pathway analysis further suggests that these NOTUM + cells activate numerous cancer-related pathways, despite the absence of significant pathological morphological changes. Additionally, we conducted a targeted drug prediction analysis to identify potential therapeutic agents for NOTUM-expressing epithelial cells. CONCLUSIONS Analyzing scRNA-seq and Visium HD data, we found that IGHG1/3 + plasma cells and tumor-associated neutrophil (TANs) may significantly affect colorectal tissue transformation from normal to adenoma and carcinoma. These cells are concentrated at the transition between normal and adenomatous tissue. We also found NOTUM-expressing cells at the edge of normal and adenomatous areas, possibly indicating a morphological transition as normal cells evolve into adenoma cells.
Collapse
Affiliation(s)
- Chun Wang
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Mengying Lu
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China; School of Medicine,Southern University of Science and Technology, Shenzhen, China
| | - Cuimin Chen
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jiajun Chen
- Department of Pathology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yusi Cai
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hao Wang
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lili Tao
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China; School of Medicine,Southern University of Science and Technology, Shenzhen, China
| | - Weihua Yin
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jiakang Chen
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
7
|
He H, Zheng S, Jin S, Huang W, Wei E, Guan S, Yang C. Nucleotide metabolism-associated drug resistance gene NDUFA4L2 promotes colon cancer progression and 5-FU resistance. Sci Rep 2025; 15:570. [PMID: 39747340 PMCID: PMC11695588 DOI: 10.1038/s41598-024-84353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Chemotherapy is an effective way to improve the prognosis of colorectal cancer patients, but patient resistance to chemotherapeutic agents is becoming a major obstacle to treatment. Nucleotide metabolism correlates with the progression of colorectal cancer and chemotherapy resistance, but the mechanisms involved need to be further investigated. We calculated the half-maximal inhibitory concentrations (IC50) of 5-Fluorouracil (5-FU) in colorectal cancer patients using the "oncopredict" package, screened nucleotide metabolism-related drug resistance genes, and constructed a risk score model. According to the Kaplan-Meier(KM) analysis, the overall survival (OS) and disease-free survival (PFS) of the high-risk group were significantly lower than those of the low-risk group. In addition, the nomogram we constructed had good performance in predicting OS in colon adenocarcinoma (COAD) patients. We validated NDUFA4L2 by cellular functionality experiments, animal tumorigenesis experiments and drug resistance experiments. It was demonstrated that NDUFA4L2 promoted the proliferation and migration of colon cancer cells, while the abnormal regulation of NDUFA4L2 affected the 5-FU resistance of colon cancer cells. In conclusion, we found that NDUFA4L2 promotes the progression and metastasis of colon cancer, as well as resistance to 5-FU chemotherapy.
Collapse
Affiliation(s)
- Hongxin He
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
| | - Shiyao Zheng
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
| | - Shangkun Jin
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
| | - Weijie Huang
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - Enhao Wei
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
| | - Shen Guan
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, 420# Fuma Road, 350011, Fuzhou, Fujian, China
| | - Chunkang Yang
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, 350004, Fujian, Fujian, P.R. China.
- Fujian Key Laboratory of Translational Cancer Medicine, 350014, Fuzhou, P.R. China.
- Department of Colorectal Surgery, Clinical Oncology School of Fujian Medical University, 420# Fuma Road, 350011, Fuzhou, Fujian, China.
| |
Collapse
|
8
|
Scales TQ, Smith B, Blanchard LM, Wixom N, Tuttle ET, Altman BJ, Peppone LJ, Munger J, Campbell TM, Campbell EK, Harris IS. A whole food, plant-based diet reduces amino acid levels in patients with metastatic breast cancer. Cancer Metab 2024; 12:38. [PMID: 39702320 DOI: 10.1186/s40170-024-00368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Amino acids are critical to tumor survival. Tumors can acquire amino acids from the surrounding microenvironment, including the serum. Limiting dietary amino acids is suggested to influence their serum levels. Further, a plant-based diet is reported to contain fewer amino acids than an animal-based diet. The extent to which a plant-based diet lowers the serum levels of amino acids in patients with cancer is unclear. METHODS Patients with metastatic breast cancer (n = 17) were enrolled in a clinical trial with an ad libitum whole food, plant-based diet for 8 weeks without calorie or portion restriction. Dietary changes by participants were monitored using a three-day food record. Serum was collected from participants at baseline and 8 weeks. Food records and serum were analyzed for metabolic changes. RESULTS We found that a whole food, plant-based diet resulted in a lower intake of calories, fat, and amino acids and higher levels of fiber. Additionally, body weight, serum insulin, and IGF were reduced in participants. The diet contained lower levels of essential and non-essential amino acids, except for arginine (glutamine and asparagine were not measured). Importantly, the lowered dietary intake of amino acids translated to reduced serum levels of amino acids in participants (5/9 essential amino acids; 4/11 non-essential amino acids). CONCLUSIONS These findings provide a tractable approach to limiting amino acid levels in persons with cancer. This data lays a foundation for studying the relationship between amino acids in patients and tumor progression. Further, a whole-food, plant-based diet has the potential to synergize with cancer therapies that exploit metabolic vulnerabilities. TRIAL REGISTRATION The clinical trial was registered with ClinicalTrials.gov identifier NCT03045289 on 2017-02-07.
Collapse
Affiliation(s)
- TashJaé Q Scales
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Bradley Smith
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Lisa M Blanchard
- Department of Family Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Nellie Wixom
- Clinical Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Emily T Tuttle
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Brian J Altman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Luke J Peppone
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Surgery, Cancer Control, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Joshua Munger
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Thomas M Campbell
- Department of Family Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Erin K Campbell
- Department of Public Health Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Isaac S Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
9
|
Li M, Zhang Y, Wang Z, Wang K, Gao J, Gu H, Zeng Z, Jiang H, Fan Q, Zhang Y, Hu X, Cui L, Deng Y, Sun Y. PPDPF promotes esophageal squamous cell carcinoma progression by blocking PCCA binding to PCCB and inhibiting methionine catabolism. Cancer Lett 2024; 611:217402. [PMID: 39694223 DOI: 10.1016/j.canlet.2024.217402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/31/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
While metabolic reprogramming and remodeling of tumor microenvironment play important roles in the development of esophageal squamous cell carcinoma (ESCC), the mechanisms remain unclear. In this study, we found that pancreatic progenitor cell differentiation and proliferation factor (PPDPF) is upregulated in ESCC and its expression level is associated with lymph node metastasis. PPDPF was found to promote tumorigenesis, lymph node metastasis and distal metastasis of ESCC cells. Furthermore, the results of mass spectrometry analysis revealed that PPDPF interacts with PCCA, the subunit of the PCC, a key enzyme involved in the catabolism of methionine by the C-Vomit pathway. In addition, PPDPF increases methionine and SAM levels. Additionally, knockdown of PPDPF decreases the levels of methionine and SAM in vivo, and promotes the infiltration of CD8+ T cells in ESCC. Taken together, the results of this study suggest that PPDPF inhibits the interaction between PCCA and PCCB to downregulate methionine catabolism via the C-Vomit pathway, providing a new target for the treatment of ESCC.
