1
|
Mehta S, Buyanbat A, Kai Y, Karayel O, Goldman SR, Seruggia D, Zhang K, Fujiwara Y, Donovan KA, Zhu Q, Yang H, Nabet B, Gray NS, Mann M, Fischer ES, Adelman K, Orkin SH. Temporal resolution of gene derepression and proteome changes upon PROTAC-mediated degradation of BCL11A protein in erythroid cells. Cell Chem Biol 2022; 29:1273-1287.e8. [PMID: 35839780 PMCID: PMC9391307 DOI: 10.1016/j.chembiol.2022.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022]
Abstract
Reactivation of fetal hemoglobin expression by the downregulation of BCL11A is a promising treatment for β-hemoglobinopathies. A detailed understanding of BCL11A-mediated repression of γ-globin gene (HBG1/2) transcription is lacking, as studies to date used perturbations by shRNA or CRISPR-Cas9 gene editing. We leveraged the dTAG PROTAC degradation platform to acutely deplete BCL11A protein in erythroid cells and examined consequences by nascent transcriptomics, proteomics, chromatin accessibility, and histone profiling. Among 31 genes repressed by BCL11A, HBG1/2 and HBZ show the most abundant and progressive changes in transcription and chromatin accessibility upon BCL11A loss. Transcriptional changes at HBG1/2 were detected in <2 h. Robust HBG1/2 reactivation upon acute BCL11A depletion occurred without the loss of promoter 5-methylcytosine (5mC). Using targeted protein degradation, we establish a hierarchy of gene reactivation at BCL11A targets, in which nascent transcription is followed by increased chromatin accessibility, and both are uncoupled from promoter DNA methylation at the HBG1/2 loci.
Collapse
Affiliation(s)
- Stuti Mehta
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Altantsetseg Buyanbat
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Yan Kai
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Planegg, Germany
| | - Seth Raphael Goldman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Davide Seruggia
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kevin Zhang
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Yuko Fujiwara
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Qian Zhu
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Huan Yang
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Planegg, Germany
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stuart H Orkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA; Howard Hughes Medical Institute and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Pace BS, Starlard-Davenport A, Kutlar A. Sickle cell disease: progress towards combination drug therapy. Br J Haematol 2021; 194:240-251. [PMID: 33471938 DOI: 10.1111/bjh.17312] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022]
Abstract
Dr. John Herrick described the first clinical case of sickle cell anaemia (SCA) in the United States in 1910. Subsequently, four decades later, Ingram and colleagues characterized the A to T substitution in DNA producing the GAG to GTG codon and replacement of glutamic acid with valine in the sixth position of the βS -globin chain. The establishment of Comprehensive Sickle Cell Centers in the United States in the 1970s was an important milestone in the development of treatment strategies and describing the natural history of sickle cell disease (SCD) comprised of genotypes including homozygous haemoglobin SS (HbSS), HbSβ0 thalassaemia, HbSC and HbSβ+ thalassaemia, among others. Early drug studies demonstrating effective treatments of HbSS and HbSβ0 thalassaemia, stimulated clinical trials to develop disease-specific therapies to induce fetal haemoglobin due to its ability to block HbS polymerization. Subsequently, hydroxycarbamide proved efficacious in adults with SCA and was Food and Drug Administration (FDA)-approved in 1998. After two decades of hydroxycarbamide use for SCD, there continues to be limited clinical acceptance of this chemotherapy drug, providing the impetus for investigators and pharmaceutical companies to develop non-chemotherapy agents. Investigative efforts to determine the role of events downstream of deoxy-HbS polymerization, such as endothelial cell activation, cellular adhesion, chronic inflammation, intravascular haemolysis and nitric oxide scavenging, have expanded drug targets which reverse the pathophysiology of SCD. After two decades of slow progress in the field, since 2018 three new drugs were FDA-approved for SCA, but research efforts to develop treatments continue. Currently over 30 treatment intervention trials are in progress to investigate a wide range of agents acting by complementary mechanisms, providing the rationale for ushering in the age of effective and safe combination drug therapy for SCD. Parallel efforts to develop curative therapies using haematopoietic stem cell transplant and gene therapy provide individuals with SCD multiple treatment options. We will discuss progress made towards drug development and potential combination drug therapy for SCD with the standard of care hydroxycarbamide.
Collapse
Affiliation(s)
- Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, GA, USA.,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Abdullah Kutlar
- Department of Medicine, Center for Blood Disorders, Augusta University, Augusta, GA, USA
| |
Collapse
|
3
|
Wang Y, Yu L, Engel JD, Singh SA. Epigenetic activities in erythroid cell gene regulation. Semin Hematol 2020; 58:4-9. [PMID: 33509442 DOI: 10.1053/j.seminhematol.2020.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/27/2020] [Indexed: 01/20/2023]
Abstract
Interest in the role of epigenetic mechanisms in human biology has exponentially increased over the past several decades. The multitude of opposing and context-dependent chromatin-modifying enzymes/coregulator complexes is just beginning to be understood at a molecular level. This science has benefitted tremendously from studies of erythropoiesis, in which a series of β-globin genes are in sequence turned "on" and "off," serving as a fascinating model of coordinated gene expression. We, therefore, describe here epigenetic complexes about which we know most, using erythropoiesis as the context. The biochemical insights lay the foundation for proposing and developing novel treatments for diseases of red cells and of erythropoiesis, identifying for example epigenetic enzymes that can be drugged to manipulate β-globin locus regulation, to favor activation of unmutated fetal hemoglobin over mutated adult β-globin genes to treat sickle cell disease and β-thalassemias. Other potential translational applications are in redirecting hematopoietic commitment decisions, as treatment for bone marrow failure syndromes.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Lei Yu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI.
