1
|
Soltantoyeh T, Akbari B, Karimi A, Mahmoodi Chalbatani G, Ghahri-Saremi N, Hadjati J, Hamblin MR, Mirzaei HR. Chimeric Antigen Receptor (CAR) T Cell Therapy for Metastatic Melanoma: Challenges and Road Ahead. Cells 2021; 10:cells10061450. [PMID: 34207884 PMCID: PMC8230324 DOI: 10.3390/cells10061450] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022] Open
Abstract
Metastatic melanoma is the most aggressive and difficult to treat type of skin cancer, with a survival rate of less than 10%. Metastatic melanoma has conventionally been considered very difficult to treat; however, recent progress in understanding the cellular and molecular mechanisms involved in the tumorigenesis, metastasis and immune escape have led to the introduction of new therapies. These include targeted molecular therapy and novel immune-based approaches such as immune checkpoint blockade (ICB), tumor-infiltrating lymphocytes (TILs), and genetically engineered T-lymphocytes such as chimeric antigen receptor (CAR) T cells. Among these, CAR T cell therapy has recently made promising strides towards the treatment of advanced hematological and solid cancers. Although CAR T cell therapy might offer new hope for melanoma patients, it is not without its shortcomings, which include off-target toxicity, and the emergence of resistance to therapy (e.g., due to antigen loss), leading to eventual relapse. The present review will not only describe the basic steps of melanoma metastasis, but also discuss how CAR T cells could treat metastatic melanoma. We will outline specific strategies including combination approaches that could be used to overcome some limitations of CAR T cell therapy for metastatic melanoma.
Collapse
Affiliation(s)
- Tahereh Soltantoyeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Ghanbar Mahmoodi Chalbatani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Navid Ghahri-Saremi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Jamshid Hadjati
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa;
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran; (T.S.); (B.A.); (G.M.C.); (N.G.-S.); (J.H.)
- Correspondence: ; Tel.: +98-21-64053268; Fax: +98-21-66419536
| |
Collapse
|
2
|
Pawlikowska M, Jędrzejewski T, Slominski AT, Brożyna AA, Wrotek S. Pigmentation Levels Affect Melanoma Responses to Coriolus versicolor Extract and Play a Crucial Role in Melanoma-Mononuclear Cell Crosstalk. Int J Mol Sci 2021; 22:ijms22115735. [PMID: 34072104 PMCID: PMC8198516 DOI: 10.3390/ijms22115735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Melanoma, the malignancy originating from pigment-producing melanocytes, is the most aggressive form of skin cancer and has a poor prognosis once the disease starts to metastasize. The process of melanin synthesis generates an immunosuppressive and mutagenic environment, and can increase melanoma cell resistance to different treatment modalities, including chemo-, radio- or photodynamic therapy. Recently, we have shown that the presence of melanin pigment inhibits the melanoma cell response to bioactive components of Coriolus versicolor (CV) Chinese fungus. Herein, using the same human melanoma cell line in which the level of pigmentation can be controlled by the L-tyrosine concentration in culture medium, we tested the effect of suppression of melanogenesis on the melanoma cell response to CV extract and investigated the cell death pathway induced by fungus extract in sensitized melanoma cells. Our data showed that susceptibility to CV-induced melanoma cell death is significantly increased after cell depigmentation. To the best of our knowledge, we are the first to demonstrate that CV extract can induce RIPK1/RIPK3/MLKL-mediated necroptosis in depigmented melanoma cells. Moreover, using the co-culture system, we showed that inhibition of the tyrosinase activity in melanoma cells modulates cytokine expression in co-cultured mononuclear cells, indicating that depigmentation of melanoma cells may activate immune cells and thereby influence a host anticancer response.
Collapse
Affiliation(s)
- Małgorzata Pawlikowska
- Department of Immunology, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland; (T.J.); (S.W.)
- Correspondence: ; Tel.: +48-(56)-611-25-15
| | - Tomasz Jędrzejewski
- Department of Immunology, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland; (T.J.); (S.W.)
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Laboratory Service of the VA Medical Center, Birmingham, AL 35294, USA
| | - Anna A. Brożyna
- Department of Human Biology, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | - Sylwia Wrotek
- Department of Immunology, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland; (T.J.); (S.W.)
| |
Collapse
|
3
|
Amin AM, Abd El-Halim SM, El-Sabagh HA, Abdel-Mottaleb MSA. Formulation and Biodistribution of 99mTc-Dacarbazine, a Radioligand for Neoplasm Imaging. RADIOCHEMISTRY 2018; 60:208-214. [DOI: 10.1134/s1066362218020121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Indexed: 09/02/2023]
|
4
|
Abstract
INTRODUCTION Proteomics has been used in soft tissue sarcoma (STS) research in the attempts to improve the understanding of the disease background and develop novel clinical applications. Using various proteomics modalities, aberrant regulations of numerous intriguing proteins were identified in STSs, and the possible utilities of identified proteins as biomarkers or therapeutic targets have been explored. STS is an exceptionally diverse group of malignant diseases with highly complex molecular backgrounds and, therefore, an overview of the achievements and prospects of STS proteomics could enhance our knowledge of the possibilities and limitations of cancer proteomics. Areas covered: This review examines all STSs that have been examined using proteomics modalities, discussing unique aspects, limitations, and possible improvements of individual reports. To contribute to the current progress in cancer treatment development using novel anti-cancer drugs, proteomics plays a central role in linking cutting-edge technologies, application of proteogenomics, patient-derived cancer models, and biobanking system. Expert commentary: Therefore, proteomic-based STS research will be developed as an interdisciplinary science. STS proteomics will be further developed based on the interaction of oncologists with basic researchers in various fields, aimed at obtaining an enhanced understanding of the biology of the disease and achieving superior clinical outcomes for patients.