Collapse
Affiliation(s)
- Mengwei Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yi Zhang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhexin Wang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Kai Wang
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jie Gao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Haiyong Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zimei Zeng
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Haoyao Jiang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Qi Fan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yuxue Zhang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xudong Hu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lingling Cui
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuezhen Deng
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China; Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Yifeng Sun
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
10
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
11
|
Feng D, Han D, Li M, Li H, Li N, Liu T, Wang J. Protein nutritional support: The prevention and regulation of colorectal cancer and its mechanism research. FOOD FRONTIERS 2024; 5:2515-2532. [DOI: 10.1002/fft2.478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
AbstractColorectal cancer (CRC) is a common malignant tumor of the digestive tract in China; its incidence rates and mortality rates have been on the rise in recent years, ranking third in terms of incidence and second in mortality. Rational dietary intervention plays an important role in human health, and prevention and adjuvant treatment of CRC through dietary supplementation is the most ideal and safest way to treat the disease at present. More importantly, dietary protein is the basis of our diet and the key nutrient to maintain the normal function of the human body. Therefore, this narrative review delivered an overview of the common causes and therapeutic treatments for CRC. It emphasized the importance of dietary interventions, with a particular focus on elucidating the distinct regulatory impacts of plant proteins, animal proteins, and their mixed proteins.
Collapse
Affiliation(s)
- Duo Feng
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Di Han
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Mengjie Li
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Hu Li
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Na Li
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Tianxin Liu
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| | - Jing Wang
- Institute of Food and Nutrition Development Ministry of Agriculture and Rural Affairs Beijing China
| |
Collapse
|
12
|
Scales TQ, Smith B, Blanchard LM, Wixom N, Tuttle ET, Altman BJ, Peppone LJ, Munger J, Campbell TM, Campbell EK, Harris IS. A whole food, plant-based diet reduces amino acid levels in patients with metastatic breast cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.09.24315165. [PMID: 39417128 PMCID: PMC11483017 DOI: 10.1101/2024.10.09.24315165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Amino acids are critical to tumor survival. Tumors can acquire amino acids from the surrounding microenvironment, including the serum. Limiting dietary amino acids is suggested to influence their serum levels. Further, a plant-based diet is reported to contain fewer amino acids than an animal-based diet. The extent to which a plant-based diet lowers the serum levels of amino acids in patients with cancer is unclear. Methods Patients with metastatic breast cancer (n=17) were enrolled in a clinical trial with an ad libitum whole food, plant-based diet for 8 weeks without calorie or portion restriction. Dietary changes by participants were monitored using a three-day food record. Serum was collected from participants at baseline and 8 weeks. Food records and serum were analyzed for metabolic changes. Results We found that a whole food, plant-based diet resulted in a lower intake of calories, fat, and amino acids and higher levels of fiber. Additionally, body weight, serum insulin, and IGF were reduced in participants. The diet contained lower levels of essential and non-essential amino acids, except for arginine (glutamine and asparagine were not measured). Importantly, the lowered dietary intake of amino acids translated to reduced serum levels of amino acids in participants (5/9 essential amino acids; 4/11 non-essential amino acids). Conclusions These findings provide a tractable approach to limiting amino acid levels in persons with cancer. This data lays a foundation for studying the relationship between amino acids in patients and tumor progression. Further, a whole-food, plant-based diet has the potential to synergize with cancer therapies that exploit metabolic vulnerabilities. Trial Registration The clinical trial was registered with ClinicalTrials.gov identifier NCT03045289 on 2017-02-07.
Collapse
Affiliation(s)
- TashJaé Q. Scales
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Bradley Smith
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Lisa M. Blanchard
- Department of Family Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA 14642
| | - Nellie Wixom
- Clinical Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Emily T. Tuttle
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Brian J. Altman
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Luke J. Peppone
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Department of Surgery, Cancer Control, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Joshua Munger
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA, 14642
| | - Thomas M. Campbell
- Department of Family Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA 14642
| | - Erin K. Campbell
- Department of Public Health Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA,14642
| | - Isaac S. Harris
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA, 14642
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA, 14642
| |
Collapse
|
13
|
Kumar R, Vitvitsky V, Sethaudom A, Singhal R, Solanki S, Alibeckoff S, Hiraki HL, Bell HN, Andren A, Baker BM, Lyssiotis CA, Shah YM, Banerjee R. Sulfide oxidation promotes hypoxic angiogenesis and neovascularization. Nat Chem Biol 2024; 20:1294-1304. [PMID: 38509349 PMCID: PMC11584973 DOI: 10.1038/s41589-024-01583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Angiogenic programming in the vascular endothelium is a tightly regulated process for maintaining tissue homeostasis and is activated in tissue injury and the tumor microenvironment. The metabolic basis of how gas signaling molecules regulate angiogenesis is elusive. Here, we report that hypoxic upregulation of ·NO in endothelial cells reprograms the transsulfuration pathway to increase biogenesis of hydrogen sulfide (H2S), a proangiogenic metabolite. However, decreased H2S oxidation due to sulfide quinone oxidoreductase (SQOR) deficiency synergizes with hypoxia, inducing a reductive shift and limiting endothelial proliferation that is attenuated by dissipation of the mitochondrial NADH pool. Tumor xenografts in whole-body (WBCreSqorfl/fl) and endothelial-specific (VE-cadherinCre-ERT2Sqorfl/fl) Sqor-knockout mice exhibit lower mass and angiogenesis than control mice. WBCreSqorfl/fl mice also exhibit decreased muscle angiogenesis following femoral artery ligation compared to control mice. Collectively, our data reveal the molecular intersections between H2S, O2 and ·NO metabolism and identify SQOR inhibition as a metabolic vulnerability for endothelial cell proliferation and neovascularization.