| | - Sharon A Singh
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
4
|
Stratopoulos A, Kolliopoulou A, Karamperis K, John A, Kydonopoulou K, Esftathiou G, Sgourou A, Kourakli A, Vlachaki E, Chalkia P, Theodoridou S, Papadakis MN, Gerou S, Symeonidis A, Katsila T, Ali BR, Papachatzopoulou A, Patrinos GP. Genomic variants in members of the Krüppel-like factor gene family are associated with disease severity and hydroxyurea treatment efficacy in β-hemoglobinopathies patients. Pharmacogenomics 2019; 20:791-801. [PMID: 31393228 DOI: 10.2217/pgs-2019-0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Abstract
Aim: β-Type hemoglobinopathies are characterized by vast phenotypic diversity as far as disease severity is concerned, while differences have also been observed in hydroxyurea (HU) treatment efficacy. These differences are partly attributed to the residual expression of fetal hemoglobin (HbF) in adulthood. The Krüppel-like family of transcription factors (KLFs) are a set of zinc finger DNA-binding proteins which play a major role in HbF regulation. Here, we explored the possible association of variants in KLF gene family members with response to HU treatment efficacy and disease severity in β-hemoglobinopathies patients. Materials & methods: Six tag single nucleotide polymorphisms, located in four KLF genes, namely KLF3, KLF4, KLF9 and KLF10, were analyzed in 110 β-thalassemia major patients (TDT), 18 nontransfusion dependent β-thalassemia patients (NTDT), 82 sickle cell disease/β-thalassemia compound heterozygous patients and 85 healthy individuals as controls. Results: Our findings show that a KLF4 genomic variant (rs2236599) is associated with HU treatment efficacy in sickle cell disease/β-thalassemia compound heterozygous patients and two KLF10 genomic variants (rs980112, rs3191333) are associated with persistent HbF levels in NTDT patients. Conclusion: Our findings provide evidence that genomic variants located in KLF10 gene may be considered as potential prognostic biomarkers of β-thalassemia clinical severity and an additional variant in KLF4 gene as a pharmacogenomic biomarker, predicting response to HU treatment.
Collapse
Affiliation(s)
- Apostolos Stratopoulos
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Alexandra Kolliopoulou
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Kariofyllis Karamperis
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Anne John
- United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
| | | | | | - Argyro Sgourou
- School of Science & Technology, Biology Laboratory, Hellenic Open University, Patras, Greece
| | - Alexandra Kourakli
- Thalassemia & Hemoglobinopathies Unit, Hematology Division, Department of Internal Medicine, General University Hospital of Patras, Patras, Greece
| | - Efthimia Vlachaki
- Thalassemia Unit, "Hippocrateion" General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Chalkia
- Thalassemia & Sickle Cell Unit, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Stamatia Theodoridou
- Thalassemia Unit, "Hippocrateion" General Hospital of Thessaloniki, Thessaloniki, Greece
| | | | | | - Argiris Symeonidis
- Medical Faculty, Hematology Division, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Theodora Katsila
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Bassam R Ali
- United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
| | | | - George P Patrinos
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
- United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
- United Arab Emirates University, Zayed Center of Health Sciences, Al-Ain, United Arab Emirates
| |
Collapse
|
5
|
Chondrou V, Stavrou EF, Markopoulos G, Kouraklis-Symeonidis A, Fotopoulos V, Symeonidis A, Vlachaki E, Chalkia P, Patrinos GP, Papachatzopoulou A, Sgourou A. Impact of ZBTB7A hypomethylation and expression patterns on treatment response to hydroxyurea. Hum Genomics 2018; 12:45. [PMID: 30285874 PMCID: PMC6167880 DOI: 10.1186/s40246-018-0177-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/11/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND We aimed to clarify the emerging epigenetic landscape in a group of genes classified as "modifier genes" of the β-type globin genes (HBB cluster), known to operate in trans to accomplish the two natural developmental switches in globin expression, from embryonic to fetal during the first trimester of conception and from fetal to adult around the time of birth. The epigenetic alterations were determined in adult sickle cell anemia (SCA) homozygotes and SCA/β-thalassemia compound heterozygotes of Greek origin, who are under hydroxyurea (HU) treatment. Patients were distinguished in HU responders and HU non-responders (those not benefited from the HU) and both, and in vivo and in vitro approaches were implemented. RESULTS We examined the CpG islands' DNA methylation profile of BCL11A, KLF1, MYB, MAP3K5, SIN3A, ZBTB7A, and GATA2, along with γ-globin and LRF/ZBTB7A expression levels. In vitro treatment of hematopoietic stem cells (HSCs) with HU induced a significant DNA hypomethylation pattern in ZBTB7A (p*, 0.04) and GATA2 (p*, 0.03) CpGs exclusively in the HU non-responders. Also, this group of patients exhibited significantly elevated baseline methylation patterns in ZBTB7A, before the HU treatment, compared to HU responders (p*, 0.019) and to control group of healthy individuals (p*, 0.021), which resembles a potential epigenetic barrier for the γ-globin expression. γ-Globin expression in vitro matched with detected HbF levels during patients' monitoring tests (in vivo) under HU treatment, implying a good reproducibility of the in vitro HU epigenetic effect. LRF/ZBTB7A expression was elevated only in the HU non-responders under the influence of HU. CONCLUSIONS This is one of the very first pharmacoepigenomic studies indicating that the hypomethylation of ZBTB7A during HU treatment enhances the LRF expression, which by its turn suppresses the HbF resumption in the HU non-responders. Its role as an epigenetic regulator of hemoglobin switching is also supported by the wide distribution of ZBTB7A-binding sites within the 5' CpG sequences of all studied human HBB cluster "modifier genes." Also, the baseline methylation level of selective CpGs in ZBTB7A and GATA2 could be an indicator of the negative HU response among the β-type hemoglobinopathy patients.
