1
|
Tarantino S, Labopin M, Zeiser R, Stelljes M, Schroeder T, Kröger N, Bethge W, Passweg J, Bornhäuser M, Schmid C, Tischer J, Eder M, Brissot E, Esteve J, Nagler A, Mohty M, Ciceri F. Allogeneic stem cell transplantation in de novo core-binding factor acute myeloid leukemia in active disease: a study from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant 2025:10.1038/s41409-025-02596-0. [PMID: 40269277 DOI: 10.1038/s41409-025-02596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/02/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Core-binding factor acute myeloid leukemia (CBF-AML) generally has a favorable prognosis, with allogeneic hematopoietic stem cell transplantation (allo-SCT) recommended for relapsed/ refractory (R/R) cases achieving second complete remission (CR). However, clinical outcomes remain suboptimal for patients who relapse or fail to achieve CR following induction chemotherapy. Allo-SCT in non-CR is a potential strategy for such patients, though supporting evidence in CBF-AML is limited. To assess outcomes and prognostic factors of allo-SCT in R/R CBF-AML with active disease, we conducted a retrospective analysis of 610 patients with CBF-AML in non-CR undergoing allo-SCT from 2010 to 2021 across 174 centers within the European Society for Blood and Marrow Transplantation. Graft sources included matched sibling (MSD, n = 151), unrelated (UD, n = 368), and haploidentical donors (Haplo, n = 91). Among patients, 124 had inv(16), and 486 had t(8;21). Two-year overall survival (OS) and leukemia-free survival (LFS) were 53.6% and 42.7%, respectively. Haplo-SCT showed inferior OS compared to MSD (HR 1.79, p = 0.003) and UD (HR 1.64, p = 0.004) and reduced chronic graft-versus-host disease. Patients with t(8;21) exhibited higher relapse incidence (HR 2.04, p = 0.002) and poorer survival outcomes than those with inv(16). These findings confirm the therapeutic role of allo-SCT in R/R CBF-AML in non-CR, supporting its favorable risk profile.
Collapse
Affiliation(s)
- Sara Tarantino
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
- Department of Hematology and Cell therapy, Saint Antoine Hospital, Paris, France.
- Hematology Division and Bone Marrow Unit, IRCCS San Gerardo, Monza, Italy.
- Sorbonne University, Paris, France.
| | | | - Robert Zeiser
- Leiter der Abteilung für Tumorimmunologie und Immunregulation Klinik für Innere Medizin, Schwerpunkt Hämatologie, Onkologie und Stammzelltransplantation, Universitätsklinikum Freiburg, Hugstetter Str, 55 79106, Freiburg, Germany
| | | | | | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Jakob Passweg
- University Hospital, Hematology - Basel, Basel, Switzerland
| | | | | | | | | | - Eolia Brissot
- Department of Hematology and Cell therapy, Saint Antoine Hospital, Paris, France
- Sorbonne University, Paris, France
- EBMT Paris study office / CEREST-TC, Paris, France
| | - Jordi Esteve
- Hospital Clinic Institut d'investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center and Tel Aviv University, Tel-Hashomer, Ramat-Gan, Israel
| | - Mohamad Mohty
- Department of Hematology and Cell therapy, Saint Antoine Hospital, Paris, France
- Sorbonne University, Paris, France
- EBMT Paris study office / CEREST-TC, Paris, France
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, Milano, Italy
| |
Collapse
|
2
|
Tseng S, Lee ME, Lin PC. A Review of Childhood Acute Myeloid Leukemia: Diagnosis and Novel Treatment. Pharmaceuticals (Basel) 2023; 16:1614. [PMID: 38004478 PMCID: PMC10674205 DOI: 10.3390/ph16111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myeloid leukemia (AML) is the second most common hematologic malignancy in children. The incidence of childhood AML is much lower than acute lymphoblastic leukemia (ALL), which makes childhood AML a rare disease in children. The role of genetic abnormalities in AML classification, management, and prognosis prediction is much more important than before. Disease classifications and risk group classifications, such as the WHO classification, the international consensus classification (ICC), and the European LeukemiaNet (ELN) classification, were revised in 2022. The application of the new information in childhood AML will be upcoming in the next few years. The frequency of each genetic abnormality in adult and childhood AML is different; therefore, in this review, we emphasize well-known genetic subtypes in childhood AML, including core-binding factor AML (CBF AML), KMT2Ar (KMT2A/11q23 rearrangement) AML, normal karyotype AML with somatic mutations, unbalanced cytogenetic abnormalities AML, NUP98 11p15/NUP09 rearrangement AML, and acute promyelocytic leukemia (APL). Current risk group classification, the management algorithm in childhood AML, and novel treatment modalities such as targeted therapy, immune therapy, and chimeric antigen receptor (CAR) T-cell therapy are reviewed. Finally, the indications of hematopoietic stem cell transplantation (HSCT) in AML are discussed.
Collapse
Affiliation(s)
- Serena Tseng
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Mu-En Lee
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
| | - Pei-Chin Lin
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Darwish C, Farina K, Tremblay D. The core concepts of core binding factor acute myeloid leukemia: Current considerations for prognosis and treatment. Blood Rev 2023; 62:101117. [PMID: 37524647 DOI: 10.1016/j.blre.2023.101117] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/04/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
Core binding factor acute myeloid leukemia (CBF AML), defined by t(8;21) or inv(16), is a subset of favorable risk AML. Despite its association with a high complete remission rate after induction and relatively good prognosis overall compared with other subtypes of AML, relapse risk after induction chemotherapy remains high. Optimizing treatment planning to promote recurrence free survival and increase the likelihood of survival after relapse is imperative to improving outcomes. Recent areas of research have included evaluation of the role of gemtuzumab in induction and consolidation, the relative benefit of increased cycles of high dose cytarabine in consolidation, the utility of hypomethylating agents and kinase inhibitors, and the most appropriate timing of stem cell transplant. Surveillance with measurable residual disease testing is increasingly being utilized for monitoring disease in remission, and ongoing investigation seeks to determine how to use this tool for early identification of patients who would benefit from proceeding to transplant. In this review, we outline the current therapeutic approach from diagnosis to relapse while highlighting the active areas of investigation in each stage of treatment.
Collapse
Affiliation(s)
- Christina Darwish
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1079, New York, NY 10029, USA
| | - Kyle Farina
- Department of Pharmacy Practice, The Mount Sinai Hospital, New York, NY 10029, USA
| | - Douglas Tremblay
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1079, New York, NY 10029, USA.