Collapse
Affiliation(s)
- Roshan Kumar
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Victor Vitvitsky
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Apichaya Sethaudom
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sydney Alibeckoff
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Harrison L Hiraki
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Hannah N Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Andren
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Wojtowicz EE, Hampton K, Moreno-Gonzalez M, Utting CL, Lan Y, Ruiz P, Beasy G, Bone C, Hellmich C, Maynard R, Acton L, Markham M, Troeberg L, Telatin A, Kingsley RA, Macaulay IC, Rushworth SA, Beraza N. Low protein diet protects the liver from Salmonella Typhimurium-mediated injury by modulating the mTOR/autophagy axis in macrophages. Commun Biol 2024; 7:1219. [PMID: 39349819 PMCID: PMC11444042 DOI: 10.1038/s42003-024-06932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Western diets are the underlying cause of metabolic and liver diseases. Recent trend to limit the consumption of protein-rich animal products has become more prominent. This dietary change entails decreased protein consumption; however, it is still unknown how this affects innate immunity. Here, we studied the influence of a low protein diet (LPD) on the liver response to bacterial infection in mice. We found that LPD protects from Salmonella enterica serovar Typhimurium (S. Typhimurium)-induced liver damage. Bulk and single-cell RNA sequencing of murine liver cells showed reduced inflammation and upregulation of autophagy-related genes in myeloid cells in mice fed with LPD after S. Typhimurium infection. Mechanistically, we found reduced activation of the mammalian target of rapamycin (mTOR) pathway, whilst increased phagocytosis and activation of autophagy in LPD-programmed macrophages. We confirmed these observations in phagocytosis and mTOR activation in metabolically programmed human peripheral blood monocyte-derived macrophages. Together, our results support the causal role of dietary components on the fitness of the immune system.
Collapse
Affiliation(s)
- Edyta E Wojtowicz
- Earlham Institute, Cellular Genomics Strategic Programme, Norwich Research Park, Norwich, UK, Norwich Research Park, Norwich, UK
| | - Katherine Hampton
- Metabolic Health Research Centre, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Mar Moreno-Gonzalez
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Microbes and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Charlotte L Utting
- Earlham Institute, Cellular Genomics Strategic Programme, Norwich Research Park, Norwich, UK, Norwich Research Park, Norwich, UK
| | - Yuxuan Lan
- Earlham Institute, Cellular Genomics Strategic Programme, Norwich Research Park, Norwich, UK, Norwich Research Park, Norwich, UK
| | - Paula Ruiz
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Microbes and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Gemma Beasy
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Caitlin Bone
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Charlotte Hellmich
- Metabolic Health Research Centre, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Haematology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Rebecca Maynard
- Metabolic Health Research Centre, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Luke Acton
- Microbes and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Matthew Markham
- Metabolic Health Research Centre, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Linda Troeberg
- Metabolic Health Research Centre, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andrea Telatin
- Science Operations, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Robert A Kingsley
- Department of Haematology, Norfolk and Norwich University Hospital, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Iain C Macaulay
- Earlham Institute, Cellular Genomics Strategic Programme, Norwich Research Park, Norwich, UK, Norwich Research Park, Norwich, UK
| | - Stuart A Rushworth
- Metabolic Health Research Centre, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Naiara Beraza
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Microbes and Food Safety Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
| |
Collapse
|
15
|
Liu J, Wang H, Wan H, Yang J, Gao L, Wang Z, Zhang X, Han W, Peng J, Yang L, Hong L. NEK6 dampens FOXO3 nuclear translocation to stabilize C-MYC and promotes subsequent de novo purine synthesis to support ovarian cancer chemoresistance. Cell Death Dis 2024; 15:661. [PMID: 39256367 PMCID: PMC11387829 DOI: 10.1038/s41419-024-07045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
De novo purine synthesis metabolism plays a crucial role in tumor cell survival and malignant progression. However, the specific impact of this metabolic pathway on chemoresistance in ovarian cancer remains unclear. This study aims to elucidate the influence of de novo purine synthesis on chemoresistance in ovarian cancer and its underlying regulatory mechanisms. We analyzed metabolic differences between chemosensitive and chemoresistant ovarian cancer tissues using mass spectrometry-based metabolomics. Cell growth, metabolism, chemoresistance, and DNA damage repair characteristics were assessed in vitro using cell line models. Tumor growth and chemoresistance were assessed in vivo using ovarian cancer xenograft tumors. Intervention of purines and NEK6-mediated purine metabolism on chemoresistance was investigated at multiple levels. Chemoresistant ovarian cancers exhibited higher purine abundance and NEK6 expression. Inhibiting NEK6 led to decreased de novo purine synthesis, resulting in diminished chemoresistance in ovarian cancer cells. Mechanistically, NEK6 directly interacted with FOXO3, contributing to the phosphorylation of FOXO3 at S7 through its kinase activity, thereby inhibiting its nuclear translocation. Nuclear FOXO3 promoted FBXW7 transcription, leading to c-MYC ubiquitination and suppression of de novo purine synthesis. Paeonol, by inhibiting NEK6, suppressed de novo purine synthesis and enhanced chemosensitivity. The NEK6-mediated reprogramming of de novo purine synthesis emerges as a critical pathway influencing chemoresistance in ovarian cancer. Paeonol exhibits the potential to interfere with NEK6, thereby inhibiting chemoresistance.