Collapse
Affiliation(s)
- Vasiliki Chondrou
- School of Science and Technology, Biology Laboratory, Hellenic Open University, Patras, Greece
| | - Eleana F Stavrou
- School of Science and Technology, Biology Laboratory, Hellenic Open University, Patras, Greece
| | - Georgios Markopoulos
- Faculty of Medicine, Biology Laboratory, University of Ioannina, Ioannina, Greece
| | - Alexandra Kouraklis-Symeonidis
- Thalassemia and Hemoglobinopathies Unit, Hematology Division, Department of Internal Medicine, General University Hospital of Patras, Patras, Greece
| | - Vasilios Fotopoulos
- School of Science and Technology, Digital Systems and Media Computing Laboratory, Hellenic Open University, Patras, Greece
| | - Argiris Symeonidis
- Medical School, Hematology Division, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Efthymia Vlachaki
- Thalassemia Unit, "Hippokrateio" General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Chalkia
- Thalassemia and Sickle Cell Unit, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | - George P Patrinos
- School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece
| | | | - Argyro Sgourou
- School of Science and Technology, Biology Laboratory, Hellenic Open University, Patras, Greece.
| |
Collapse
|
6
|
Identification of a Novel Enhancer/Chromatin Opening Element Associated with High-Level γ-Globin Gene Expression. Mol Cell Biol 2018; 38:MCB.00197-18. [PMID: 30012865 PMCID: PMC6146835 DOI: 10.1128/mcb.00197-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/10/2018] [Indexed: 01/05/2023] Open
Abstract
The organization of the five β-type globin genes on chromosome 11 reflects the timing of expression during erythroid cell development, with the embryonic ε-globin gene being located at the 5′ end, followed by the two fetal γ-globin genes, and with the adult β- and δ-globin genes being located at the 3′ end. Here, we functionally characterized a DNase I-hypersensitive site (HS) located 4 kb upstream of the Gγ-globin gene (HBG-4kb HS). The organization of the five β-type globin genes on chromosome 11 reflects the timing of expression during erythroid cell development, with the embryonic ε-globin gene being located at the 5′ end, followed by the two fetal γ-globin genes, and with the adult β- and δ-globin genes being located at the 3′ end. Here, we functionally characterized a DNase I-hypersensitive site (HS) located 4 kb upstream of the Gγ-globin gene (HBG-4kb HS). This site is occupied by transcription factors USF1, USF2, EGR1, MafK, and NF-E2 in the human erythroleukemia cell line K562 and exhibits histone modifications typical for enhancers. We generated a synthetic zinc finger (ZF) DNA-binding domain targeting the HBG-4kb HS (HBG-4kb ZF). The HBG-4kb ZF interacted with the target site in vitro and in the context of cells with a high affinity and specificity. Direct delivery of the HBG-4kb ZF to K562 and primary human erythroid cells caused a reduction in γ-globin gene expression which was associated with decreased binding of transcription factors and active histone marks at and downstream of the HS. The data demonstrate that the HBG-4kb HS is important for fetal globin production and suggest that it may act by opening chromatin in a directional manner.
Collapse
|
7
|
Abstract
Fetal haemoglobin (HbF, α2γ2) induction has long been an area of investigation, as it is known to ameliorate the clinical complications of sickle cell disease (SCD). Progress in identifying novel HbF-inducing strategies has been stymied by limited understanding of gamma (γ)-globin regulation. Genome-wide association studies (GWAS) have identified variants in BCL11A and HBS1L-MYB that are associated with HbF levels. Functional studies have established the roles of BCL11A, MYB, and KLF1 in γ-globin regulation, but this information has not yielded new pharmacological agents. Several drugs are under investigation in clinical trials as HbF-inducing agents, but hydroxycarbamide remains the only widely used pharmacologic therapy for SCD. Autologous transplant of edited haematopoietic stem cells holds promise as a cure for SCD, either through HbF induction or correction of the causative mutation, but several technical and safety hurdles must be overcome before this therapy can be offered widely, and pharmacological therapies are still needed.
Collapse
Affiliation(s)
- Alireza Paikari
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Vivien A Sheehan
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Hossain MA, Shen Y, Knudson I, Thakur S, Stees JR, Qiu Y, Pace BS, Peterson KR, Bungert J. Activation of Fetal γ-globin Gene Expression via Direct Protein Delivery of Synthetic Zinc-finger DNA-Binding Domains. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e378. [PMID: 27754490 DOI: 10.1038/mtna.2016.85] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/29/2016] [Indexed: 12/20/2022]
Abstract
Reactivation of γ-globin expression has been shown to ameliorate disease phenotypes associated with mutations in the adult β-globin gene, including sickle cell disease. Specific mutations in the promoter of the γ-globin genes are known to prevent repression of the genes in the adult and thus lead to hereditary persistence of fetal hemoglobin. One such hereditary persistence of fetal hemoglobin is associated with a sequence located 567 bp upstream of the Gγ-globin gene which assembles a GATA-containing repressor complex. We generated two synthetic zinc-finger DNA-binding domains (ZF-DBDs) targeting this sequence. The -567Gγ ZF-DBDs associated with high affinity and specificity with the target site in the γ-globin gene promoter. We delivered the -567Gγ ZF-DBDs directly to primary erythroid cells. Exposure of these cells to the recombinant -567Gγ ZF-DBDs led to increased expression of the γ-globin gene. Direct protein delivery of ZF-DBDs that compete with transcription regulatory proteins will have broad implications for modulating gene expression in analytical or therapeutic settings.