| |
Collapse
|
4
|
Wang YL, Gao SJ, Su L, Liu YJ, Zhang YW, Du YZ. [The study of clinical characteristics and prognosis of RUNX1-RUNX1T1 positive acute myeloid leukemia based on next-generation sequencing]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:851-854. [PMID: 38049338 PMCID: PMC10694073 DOI: 10.3760/cma.j.issn.0253-2727.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 12/06/2023]
Affiliation(s)
- Y L Wang
- Cancer Center, the First Hospital, Jilin University, Changchun 130021, China
| | - S J Gao
- Cancer Center, the First Hospital, Jilin University, Changchun 130021, China
| | - L Su
- Cancer Center, the First Hospital, Jilin University, Changchun 130021, China
| | - Y J Liu
- Cancer Center, the First Hospital, Jilin University, Changchun 130021, China
| | - Y W Zhang
- Cancer Center, the First Hospital, Jilin University, Changchun 130021, China
| | - Y Z Du
- Cancer Center, the First Hospital, Jilin University, Changchun 130021, China
| |
Collapse
|
5
|
DeWolf S, Tallman MS, Rowe JM, Salman MY. What Influences the Decision to Proceed to Transplant for Patients With AML in First Remission? J Clin Oncol 2023; 41:4693-4703. [PMID: 37611216 PMCID: PMC10564290 DOI: 10.1200/jco.22.02868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/12/2023] [Accepted: 06/14/2023] [Indexed: 08/25/2023] Open
Abstract
Although allogeneic hematopoietic cell transplantation (allo-HCT) remains the backbone of curative treatment for the majority of fit adults diagnosed with AML, there is indeed a subset of patients for whom long-term remission may be achieved without transplantation. Remarkable changes in our knowledge of AML biology in recent years has transformed the landscape of diagnosis, management, and treatment of AML. Specifically, markedly increased understanding of molecular characteristics of AML, the expanded application of minimal/measurable residual diseases testing, and an increased armamentarium of leukemia-directed therapeutic agents have created a new paradigm for the medical care of patients with AML. An attempt is herein made to decipher the decision to proceed to transplant for patients with AML in first complete remission on the basis of the current best available evidence. The focus is on factors affecting the biology and treatment of AML itself, rather than on variables related to allo-HCT, an area characterized by significant advancements that have reduced overall therapy-related complications. This review seeks to focus on areas of particular complexity, while simultaneously providing clarity on how our current knowledge and treatment strategies may, or may not, influence the decision to pursue allo-HCT in patients with AML.
Collapse
Affiliation(s)
- Susan DeWolf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin S. Tallman
- Division of Hematology and Oncology Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jacob M. Rowe
- Rambam Health Care Campus and Technion, Israel Institute of Technology, Haifa, Israel
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | | |
Collapse
|
6
|
Muacevic A, Adler JR, Singh A, Mishra S, Verma SP. Acute Myeloid Leukaemia With Translocation (8;21) Masquerading as Peripheral Blood Eosinophilia Having Dysplastic Features: A Diagnostic Challenge. Cureus 2023; 15:e33858. [PMID: 36819451 PMCID: PMC9934935 DOI: 10.7759/cureus.33858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Eosinophilia with a modest number of blasts (<20%) in the peripheral blood and bone marrow smears raises suspicion for myeloproliferative neoplasms (MPNs) and acute myeloid leukaemia (AML). Here, we present a case of AML in a 16-year-old boy who presented with high-grade fever, respiratory distress, and generalised weakness. Marked eosinophilia with dysplastic features and occasional blasts were found in the peripheral blood. In view of dysplastic eosinophils and occasional blasts in peripheral blood, a bone marrow examination was requested which revealed increased eosinophils and their progenitors with dysplasia and a modest number of blast cells (<20%). The bone marrow findings suggest MPNs, which were eventually identified as AML having translocation (8;21) with the aid of immunophenotyping and cytogenetic studies. Eosinophilia and its phenotypic anomalies are rarely found in peripheral blood smears of AML patients with translocation (8;21) which may have been related to the leukaemic process.
Collapse
|
7
|
Pabon CM, Abbas HA, Konopleva M. Acute myeloid leukemia: therapeutic targeting of stem cells. Expert Opin Ther Targets 2022; 26:547-556. [DOI: 10.1080/14728222.2022.2083957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Cindy M. Pabon
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hussein A. Abbas
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marina Konopleva
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
8
|
Wu TM, Xue SL, Li Z, Yu JQ, Wang J, Wang BR, Wan CL, Shen XD, Qiu QC, Bao XB, Wu DP. [Prognostic value of KIT and other clonal genetic mutations in core-binding factor acute myeloid leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:646-653. [PMID: 34547870 PMCID: PMC8501271 DOI: 10.3760/cma.j.issn.0253-2727.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 11/15/2022]
Abstract
Objective: To evaluate the prognostic significance of clonal gene mutations using next-generation sequencing in patients with core-binding factor acute myeloid leukemia (CBF-AML) who achieved first complete remission after induction chemotherapy. Methods: The study, which was conducted from July 2011 to August 2017 in First Affiliated Hospital of Soochow University, comprised 195 newly diagnosed patients with CBF-AML, including 190 patients who achieved first complete remission after induction chemotherapy. The cohort included 134 patients with RUNX1-RUNXIT1(+) AML and 56 patients with CBFβ-MYH11(+) AML. The cohort age ranged from 15 to 64 years, with a median follow-up of 43.6 months. Overall survival (OS) and disease-free survival (DFS) were assessed by the log-rank test, and the Cox proportional hazards regression model was used to determine the effects of clinical factors and genetic mutations on prognosis. Results: The most common genetic mutations were in KIT (47.6% ) , followed by NRAS (20.0% ) , FLT3 (18.4% ) , ASXL2 (14.3% ) , KRAS (10.7% ) , and ASXL1 (9.7% ) . The most common mutations involved genes affecting tyrosine kinase signaling (76.4% ) , followed by chromatin modifiers (29.7% ) . Among the patients receiving intensive consolidation therapy, the OS tended to be better in patients with CBFβ-MYH11(+) AML than in those with RUNX1-RUNXIT1 (+) AML (P=0.062) . Gene mutations related to chromatin modification, which were detected only in patients with RUNX1-RUNXIT1(+) AML, did not affect DFS (P=0.557) . The patients with mutations in genes regulating chromatin conformation who received allo-hematopoietic stem cell transplantation (allo-HSCT) achieved the best prognosis. Multivariate analysis identified KIT exon 17 mutations as an independent predictor of inferior DFS in patients with RUNX1-RUNXIT1(+) AML (P<0.001) , and allo-HSCT significantly prolonged DFS in these patients (P=0.010) . Conclusions: KIT exon 17 mutations might indicate poor prognosis in patients with RUNX1-RUNXIT1(+) AML. Allo-HSCT may improve prognosis in these patients, whereas allo-HSCT might also improve prognosis in patients with mutations in genes related to chromatin modifications.
Collapse
Affiliation(s)
- T M Wu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - S L Xue
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - Z Li
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - J Q Yu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - J Wang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - B R Wang
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - C L Wan
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - X D Shen
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - Q C Qiu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - X B Bao
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| | - D P Wu
- The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, Suzhou 215006, China
| |
Collapse
|
9
|
Secondary cytogenetic abnormalities in core-binding factor AML harboring inv(16) vs t(8;21). Blood Adv 2021; 5:2481-2489. [PMID: 34003250 DOI: 10.1182/bloodadvances.2020003605] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with core-binding factor (CBF) acute myeloid leukemia (AML), caused by either t(8;21)(q22;q22) or inv(16)(p13q22)/t(16;16)(p13;q22), have higher complete remission rates and longer survival than patients with other subtypes of AML. However, ∼40% of patients relapse, and the literature suggests that patients with inv(16) fare differently from those with t(8;21). We retrospectively analyzed 537 patients with CBF-AML, focusing on additional cytogenetic aberrations to examine their impact on clinical outcomes. Trisomies of chromosomes 8, 21, or 22 were significantly more common in patients with inv(16)/t(16;16): 16% vs 7%, 6% vs 0%, and 17% vs 0%, respectively. In contrast, del(9q) and loss of a sex chromosome were more frequent in patients with t(8;21): 15% vs 0.4% for del(9q), 37% vs 0% for loss of X in females, and 44% vs 5% for loss of Y in males. Hyperdiploidy was more frequent in patients with inv(16) (25% vs 9%, whereas hypodiploidy was more frequent in patients with t(8;21) (37% vs 3%. In multivariable analyses (adjusted for age, white blood counts at diagnosis, and KIT mutation status), trisomy 8 was associated with improved overall survival (OS) in inv(16), whereas the presence of other chromosomal abnormalities (not trisomy 8) was associated with decreased OS. In patients with t(8;21), hypodiploidy was associated with improved disease-free survival; hyperdiploidy and del(9q) were associated with improved OS. KIT mutation (either positive or not tested, compared with negative) conferred poor prognoses in univariate analysis only in patients with t(8;21).