Collapse
Affiliation(s)
- Jingchun Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- The First Clinical School of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Haoyu Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- The First Clinical School of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Huanzhi Wan
- The First Clinical School of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Jiang Yang
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, Xiangyang, Hubei, China
| | - Likun Gao
- Department of Pathology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Zhi Wang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- The First Clinical School of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Xiaoyi Zhang
- The First Clinical School of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Wuyue Han
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- The First Clinical School of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Jiaxin Peng
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- The First Clinical School of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Lian Yang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- The First Clinical School of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
16
|
Tuersun A, Huo J, Lv Z, Zhang Y, Chen F, Zhao J, Feng W, Xu Z, Mao Z, Xue P, Lu A. Establishment of a chemokine-based prognostic model and identification of CXCL10+ M1 macrophages as predictors of neoadjuvant therapy efficacy in colorectal cancer. Front Immunol 2024; 15:1400722. [PMID: 39170612 PMCID: PMC11335547 DOI: 10.3389/fimmu.2024.1400722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Background Although neoadjuvant therapy has brought numerous benefits to patients, not all patients can benefit from it. Chemokines play a crucial role in the tumor microenvironment and are closely associated with the prognosis and treatment of colorectal cancer. Therefore, constructing a prognostic model based on chemokines will help risk stratification and providing a reference for the personalized treatment. Methods Employing LASSO-Cox predictive modeling, a chemokine-based prognostic model was formulated, harnessing the data from TCGA and GEO databases. Then, our exploration focused on the correlation between the chemokine signature and elements such as the immune landscape, somatic mutations, copy number variations, and drug sensitivity. CXCL10+M1 macrophages identified via scRNA-seq. Monocle2 showed cell pseudotime trajectories, CellChat characterized intercellular communication. CytoTRACE analyzed neoadjuvant therapy stemness, SCENIC detected cell type-specific regulation. Lastly, validation was performed through multiplex immunofluorescence experiments. Results A model based on 15 chemokines was constructed and validated. High-risk scores correlated with poorer prognosis and advanced TNM and clinical stages. Individuals presenting elevated risk scores demonstrated an increased propensity towards the development of chemotherapy resistance. Subsequent scRNA-seq data analysis indicated that patients with higher presence of CXCL10+ M1 macrophages in tumor tissues are more likely to benefit from neoadjuvant therapy. Conclusion We developed a chemokine-based prognostic model by integrating both single-cell and bulk RNA-seq data. Furthermore, we revealed epithelial cell heterogeneity in neoadjuvant outcomes and identified CXCL10+ M1 macrophages as potential therapy response predictors. These findings could significantly contribute to risk stratification and serve as a key guide for the advancement of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Abudumaimaitijiang Tuersun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of General Surgery, Second People’s Hospital, Kashi, Xinjiang Uygur Autonomous Region, China
| | - Jianting Huo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zeping Lv
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuchen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fangqian Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingkun Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenqing Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuoqing Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhihai Mao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pei Xue
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aiguo Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Liu X, Ren B, Ren J, Gu M, You L, Zhao Y. The significant role of amino acid metabolic reprogramming in cancer. Cell Commun Signal 2024; 22:380. [PMID: 39069612 DOI: 10.1186/s12964-024-01760-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024] Open
Abstract
Amino acid metabolism plays a pivotal role in tumor microenvironment, influencing various aspects of cancer progression. The metabolic reprogramming of amino acids in tumor cells is intricately linked to protein synthesis, nucleotide synthesis, modulation of signaling pathways, regulation of tumor cell metabolism, maintenance of oxidative stress homeostasis, and epigenetic modifications. Furthermore, the dysregulation of amino acid metabolism also impacts tumor microenvironment and tumor immunity. Amino acids can act as signaling molecules that modulate immune cell function and immune tolerance within the tumor microenvironment, reshaping the anti-tumor immune response and promoting immune evasion by cancer cells. Moreover, amino acid metabolism can influence the behavior of stromal cells, such as cancer-associated fibroblasts, regulate ECM remodeling and promote angiogenesis, thereby facilitating tumor growth and metastasis. Understanding the intricate interplay between amino acid metabolism and the tumor microenvironment is of crucial significance. Expanding our knowledge of the multifaceted roles of amino acid metabolism in tumor microenvironment holds significant promise for the development of more effective cancer therapies aimed at disrupting the metabolic dependencies of cancer cells and modulating the tumor microenvironment to enhance anti-tumor immune responses and inhibit tumor progression.
Collapse
Affiliation(s)
- Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R, 100023, China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, 100023, P.R, China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, 100023, P.R, China.
| |
Collapse
|
18
|
Chen B, Lu M, Chen Q, Zou E, Bo Z, Li J, Zhao R, Zhao J, Yu Z, Chen G, Wu L. Systematic profiling of mitochondria-related transcriptome in tumorigenesis, prognosis, and tumor immune microenvironment of intrahepatic cholangiocarcinoma: a multi-center cohort study. Front Genet 2024; 15:1430885. [PMID: 39130746 PMCID: PMC11310173 DOI: 10.3389/fgene.2024.1430885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Background Mitochondrial dysfunction has been shown to play a critical role in cancer biology. However, its involvement in intrahepatic cholangiocarcinoma (iCCA) remains significantly understudied. Methods RNA sequencing data of 30 pairs of iCCA and paracancerous tissues were collected from the First Affiliated Hospital of Wenzhou Medical University (WMU). The WMU cohort (n = 30) was integrated with public TCGA (n = 30) and GSE107943 (n = 30) datasets to establish a multi-center iCCA cohort. We merged the TCGA and GSE107943 cohorts into an exploration cohort to develop a mitochondria signature for prognosis assessment, and utilized the WMU cohort for external validation. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Hallmarker analyses were used for functional interpretation of iCCA associated mitochondria-related genes (MRGs). In addition, unsupervised clustering was performed to identify mitochondria-based iCCA subtypes with the data of three institutions. Further investigations were conducted to examine the impact of mitochondrial dysfunction on drug responses, alteration of the tumor immune microenvironment, and immune responses. Results Two hundred and sixty-three iCCA-related MRGs were identified to be related to fatty acid metabolism, oxidative phosphorylation, and apoptosis. Through univariate and multivariate Cox, and LASSO analyses, a mitochondria signature with five optimal MRGs was established to evaluate the prognosis of iCCA patients with the AUC values ranged from 0.785 to 0.928 in the exploration cohort. The signature also exhibited satisfactory performance in the WMU cohort with AUC values of 0.817-0.871, and was identified as an independent risk predictor in both cohorts. Additionally, we found that patients with higher mitochondria score with poor prognosis presented lower infiltration levels of CD4+ T-cell, NK cells, and monocytes, and demonstrated higher sensitivity to targeted therapies, including sorafenib. Furthermore, two distant mitochondria-based subtypes were determined, and subtype 2 was associated with shorter survival time and immunosuppressive tumor microenvironment. Finally, the differential protein expression of five key MRGs was verified by Immunohistochemistry. Conclusion We found mitochondrial dysfunction modulates aberrant metabolism, oxidative stress, immune responses, apoptosis, and drug sensitivity in iCCA. A mitochondria signature and two mitochondria-based iCCA subtypes were identified for clinical risk stratification and immunophenotyping.