Collapse
Affiliation(s)
- Mir A Hossain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yong Shen
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Isaac Knudson
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Shaleen Thakur
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jared R Stees
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yi Qiu
- Department of Anatomy and Cell Biology, College of Medicine, UF Health Cancer Center, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, Georgia, USA
| | - Kenneth R Peterson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Ginder GD. Epigenetic regulation of fetal globin gene expression in adult erythroid cells. Transl Res 2015; 165:115-25. [PMID: 24880147 PMCID: PMC4227965 DOI: 10.1016/j.trsl.2014.05.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/02/2014] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
Abstract
The developmental regulation of globin gene expression has served as an important model for understanding higher eukaryotic transcriptional control mechanisms. During human erythroid development, there is a sequential switch from expression of the embryonic ε-globin gene to the fetal ɣ-globin gene in utero, and postpartum the ɣ-globin gene is silenced, as the β-globin gene becomes the predominantly expressed locus. Because the expression of normally silenced fetal ɣ-type globin genes and resultant production of fetal hemoglobin (HbF) in adult erythroid cells can ameliorate the pathophysiological consequences of both abnormal β-globin chains in sickle cell anemia and deficient β-globin chain production in β-thalassemia, understanding the complex mechanisms of this developmental switch has direct translational clinical relevance. Of particular interest for translational research are the factors that mediate silencing of the ɣ-globin gene in adult stage erythroid cells. In addition to the regulatory roles of transcription factors and their cognate DNA sequence motifs, there has been a growing appreciation of the role of epigenetic signals and their cognate factors in gene regulation, and in particular in gene silencing through chromatin. Much of the information about epigenetic silencing stems from studies of globin gene regulation. As discussed here, the term epigenetics refers to postsynthetic modifications of DNA and chromosomal histone proteins that affect gene expression and can be inherited through somatic cell replication. A full understanding of the molecular mechanisms of epigenetic silencing of HbF expression should facilitate the development of more effective treatment of β-globin chain hemoglobinopathies.
Collapse
Affiliation(s)
- Gordon D Ginder
- Virginia Commonwealth University Massey Cancer Center, Richmond, VA, USA.
| |
Collapse
|
10
|
Mallick D, Karmakar R, Barui G, Gon S, Chakrabarti S. The Prognostic Significance of HbF in Childhood Haematological Malignancies. Indian J Hematol Blood Transfus 2014; 31:116-20. [PMID: 25548456 DOI: 10.1007/s12288-014-0383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 03/30/2014] [Indexed: 11/30/2022] Open
Abstract
The degree of increase in foetal haemoglobin (HbF) synthesis in haematological malignancies may be associated with the degree of malignancy. The aim of the present study was to quantify HbF levels in various childhood haematological malignancies and also, to ascertain its prognostic significance by comparing the results with the already established standard prognostic factors. Newly diagnosed cases of haematological malignancies in the paediatric age group were included in the study. HbF levels were estimated in each case of the study group along with HbF levels of control group comprising healthy children of same age group. The estimation was done by HPLC and Modified Betke's method. 50 cases of newly diagnosed haematological malignancies were studied out of which most of the cases were of acute lymphoblastic leukaemia (ALL) [n = 30(60 %)] followed by acute myeloid leukaemia (AML) [n = 8(16 %)], Hodgkin's lymphoma [n = 7(14%)], non-Hodgkin's lymphoma [n = 5(10 %)]. Raised HbF levels were found in 43.3 % cases of ALL (13/30) and 37.5 % cases of AML (3/8). No significant rise in HbF level was found in cases of lymphomas. There was correlation between raised HbF level and poor prognostic factors in cases of ALL but no such correlation was found in cases of AML. HbF levels are often elevated in childhood leukaemias as compared to childhood lymphomas. Thus, the concentration of HbF in acute childhood leukaemia may be considered as a prognostic factor.
Collapse
Affiliation(s)
- Debjani Mallick
- Department of Pathology, ESI PGIMSR & ESIC Medical College, Joka, Diamond Harbour Road, Kolkata, 700104 West Bengal India
| | - Rupam Karmakar
- Department of Pathology, RG Kar Medical College, Kolkata, India
| | - Gopinath Barui
- Department of Pathology, Malda Medical College, English Bazar, West Bengal India
| | - Sonia Gon
- Department of Pathology, ESI PGIMSR & ESIC Medical College, Joka, Diamond Harbour Road, Kolkata, 700104 West Bengal India
| | | |
Collapse
|
11
|
Abstract
Besides 5-azacytidine (azacitidine, Vidaza®), 5-aza-2'-deoxycytidine (decitabine, Dacogen®) is the most widely used inhibitor of DNA methylation, which triggers demethylation leading to consecutive reactivation of epigenetically silenced tumor suppressor genes in vitro and in vivo. Although antileukemic activity of decitabine is known for almost 40 years, its therapeutic potential in hematologic malignancies has only recently led to its approval in higher-risk MDS patients and as first-line treatment in AML patients>65 years who are not candidates for intensive chemotherapy. Several clinical trials showed promising activity of low-dose decitabine also in CML and hemoglobinopathies, whereas its efficacy in solid tumors is very limited. Clinical responses appear to be exerted both by epigenetic alterations and by induction of cell-cycle arrest and/or apoptosis. Recent and ongoing clinical trials investigate new dosing schedules, routes of administration, and combination of decitabine with other agents, including histone deacetylase inhibitors.