Collapse
Affiliation(s)
- Tadashi Kondo
- a Division of Rare Cancer Research , National Cancer Center Research Institute , Tokyo , Japan
| |
Collapse
|
5
|
Wald N, Le Corre Y, Martin L, Mathieu V, Goormaghtigh E. Infrared spectra of primary melanomas can predict response to chemotherapy: The example of dacarbazine. Biochim Biophys Acta Mol Basis Dis 2015; 1862:174-81. [PMID: 26577766 DOI: 10.1016/j.bbadis.2015.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 10/27/2015] [Indexed: 01/24/2023]
Abstract
Metastatic melanomas are highly aggressive and median survival is 6-9months for stage IV patients in the absence of treatment with anti-tumor activity. Dacarbazine is an alkylating agent that has been widely used in the treatment of metastatic melanomas and that could be still used in combination with targeted or immune therapies. Indeed, therapeutic benefits of these treatments in monotherapy are poor and one option to improve them is to combine drugs and/or to better anticipate the individual response to a defined treatment. To our best knowledge and to date, there is no test available to predict the response of a patient to dacarbazine. We show here that examination of melanoma histological sections by infrared micro-spectroscopy reveals the sensitivity of the cancer to dacarbazine. Unsupervised analysis of the FTIR spectra evidences spontaneous and significant clustering of infrared spectra into two groups that match the clinical responsiveness of the patients to dacarbazine used as a first-line treatment. A supervised model resulted in 83% of the patient status (responder/non-responder) being correctly identified. The spectra revealed a key modification in the nature and quantity of lipids in the cells of both groups.
Collapse
Affiliation(s)
- N Wald
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium.
| | - Y Le Corre
- Department of Dermatology, Angers University Hospital, Angers, France
| | - L Martin
- Department of Dermatology, Angers University Hospital, Angers, France
| | - V Mathieu
- Laboratoire de Cancérologie et Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
| | - E Goormaghtigh
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
Rossi AH, Farias A, Fernández JE, Bonomi HR, Goldbaum FA, Berguer PM. Brucella spp. Lumazine Synthase Induces a TLR4-Mediated Protective Response against B16 Melanoma in Mice. PLoS One 2015; 10:e0126827. [PMID: 25973756 PMCID: PMC4431812 DOI: 10.1371/journal.pone.0126827] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/07/2015] [Indexed: 02/03/2023] Open
Abstract
Brucella Lumazine Synthase (BLS) is a highly immunogenic decameric protein which can accept the fusion of foreign proteins at its ten N-termini. These chimeras are very efficient to elicit systemic and oral immunity without adjuvants. BLS signaling via Toll-Like Receptor 4 (TLR4) regulates innate and adaptive immune responses, inducing dendritic cell maturation and CD8+ T-cell cytotoxicity. In this work we study the effect induced by BLS in TLR4-expressing B16 melanoma. In order to evaluate the effectiveness of BLS as a preventive vaccine, C57BL/6J mice were immunized with BLS or BLS-OVA, and 35 days later were subcutaneously inoculated with B16-OVA melanoma. BLS or BLS-OVA induced a significant inhibition of tumor growth, and 50% of mice immunized with the highest dose of BLS did not develop visible tumors. This effect was not observed in TLR4-deficient mice. For treatment experiments, mice were injected with BLS or BLS-OVA 2 days after the inoculation of B16 cells. Both treatments induced significant and equal tumor growth delay and increased survival. Moreover, BLS and BLS-OVA stimulation were also effective in TLR4-deficient mice. In order to study whether BLS has a direct effect on tumor cells, B16 cells were preincubated with BLS, and after 48h, cells were inoculated. Tumors induced by BLS-stimulated cells had inhibited growth and survival was increased. In the BLS group, 40% of mice did not develop tumors. This effect was abolished by the addition of TLR4/MD2 blocking antibody to cells before BLS stimulation. Our work demonstrates that BLS immunization induces a preventive antitumor response that depends on mice TLR4. We also show that BLS generates a therapeutic effect in mice inoculated with B16 cells. Our results show that BLS acts directly in cultured tumor cells via TLR4, highly suggesting that BLS elicits its therapeutic effects acting on the TLR4 from B16 melanoma cells.