Collapse
Affiliation(s)
- Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengmeng Lu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiwen Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Enguang Zou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiacheng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rui Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jungang Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
19
|
Dong S, Zhang M, Cheng Z, Zhang X, Liang W, Li S, Li L, Xu Q, Song S, Liu Z, Yang G, Zhao X, Tao Z, Liang S, Wang K, Zhang G, Hu S. Redistribution of defective mitochondria-mediated dihydroorotate dehydrogenase imparts 5-fluorouracil resistance in colorectal cancer. Redox Biol 2024; 73:103207. [PMID: 38805974 PMCID: PMC11152977 DOI: 10.1016/j.redox.2024.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024] Open
Abstract
Although 5-fluorouracil (5-FU) is the primary chemotherapy treatment for colorectal cancer (CRC), its efficacy is limited by drug resistance. Ferroptosis activation is a promising treatment for 5-FU-resistant cancer cells; however, potential therapeutic targets remain elusive. This study investigated ferroptosis vulnerability and dihydroorotate dehydrogenase (DHODH) activity using stable, 5-FU-resistant CRC cell lines and xenograft models. Ferroptosis was characterized by measuring malondialdehyde levels, assessing lipid metabolism and peroxidation, and using mitochondrial imaging and assays. DHODH function is investigated through gene knockdown experiments, tumor behavior assays, mitochondrial import reactions, intramitochondrial localization, enzymatic activity analyses, and metabolomics assessments. Intracellular lipid accumulation and mitochondrial DHODH deficiency led to lipid peroxidation overload, weakening the defense system of 5-FU-resistant CRC cells against ferroptosis. DHODH, primarily located within the inner mitochondrial membrane, played a crucial role in driving intracellular pyrimidine biosynthesis and was redistributed to the cytosol in 5-FU-resistant CRC cells. Cytosolic DHODH, like its mitochondrial counterpart, exhibited dihydroorotate catalytic activity and participated in pyrimidine biosynthesis. This amplified intracellular pyrimidine pools, thereby impeding the efficacy of 5-FU treatment through molecular competition. These findings contribute to the understanding of 5-FU resistance mechanisms and suggest that ferroptosis and DHODH are promising therapeutic targets for patients with CRC exhibiting resistance to 5-FU.
Collapse
Affiliation(s)
- Shuohui Dong
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Mingguang Zhang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhiqiang Cheng
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Xiang Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Weili Liang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Songhan Li
- Department of General Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Linchuan Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Qian Xu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Siyi Song
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, 250014, China
| | - Zitian Liu
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Guangwei Yang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Xiang Zhao
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Ze Tao
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China
| | - Shuo Liang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, No. 4, Duanxing West Road, Jinan, Shandong,250022, China.
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China.
| | - Guangyong Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, 250014, China.
| | - Sanyuan Hu
- Department of General Surgery, Qilu Hospital of Shandong University, No. 107 Wenhua Xilu, Jinan, Shandong, 250012, China.
| |
Collapse
|
20
|
Jing F, Zhu L, Bai J, Zhou X, Sun L, Zhang H, Li T. A prognostic model built on amino acid metabolism patterns in HPV-associated head and neck squamous cell carcinoma. Arch Oral Biol 2024; 163:105975. [PMID: 38626700 DOI: 10.1016/j.archoralbio.2024.105975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVES To compare amino acid metabolism patterns between HPV-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) patients and identify key genes for a prognostic model. DESIGN Utilizing the Cancer Genome Atlas dataset, we analyzed amino acid metabolism genes, differentiated genes between HPV statuses, and selected key genes via LASSO regression for the prognostic model. The model's gene expression was verified through immunohistochemistry in clinical samples. Functional enrichment and CIBERSORTx analyses explored biological functions, molecular mechanisms, and immune cell correlations. The model's prognostic capability was assessed using nomograms, calibration, and decision curve analysis. RESULTS We identified 1157 key genes associated with amino acid metabolism in HNSCC and HPV status. The prognostic model, featuring genes like IQCN, SLC22A1, SYT12, and TLX3, highlighted functions in development, metabolism, and pathways related to receptors and enzymes. It significantly correlated with immune cell infiltration and outperformed traditional staging in prognosis prediction, despite immunohistochemistry results showing limited clinical identification of HPV-related HNSCC. CONCLUSIONS Distinct amino acid metabolism patterns differentiate HPV-positive from negative HNSCC patients, underscoring the prognostic model's utility in predicting outcomes and guiding therapeutic strategies.
Collapse
Affiliation(s)
- Fengyang Jing
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Lijing Zhu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Jiaying Bai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Xuan Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China
| | - Lisha Sun
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| | - Heyu Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China; Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing 100081, China.
| |
Collapse
|
21
|
Chen J, Huang X, Zhang S, Zhu X. ATF4 inhibits tumor development and mediates p-GCN2/ASNS upregulation in colon cancer. Sci Rep 2024; 14:13042. [PMID: 38844625 PMCID: PMC11156644 DOI: 10.1038/s41598-024-63895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Colon cancer (CC) is a highly malignant tumor with a high incidence and poor prognosis. This study aimed to explore the function and molecular mechanisms of activating transcription factor 4 (ATF4) in CC. The expression levels of ATF4, GCN2, and ASNS in CC tissues were measured using immunohistochemistry (IHC) and reverse transcription quantitative PCR (RT-qPCR). Cell counting kit-8 (CCK-8), clone formation, transwell, and flow cytometry assays were conducted to assess cell viability, clonogenicity, migration, invasion, cell cycle, and apoptosis, respectively, in the ATF4 knockdown and overexpression SW480 cell lines. The effect of ATF4 on the expression of GCN2 and ASNS was detected using RT-qPCR, Chip-qPCR, and western blotting. ATF4, GCN2, and ASNS were expressed at low levels in CC tissues, and all had a significant negative correlation with tumor diameter. ATF4 knockdown promoted cell proliferation, invasion, and S-phase cell cycle and inhibited apoptosis in SW480 cells. In contrast, ATF4 overexpression had the opposite effect. Furthermore, ATF4 overexpression enhanced ATF4 binding to the ASNS promoter region. ATF4 knockdown significantly inhibited the expression of p-GCN2 and ASNS, whereas ATF4 overexpression significantly upregulated their expression. ATF4 inhibited CC cell viability, clone formation ability, migration, and invasion and promoted apoptosis, possibly by regulating the expression of p-GCN2 and ASNS. Our study provides a novel potential therapeutic target for the treatment of CC.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, 530021, Guangxi, China
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xiaopeng Huang
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shuai Zhang
- Department of Radiation Oncology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, 530021, Guangxi, China.