Collapse
|
12
|
Voit RA, Hendel A, Pruett-Miller SM, Porteus MH. Nuclease-mediated gene editing by homologous recombination of the human globin locus. Nucleic Acids Res 2013; 42:1365-78. [PMID: 24157834 PMCID: PMC3902937 DOI: 10.1093/nar/gkt947] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tal-effector nucleases (TALENs) are engineered proteins that can stimulate precise genome editing through specific DNA double-strand breaks. Sickle cell disease and β-thalassemia are common genetic disorders caused by mutations in β-globin, and we engineered a pair of highly active TALENs that induce modification of 54% of human β-globin alleles near the site of the sickle mutation. These TALENS stimulate targeted integration of therapeutic, full-length beta-globin cDNA to the endogenous β-globin locus in 19% of cells prior to selection as quantified by single molecule real-time sequencing. We also developed highly active TALENs to human γ-globin, a pharmacologic target in sickle cell disease therapy. Using the β-globin and γ-globin TALENs, we generated cell lines that express GFP under the control of the endogenous β-globin promoter and tdTomato under the control of the endogenous γ-globin promoter. With these fluorescent reporter cell lines, we screened a library of small molecule compounds for their differential effect on the transcriptional activity of the endogenous β- and γ-globin genes and identified several that preferentially upregulate γ-globin expression.
Collapse
Affiliation(s)
- Richard A Voit
- Department of Pediatrics, Stanford University, 1291 Welch Rd. Stanford, CA 94305, USA and Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
13
|
Wolk M, Martin JE. Fetal haemopoiesis marking low-grade urinary bladder cancer. Br J Cancer 2012; 107:477-81. [PMID: 22735903 PMCID: PMC3405209 DOI: 10.1038/bjc.2012.268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/16/2012] [Accepted: 05/20/2012] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The immunohistochemical features of fetal haemoglobin cells and their distribution patterns in solid tumours, such as colorectal cancer and blastomas, suggest that fetal haemopoiesis may take place in these tumour tissues. These locally highly concentrated fetal haemoglobin (HbF) cells may promote tumour growth by providing a more efficient oxygen supply. METHODS AND RESULTS Biomarkers of HbF were checked in transitional cell carcinoma (TCC) of the urinary bladder, assessing this as a new parameter for disease management. Fetal haemoglobin was immunohistochemically examined in tumours from 60 patients with TCC of the bladder. Fetal haemoglobin erythrocytes and erythroblasts were mainly clonally distributed in proliferating blood vessels and not mixed with normal haemoglobin erythrocytes. The proportion of such HbF blood vessels could reach more than half of the total number of vessels. There were often many HbF erythroblasts distributed in one-cell or two-cell capillaries and present as 5-15% of cells in multi-cell vessels. This suggests a local proliferation of HbF-cell progenitors. Fetal haemoglobin cells were prominently marking lower grades of tumours, as 76% (n=21) of the patients with G1pTa were HbF+, whereas only 6.7% (n=30) of the patients with G3pT1-pT2a were HbF+. CONCLUSION Our results suggest that HbF, besides being a potential new marker for early tumour detection, might be an essential factor of early tumour development, as in fetal life. Inhibiting HbF upregulation may provide a therapeutic target for the inhibition of tumour growth.
Collapse
Affiliation(s)
- M Wolk
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Core Pathology Facility, The Royal London Hospital, 80 Newark Street, London E1 2ES, UK.
| | | |
Collapse
|
14
|
Ramakrishnan V, Pace BS. Regulation of γ-globin gene expression involves signaling through the p38 MAPK/CREB1 pathway. Blood Cells Mol Dis 2011; 47:12-22. [PMID: 21497119 DOI: 10.1016/j.bcmd.2011.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
Abstract
In response to sodium butyrate and trichostatin A treatment in erythroid cells, p38 mitogen activated protein kinase (MAPK) mediates fetal hemoglobin (HbF) induction by activating cAMP response element binding protein 1 (CREB1). To expand on this observation, we completed studies to determine the role of p38 MAPK in steady-state γ-globin regulation. We propose that p38 signaling regulates Gγ-globin transcription during erythroid maturation through its downstream effector CREB1 which binds the Gγ-globin cAMP response element (G-CRE). We demonstrated that a loss of p38 or CREB1 function by siRNA knockdown resulted in target gene silencing. Moreover, gain of p38 or CREB1 function augments γ-globin transcription. These regulatory effects were conserved under physiological conditions tested in primary erythroid cells. When the G-CRE was mutated in a stable chromatin environment Gγ-globin promoter activity was nearly abolished. Furthermore, introduction of mutations in the G-CRE abolished Gγ-globin activation via p38 MAPK/CREB1 signaling. Chromatin immunoprecipitation assays (ChIP) demonstrated that CREB1 and its binding partner CREB binding protein (CBP) co-localize at the G-CRE region. These data support the role of p38 MAPK/CREB1 signaling in Gγ-globin gene transcription under steady-state conditions.