Collapse
|
10
|
Doucette K, Karp J, Lai C. Advances in therapeutic options for newly diagnosed, high-risk AML patients. Ther Adv Hematol 2021; 12:20406207211001138. [PMID: 33995985 PMCID: PMC8111550 DOI: 10.1177/20406207211001138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy characterized by clonal proliferation of neoplastic immature precursor cells. AML impacts older adults and has a poor prognosis. Despite recent advances in treatment, AML is complex, with both genetic and epigenetic aberrations in the malignant clone and elaborate interactions with its microenvironment. We are now able to stratify patients on the basis of specific clinical and molecular features in order to optimize individual treatment strategies. However, our understanding of the complex nature of these molecular abnormalities continues to expand the defining characteristics of high-risk mutations. In this review, we focus on genetic and microenvironmental factors in adverse risk AML that play critical roles in leukemogenesis, including those not described in an European LeukemiaNet adverse risk group, and describe therapies that are currently in the clinical arena, either approved or under development.
Collapse
Affiliation(s)
- Kimberley Doucette
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Judith Karp
- Johns Hopkins University Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Catherine Lai
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, 3800 Reservoir Road, NW, Washington, DC 20007, USA
| |
Collapse
|
11
|
De Novo Acute Myeloid Leukemia with Combined CBFB-MYH11 and BCR-ABL1 Gene Rearrangements: A Case Report and Review of Literature. Case Rep Hematol 2021; 2020:8822670. [PMID: 33489389 PMCID: PMC7787850 DOI: 10.1155/2020/8822670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) with inv(16)(p13.1q22) resulting in CBFB-MYH11 fusion is associated with a favorable prognosis. The presence of a KIT mutation modifies it to an intermediate prognosis. Additionally, inv(16) can cooperate with other genetic aberrations to further increase cell proliferation. Coexistence of inv(16) and t(9;22) is extremely rare (20 cases). We present a case of a 55-year-old male with elevated white blood cell count. Bone marrow evaluation and flow cytometry analysis were compatible with AML with monocytic features. Cytogenetic studies revealed two-related clones, a minor clone with inv(16) and a major clone with concurrent inv(16) and t(9;22) rearrangements. Fluorescent in situ hybridization studies confirmed these rearrangements. Molecular analysis detected a p190 BCR-ABL1 transcript protein. KIT mutations were negative. The patient was initially treated with standard induction regimen; 7 daily doses of cytarabine from day 1–day 7, 3 daily doses of daunorubicin from day 1–day 3, and 1 dose of Mylotarg (gemtuzumab ozogamicin) on day 1. The detection of t(9;22) led to the addition of daily doses of dasatinib (tyrosine kinase inhibitor) from day 7 onwards. The patient achieved complete remission on day 45. During his treatment course, he acquired disseminated Fusarium infection. Day 180 bone marrow evaluation revealed florid relapse with 64% blasts. Cytogenetic study showed clonal evolution of the inv(16) clone with no evidence of the t(9;22) subclone. Eventually, bone marrow transplantation was contraindicated, and the patient was transferred to palliative care. Literature review revealed that AML with co-occurrence of CBFB-MYH11 and BCR-ABL1 gene rearrangements was involved by only a small number of cases with de novo and therapy-related AML. Most cases were in myeloid blast crisis of chronic myeloid leukemia (CML). Treatment and prognosis among the de novo AML cases varied and majority of them achieved clinical remission. In contrast, these cytogenetic abnormalities in the blast phase of CML had a poor prognosis. As the prognosis and management of AML is dependent upon the underlying genetic characteristics of the neoplasm, it is imperative to include clinical outcome with such rare combinations of genetic alterations.
Collapse
|
12
|
Kellaway S, Chin PS, Barneh F, Bonifer C, Heidenreich O. t(8;21) Acute Myeloid Leukemia as a Paradigm for the Understanding of Leukemogenesis at the Level of Gene Regulation and Chromatin Programming. Cells 2020; 9:E2681. [PMID: 33322186 PMCID: PMC7763303 DOI: 10.3390/cells9122681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous disease with multiple sub-types which are defined by different somatic mutations that cause blood cell differentiation to go astray. Mutations occur in genes encoding members of the cellular machinery controlling transcription and chromatin structure, including transcription factors, chromatin modifiers, DNA-methyltransferases, but also signaling molecules that activate inducible transcription factors controlling gene expression and cell growth. Mutant cells in AML patients are unable to differentiate and adopt new identities that are shaped by the original driver mutation and by rewiring their gene regulatory networks into regulatory phenotypes with enhanced fitness. One of the best-studied AML-subtypes is the t(8;21) AML which carries a translocation fusing the DNA-binding domain of the hematopoietic master regulator RUNX1 to the ETO gene. The resulting oncoprotein, RUNX1/ETO has been studied for decades, both at the biochemical but also at the systems biology level. It functions as a dominant-negative version of RUNX1 and interferes with multiple cellular processes associated with myeloid differentiation, growth regulation and genome stability. In this review, we summarize our current knowledge of how this protein reprograms normal into malignant cells and how our current knowledge could be harnessed to treat the disease.
Collapse
Affiliation(s)
- Sophie Kellaway
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Paulynn S. Chin
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Farnaz Barneh
- Princess Máxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, The Netherlands;
| | - Constanze Bonifer
- Institute of Cancer and Genomica Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B152TT, UK; (S.K.); (P.S.C.)
| | - Olaf Heidenreich
- Princess Máxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584CS Utrecht, The Netherlands;
| |
Collapse
|
13
|
Rotchanapanya W, Hokland P, Tunsing P, Owattanapanich W. Clinical Outcomes Based on Measurable Residual Disease Status in Patients with Core-Binding Factor Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. J Pers Med 2020; 10:jpm10040250. [PMID: 33256157 PMCID: PMC7711894 DOI: 10.3390/jpm10040250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 01/11/2023] Open
Abstract
Measurable residual disease (MRD) response during acute myeloid leukemia (AML) treatment is a gold standard for determining treatment strategy, especially in core-binding factor (CBL) AML. The aim of this study was to critically review the literature on MRD status in the CBF-AML to determine the overall impact of MRD status on clinical outcomes. Published studies in the MEDLINE and EMBASE databases from their inception up to 1 June 2019 were searched. The primary end-point was either overall survival (OS) or recurrence-free survival (RFS) between MRD negative and MRD positive CBF-AML patients. The secondary variable was cumulative incidence of relapse (CIR) between groups. Of the 736 articles, 13 relevant studies were included in this meta-analysis. The MRD negative group displayed more favorable recurrence-free survival (RFS) than those with MRD positivity, with a pooled odds ratio (OR) of 4.5. Moreover, OS was also superior in the MRD negative group, with a pooled OR of 7.88. Corroborating this, the CIR was statistically significantly lower in the MRD negative group, with a pooled OR of 0.06. The most common cutoff MRD level was 1 × 10−3. These results suggest that MRD assessment should be a routine investigation in clinical practice in this AML subset.