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, Guangxi, China.
| |
Collapse
|
22
|
Ye J, Bao X, Wei J, Zhang Y, Liu Y, Xin L. Role of dietary nutrients and metabolism in colorectal cancer. Asia Pac J Clin Nutr 2024; 33:153-161. [PMID: 38794975 PMCID: PMC11170022 DOI: 10.6133/apjcn.202406_33(2).0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/05/2024] [Accepted: 01/23/2024] [Indexed: 05/27/2024]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and the leading causes of cancer related deaths worldwide. The development of CRC is driven by a combination of genetic and environmental factors. There is growing evidence that changes in dietary nutrition may modulate the CRC risk, and protective effects on the risk of developing CRC have been advocated for specific nutrients such as glucose, amino acids, lipid, vitamins, micronutrients and prebiotics. Metabolic crosstalk between tumor cells, tumor microenvironment components and intestinal flora further promote proliferation, invasion and metastasis of CRC cells and leads to treatment resistance. This review summarizes the research progress on CRC prevention, pathogenesis, and treatment by dietary supplementation or deficiency of glucose, amino acids, lipids, vitamins, micronutri-ents, and prebiotics, respectively. The roles played by different nutrients and dietary crosstalk in the tumor microenvironment and metabolism are discussed, and nutritional modulation is inspired to be beneficial in the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Jinjun Ye
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China
| | - Xing Bao
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China
| | - Jiufeng Wei
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China
| | - Yuanpeng Zhang
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China
| | - Yu Liu
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China
| | - Le Xin
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China.
| |
Collapse
|
23
|
Zhang Y, Ni M, Tao Y, Shen M, Xu W, Fan M, Shan J, Cheng H. Multiple-matrix metabolomics analysis for the distinct detection of colorectal cancer and adenoma. Metabolomics 2024; 20:47. [PMID: 38642214 DOI: 10.1007/s11306-024-02114-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/31/2024] [Indexed: 04/22/2024]
Abstract
OBJECTIVES Although colorectal cancer (CRC) is the leading cause of cancer-related morbidity and mortality, current diagnostic tests for early-stage CRC and colorectal adenoma (CRA) are suboptimal. Therefore, there is an urgent need to explore less invasive screening procedures for CRC and CRA diagnosis. METHODS Untargeted gas chromatography-mass spectrometry (GC-MS) metabolic profiling approach was applied to identify candidate metabolites. We performed metabolomics profiling on plasma samples from 412 subjects including 200 CRC patients, 160 CRA patients and 52 normal controls (NC). Among these patients, 45 CRC patients, 152 CRA patients and 50 normal controls had their fecal samples tested simultaneously. RESULTS Differential metabolites were screened in the adenoma-carcinoma sequence. Three diagnostic models were further developed to identify cancer group, cancer stage, and cancer microsatellite status using those significant metabolites. The three-metabolite-only classifiers used to distinguish the cancer group always keeps the area under the receiver operating characteristic curve (AUC) greater than 0.7. The AUC performance of the classifiers applied to discriminate CRC stage is generally greater than 0.8, and the classifiers used to distinguish microsatellite status of CRC is greater than 0.9. CONCLUSION This finding highlights potential early-driver metabolites in CRA and early-stage CRC. We also find potential metabolic markers for discriminating the microsatellite state of CRC. Our study and diagnostic model have potential applications for non-invasive CRC and CRA detection.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingxin Ni
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuquan Tao
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meng Shen
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weichen Xu
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China
| | - Minmin Fan
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Haibo Cheng
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
24
|
Lin LQ, Lv SY, Ren HZ, Li RR, Li L, Pang YQ, Wang J. Evodiamine inhibits EPRS expression to regulate glutamate metabolism and proliferation of oral squamous cell carcinoma cells. Kaohsiung J Med Sci 2024; 40:348-359. [PMID: 38243370 DOI: 10.1002/kjm2.12803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024] Open
Abstract
The effects of evodiamine (EVO) on oral squamous cell carcinoma (OSCC) are not yet understood. Based on our earlier findings, we hypothesized that evodiamine may affect OSCC cell proliferation and glutamate metabolism by modulating the expression of EPRS (glutamyl-prolyl-tRNA synthetase 1). From GEPIA, we obtained EPRS expression data in patients with OSCC as well as survival prognosis data. An animal model using Cal27 cells in BALB/c nude mice was established. The expression of EPRS was assessed by immunofluorescence, Western blotting, and quantitative PCR. Glutamate measurements were performed to evaluate the impact of evodiamine on glutamate metabolism of Cal27 and SAS tumor cells. transient transfection techniques were used to knock down and modulate EPRS in these cells. EPRS is expressed at higher levels in OSCC than in normal tissues, and it predicts poor prognosis in patients. In a nude mouse xenograft model, evodiamine inhibited tumor growth and the expression of EPRS. Evodiamine impacted cell proliferation, glutamine metabolism, and EPRS expression on Cal27 and SAS cell lines. In EPRS knockdown cell lines, both cell proliferation and glutamine metabolism are suppressed. EPRS's overexpression partially restores evodiamine's inhibitory effects on cell proliferation and glutamine metabolism. This study provides crucial experimental evidence supporting the potential therapeutic application of evodiamine in treating OSCC. Evodiamine exhibits promising anti-tumor effects by targeting EPRS to regulate glutamate metabolism.
Collapse
Affiliation(s)
- Li-Qi Lin
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Si-Yi Lv
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Hao-Zhe Ren
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Rong-Rong Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Yun-Qing Pang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Oral Diseases, Lanzhou, Gansu Province, China
| | - Jing Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu, China
- Clinical Research Center for Oral Diseases, Lanzhou, Gansu Province, China
| |
Collapse
|
25
|
Kurasaka C, Nishizawa N, Ogino Y, Sato A. Anticancer sensitivity and biological aspect of 5-fluorouracil-resistant human colorectal cancer HCT116 cells in three-dimensional culture under high- and low-glucose conditions. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:870-880. [PMID: 38555594 DOI: 10.1080/15257770.2024.2332414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
5-Fluorouracil (5-FU) is a commonly used anticancer drug for colorectal cancer (CRC). Therefore, it is crucial to elucidate the mechanisms that contribute to 5-FU resistance. We established an acquired 5-FU resistant cell line, HCT116RF10, derived from CRC cells and investigated its energy metabolism as well as the underlying mechanism of 5-FU resistance. We examined the sensitivity to 5-FU and the formation of tumor spheres in parental HCT116 cells and 5-FU-resistant HCT116RF10 cells under 3D culture conditions at high-glucose (HG 25 mM) and low-glucose (LG 5.5 mM) concentrations. These results suggested that the tumor spheres of parental HCT116 cells displayed higher sensitivity to 5-FU under LG conditions than under HG conditions. HCT116RF10 tumor spheres exhibited comparable sensitivity to 5-FU under HG and LG conditions. Furthermore, under HG conditions, there was a marked decrease in extracellular lactate in the HCT116RF10 tumor sphere compared to that in the LG tumor sphere. Similarly, HCT116 tumor spheres showed decreased extracellular lactate levels under LG conditions compared to those grown under HG conditions. Moreover, the evidence reveals that the tumor spheres of HCT116RF10 and HCT116 cells exhibit disparate dependencies on energy metabolism, glycolysis, and mitochondrial respiration under both HG and LG conditions. These results have important clinical implications for overcoming 5-FU resistance and enhancing antitumor treatment strategies.