Collapse
Affiliation(s)
- Andrés H. Rossi
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana Farias
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Javier E. Fernández
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Hernán R. Bonomi
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Fernando A. Goldbaum
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula M. Berguer
- Fundación Instituto Leloir, IIBBA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
7
|
Liu Y, Xie M, Song T, Sheng H, Yu X, Zhang Z. A novel BH3 mimetic efficiently induces apoptosis in melanoma cells through direct binding to anti-apoptotic Bcl-2 family proteins, including phosphorylated Mcl-1. Pigment Cell Melanoma Res 2014; 28:161-70. [DOI: 10.1111/pcmr.12325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Accepted: 10/08/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Yubo Liu
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian China
| | - Mingzhou Xie
- School of Life Science and Technology; Dalian University of Technology; Dalian China
| | - Ting Song
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian China
| | - Hongkun Sheng
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian China
| | - Xiaoyan Yu
- School of Life Science and Technology; Dalian University of Technology; Dalian China
| | - Zhichao Zhang
- State Key Laboratory of Fine Chemicals; School of Chemistry; Dalian University of Technology; Dalian China
| |
Collapse
|
8
|
Soares AS, Costa VM, Diniz C, Fresco P. Combination of Cl‑IB‑MECA with paclitaxel is a highly effective cytotoxic therapy causing mTOR‑dependent autophagy and mitotic catastrophe on human melanoma cells. J Cancer Res Clin Oncol 2014; 140:921-35. [PMID: 24659394 DOI: 10.1007/s00432-014-1645-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/07/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Metastatic melanoma is the deadliest form of skin cancer. It is highly resistant to conventional therapies,particularly to drugs that cause apoptosis as the main anticancer mechanism. Recently, induction of autophagic cell death is emerging as a novel therapeutic target for apoptotic-resistant cancers. We aimed to investigate the underlying mechanisms elicited by the cytotoxic combination of 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5′-N-methyluronamide(Cl-IB-MECA, a selective A(3) adenosine receptor agonist; 10 μM) and paclitaxel (10 ng/mL) on human C32 and A375 melanoma cell lines. METHODS Cytotoxicity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide reduction, neutral red uptake, and lactate dehydrogenase leakage assays, after 48-h incubation. Autophagosome and autolysosome formation was detected by fluorescence through monodansylcadaverine-staining and CellLight(®) Lysosomes-RFP-labelling, respectively. Cell nuclei were visualized by Hoechst staining, while levels of p62 were determined by an ELISA kit. Levels of mammalian target of rapamycin (mTOR) and the alterations of microtubule networks were evaluated by immunofluorescence. RESULTS We demonstrated, for the first time, that the combination of Cl-IB-MECA with paclitaxel significantly increases cytotoxicity, with apoptosis and autophagy the major mechanisms involved in cell death. Induction of autophagy, using clinically relevant doses,was confirmed by visualization of autophagosome and autolysosome formation, and downregulation of mTOR and p62 levels. Caspase-dependent and caspase-independent mitotic catastrophe evidencing micro- and multinucleation was also observed in cells exposed to our combination. CONCLUSIONS The combination of Cl-IB-MECA and paclitaxel causes significant cytotoxicity on two melanoma cell lines through multiple mechanisms of cell death. This multifactorial hit makes this therapy very promising as it will help to avoid melanoma multiresistance to chemotherapy and therefore potentially improve its treatment.
Collapse
|
9
|
Efficacy of acetylsalicylic acid (aspirin) in skin B16-F0 melanoma tumor-bearing C57BL/6 mice. Tumour Biol 2014; 35:4967-76. [DOI: 10.1007/s13277-014-1654-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/13/2014] [Indexed: 11/27/2022] Open
|
10
|
Payne MJ, Argyropoulou K, Lorigan P, McAleer JJ, Farrugia D, Davidson N, Kelly C, Chao D, Marshall E, Han C, Wellman S, Middleton MR. Phase II pilot study of intravenous high-dose interferon with or without maintenance treatment in melanoma at high risk of recurrence. J Clin Oncol 2014; 32:185-90. [PMID: 24344211 DOI: 10.1200/jco.2013.49.8717] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE High-dose interferon alfa-2b (HDI) has emerged as a potentially effective adjuvant therapy in patients with resected melanoma at high risk of recurrence. Evidence suggests it may be the early, very-high-dose part of the regimen that is critical. This pilot study sought to provide an early indication of whether the same effects can be achieved with the intravenous component of HDI alone and inform the feasibility and design of a phase III trial. PATIENTS AND METHODS Patients with stage 2B, 2C, 3B, and 3C melanoma were randomly assigned to receive interferon alfa-2b (IFN-α-2b) 20 MIU/m(2) intravenously (IV) daily 5 days per week for 4 weeks (arm A) versus the same regimen followed by IFN-α-2b 10 MIU/m(2) administered subcutaneously three times per week for 48 weeks (arm B) and observed for relapse-free survival (RFS) and overall survival. RESULTS Between 2003 and 2009, 194 patients were enrolled (arm A, 96; arm B, 98). After median follow-up of 39.5 months, RFS was 22.7 months (95% CI, 14.1 to 38.1 months) in arm A versus 33.3 months (95% CI, 18.2 to not reached) in arm B (P = .28). The proportions of patients free of relapse at 2 years were 50% and 54.1% (P = .569; hazard ratio, 0.89), respectively. Overall survival favored arm B (median, 41.5 months v not reached; P = .05). CONCLUSION Clinical outcomes were better in patients who had the longer regimen. Our results do not support either the use of a month of IV HDI alone in place of the year-long regimen or the initiation of a larger trial on this question.
Collapse
Affiliation(s)
- Miranda J Payne
- Miranda J. Payne, Katerina Argyropoulou, Cheng Han, Sandie Wellman, and Mark R. Middleton, National Institute for Health Research Biomedical Research Centre, Oxford University Hospitals National Health Service Trust, Oxford; Paul Lorigan, Christie Hospital, Manchester; James J. McAleer, Cancer Centre, Belfast City Hospital, Belfast, Northern Ireland; David Farrugia, Cheltenham Hospital, Cheltenham; Neville Davidson, Chelmsford Hospital, Chelmsford; Charles Kelly, Newcastle General Hospital, Newcastle upon Tyne; David Chao, Royal Free Hospital, Hampstead; and Ernest Marshall, Clatterbridge Centre for Oncology, Bebington, Wirral, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wroblewski D, Jiang CC, Croft A, Farrelly ML, Zhang XD, Hersey P. OBATOCLAX and ABT-737 induce ER stress responses in human melanoma cells that limit induction of apoptosis. PLoS One 2013; 8:e84073. [PMID: 24367627 PMCID: PMC3868604 DOI: 10.1371/journal.pone.0084073] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/12/2013] [Indexed: 02/07/2023] Open
Abstract
Anti-apoptotic Bcl-2 family proteins, in particular, Mcl-1, are known to play a critical role in resistance of human melanoma cells to induction of apoptosis by endoplasmic reticulum stress and other agents. The present study examined whether the BH3 mimetics, Obatoclax and ABT-737, which inhibit multiple anti-apoptotic Bcl-2 family proteins, would overcome resistance to apoptosis. We report that both agents induced a strong unfolded protein response (UPR) and that RNAi knockdown of UPR signalling proteins ATF6, IRE1α and XBP-1 inhibited Mcl-1 upregulation and increased sensitivity to the agents. These results demonstrate that inhibition of anti-apoptotic Bcl-2 proteins by Obatoclax and ABT-737 appears to elicit a protective feedback response in melanoma cells, by upregulation of Mcl-1 via induction of the UPR. We also report that Obatoclax, but not ABT-737, strongly induces autophagy, which appears to play a role in determining melanoma sensitivity to the agents.