Collapse
Affiliation(s)
- Valya Ramakrishnan
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | | |
Collapse
|
15
|
Banzon V, Ibanez V, Vaitkus K, Ruiz MA, Peterson K, DeSimone J, Lavelle D. siDNMT1 increases γ-globin expression in chemical inducer of dimerization (CID)-dependent mouse βYAC bone marrow cells and in baboon erythroid progenitor cell cultures. Exp Hematol 2010; 39:26-36.e1. [PMID: 20974210 DOI: 10.1016/j.exphem.2010.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 09/24/2010] [Accepted: 10/15/2010] [Indexed: 01/18/2023]
Abstract
OBJECTIVE These studies were performed to test the hypothesis that DNMT1 is required for maintenance of DNA methylation and repression of the γ-globin gene in adult-stage erythroid cells. MATERIALS AND METHODS DNMT1 levels were reduced by nucleofection of small interfering RNA targeting DNMT1 in chemical inducer of dimerization-dependent multipotential mouse bone marrow cells containing the human β-globin gene locus in the context of a yeast artificial chromosome and in primary cultures of erythroid progenitor cells derived from CD34(+) baboon bone marrow cells. The effect of reduced DNMT1 levels on globin gene expression was measured by real-time polymerase chain reaction and the effect on globin chain synthesis in primary erythroid progenitor cell cultures was determined by biosynthetic radiolabeling of globin chains followed by high-performance liquid chromatography analysis. The effect on DNA methylation was determined by bisulfite sequence analysis. RESULTS Reduced DNMT1 levels in cells treated with siDNMT1 were associated with increased expression of γ-globin messenger RNA, an increased γ/γ+β chain ratio in cultured erythroid progenitors, and decreased DNA methylation of the γ-globin promoter. Similar effects were observed in cells treated with decitabine, a pharmacological inhibitor of DNA methyltransferase inhibitor. CONCLUSIONS DNMT1 is required to maintain DNA methylation of the γ-globin gene promoter and repress γ-globin gene expression in adult-stage erythroid cells.
Collapse
Affiliation(s)
- Virryan Banzon
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Atweh G, Fathallah H. Pharmacologic induction of fetal hemoglobin production. Hematol Oncol Clin North Am 2010; 24:1131-44. [PMID: 21075284 DOI: 10.1016/j.hoc.2010.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reactivation of fetal hemoglobin (HbF) expression is an important therapeutic option in adult patients with hemoglobin disorders. The understanding of the developmental regulation of γ-globin gene expression was followed by the identification of a number of chemical compounds that can reactivate HbF synthesis in vitro and in vivo in patients with hemoglobin disorders. These HbF inducers can be grouped in several classes based on their mechanisms of action. This article focuses on pharmacologic agents that were tested in humans and discusses current knowledge about the mechanisms by which they induce HbF.
Collapse
Affiliation(s)
- George Atweh
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0562, USA
| | | |
Collapse
|
17
|
Abstract
The pyrimidine analogs, 5-azacytidine (azacitidine, Vidaza) and its deoxy derivative, 5-aza-2'-deoxycytidine (decitabine, Dacogen, are the most widely used inhibitors of DNA methylation which trigger demethylation leading to a consecutive reactivation of epigenetically silenced tumor suppressor genes in vitro and in vivo. Although the antileukemic capacity of decitabine has been known for almost 40 years, its therapeutic potential in hematologic malignancies is still under intensive investigation. Multiple clinical trials have shown the promising activity of low-dose decitabine in AML, MDS, CML, and hemoglobinopathies, whereas its efficacy in solid tumors is rather limited.Clinical responses appear to be induced by both epigenetic alterations and the induction of cell-cycle arrest and/or apoptosis. Recent clinical trials have been investigating new dosing schedules, routes of administration, and combination of decitabine with other agents, including histone deacetylase (HDAC) inhibitors.
Collapse
Affiliation(s)
- Michael Daskalakis
- Division of Hematology and Oncology, Freiburg University Medical Center, Hugstetterstrasse 55, 79106, Freiburg, Germany.
| | | | | |
Collapse
|
18
|
Response to the methylation inhibitor dihydro-5-azacytidine in mesothelioma is not associated with methylation of p16INK4a: results of cancer and leukemia group B 159904. J Thorac Oncol 2008; 3:417-21. [PMID: 18379362 DOI: 10.1097/jto.0b013e318168da0a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The molecular mechanisms of oncogenesis in mesothelioma involve the loss of negative regulators of cell growth including p16INK4a. Absence of expression of the p16INK4a gene product is exhibited in virtually all mesothelioma tumors and cell lines examined to date. Loss of p16INK4a expression has also been frequently observed in more common neoplasms such as lung cancer as well. In a wide variety of these malignancies, including lung cancer, p16INK4a expression is known to be inactivated by hypermethylation of the first exon. This project (CALGB 159904) intended to test the hypothesis that in mesothelioma loss of p16INK4a via methylation would correlate with response to the cytidine analog and methylation inhibitor dihydro-5-azacytidine (DHAC). METHODS Using tissue samples from CALGB 8833 and 9031, two clinical studies which used DHAC based therapy in mesothelioma, this study tested the hypothesis that tumors possessing methylation of p16INK4a would have a better response and survival following DHAC treatment than their nonmethylated counterparts. RESULTS Methylation of p16INK4a was identified in 4 of the 20 specimens. Although there was a trend towards improved survival the result was not statistically significant. CONCLUSIONS There was no significant correlation between the presence of p16INK4a methylation and response to DHAC therapy or overall survival.