Collapse
Affiliation(s)
- Chinatsu Kurasaka
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Nana Nishizawa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Yoko Ogino
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Akira Sato
- Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
26
|
Yu L, Lu J, Du W. Tryptophan metabolism in digestive system tumors: unraveling the pathways and implications. Cell Commun Signal 2024; 22:174. [PMID: 38462620 PMCID: PMC10926624 DOI: 10.1186/s12964-024-01552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/01/2024] [Indexed: 03/12/2024] Open
Abstract
Tryptophan (Trp) metabolism plays a crucial role in influencing the development of digestive system tumors. Dysregulation of Trp and its metabolites has been identified in various digestive system cancers, including esophageal, gastric, liver, colorectal, and pancreatic cancers. Aberrantly expressed Trp metabolites are associated with diverse clinical features in digestive system tumors. Moreover, the levels of these metabolites can serve as prognostic indicators and predictors of recurrence risk in patients with digestive system tumors. Trp metabolites exert their influence on tumor growth and metastasis through multiple mechanisms, including immune evasion, angiogenesis promotion, and drug resistance enhancement. Suppressing the expression of key enzymes in Trp metabolism can reduce the accumulation of these metabolites, effectively impacting their role in the promotion of tumor progression and metastasis. Strategies targeting Trp metabolism through specific enzyme inhibitors or tailored drugs exhibit considerable promise in enhancing therapeutic outcomes for digestive system tumors. In addition, integrating these approaches with immunotherapy holds the potential to further enhance treatment efficacy.
Collapse
Affiliation(s)
- Liang Yu
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases,, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases,, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| | - Weibo Du
- State Key Laboratory for Diagnosis, Treatment of Infectious Diseases,, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
27
|
Sykes DJ, Solanki S, Chukkapalli S, Williams K, Newman EA, Resnicow K, Shah YM. Structural enrichment attenuates colitis-associated colon cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580099. [PMID: 38405737 PMCID: PMC10888747 DOI: 10.1101/2024.02.13.580099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Colorectal cancer (CRC) is a major public health concern and disproportionately impacts racial/ethnic minority populations in the US. Animal models are helpful in examining human health disparities because many stress-induced human health conditions can be recapitulated using mouse models. Azoxymethane (AOM)/ dextran sodium sulfate (DSS) treatment can be used to model colitis-associated cancers. While colitis-associated cancers account for only 2% of colon cancers, the AOM/DSS model is useful for examining links between inflammation, immunity, and colon cancer. Mice were housed in enriched and impoverished environments for 1-month prior to behavioral testing. Following behavioral testing the mice were subjected to the AOM/DSS model. While our analysis revealed no significant behavioral variances between the impoverished and enriched housing conditions, we found significant effects in tumorigenesis. Enriched mice had fewer tumors and smaller tumor volumes compared to impoverished mice. African Americans are at higher risk for early onset colorectal cancers in part due to social economic status. Furthermore, housing conditions and environment may reflect social economic status. Research aimed at understanding links between social economic status and colorectal cancer progression is important for eliminating disparities in health outcomes.
Collapse
|
28
|
Zhou L, Du K, Dai Y, Zeng Y, Luo Y, Ren M, Pan W, Liu Y, Zhang L, Zhu R, Feng D, Tian F, Gu C. Metabolic reprogramming based on RNA sequencing of gemcitabine-resistant cells reveals the FASN gene as a therapeutic for bladder cancer. J Transl Med 2024; 22:55. [PMID: 38218866 PMCID: PMC10787972 DOI: 10.1186/s12967-024-04867-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024] Open
Abstract
Bladder cancer (BLCA) is the most frequent malignant tumor of the genitourinary system. Postoperative chemotherapy drug perfusion and chemotherapy are important means for the treatment of BLCA. However, once drug resistance occurs, BLCA develops rapidly after recurrence. BLCA cells rely on unique metabolic rewriting to maintain their growth and proliferation. However, the relationship between the metabolic pattern changes and drug resistance in BLCA is unclear. At present, this problem lacks systematic research. In our research, we identified and analyzed resistance- and metabolism-related differentially expressed genes (RM-DEGs) based on RNA sequencing of a gemcitabine-resistant BLCA cell line and metabolic-related genes (MRGs). Then, we established a drug resistance- and metabolism-related model (RM-RM) through regression analysis to predict the overall survival of BLCA. We also confirmed that RM-RM had a significant correlation with tumor metabolism, gene mutations, tumor microenvironment, and adverse drug reactions. Patients with a high drug resistance- and metabolism-related risk score (RM-RS) showed more active lipid synthesis than those with a low RM-RS. Further in vitro and in vivo studies were implemented using Fatty Acid Synthase (FASN), a representative gene, which promotes gemcitabine resistance, and its inhibitor (TVB-3166) that can reverse this resistance effect.