Collapse
Affiliation(s)
- Wannaphorn Rotchanapanya
- Division of Hematology, Department of Medicine, Chiangrai Prachanukroh Hospital, Chiang Rai 57000, Thailand;
| | - Peter Hokland
- Division of Hematology, Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus N, Denmark;
| | - Pattaraporn Tunsing
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Weerapat Owattanapanich
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Correspondence: ; Tel.: +66-2419-4448
| |
Collapse
|
14
|
Matsukawa T, Aplan PD. Clinical and molecular consequences of fusion genes in myeloid malignancies. Stem Cells 2020; 38:1366-1374. [PMID: 32745287 DOI: 10.1002/stem.3263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 11/07/2022]
Abstract
Leukemias are heterogeneous diseases characterized by aberrant hematopoietic stem and progenitor cells (HSPCs). Oncogenic fusion genes and proteins, produced via gross chromosomal rearrangements, such as chromosomal translocation, insertion, and inversion, play important roles in hematologic malignancies. These oncoproteins alter fundamental cellular properties, such as self-renewal, differentiation, and proliferation, and confer leukemogenic potential to HSPCs. In addition to providing fundamental insights into the process of leukemic transformation, these fusion genes provide targets for treatment and monitoring of myeloid leukemias. Furthermore, new technologies such as next-generation sequencing have allowed additional insights into the nature of leukemic fusion genes. In this review, we discuss the history, biologic effect, and clinical impact of fusion genes in the field of myeloid leukemias.
Collapse
Affiliation(s)
- Toshihiro Matsukawa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Rai S, Singh S, Gupta R. Prognostic significance of CD56 and CD7 in acute myeloid leukaemia and their outcome. AMERICAN JOURNAL OF BLOOD RESEARCH 2020; 10:109-117. [PMID: 32923090 PMCID: PMC7486483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The expression of CD7 and CD56 in Acute Myeloid Leukaemia was considered to be a poor prognostic factor for overall survival, complete remission but the result were limited and more prognostic parameter need to study. The importance of validating new prognostic parameters in acute myeloid leukaemia was the reason to investigate the prognostic significance of CD7 and CD56. MATERIAL AND METHODS Study involving patients who had newly diagnosed AML. Imunophenotyping was carried out at diagnosis and after induction therapy also compared with molecular and cytogenetics studies. End points were the leukaemia free survival, relapse-free survival, and overall survival. RESULT All 87 patients that were included in the study were divided into 4 groups based on expression of CD56 and CD7 as Group 1 (CD7+, CD56+), group 2 (CD7-, CD56+), group 3 (CD7+, CD56-) and group 4 (CD7-, CD56-) and were compared clinically and immunophenotypically. The clinical parameters that were correlated were age, sex, LFS (leukaemia free survival), Overall survival (OS) and Relapse Free survival (RFS) and were followed up with MRD at day 30 along with Molecular abnormalities and cytogenetic karyotyping. CONCLUSION The study data suggest that prognostic significance of CD7 and CD56 expression in patients of acute myeloid leukaemia could be indicative of poor prognosis as it was also associated with the adverse prognostic parameter (Minimal Residual Disease, high risk, shorter overall survival).
Collapse
|
16
|
Quan X, Deng J. Core binding factor acute myeloid leukemia: Advances in the heterogeneity of KIT, FLT3, and RAS mutations (Review). Mol Clin Oncol 2020; 13:95-100. [PMID: 32714530 DOI: 10.3892/mco.2020.2052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Core binding factor (CBF) is a heterodimer protein complex involved in the transcriptional regulation of normal hematopoietic process. In addition, CBF molecular aberrations represent approximately 20% of all adult Acute Myeloid Leukemia (AML) patients. Treated with standard therapy, adult CBF AML has higher complete remission (CR) rate, longer CR duration, and better prognosis than that of AML patients with normal karyotype or other chromosomal aberrations. Although the prognosis of CBF AML is better than other subtypes of adult AML, it is still a group of heterogeneous diseases, and the prognosis is often different. Recurrence and relapse-related death are the main challenges to be faced following treatment. Mounting research shows the gene heterogeneity of CBF AML. Therefore, to achieve an improved clinical outcome, the differences in clinical and genotypic characteristics should be taken into account in the evaluation and management of such patients, so as to further improve the risk stratification of prognosis and develop targeted therapy. The present article is a comprehensive review of the differences in some common mutant genes between two subtypes of CBF AML.
Collapse
Affiliation(s)
- Xi Quan
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jianchuan Deng
- Department of Hematology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
17
|
Liu LP, Zhang AL, Ruan M, Chang LX, Liu F, Chen X, Qi BQ, Zhang L, Zou Y, Chen YM, Chen XJ, Yang WY, Guo Y, Zhu XF. Prognostic stratification of molecularly and clinically distinct subgroup in children with acute monocytic leukemia. Cancer Med 2020; 9:3647-3655. [PMID: 32216042 PMCID: PMC7286455 DOI: 10.1002/cam4.3023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
Background The prognosis of children with acute monocytic leukemia (AML‐M5) remains unsatisfactory and the risk profile is still controversial. We aim to investigate the prognostic value of clinical and cytogenetic features and propose a new risk stratification in AML‐M5 children. Methods We included 132 children with AML‐M5. Overall survival (OS) and progression‐free survival (PFS) were documented. Cox regression was performed to evaluate the potential risk factors of prognosis. Results The 5‐year‐OS was 46.0% (95% confidence intervals, 41.6%‐50.4%) in all patients. There was significantly lower OS in the age ≤ 3 years old (P = .009) and hyperleukocytosis (P < .001). The FMS‐like tyrosine kinase 3 (FLT3)‐internal tandem duplication (ITD) and MLL‐rearrangement carriers were associated with fewer survivors in all patients (37.1% and 36.7%) and chemotherapy‐only group (19.0% and 35.0%). Notably, the number of survivor with MLL‐rearrangement did not increase in hematopoietic stem cell transplant (HSCT) group. According to the Cox regression analysis, HSCT was a significantly favorable factor (P = .001), while hyperleukocytosis, age ≤ 3 years old, and BM blast ≥ 70% adversely affected the OS in all patients (all P < .05). Additionally, FLT3‐ITD was a risk factor for OS in the chemotherapy‐only group (P = .023), while hyperleukocytosis and age ≤ 3 years independently contributed to poor PFS (both P < .05). In comparison to the standard‐risk group, significant poorer outcome was found in the high‐risk group (both P < .005). Conclusions We propose that AML‐M5 children with any of MLL‐rearrangement, FLT3‐ITD, hyperleukocytosis, BM blast ≥ 70%, or age ≤ 3 years old are classified into the high‐risk group, and HSCT is beneficial especially in patients with FLT3‐ITD mutation, hyperleukocytosis, and age ≤ 3 years old. Importantly, the choice of HSCT should be made more carefully in children with MLL‐rearrangement for its suboptimal performance.