Collapse
Affiliation(s)
- David Wroblewski
- School of Medicine and Public Health, University of Newcastle, New South Wales, Australia
| | - Chen Chen Jiang
- School of Medicine and Public Health, University of Newcastle, New South Wales, Australia
| | - Amanda Croft
- School of Medicine and Public Health, University of Newcastle, New South Wales, Australia
| | - Margaret L. Farrelly
- School of Medicine and Public Health, University of Newcastle, New South Wales, Australia
| | - Xu Dong Zhang
- School of Medicine and Public Health, University of Newcastle, New South Wales, Australia
| | - Peter Hersey
- Kolling Institute, Royal North Shore Hospital, University of Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
12
|
Romero AI, Chaput N, Poirier-Colame V, Rusakiewicz S, Jacquelot N, Chaba K, Mortier E, Jacques Y, Caillat-Zucman S, Flament C, Caignard A, Messaoudene M, Aupérin A, Vielh P, Dessen P, Porta C, Mateus C, Ayyoub M, Valmori D, Eggermont A, Robert C, Zitvogel L. Regulation of CD4(+)NKG2D(+) Th1 cells in patients with metastatic melanoma treated with sorafenib: role of IL-15Rα and NKG2D triggering. Cancer Res 2013; 74:68-80. [PMID: 24197135 DOI: 10.1158/0008-5472.can-13-1186] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Beyond cancer-cell intrinsic factors, the immune status of the host has a prognostic impact on patients with cancer and influences the effects of conventional chemotherapies. Metastatic melanoma is intrinsically immunogenic, thereby facilitating the search for immune biomarkers of clinical responses to cytotoxic agents. Here, we show that a multi-tyrosine kinase inhibitor, sorafenib, upregulates interleukin (IL)-15Rα in vitro and in vivo in patients with melanoma, and in conjunction with natural killer (NK) group 2D (NKG2D) ligands, contributes to the Th1 polarization and accumulation of peripheral CD4(+)NKG2D(+) T cells. Hence, the increase of blood CD4(+)NKG2D(+) T cells after two cycles of sorafenib (combined with temozolomide) was associated with prolonged survival in a prospective phase I/II trial enrolling 63 patients with metastatic melanoma who did not receive vemurafenib nor immune checkpoint-blocking antibodies. In contrast, in metastatic melanoma patients treated with classical treatment modalities, this CD4(+)NKG2D(+) subset failed to correlate with prognosis. These findings indicate that sorafenib may be used as an "adjuvant" molecule capable of inducing or restoring IL-15Rα/IL-15 in tumors expressing MHC class I-related chain A/B (MICA/B) and on circulating monocytes of responding patients, hereby contributing to the bioactivity of NKG2D(+) Th1 cells.
Collapse
Affiliation(s)
- Ana I Romero
- Authors' Affiliations: Cancer Institute Gustave Roussy; Departments of Epidemiology and Statistics and Dermatology; Stabilité génétique et oncogenèse UMR 8200; Clinical Oncology, Melanoma Branch, Cancer Institute Gustave Roussy; Department of BioPathology, Translational Research Laboratory and Biobank, Institute Gustave Roussy; Institut National de la Santé et de la Recherche Medicale (INSERM), U1015; Center of Clinical Investigations CBT507, Biotherapy, Villejuif; INSERM U1102, Institut de Cancérologie de l'Ouest, Saint Herblain; INSERM, U892, Institut de Recherche Thérapeutique, Nantes; INSERM, U1016, Saint Vincent de Paul Hospital; INSERM U1016, CNRS UMR8104, Cochin Institute; Faculté Paris Sud-Université Paris XI, Paris, France; and IRCCS San Matteo University Hospital Foundation, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zikich D, Schachter J, Besser MJ. Immunotherapy for the management of advanced melanoma: the next steps. Am J Clin Dermatol 2013; 14:261-72. [PMID: 23516145 DOI: 10.1007/s40257-013-0013-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Melanoma is an immunogenic tumor that can induce a natural immune response. A number of immunotherapy-based approaches have been developed over the past decades, and certain degrees of effectiveness were achieved by the use of cytokines, adoptive cell transfer and T-cell immune modulators. Currently, interleukin-2 and the immune stimulatory antibody, ipilimumab, are the only two approved immunotherapies for metastatic melanoma, but various new therapies are in promising developmental stages. This comprehensive review will discuss the latest achievements of immunotherapy and emerging directions for the management of advanced melanoma.