Collapse
Affiliation(s)
- Lijie Zhou
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Kaixuan Du
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiheng Dai
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youmiao Zeng
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongbo Luo
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengda Ren
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenbang Pan
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanhao Liu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lailai Zhang
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ronghui Zhu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dapeng Feng
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengyan Tian
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chaohui Gu
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Urology, Henan Institute of Urology and Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Unit of Day Surgery Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
29
|
Sun X, Yang Y, Meng X, Li J, Liu X, Liu H. PANoptosis: Mechanisms, biology, and role in disease. Immunol Rev 2024; 321:246-262. [PMID: 37823450 DOI: 10.1111/imr.13279] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Cell death can be executed through distinct subroutines. PANoptosis is a unique inflammatory cell death modality involving the interactions between pyroptosis, apoptosis, and necroptosis, which can be mediated by multifaceted PANoptosome complexes assembled via integrating components from other cell death modalities. There is growing interest in the process and function of PANoptosis. Accumulating evidence suggests that PANoptosis occurs under diverse stimuli, for example, viral or bacterial infection, cytokine storm, and cancer. Given the impact of PANoptosis across the disease spectrum, this review briefly describes the relationships between pyroptosis, apoptosis, and necroptosis, highlights the key molecules in PANoptosome formation and PANoptosis activation, and outlines the multifaceted roles of PANoptosis in diseases together with a potential for therapeutic targeting. We also discuss important concepts and pressing issues for future PANoptosis research. Improved understanding of PANoptosis and its mechanisms is crucial for identifying novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Xu Sun
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yanpeng Yang
- Cardiac Care Unit, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiaona Meng
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jia Li
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Xiaoli Liu
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Huaimin Liu
- Department of Integrated Chinese and Western Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
30
|
Ivanova I, Shen K. Structures and Functions of the Human GATOR1 Complex. Subcell Biochem 2024; 104:269-294. [PMID: 38963491 PMCID: PMC11997690 DOI: 10.1007/978-3-031-58843-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Eukaryotic cells coordinate available nutrients with their growth through the mechanistic target of rapamycin complex 1 (mTORC1) pathway, in which numerous evolutionarily conserved protein complexes survey and transmit nutrient inputs toward mTORC1. mTORC1 integrates these inputs and activates downstream anabolic or catabolic programs that are in tune with cellular needs, effectively maintaining metabolic homeostasis. The GAP activity toward Rags-1 (GATOR1) protein complex is a critical negative regulator of the mTORC1 pathway and, in the absence of amino acid inputs, is activated to turn off mTORC1 signaling. GATOR1-mediated inhibition of mTORC1 signaling is tightly regulated by an ensemble of protein complexes that antagonize or promote its activity in response to the cellular nutrient environment. Structural, biochemical, and biophysical studies of the GATOR1 complex and its interactors have advanced our understanding of how it regulates cellular metabolism when amino acids are limited. Here, we review the current research with a focus on GATOR1 structure, its enzymatic mechanism, and the growing group of proteins that regulate its activity. Finally, we discuss the implication of GATOR1 dysregulation in physiology and human diseases.
Collapse
Affiliation(s)
- Ilina Ivanova
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
31
|
Zhang Z, Zhao Y, Wang Y, Zhao Y, Guo J. Autophagy/ferroptosis in colorectal cancer: Carcinogenic view and nanoparticle-mediated cell death regulation. ENVIRONMENTAL RESEARCH 2023; 238:117006. [PMID: 37669735 DOI: 10.1016/j.envres.2023.117006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
The cell death mechanisms have a long history of being evaluated in diseases and pathological events. The ability of triggering cell death is considered to be a promising strategy in cancer therapy, but some mechanisms have dual functions in cancer, requiring more elucidation of underlying factors. Colorectal cancer (CRC) is a disease and malignant condition of colon and rectal that causes high mortality and morbidity. The autophagy targeting in CRC is therapeutic importance and this cell death mechanism can interact with apoptosis in inhibiting or increasing apoptosis. Autophagy has interaction with ferroptosis as another cell death pathway in CRC and can accelerate ferroptosis in suppressing growth and invasion. The dysregulation of autophagy affects the drug resistance in CRC and pro-survival autophagy can induce drug resistance. Therefore, inhibition of protective autophagy enhances chemosensitivity in CRC cells. Moreover, autophagy displays interaction with metastasis and EMT as a potent regulator of invasion in CRC cells. The same is true for ferroptosis, but the difference is that function of ferroptosis is determined and it can reduce viability. The lack of ferroptosis can cause development of chemoresistance in CRC cells and this cell death mechanism is regulated by various pathways and mechanisms that autophagy is among them. Therefore, current review paper provides a state-of-art analysis of autophagy, ferroptosis and their crosstalk in CRC. The nanoparticle-mediated regulation of cell death mechanisms in CRC causes changes in progression. The stimulation of ferroptosis and control of autophagy (induction or inhibition) by nanoparticles can impair CRC progression. The engineering part of nanoparticle synthesis to control autophagy and ferroptosis in CRC still requires more attention.
Collapse
Affiliation(s)
- Zhibin Zhang
- Chengde Medical College, College of Traditional Chinese Medicine, Chengde, Hebei, 067000, China.
| | - Yintao Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yuman Wang
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Jianen Guo
- Chengde Medical College, Chengde, Hebei, 067000, China
| |
Collapse
|
32
|
Huang J, Zhang Q, Pan G, Hu X, Chen D, Zhang K. Editorial: Biomarkers, functional mechanisms, and therapeutic potentials in gastrointestinal cancers. Front Oncol 2023; 13:1276414. [PMID: 37965472 PMCID: PMC10641403 DOI: 10.3389/fonc.2023.1276414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/14/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Jun Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qun Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - GuangZhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xin Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, China
| | - Dongshi Chen
- Department of Medicine, Keck School of Medicine of University of Southern California (USC), Los Angeles, CA, United States
| | - Kui Zhang
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
33
|
Zhou W, Zhao Z, Lin A, Yang J, Xu J, Kari WR, Yang A, Li J, Solanki S, Speth J, Walker N, Scott AJ, Kothari AU, Yao Y, Peterson ER, Korimerla N, Werner CK, Liang J, Jacobson J, Palavalasa S, Obrien AM, Elaimy AL, Ferris SP, Zhao SG, Sarkaria JN, Győrffy B, Zhang S, Al-Holou WN, Umemura Y, Morgan MA, Lawrence TS, Lyssiotis CA, Peters-Golden M, Shah YM, Wahl DR. GTP signaling links metabolism, DNA repair, and responses to genotoxic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536297. [PMID: 37090571 PMCID: PMC10120670 DOI: 10.1101/2023.04.12.536297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
How cell metabolism regulates DNA repair is incompletely understood. Here, we define a GTP-mediated signaling cascade that links metabolism to DNA repair and has significant therapeutic implications. GTP, but not other nucleotides, regulates the activity of Rac1, a G protein, that promotes the dephosphorylation of serine 323 on Abl-interactor 1 (Abi-1) by protein phosphatase 5 (PP5). Dephosphorylated Abi-1, a protein previously not known to activate DNA repair, promotes non-homologous end joining. In patients and mouse models of glioblastoma, Rac1 and dephosphorylated Abi-1 mediate DNA repair and resistance to standard of care genotoxic treatments. The GTP-Rac1-PP5-Abi-1 signaling axis is not limited to brain cancer, as GTP supplementation promotes DNA repair and Abi-1-S323 dephosphorylation in non-malignant cells and protects mouse tissues from genotoxic insult. This unexpected ability of GTP to regulate DNA repair independently of deoxynucleotide pools has important implications for normal physiology and cancer treatment.
Collapse
|