Collapse
Affiliation(s)
- Li-Peng Liu
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ao-Li Zhang
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Min Ruan
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Li-Xian Chang
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Fang Liu
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xia Chen
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ben-Quan Qi
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Li Zhang
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yao Zou
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yu-Mei Chen
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiao-Juan Chen
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wen-Yu Yang
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ye Guo
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiao-Fan Zhu
- Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
18
|
Wang B, Zhang J, Hua X, Li H, Wang Z, Yang B. Clinical heterogeneity under induction with different dosages of cytarabine in core binding factor acute myeloid leukaemia. Sci Rep 2020; 10:685. [PMID: 31959790 PMCID: PMC6971028 DOI: 10.1038/s41598-020-57414-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022] Open
Abstract
Repeated cycles of post-remission high-dose cytarabine (Ara-C) have been suggested to improve survival in core binding factor (CBF) acute myeloid leukaemia (AML). High-dose Ara-C used for induction regimens has also been reported to be associated with increased treatment-related mortality (TRM). Few data are available about intermediate-dose Ara-C serving as induction therapy. The aim of our study was to compare the tolerance and outcomes of standard- and intermediate-dose levels of Ara-C as induction in CBF AML and to analyse the clinical heterogeneity of the two AML entities under these induction settings. We retrospectively investigated the outcomes in adults with CBF AML induced with regimens based on standard-dose Ara-C at 100 to 200 mg/m2 or intermediate-dose Ara-C at 1,000 mg/m2. In total, 152 patients with t(8; 21) and 54 patients with inv(16) AML were administered an induction regimen containing anthracyclines plus either standard- or intermediate-dose Ara-C. After a single course of induction, the complete remission (CR) rate in the inv(16) cohort was 52/52 (100%), higher than the 127/147 (86.4%) in the t(8; 21) cohort (P = 0.005). Intermediate-dose Ara-C (HR = 9.931 [2.135-46.188], P = 0.003) and negative KITmut (HR = 0.304 [0.106-0.874], P = 0.027) independently produced an increased CR rate in the t(8; 21) cohort. Positive CD19 expression (HR = 0.133 [0.045-0.387], P = 0.000) and sex (male) (HR = 0.238 [0.085-0.667], P = 0.006) were associated with superior leukaemia-free survival (LFS) in the t(8; 21) cohort independently of KITmut status or the induction regimen. We conclude that intermediate-dose Ara-C is superior to standard-dose Ara-C for induction of remission in t(8; 21) AML, and CD19 status and sex independently confer prognostic significance for LFS. The KITmut status alone does not have an independent effect on survival in t(8; 21) AML. More intensive induction therapy is unnecessary in inv(16) AML.
Collapse
Affiliation(s)
- Biao Wang
- Changzhou First People's Hospital, Department of Hematology, Changzhou, 213000, China
| | - Jihong Zhang
- Shengjing Hospital of China Medical University, Blood Research Laboratory, Shenyang, 110000, China
| | - Xiaoying Hua
- Changzhou First People's Hospital, Department of Hematology, Changzhou, 213000, China
| | - Haiqian Li
- Changzhou First People's Hospital, Department of Hematology, Changzhou, 213000, China
| | - Zhilin Wang
- Changzhou First People's Hospital, Department of Hematology, Changzhou, 213000, China
| | - Bin Yang
- Changzhou First People's Hospital, Department of Hematology, Changzhou, 213000, China.
| |
Collapse
|
19
|
Beghini A. Core Binding Factor Leukemia: Chromatin Remodeling Moves Towards Oncogenic Transcription. Cancers (Basel) 2019; 11:E1973. [PMID: 31817911 PMCID: PMC6966602 DOI: 10.3390/cancers11121973] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common acute leukemia in adults, is a heterogeneous malignant clonal disorder arising from multipotent hematopoietic progenitor cells characterized by genetic and concerted epigenetic aberrations. Core binding factor-Leukemia (CBFL) is characterized by the recurrent reciprocal translocations t(8;21)(q22;q22) or inv(16)(p13;q22) that, expressing the distinctive RUNX1-RUNX1T1 (also known as Acute myeloid leukemia1-eight twenty-one, AML1-ETO or RUNX1/ETO) or CBFB-MYH11 (also known as CBFβ-ΣMMHX) translocation product respectively, disrupt the essential hematopoietic function of the CBF. In the past decade, remarkable progress has been achieved in understanding the structure, three-dimensional (3D) chromosomal topology, and disease-inducing genetic and epigenetic abnormalities of the fusion proteins that arise from disruption of the CBF subunit alpha and beta genes. Although CBFLs have a relatively good prognosis compared to other leukemia subtypes, 40-50% of patients still relapse, requiring intensive chemotherapy and allogenic hematopoietic cell transplantation (alloHCT). To provide a rationale for the CBFL-associated altered hematopoietic development, in this review, we summarize the current understanding on the various molecular mechanisms, including dysregulation of Wnt/β-catenin signaling as an early event that triggers the translocations, playing a pivotal role in the pathophysiology of CBFL. Translation of these findings into the clinical setting is just beginning by improvement in risk stratification, MRD assessment, and development of targeted therapies.
Collapse
|
20
|
Naymagon L, Marcellino B, Mascarenhas J. Eosinophilia in acute myeloid leukemia: Overlooked and underexamined. Blood Rev 2019; 36:23-31. [PMID: 30948162 DOI: 10.1016/j.blre.2019.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/05/2019] [Accepted: 03/28/2019] [Indexed: 02/04/2023]
Abstract
The presence of eosinophilia in acute myeloid leukemia (AML) suggests an underlying core binding factor (CBF) lesion, a platelet derived growth factor (PDGFR) translocation, or another rare translocation (such as ETV6-ABL1). Each of these cytogenetic entities carries unique diagnostic, prognostic, and therapeutic implications. CBF AML is most common and as such, its treatment is more clearly established, consisting of intensive induction chemotherapy followed by cytarabine based consolidation. Due in large part to its intrinsic chemo-sensitivity, CBF AML is associated with relatively high rates of remission and survival. PDGFR mediated AML is comparatively rare, and as such, diagnostic and treatment paradigms are not as well defined. Early identification of PDGFR translocations is essential, as they confer profound imatinib sensitivity which may, in many instances, spare the need for chemotherapy. Prompt recognition of such lesions requires a strong index of suspicion, and as such these diagnoses are often initially overlooked. Unfortunately, many cases of PDGFR associated AML, particularly those with other concurrent cytogenetic abnormalities, demonstrate treatment emergent imatinib resistance. Such patients continue to present a challenge, even with the advent of novel tyrosine kinase inhibitors (TKIs). Patients with rare translocations such as ETV6-ABL1 are not well described however seem to follow an aggressive clinical course, with limited response to imatinib, and poor outcomes. This review examines the significance of eosinophilia in the context of AML, with respect to its presentation, pathology, and cytogenetics, and with special attention to appropriate evaluation and treatment.