Collapse
|
19
|
Wolk M, Martin JE, Nowicki M. Foetal haemoglobin-blood cells (F-cells) as a feature of embryonic tumours (blastomas). Br J Cancer 2007; 97:412-9. [PMID: 17595660 PMCID: PMC2360326 DOI: 10.1038/sj.bjc.6603867] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Tumour markers are important in the diagnosis and monitoring of many tumours. This study tested the hypothesis that an oncofoetal protein, foetal haemoglobin (HbF) is a potential tumour marker in embryonic tumours, useful for management. An immunohistochemical investigation of HbF blood cell (Fc) distribution was carried out in tumours and in bone marrow samples from 83 children and 13 adults with various embryonic tumours (blastomas), and in bone marrow samples of 24 leukaemia patients. In the three, main blastoma types, nephroblastoma (Wilms' tumour), neuroblastoma and retinoblastoma, where all the patients, except two, were children, around 80% of the tumour samples had Fc within proliferating blood vessels and spaces between tumour cells. In parallel, clusters of Fc, mostly F-erythroblasts (Feb), were distributed in the bone marrow of some of those patients and in the bone marrow of 79% of the leukaemia patients. Foetal haemoglobin, as well as being a potential prognostic cancer marker, is a potential indicator of DNA hypomethylation implicated in the development of these tumours, as well as in others previously noted for the presence of HbF.
Collapse
Affiliation(s)
- M Wolk
- Department of Histopathology, Royal London Hospital, Centre for pathology, Institute of Cell and Molecular Sciences, Queen Mary School of Medicine and Dentistry, The Royal London Hospital, Whitechapel, London, UK.
| | | | | |
Collapse
|
20
|
Abstract
Sickle cell anemia results from the single amino acid substitution of valine for glutamic acid in the beta-chain owing to a nucleotide defect that causes the production of abnormal beta-chains in hemoglobin S. Abnormal hemoglobin chains form polymers in the deoxygenated state, leading to the characteristic sickle cells. The polymerization of deoxygenated hemoglobin S accounts for the pathologic changes in sickle cell disease. The main-stay of therapy in sickle cell disease aims to reduce the amount of sickled hemoglobin present through the prevention of polymerization and reversal of this process. One way of discouraging polymerization is to increase the level of fetal hemoglobin, which because of its high oxygen affinity, does not participate in the polymerization process. Fetal hemoglobin production may be induced pharmacologically or by the use of gene therapy and genetic engineering techniques.
Collapse
|
21
|
Singh M, Lavelle D, Vaitkus K, Mahmud N, Hankewych M, DeSimone J. The gamma-globin gene promoter progressively demethylates as the hematopoietic stem progenitor cells differentiate along the erythroid lineage in baboon fetal liver and adult bone marrow. Exp Hematol 2007; 35:48-55. [PMID: 17198873 DOI: 10.1016/j.exphem.2006.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 09/01/2006] [Accepted: 09/05/2006] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine whether the difference in gamma-globin gene promoter methylation in terminal erythroblasts at the fetal and adult stages of development is a result of fetal stage-specific demethylation or adult stage-specific de novo methylation during erythropoiesis. MATERIALS AND METHODS Fetal liver- (FL, n = 2) and adult bone marrow- (ABM, n = 3) derived hematopoietic stem/progenitor cells and mature erythroblasts were purified by passage through a Miltenyi Magnetic Column followed by fluorescein-activated cell sorting (FACS) into subpopulations, defined by expression of CD34 and CD36 antigens. CD34(+)CD36(-), CD34(+)CD36(+), and CD34(-)CD36(+) subpopulations were purified by FACS and their degree of differentiation verified using the colony-forming cell assay. The methylation pattern of 5 CpG sites in the gamma-globin promoter region of these purified cell populations was determined using bisulfite sequencing. RESULTS The gamma-globin promoter was highly methylated in the earliest stage of hematopoietic stem progenitor cells (CD34(+)CD36(-)) and methylation progressively decreased as erythroid differentiation progressed in FL and appears so in ABM as well. CONCLUSIONS These data support a model in which differences in the methylation pattern of the gamma-globin gene in differentiating erythroblasts at different stages of development is the result of fetal stage-specific demethylation associated with transcriptional activation, rather than de novo methylation in the adults. The difference in the extent of gamma-globin gene demethylation in FL and ABM is correlated with the difference in gamma-globin expression at these developmental stages.
Collapse
Affiliation(s)
- Mahipal Singh
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Pace BS, Zein S. Understanding mechanisms of gamma-globin gene regulation to develop strategies for pharmacological fetal hemoglobin induction. Dev Dyn 2006; 235:1727-37. [PMID: 16607652 DOI: 10.1002/dvdy.20802] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The developmental regulation of gamma-globin gene expression has shaped research efforts to establish therapeutic modalities for individuals affected with sickle cell disease (SCD). Fetal hemoglobin (Hb F) synthesis is high at birth, followed by a decline to adult levels by 10 months of age. The expression of gamma-globin is controlled by a developmentally regulated transcriptional program that is recapitulated during normal erythropoiesis in the adult bone marrow. It is known that naturally occurring mutations in the gamma-gene promoters cause persistent Hb F synthesis after birth, which ameliorates symptoms in SCD by inhibiting hemoglobin S polymerization and vaso-occlusion. Several pharmacological agents have been identified over the past 2 decades that reactivate gamma-gene transcription through different cellular systems. We will review the progress made in our understanding of molecular mechanisms that control gamma-globin expression and insights gained from Hb F-inducing agents that act through signal transduction pathways.