Collapse
Affiliation(s)
- Dragoslav Zikich
- Ella Institute for Melanoma, Sheba Medical Center, 52621 Ramat-Gan, Israel
| | | | | |
Collapse
|
14
|
Mocellin S, Lens MB, Pasquali S, Pilati P, Chiarion Sileni V. Interferon alpha for the adjuvant treatment of cutaneous melanoma. Cochrane Database Syst Rev 2013; 2013:CD008955. [PMID: 23775773 PMCID: PMC10773707 DOI: 10.1002/14651858.cd008955.pub2] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Interferon alpha is the only agent approved for the postoperative adjuvant treatment of high-risk cutaneous melanoma. However, the survival advantage associated with this treatment is unclear, especially in terms of overall survival. Thus, adjuvant interferon is not universally considered a gold standard treatment by all oncologists. OBJECTIVES To assess the disease-free survival and overall survival effects of interferon alpha as adjuvant treatment for people with high-risk cutaneous melanoma. SEARCH METHODS We searched the following databases up to August 2012: the Cochrane Skin Group Specialised Register, CENTRAL in The Cochrane Library (2012, issue 8), MEDLINE (from 2005), EMBASE (from 2010), AMED (from 1985), and LILACS (from 1982). We also searched trials databases in 2011, and proceedings of the ASCO annual meeting from 2000 to 2011. We checked the reference lists of selected articles for further references to relevant trials. SELECTION CRITERIA We included only randomised controlled trials (RCTs) comparing interferon alpha to observation (or any other treatment) for the postoperative (adjuvant) treatment of patients with high-risk skin melanoma, that is, people with regional lymph node metastasis (American Joint Committee on Cancer (AJCC) TNM (tumour, lymph node, metastasis) stage III) undergoing radical lymph node dissection, or people without nodal disease but with primary tumour thickness greater than 1 mm (AJCC TNM stage II). DATA COLLECTION AND ANALYSIS Two authors extracted data, and a third author independently verified the extracted data. The main outcome measure was the hazard ratio (HR), which is the ratio of the risk of the event occurring in the treatment arm (adjuvant interferon) compared to the control arm (no adjuvant interferon). The survival data were either entered directly into Review Manager (RevMan) or extrapolated from Kaplan-Meier plots and then entered into RevMan. Based on the presence of between-study heterogeneity, we applied a fixed-effect or random-effects model for calculating the pooled estimates of treatment efficacy. MAIN RESULTS Eighteen RCTs enrolling a total of 10,499 participants were eligible for the review. The results from 17 of 18 of these RCTs, published between 1995 and 2011, were suitable for meta-analysis and allowed us to quantify the therapeutic efficacy of interferon in terms of disease-free survival (17 trials) and overall survival (15 trials). Adjuvant interferon was associated with significantly improved disease-free survival (HR (hazard ratio) = 0.83; 95% CI (confidence interval) 0.78 to 0.87, P value < 0.00001) and overall survival (HR = 0.91; 95% CI 0.85 to 0.97; P value = 0.003). We detected no significant between-study heterogeneity (disease-free survival: I² statistic = 16%, Q-test P value = 0.27; overall survival: I² statistic = 6%; Q-test P value = 0.38).Considering that the 5-year overall survival rate for TNM stage II-III cutaneous melanoma is 60%, the number needed to treat (NNT) is 35 participants (95% CI = 21 to 108 participants) in order to prevent 1 death. The results of subgroup analysis failed to answer the question of whether some treatment features (i.e. dosage, duration) might have an impact on interferon efficacy or whether some participant subgroups (i.e. with or without lymph node positivity) might benefit differently from interferon adjuvant treatment.Grade 3 and 4 toxicity was observed in a minority of participants: In some trials, no-one had fever or fatigue of Grade 3 severity, but in other trials, up to 8% had fever and up to 23% had fatigue of Grade 3 severity. Less than 1% of participants had fever and fatigue of Grade 4 severity. Although it impaired quality of life, toxicity disappeared after treatment discontinuation. AUTHORS' CONCLUSIONS The results of this meta-analysis support the therapeutic efficacy of adjuvant interferon alpha for the treatment of people with high-risk (AJCC TNM stage II-III) cutaneous melanoma in terms of both disease-free survival and, though to a lower extent, overall survival. Interferon is also valid as a reference treatment in RCTs investigating new therapeutic agents for the adjuvant treatment of this participant population. Further investigation is required to select people who are most likely to benefit from this treatment.
Collapse
Affiliation(s)
- Simone Mocellin
- Meta-Analysis Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.
| | | | | | | | | |
Collapse
|
15
|
Synergistic cytotoxicity of radiation and oncolytic Lister strain vaccinia in (V600D/E)BRAF mutant melanoma depends on JNK and TNF-α signaling. Oncogene 2013; 33:1700-12. [PMID: 23624923 DOI: 10.1038/onc.2013.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 01/10/2013] [Accepted: 02/13/2013] [Indexed: 02/07/2023]
Abstract
Melanoma is an aggressive skin cancer that carries an extremely poor prognosis when local invasion, nodal spread or systemic metastasis has occurred. Recent advances in melanoma biology have revealed that RAS-RAF-MEK-ERK signaling has a pivotal role in governing disease progression and treatment resistance. Proof-of-concept clinical studies have shown that direct BRAF inhibition yields impressive responses in advanced disease but these are short-lived as treatment resistance rapidly emerges. Therefore, there is a pressing need to develop new targeted strategies for BRAF mutant melanoma. As such, oncolytic viruses represent a promising cancer-specific approach with significant activity in melanoma. This study investigated interactions between genetically-modified vaccinia virus (GLV-1h68) and radiotherapy in melanoma cell lines with BRAF mutant, Ras mutant or wild-type genotype. Preclinical studies revealed that GLV-1h68 combined with radiotherapy significantly increased cytotoxicity and apoptosis relative to either single agent in (V600D)BRAF/(V600E)BRAF mutant melanoma in vitro and in vivo. The mechanism of enhanced cytotoxicity with GLV-1h68/radiation (RT) was independent of viral replication and due to attenuation of JNK, p38 and ERK MAPK phosphorylation specifically in BRAF mutant cells. Further studies showed that JNK pathway inhibition sensitized BRAF mutant cells to GLV-1h68-mediated cell death, mimicking the effect of RT. GLV-1h68 infection activated MAPK signaling in (V600D)BRAF/(V600E)BRAF mutant cell lines and this was associated with TNF-α secretion which, in turn, provided a prosurvival signal. Combination GLV-1h68/RT (or GLV-1h68/JNK inhibition) caused abrogation of TNF-α secretion. These data provide a strong rationale for combining GLV-1h68 with irradiation in (V600D/E)BRAF mutant tumors.