Collapse
Affiliation(s)
- Leonard Naymagon
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1079, New York, NY 10029, USA.
| | - Bridget Marcellino
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1079, New York, NY 10029, USA.
| | - John Mascarenhas
- Tisch Cancer Institute, Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1079, New York, NY 10029, USA.
| |
Collapse
|
21
|
Almosailleakh M, Schwaller J. Murine Models of Acute Myeloid Leukaemia. Int J Mol Sci 2019; 20:E453. [PMID: 30669675 PMCID: PMC6358780 DOI: 10.3390/ijms20020453] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukaemia (AML) is a rare but severe form of human cancer that results from a limited number of functionally cooperating genetic abnormalities leading to uncontrolled proliferation and impaired differentiation of hematopoietic stem and progenitor cells. Before the identification of genetic driver lesions, chemically, irradiation or viral infection-induced mouse leukaemia models provided platforms to test novel chemotherapeutics. Later, transgenic mouse models were established to test the in vivo transforming potential of newly cloned fusion genes and genetic aberrations detected in patients' genomes. Hereby researchers constitutively or conditionally expressed the respective gene in the germline of the mouse or reconstituted the hematopoietic system of lethally irradiated mice with bone marrow virally expressing the mutation of interest. More recently, immune deficient mice have been explored to study patient-derived human AML cells in vivo. Unfortunately, although complementary to each other, none of the currently available strategies faithfully model the initiation and progression of the human disease. Nevertheless, fast advances in the fields of next generation sequencing, molecular technology and bioengineering are continuously contributing to the generation of better mouse models. Here we review the most important AML mouse models of each category, briefly describe their advantages and limitations and show how they have contributed to our understanding of the biology and to the development of novel therapies.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation
- Carcinogens/administration & dosage
- Cell Transformation, Viral
- Disease Models, Animal
- Gene Editing
- Heterografts
- Humans
- Immunocompromised Host
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Transgenic
- Radiation, Ionizing
Collapse
Affiliation(s)
- Marwa Almosailleakh
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| | - Juerg Schwaller
- Department of Biomedicine, University Children's Hospital beider Basel (UKBB), University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
22
|
Pollyea DA. Which novel agents for acute myeloid leukemia are likely to change practice? Best Pract Res Clin Haematol 2018; 31:391-395. [DOI: 10.1016/j.beha.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Ustun C, Morgan E, Moodie EEM, Pullarkat S, Yeung C, Broesby-Olsen S, Ohgami R, Kim Y, Sperr W, Vestergaard H, Chen D, Kluin PM, Dolan M, Mrózek K, Czuchlewski D, Horny HP, George TI, Kristensen TK, Ku NK, Yi CA, Møller MB, Marcucci G, Baughn L, Schiefer AI, Hilberink JR, Pullarkat V, Shanley R, Kohlschmidt J, Coulombe J, Salhotra A, Soma L, Cho C, Linden MA, Akin C, Gotlib J, Hoermann G, Hornick J, Nakamura R, Deeg J, Bloomfield CD, Weisdorf D, Litzow MR, Valent P, Huls G, Perales MA, Borthakur G. Core-binding factor acute myeloid leukemia with t(8;21): Risk factors and a novel scoring system (I-CBFit). Cancer Med 2018; 7:4447-4455. [PMID: 30117318 PMCID: PMC6144246 DOI: 10.1002/cam4.1733] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Although the prognosis of core-binding factor (CBF) acute myeloid leukemia (AML) is better than other subtypes of AML, 30% of patients still relapse and may require allogeneic hematopoietic cell transplantation (alloHCT). However, there is no validated widely accepted scoring system to predict patient subsets with higher risk of relapse. METHODS Eleven centers in the US and Europe evaluated 247 patients with t(8;21)(q22;q22). RESULTS Complete remission (CR) rate was high (92.7%), yet relapse occurred in 27.1% of patients. A total of 24.7% of patients received alloHCT. The median disease-free (DFS) and overall (OS) survival were 20.8 and 31.2 months, respectively. Age, KIT D816V mutated (11.3%) or nontested (36.4%) compared with KIT D816V wild type (52.5%), high white blood cell counts (WBC), and pseudodiploidy compared with hyper- or hypodiploidy were included in a scoring system (named I-CBFit). DFS rate at 2 years was 76% for patients with a low-risk I-CBFit score compared with 36% for those with a high-risk I-CBFit score (P < 0.0001). Low- vs high-risk OS at 2 years was 89% vs 51% (P < 0.0001). CONCLUSIONS I-CBFit composed of readily available risk factors can be useful to tailor the therapy of patients, especially for whom alloHCT is not need in CR1 (ie, patients with a low-risk I-CBFit score).
Collapse
Affiliation(s)
- Celalettin Ustun
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Elizabeth Morgan
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | - Erica E M Moodie
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Sheeja Pullarkat
- Department of Pathology, University of California, Los Angeles, California
| | - Cecilia Yeung
- Fred Hutchinson Cancer Research Center, Seattle, Washington.,University of Washington School of Medicine, Seattle, Washington
| | - Sigurd Broesby-Olsen
- Department of Dermatology and Allergy Centre, Odense Research Center for Anaphylaxis, Odense, Denmark.,Mastocytosis Center Odense University Hospital, Odense, Denmark
| | - Robert Ohgami
- Department of Pathology, Stanford University, Stanford, California
| | - Young Kim
- Department of Pathology, City of Hope National Medical Center, Duarte, California
| | - Wolfgang Sperr
- Division of Hematology & Hemostaseology, Ludwig Boltzmann Cluster Oncology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Hanne Vestergaard
- Mastocytosis Center Odense University Hospital, Odense, Denmark.,Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Dong Chen
- Department of Pathology, Mayo Clinic, Rochester, Minnesota
| | - Philip M Kluin
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michelle Dolan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Krzysztof Mrózek
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - David Czuchlewski
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Tracy I George
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico.,Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Thomas Kielsgaard Kristensen
- Mastocytosis Center Odense University Hospital, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Nam K Ku
- Department of Pathology, University of California, Los Angeles, California
| | - Cecilia Arana Yi
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico
| | - Michael Boe Møller
- Mastocytosis Center Odense University Hospital, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Guido Marcucci
- Division of Hematology and HCT, City of Hope, Duarte, California
| | - Linda Baughn
- Department of Pathology, Mayo Clinic, Rochester, Minnesota.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Ana-Iris Schiefer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - J R Hilberink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Vinod Pullarkat
- Division of Hematology and HCT, City of Hope, Duarte, California
| | - Ryan Shanley
- Biostatistics and Bioinformatics, University of Minnesota, Minneapolis, Minnesota
| | - Jessica Kohlschmidt
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio.,Alliance Statistics and Data Center, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Janie Coulombe
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, Quebec, Canada
| | | | - Lori Soma
- Fred Hutchinson Cancer Research Center, Seattle, Washington.,University of Washington School of Medicine, Seattle, Washington
| | - Christina Cho
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Michael A Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Cem Akin
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts.,Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, Michigan
| | - Jason Gotlib
- Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, California
| | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Jason Hornick
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ryo Nakamura
- Division of Hematology and HCT, City of Hope, Duarte, California
| | - Joachim Deeg
- Fred Hutchinson Cancer Research Center, Seattle, Washington.,University of Washington School of Medicine, Seattle, Washington
| | | | - Daniel Weisdorf
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Mark R Litzow
- Department of Internal Medicine and Division of Hematology, Mayo Clinic, Rochester, Minnesota
| | - Peter Valent
- Division of Hematology & Hemostaseology, Ludwig Boltzmann Cluster Oncology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Miguel-Angel Perales
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Gautam Borthakur
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
24
|
King RL, Bagg A. Molecular Malfeasance Mediating Myeloid Malignancies: The Genetics of Acute Myeloid Leukemia. Methods Mol Biol 2018; 1633:1-17. [PMID: 28735477 DOI: 10.1007/978-1-4939-7142-8_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A remarkable number of different, but recurrent, structural cytogenetic abnormalities have been observed in AML, and the 2016 WHO AML classification system incorporates numerous distinct entities associated with translocations or inversions, as well as others associated with single gene mutations into a category entitled "AML with recurrent genetic abnormalities." The AML classification is heavily reliant on cytogenetic and molecular information based on conventional genetic techniques (including karyotype, fluorescence in situ hybridization, reverse transcriptase polymerase chain reaction, single gene sequencing), but large-scale next generation sequencing is now identifying novel mutations. With targeted next generation sequencing panels now clinically available at many centers, detection of mutations, as well as alterations in epigenetic modifiers, is becoming part of the routine diagnostic evaluation of AML and will likely impact future classification schemes.