Collapse
Affiliation(s)
- Betty S Pace
- University of Texas at Dallas, Department of Molecular and Cell Biology, Richardson, Texas 75083, USA.
| | | |
Collapse
|
23
|
Fathallah H, Atweh GF. DNA hypomethylation therapy for hemoglobin disorders: Molecular mechanisms and clinical applications. Blood Rev 2006; 20:227-34. [PMID: 16513230 DOI: 10.1016/j.blre.2006.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactivation of fetal hemoglobin (HbF) expression is an important therapeutic option in patients with hemoglobin disorders. In sickle cell disease (SCD), an increase in HbF would interfere with the polymerization of sickle hemoglobin while in beta-thalassemia, an increase in gamma-globin chain synthesis would decrease non-alpha:alpha chain imbalance. Hydroxyurea, an inducer of HbF, is the only currently approved agent for the treatment of patients with moderate and/or severe SCD. However, about one third of patients with SCD do not respond to HU, and in beta-thalassemia, the clinical response is unimpressive. The last decade has seen a renewed interest in the use of inhibitors of DNA methylation in the treatment of patients with hemoglobin disorders. In this review, we discuss the role of DNA methylation in gamma-globin gene regulation, describe clinical trials with agents that hypomethylate DNA and speculate about the future role of DNA hypomethylation therapy in patients with SCD and beta-thalassemia.
Collapse
Affiliation(s)
- Hassana Fathallah
- Division of Hematology and Oncology, Box 1079, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|
24
|
Lavelle D, Vaitkus K, Hankewych M, Singh M, DeSimone J. Effect of 5-aza-2'-deoxycytidine (Dacogen) on covalent histone modifications of chromatin associated with the epsilon-, gamma-, and beta-globin promoters in Papio anubis. Exp Hematol 2006; 34:339-47. [PMID: 16543068 DOI: 10.1016/j.exphem.2005.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 12/07/2005] [Accepted: 12/09/2005] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Treatment with the DNA demethylating drug 5-aza-2'-deoxycytidine (Dacogen; DAC) increased fetal hemoglobin and F cells to therapeutically significant levels in patients with sickle cell disease. To gain more insight into the mechanism of action of this drug and to increase our understanding of the relationship between DNA methylation and chromatin structure, we have determined the effect of DAC on covalent histone modifications of chromatin associated with the epsilon, gamma-, and beta-globin promoters in purified bone marrow erythroid cells of four baboons (P. anubis) pre- and posttreatment. RESULTS Fetal hemoglobin increased from 6.45%+/-1.75% in pretreatment samples to 62.1%+/-7.94% following DAC. DNA methylation of three CpG sites within the epsilon-globin promoter and 5 CpG sites within the gamma-globin promoter decreased more than 50% following DAC treatment. Levels of RNA polymerase II, acetyl-histone H3, acetyl-histone H4, dimethyl-histone H3 (lys4), dimethyl-histone H3 (lys36), and dimethyl-histone H3 (lys79) associated with the epsilon-, gamma-, and beta-globin promoters were determined by chromatin immunoprecipitation of formaldehyde-fixed chromatin followed by real-time PCR. Dacogen treatment increased the association of RNA polymerase II, acetyl-histone H3, and acetyl-histone H4 with the gamma-globin promoter but did not significantly affect the association of dimethyl-histone H3 (lys4), dimethyl-histone H3 (lys36), and dimethyl-histone H3 (lys79) with the epsilon-, gamma-, and beta-globin gene promoters. CONCLUSION These experiments illustrate the usefulness of the baboon model to investigate the mechanism of pharmacologic reactivation of fetal hemoglobin synthesis at the molecular level.
Collapse
Affiliation(s)
- Donald Lavelle
- Jesse Brown VA Medical Center and Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
25
|
Wolk M, Martin JE, Reinus C. Development of fetal haemoglobin-blood cells (F cells) within colorectal tumour tissues. J Clin Pathol 2006; 59:598-602. [PMID: 16469830 PMCID: PMC1860403 DOI: 10.1136/jcp.2005.029934] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIM To evaluate the sources of fetal haemoglobin (HbF) as an indicator in cancer. An immunohistochemical study was carried out on some of the most common kinds of cancer. All of these cancers had serologically high levels of HbF as evaluated previously. METHODS Immunoaffinity-purified anti-HbF was immunohistochemically used to study F cell distribution in the following cancers: colorectal adenocarcinoma, urinary bladder transitional cell carcinoma, brain tumours, lung carcinoma, breast adenocarcinoma, leukaemia, Burkitt's lymphoma and endometrial carcinoma. RESULTS In colorectal adenocarcinoma, HbF-containing red blood cells (FRBC) were present within thin-walled vessels or were disposed in dense clusters within the tumour. Some of these cells were nucleated or binucleated HbF-erythroblasts or HbF-normoblasts (FNBS). In two cases, high levels of mitoses within HbF-erythroblasts were observed. In half of the cases with transitional cell carcinoma of the urinary bladder, regional intratumoral blood vessels were found to contain 5-50% FRBC. In the other tumours examined, F cells were not observed. FRBCs, however, were occasionally observed in the regional lymph nodes of some of these cancers. CONCLUSIONS The evaluation of HbF as a potential plasma marker is suggested by the high concentration of FRBCs in colorectal tumours. The apparent development of FRBCs in colorectal tumour tissues is an interesting observation, as these cells were previously thought to develop in medullary or lymphoid tissues. It is thus suggested that the colonic microenvironment may stimulate extramedullary fetal-type haematopoiesis.
Collapse
Affiliation(s)
- M Wolk
- Department of Morbid Anatomy and Histopathology, The Royal London Hospital, London, UK.
| | | | | |
Collapse
|