Collapse
|
16
|
Wang D, Guo S, Han SY, Xu N, Guo JY, Sun Q. Distinct roles of different fragments of PDCD4 in regulating the metastatic behavior of B16 melanoma cells. Int J Oncol 2013; 42:1725-33. [PMID: 23450345 DOI: 10.3892/ijo.2013.1841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/29/2013] [Indexed: 11/05/2022] Open
Abstract
Melanoma is an aggressive cutaneous malignancy. In this study, we demonstrated that the levels of the programmed cell death 4 (PDCD4) protein and mRNA were lower in tumor tissues compared with normal tissues. In order to further investigate the effects of PDCD4 and its fragments in B16 melanoma cells, we established B16 clones with expression of different PDCD4 fragments. Intact PDCD4, PDCD4∆164‑469 and PDCD4∆327-440 expression, respectively, decreased proliferation and migration and increased apoptosis in B16 cells in vitro. We found that intact PDCD4, PDCD4∆164-469 or PDCD4∆327-440 can inhibit the activity of MMP-2 and the expression of CXCR4. However, PDCD4∆164-275 showed no effects on B16 cells. These results may prove helpful for the development of novel therapies for melanoma treatment.
Collapse
Affiliation(s)
- Di Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | | | | | | | | | | |
Collapse
|
17
|
Park J, Wrzesinski SH, Stern E, Look M, Criscione J, Ragheb R, Jay SM, Demento SL, Agawu A, Limon PL, Ferrandino AF, Gonzalez D, Habermann A, Flavell RA, Fahmy TM. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. NATURE MATERIALS 2012; 11:895-905. [PMID: 22797827 PMCID: PMC3601683 DOI: 10.1038/nmat3355] [Citation(s) in RCA: 391] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 05/07/2012] [Indexed: 05/12/2023]
Abstract
The tumour microenvironment thwarts conventional immunotherapy through multiple immunologic mechanisms, such as the secretion of the transforming growth factor-β (TGF-β), which stunts local tumour immune responses. Therefore, high doses of interleukin-2 (IL-2), a conventional cytokine for metastatic melanoma, induces only limited responses. To overcome the immunoinhibitory nature of the tumour microenvironment, we developed nanoscale liposomal polymeric gels (nanolipogels; nLGs) of drug-complexed cyclodextrins and cytokine-encapsulating biodegradable polymers that can deliver small hydrophobic molecular inhibitors and water-soluble protein cytokines in a sustained fashion to the tumour microenvironment. nLGs releasing TGF-β inhibitor and IL-2 significantly delayed tumour growth, increased survival of tumour-bearing mice, and increased the activity of natural killer cells and of intratumoral-activated CD8(+) T-cell infiltration. We demonstrate that the efficacy of nLGs in tumour immunotherapy results from a crucial mechanism involving activation of both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Jason Park
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
| | - Stephen H. Wrzesinski
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06511, USA
- Yale Cancer Center, New Haven, Connecticut 06511, USA
| | - Eric Stern
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
| | - Michael Look
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
| | - Jason Criscione
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
| | - Ragy Ragheb
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
| | - Steven M. Jay
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
| | - Stacey L. Demento
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
| | - Atu Agawu
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
| | - Paula Licona Limon
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Anthony F. Ferrandino
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - David Gonzalez
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Ann Habermann
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06511, USA
- Yale Cancer Center, New Haven, Connecticut 06511, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Tarek M. Fahmy
- Department of Biomedical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
- Yale Cancer Center, New Haven, Connecticut 06511, USA
- Department of Chemical and Environmental Engineering, Yale University School of Engineering and Applied Sciences, New Haven, Connecticut 06511, USA
- Correspondence and requests for materials should be addressed to T.M.F.,
| |
Collapse
|
18
|
Down-regulation of the PTTG1 proto-oncogene contributes to the melanoma suppressive effects of the cyclin-dependent kinase inhibitor PHA-848125. Biochem Pharmacol 2012; 84:598-611. [DOI: 10.1016/j.bcp.2012.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/01/2012] [Accepted: 06/04/2012] [Indexed: 01/15/2023]
|
19
|
Application of proteomics to soft tissue sarcomas. INTERNATIONAL JOURNAL OF PROTEOMICS 2012; 2012:876401. [PMID: 22778956 PMCID: PMC3388341 DOI: 10.1155/2012/876401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/21/2012] [Indexed: 01/27/2023]
Abstract
Soft tissue sarcomas are rare and account for less than 1% of all malignant cancers. Other than development of intensive therapies, the clinical outcome of patients with soft tissue sarcoma remains very poor, particularly when diagnosed at a late stage. Unique mutations have been associated with certain soft tissue sarcomas, but their etiologies remain unknown. The proteome is a functional translation of a genome, which directly regulates the malignant features of tumors. Thus, proteomics is a promising approach for investigating soft tissue sarcomas. Various proteomic approaches and clinical materials have been used to address clinical and biological issues, including biomarker development, molecular target identification, and study of disease mechanisms. Several cancer-associated proteins have been identified using conventional technologies such as 2D-PAGE, mass spectrometry, and array technology. The functional backgrounds of proteins identified were assessed extensively using in vitro experiments, thus supporting expression analysis. These observations demonstrate the applicability of proteomics to soft tissue sarcoma studies. However, the sample size in each study was insufficient to allow conclusive results. Given the low frequency of soft tissue sarcomas, multi-institutional collaborations are required to validate the results of proteomic approaches.