Collapse
Affiliation(s)
- Rebecca L King
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Adam Bagg
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, 7103 Founders Pavilion, 3400 Spruce Street, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Khan M, Cortes J, Qiao W, Alzubaidi MA, Pierce SA, Ravandi F, Kantarjian HM, Borthakur G. Outcomes of Patients With Relapsed Core Binding Factor-Positive Acute Myeloid Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2018; 18:e19-e25. [PMID: 29107583 PMCID: PMC5861376 DOI: 10.1016/j.clml.2017.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/19/2017] [Indexed: 01/24/2023]
Abstract
PURPOSE To determine the factors associated with outcomes in patients with core binding factor acute myeloid leukemia (CBF-AML) in first relapse. MATERIAL AND METHODS We conducted a retrospective analysis of 92 patients with CBF-AML in first relapse who presented to our institution from 1990-2014. Clinical and demographic parameters were included in univariate and multivariate Cox proportional hazards regression model to predict overall survival. RESULTS Among the 92 relapsed patients, 60 (65%) patients had inv (16) and 32 (35%) had t (8;21). The median survival for patients with inv(16) cytogenetic group was 15.6 months (range 10.32 to 20.88 months) while for the t(8;21) group was 9 months (range 3.68 to 14.32) (P = .004). Univariate Cox model analysis showed that increased age, high white blood cell count, t (8;21) cytogenetic group, and high bone marrow blast percentage were associated with poor overall outcome, while stem cell transplant intervention was associated with better survival. Additional cytogenetic aberrations at relapse were not associated with survival outcomes (P = .4). Multivariate Cox model analysis showed that t(8;21) cytogenetic group has more hazard of death after adjusting, age, marrow blast percentage, blood cell count, and stem cell transplant(hazard ratio 1.802; P = .02). CONCLUSION Among patients with relapsed CBF-AML, median survival was less than a year and half and the outcome was worse in patients with t (8;21). Despite the relatively better outcomes, dedicated clinical trials are needed to improve the outcome in all patients with relapsed CBF-AML.
Collapse
Affiliation(s)
- Maliha Khan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jorge Cortes
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wei Qiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mohanad A Alzubaidi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sherry A Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
26
|
Yao C, Kobayashi M, Chen S, Nabinger SC, Gao R, Liu SZ, Asai T, Liu Y. Necdin modulates leukemia-initiating cell quiescence and chemotherapy response. Oncotarget 2017; 8:87607-87622. [PMID: 29152105 PMCID: PMC5675657 DOI: 10.18632/oncotarget.20999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/26/2017] [Indexed: 12/29/2022] Open
Abstract
Acute myeloid leukemia (AML) is a devastating illness which carries a very poor prognosis, with most patients living less than 18 months. Leukemia relapse may occur because current therapies eliminate proliferating leukemia cells but fail to eradicate quiescent leukemia-initiating cells (LICs) that can reinitiate the disease after a period of latency. While we demonstrated that p53 target gene Necdin maintains hematopoietic stem cell (HSC) quiescence, its roles in LIC quiescence and response to chemotherapy are unclear. In this study, we utilized two well-established murine models of human AML induced by MLL-AF9 or AML1-ETO9a to determine the role of Necdin in leukemogenesis. We found that loss of Necdin decreased the number of functional LICs and enhanced myeloid differentiation in vivo, leading to delayed development of leukemia induced by MLL-AF9. Importantly, Necdin null LICs expressing MLL-AF9 were less quiescent than wild-type LICs. Further, loss of Necdin enhanced the response of MLL-AF9+ leukemia cells to chemotherapy treatment, manifested by decreased viability and enhanced apoptosis. We observed decreased expression of Bcl2 and increased expression of p53 and its target gene Bax in Necdin null leukemia cells following chemotherapy treatment, indicating that p53-dependent apoptotic pathways may be activated in the absence of Necdin. In addition, we found that loss of Necdin decreased the engraftment of AML1-ETO9a+ hematopoietic stem and progenitor cells in transplantation assays. However, Necdin-deficiency did not affect the response of AML1-ETO9a+ hematopoietic cells to chemotherapy treatment. Thus, Necdin regulates leukemia-initiating cell quiescence and chemotherapy response in a context-dependent manner. Our findings suggest that pharmacological inhibition of Necdin may hold potential as a novel therapy for leukemia patients with MLL translocations.
Collapse
Affiliation(s)
- Chonghua Yao
- Department of Rheumatism, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Michihiro Kobayashi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sisi Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah C Nabinger
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rui Gao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephen Z Liu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Takashi Asai
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yan Liu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
27
|
Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, Tsimberidou AM, Vnencak-Jones CL, Wolff DJ, Younes A, Nikiforova MN. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn 2017; 19:4-23. [PMID: 27993330 DOI: 10.1016/j.jmoldx.2016.10.002] [Citation(s) in RCA: 1346] [Impact Index Per Article: 168.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/03/2016] [Accepted: 10/13/2016] [Indexed: 01/01/2023] Open
Abstract
Widespread clinical laboratory implementation of next-generation sequencing-based cancer testing has highlighted the importance and potential benefits of standardizing the interpretation and reporting of molecular results among laboratories. A multidisciplinary working group tasked to assess the current status of next-generation sequencing-based cancer testing and establish standardized consensus classification, annotation, interpretation, and reporting conventions for somatic sequence variants was convened by the Association for Molecular Pathology with liaison representation from the American College of Medical Genetics and Genomics, American Society of Clinical Oncology, and College of American Pathologists. On the basis of the results of professional surveys, literature review, and the Working Group's subject matter expert consensus, a four-tiered system to categorize somatic sequence variations based on their clinical significances is proposed: tier I, variants with strong clinical significance; tier II, variants with potential clinical significance; tier III, variants of unknown clinical significance; and tier IV, variants deemed benign or likely benign. Cancer genomics is a rapidly evolving field; therefore, the clinical significance of any variant in therapy, diagnosis, or prognosis should be reevaluated on an ongoing basis. Reporting of genomic variants should follow standard nomenclature, with testing method and limitations clearly described. Clinical recommendations should be concise and correlate with histological and clinical findings.