Collapse
|
20
|
Evidence for upregulation of Bim and the splicing factor SRp55 in melanoma cells from patients treated with selective BRAF inhibitors. Melanoma Res 2012; 22:244-51. [DOI: 10.1097/cmr.0b013e328353eff2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Livingstone E, Zimmer L, Vaubel J, Schadendorf D. Current advances and perspectives in the treatment of advanced melanoma. J Dtsch Dermatol Ges 2012; 10:319-25. [PMID: 22432863 DOI: 10.1111/j.1610-0387.2012.07895.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melanoma has long been considered as an extremely therapy-resistant tumour. Recent developments in the area of immunotherapy as well as targeted therapy showed rapid development and excellent results. The anti-CTLA-4 antibody ipilimumab, which was approved in the USA and Europe in 2011, was the first substance in melanoma therapy to demonstrate an overall survival benefit. Another approval is expected in Europe for the specific BRAF-inhibitor vemurafenib, which has shown a significant impact on progression-free survival and overall survival in patients with the BRAF(V600E) mutation. In this review the relevant agents in the substance classes of immunomodulatory drugs and small molecules are presented and discussed, and future prospects for combination therapies and developments in melanoma treatment are outlined.
Collapse
|
22
|
Serum CEACAM1 Correlates with Disease Progression and Survival in Malignant Melanoma Patients. Clin Dev Immunol 2012; 2012:290536. [PMID: 22291846 PMCID: PMC3265158 DOI: 10.1155/2012/290536] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 12/21/2022]
Abstract
The search for melanoma biomarkers is crucial, as the incidence of melanoma continues to rise. We have previously demonstrated that serum CEACAM1 (sCEACAM1) is secreted from melanoma cells and correlates with disease progression in metastatic melanoma patients. Here, we have used a different cohort of melanoma patients with regional or metastatic disease (N = 49), treated with autologous vaccination. By monitoring sCEACAM1 in serum samples obtained prior to and after vaccination, we show that sCEACAM1 correlates with disease state, overall survival, and S100B. The trend of change in sCEACAM1 following vaccination (increase/decrease) inversely correlates with overall survival. DTH skin test is used to evaluate patients' anti-melanoma immune response and to predict response to vaccination. Importantly, sCEACAM1 had a stronger prognostic value than that of DTH, and when sCEACAM1 decreased following treatment, this was the dominant predictor of increased survival. Collectively, our results point out the relevance of sCEACAM1 in monitoring melanoma patients.
Collapse
|
23
|
Linos K, Slominski A, Ross JS, Carlson JA. Melanoma update: diagnostic and prognostic factors that can effectively shape and personalize management. Biomark Med 2011; 5:333-60. [PMID: 21657842 DOI: 10.2217/bmm.11.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Routine light microscopy remains a powerful tool to diagnose, stage and prognose melanoma. Although it is very economical and efficient, it requires a significant level of expertise and, in difficult cases the final diagnosis is affected by subjective interpretation. Fortunately, new insights into the genomic aberrations characteristic of melanoma, coupled with ancillary studies, are further refining evaluation and management allowing for more confident diagnosis, more accurate staging and the selection of targeted therapy. In this article, we review the standard of care and new updates including four probe FISH, the 2009 American Joint Commission on Cancer staging of melanoma and mutant testing of melanoma, which will be crucial for targeted therapy of metastatic melanoma.
Collapse
|
24
|
Tawbi HA, Villaruz L, Tarhini A, Moschos S, Sulecki M, Viverette F, Shipe-Spotloe J, Radkowski R, Kirkwood JM. Inhibition of DNA repair with MGMT pseudosubstrates: phase I study of lomeguatrib in combination with dacarbazine in patients with advanced melanoma and other solid tumours. Br J Cancer 2011; 105:773-7. [PMID: 21811257 PMCID: PMC3171007 DOI: 10.1038/bjc.2011.285] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background: The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) reverses the O6-methylguanine (O6-meG) lesion induced by dacarbazine. Depletion of MGMT can be achieved using O6-meG pseudosubstrates. Herein, we report the first phase I experience of the novel O6-meG pseudosubstrate lomeguatrib, combined with dacarbazine. Methods: This is a phase I dose-escalation study to determine the maximum tolerated dose and recommended phase II dose (RP2D) of lomeguatrib combined with a single dose of dacarbazine on a 21-day schedule. Results: The vast majority of the 41 patients enrolled had metastatic melanoma (36/41) and most had no previous chemotherapy (30/41). The most frequent non-hematological adverse events (AEs) were nausea (52%), and fatigue (42%). The most frequent AEs of grade 3–4 severity were neutropaenia (42%), leukopaenia (17%), and thrombocytopaenia (12%). Only 1 patient had a partial response and 10 patients had stable disease. Conclusion: The RP2D of lomeguatrib was 40 mg orally twice daily for 10 days combined with 400 mg m−2 of dacarbazine IV on day 2. Oral administration of lomeguatrib substantially increases the haematological toxicity of dacarbazine consistent with experience with other O6-meG pseudosubstrates.