Collapse
Affiliation(s)
- Marilyn M Li
- Interpretation of Sequence Variants in Somatic Conditions Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Department of Pathology and Laboratory Medicine, Division of Genomic Diagnostics, the Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| | - Michael Datto
- Interpretation of Sequence Variants in Somatic Conditions Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Duke University School of Medicine, Durham, North Carolina
| | - Eric J Duncavage
- Interpretation of Sequence Variants in Somatic Conditions Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Shashikant Kulkarni
- Interpretation of Sequence Variants in Somatic Conditions Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Baylor Genetics, Houston, Texas
| | - Neal I Lindeman
- Interpretation of Sequence Variants in Somatic Conditions Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Somak Roy
- Interpretation of Sequence Variants in Somatic Conditions Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Apostolia M Tsimberidou
- Interpretation of Sequence Variants in Somatic Conditions Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cindy L Vnencak-Jones
- Interpretation of Sequence Variants in Somatic Conditions Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daynna J Wolff
- Interpretation of Sequence Variants in Somatic Conditions Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Anas Younes
- Interpretation of Sequence Variants in Somatic Conditions Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marina N Nikiforova
- Interpretation of Sequence Variants in Somatic Conditions Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
|
29
|
Mutations in the CCND1 and CCND2 genes are frequent events in adult patients with t(8;21)(q22;q22) acute myeloid leukemia. Leukemia 2016; 31:1278-1285. [PMID: 27843138 DOI: 10.1038/leu.2016.332] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 11/09/2022]
Abstract
Core-binding factor acute myeloid leukemia (CBF-AML) is defined by the presence of either t(8;21)(q22;q22)/RUNX1-RUNX1T1 or inv(16)(p13.1q22)/t(16;16)(p13.1;q22)/CBFB-MYH11. The resulting fusion genes require a 'second hit' to initiate leukemogenesis. Mutation assessment of 177 adults with CBF-AML, including 68 with t(8;21) and 109 with inv(16)/t(16;16), identified not only mutations well known in CBF-AML but also mutations in the CCND1 and CCND2 genes, which represent novel frequent molecular alterations in AML with t(8;21). Altogether, CCND1 (n=2) and CCND2 (n=8) mutations were detected in 10 (15%) patients with t(8;21) in our cohort. A single CCND2 mutation was also found in 1 (0.9%) patient with inv(16). In contrast, CCND1 and CCND2 mutations were detected in only 11 (0.77%) of 1426 non-CBF-AML patients. All CCND2 mutations cluster around the highly conserved amino-acid residue threonine 280 (Thr280). We show that Thr280Ala-mutated CCND2 leads to increased phosphorylation of the retinoblastoma protein, thereby causing significant cell cycle changes and increased proliferation of AML cell lines. The identification of CCND1 and CCND2 mutations as frequent mutational events in t(8;21) AML may provide further justification for cell cycle-directed therapy in this disease.
Collapse
|
30
|
Cher CY, Leung GMK, Au CH, Chan TL, Ma ESK, Sim JPY, Gill H, Lie AKW, Liang R, Wong KF, Siu LLP, Tsui CSP, So CC, Wong HWW, Yip SF, Lee HKK, Liu HSY, Lau JSM, Luk TH, Lau CK, Lin SY, Kwong YL, Leung AYH. Next-generation sequencing with a myeloid gene panel in core-binding factor AML showed KIT activation loop and TET2 mutations predictive of outcome. Blood Cancer J 2016; 6:e442. [PMID: 27391574 PMCID: PMC5030377 DOI: 10.1038/bcj.2016.51] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/16/2016] [Indexed: 12/21/2022] Open
Abstract
Clinical outcome and mutations of 96 core-binding factor acute myeloid leukemia (AML) patients 18–60 years old were examined. Complete remission (CR) after induction was 94.6%. There was no significant difference in CR, leukemia-free-survival (LFS) and overall survival (OS) between t(8;21) (N=67) and inv(16) patients (N=29). Univariate analysis showed hematopoietic stem cell transplantation at CR1 as the only clinical parameter associated with superior LFS. Next-generation sequencing based on a myeloid gene panel was performed in 72 patients. Mutations in genes involved in cell signaling were associated with inferior LFS and OS, whereas those in genes involved in DNA methylation were associated with inferior LFS. KIT activation loop (AL) mutations occurred in 25 patients, and were associated with inferior LFS (P=0.003) and OS (P=0.001). TET2 mutations occurred in 8 patients, and were associated with significantly shorter LFS (P=0.015) but not OS. Patients negative for KIT-AL and TET2 mutations (N=41) had significantly better LFS (P<0.001) and OS (P=0.012) than those positive for both or either mutation. Multivariate analysis showed that KIT-AL and TET2 mutations were associated with inferior LFS, whereas age ⩾40 years and marrow blast ⩾70% were associated with inferior OS. These observations provide new insights that may guide better treatment for this AML subtype.
Collapse
Affiliation(s)
- C Y Cher
- Division of Haematology, Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - G M K Leung
- Division of Haematology, Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - C H Au
- Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - T L Chan
- Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - E S K Ma
- Department of Pathology, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - J P Y Sim
- Division of Haematology, Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - H Gill
- Division of Haematology, Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - A K W Lie
- Division of Haematology, Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - R Liang
- Department of Medicine, Hong Kong Sanatorium & Hospital, Hong Kong, China
| | - K F Wong
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - L L P Siu
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - C S P Tsui
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - C C So
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - H W W Wong
- Division of Haematology, Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - S F Yip
- Department of Medicine, Tuen Mun Hospital, Hong Kong, China
| | - H K K Lee
- Department of Medicine, Princess Margaret Hospital, Hong Kong, China
| | - H S Y Liu
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - J S M Lau
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong, China
| | - T H Luk
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong, China
| | - C K Lau
- Department of Medicine, Tseung Kwan O Hospital, Hong Kong, China
| | - S Y Lin
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, China
| | - Y L Kwong
- Division of Haematology, Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - A Y H Leung
- Division of Haematology, Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| |
Collapse
|
31
|
Leukemogenic potency of the novel FLT3-N676K mutant. Ann Hematol 2016; 95:783-91. [DOI: 10.1007/s00277-016-2616-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/04/2016] [Indexed: 01/22/2023]
|
32
|
McGrath JP, Williamson KE, Balasubramanian S, Odate S, Arora S, Hatton C, Edwards TM, O'Brien T, Magnuson S, Stokoe D, Daniels DL, Bryant BM, Trojer P. Pharmacological Inhibition of the Histone Lysine Demethylase KDM1A Suppresses the Growth of Multiple Acute Myeloid Leukemia Subtypes. Cancer Res 2016; 76:1975-88. [DOI: 10.1158/0008-5472.can-15-2333] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 12/22/2015] [Indexed: 11/16/2022]
|
33
|
Jamani K, Owen C. Update on recurrent genetic aberrations in acute myeloid leukemia. Int J Hematol Oncol 2015. [DOI: 10.2217/ijh.15.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recurrent chromosomal aberrations have long been recognized to influence prognosis in acute myeloid leukemia (AML), however, 50% of AML patients have a normal karyotype. The new millennium ushered in discoveries of gene mutations at the molecular level that predict outcome in patients with normal karyotype. Some recurrent mutations are already used in routine practice for AML risk stratification. With the development of high-throughput sequencing technologies, there has been a storm of new data, uncovering a complex genetic landscape in AML. In this review, we describe the significant progress in characterizing recurrent genetic abnormalities in AML in the last 5 years, focusing on prognostic significance and therapeutic implications.
Collapse
Affiliation(s)
- Kareem Jamani
- Division of Hematology, University of Calgary, Room 603 South Tower, Foothills Hospital, 1403 29 St NW, Calgary, Alberta, T2N 2T9, Canada
| | - Carolyn Owen
- Division of Hematology, University of Calgary, Room 603 South Tower, Foothills Hospital, 1403 29 St NW, Calgary, Alberta, T2N 2T9, Canada
| |
Collapse
|