Collapse
Affiliation(s)
- H A Tawbi
- Melanoma and Skin Cancer Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Nys K, Maes H, Dudek AM, Agostinis P. Uncovering the role of hypoxia inducible factor-1α in skin carcinogenesis. Biochim Biophys Acta Rev Cancer 2011; 1816:1-12. [PMID: 21338656 DOI: 10.1016/j.bbcan.2011.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/08/2011] [Accepted: 02/11/2011] [Indexed: 01/02/2023]
Abstract
The hypoxia inducible factor-1α (HIF-1α) is a pleiotropic transcription factor typically activated in response to low oxygen tension as well as other stress factors in normoxic conditions. Upon activation HIF-1α mediates the transcriptional activation of target genes involved in a variety of processes comprising stress adaptation, metabolism, growth and invasion, but also apoptotic cell death. The molecular mechanisms, signaling pathways and downstream targets evoked by the activation of HIF-1α in epidermal cells are becoming increasingly understood and underscore the participation of HIF-1α in crucial processes including malignant transformation and cancer progression. Recent studies have implicated HIF-1α as an integral part of the multifaceted signal transduction initiated by the exposure of keratinocytes to ultraviolet radiation B (UVB), which represents the most ubiquitous hazard for human skin and the principal risk factor for skin cancer. HIF-1α activation by UVB exposure contributes to either repair or the removal of UVB-damaged keratinocytes by inducing apoptosis, thus revealing a tumor suppressor role for HIF-1α in these cells. On the other hand, the constitutive expression of HIF-1α evoked by the mild hypoxic state of the skin has been implicated as a positive factor in the transformation of normal melanocytes into malignant melanoma, one of the most aggressive types of human cancers. Here we review the uncovered and complex role of HIF-1α in skin carcinogenesis.
Collapse
Affiliation(s)
- Kris Nys
- Cell Death Research & Therapy Laboratory, Department Molecular and Cell Biology, Faculty of Medicine, Catholic University of Leuven, Herestroat 49, box 901, B-3000, Belgium
| | | | | | | |
Collapse
|
26
|
Mocellin S, Lens MB, Pasquali S, Pilati P. Interferon alpha for the adjuvant treatment of cutaneous melanoma. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2011. [DOI: 10.1002/14651858.cd008955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Dudley ME, Gross CA, Langhan MM, Garcia MR, Sherry RM, Yang JC, Phan GQ, Kammula US, Hughes MS, Citrin DE, Restifo NP, Wunderlich JR, Prieto PA, Hong JJ, Langan RC, Zlott DA, Morton KE, White DE, Laurencot CM, Rosenberg SA. CD8+ enriched "young" tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res 2010; 16:6122-31. [PMID: 20668005 PMCID: PMC2978753 DOI: 10.1158/1078-0432.ccr-10-1297] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Tumor-infiltrating lymphocytes (TIL) and interleukin (IL)-2 administered following lymphodepletion can cause the durable complete regression of bulky metastatic melanoma in patients refractory to approved treatments. However, the generation of a unique tumor-reactive TIL culture for each patient may be prohibitively difficult. We therefore investigated the clinical and immunologic impact of unscreened, CD8+ enriched "young" TIL. EXPERIMENTAL DESIGN Methods were developed for generating TIL that minimized the time in culture and eliminated the individualized tumor-reactivity screening step. Thirty-three patients were treated with these CD8+ enriched young TIL and IL-2 following nonmyeloablative lymphodepletion (NMA). Twenty-three additional patients were treated with CD8+ enriched young TIL and IL-2 after lymphodepletion with NMA and 6 Gy of total body irradiation. RESULTS Young TIL cultures for therapy were successfully established from 83% of 122 consecutive melanoma patients. Nineteen of 33 patients (58%) treated with CD8+ enriched young TIL and NMA had an objective response (Response Evaluation Criteria in Solid Tumors) including 3 complete responders. Eleven of 23 patients (48%) treated with TIL and 6 Gy total body irradiation had an objective response including 2 complete responders. At 1 month after TIL infusion the absolute CD8+ cell numbers in the periphery were highly correlated with response. CONCLUSIONS This study shows that a rapid and simplified method can be used to reliably generate CD8+ enriched young TIL for administration as an individualized therapy for advanced melanoma, and may allow this potentially effective treatment to be applied at other institutions and to reach additional patients.
Collapse
Affiliation(s)
- Mark E Dudley
- Surgery Branch and Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland 20892-1201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Haggerty TJ, Dunn IS, Rose LB, Newton EE, Martin S, Riley JL, Kurnick JT. Topoisomerase inhibitors modulate expression of melanocytic antigens and enhance T cell recognition of tumor cells. Cancer Immunol Immunother 2010; 60:133-44. [PMID: 21052994 DOI: 10.1007/s00262-010-0926-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 10/05/2010] [Indexed: 12/14/2022]
Abstract
While there are many obstacles to immune destruction of autologous tumors, there is mounting evidence that tumor antigen recognition does occur. Unfortunately, immune recognition rarely controls clinically significant tumors. Even the most effective immune response will fail if tumors fail to express target antigens. Importantly, reduced tumor antigen expression often results from changes in gene regulation rather than irrevocable loss of genetic information. Such perturbations are often reversible by specific compounds or biological mediators, prompting a search for agents with improved antigen-enhancing properties. Some recent findings have suggested that certain conventional chemotherapeutic agents may have beneficial properties for cancer treatment beyond their direct cytotoxicities against tumor cells. Accordingly, we screened an important subset of these agents, topoisomerase inhibitors, for their effects on antigen levels in tumor cells. Our analyses demonstrate upregulation of antigen expression in a variety of melanoma cell lines and gliomas in response to nanomolar levels of certain specific topoisomerase inhibitors. To demonstrate the ability of CD8+ T cells to recognize tumors, we assayed cytokine secretion in T cells transfected with T cell receptors directed against Melan-A/MART-1 antigen. Three days of daunorubicin treatment resulted in enhanced antigen expression by tumor cells, in turn inducing co-cultured antigen-specific T cells to secrete Interleukin-2 and Interferon-γ. These results demonstrate that specific topoisomerase inhibitors can augment melanoma antigen production, suggesting that a combination of chemotherapy and immunotherapy may be of potential value in the treatment of otherwise insensitive cancers.
Collapse
|
29
|
Livingstone E, Zimmer L, Piel S, Schadendorf D. PLX4032: does it keep its promise for metastatic melanoma treatment? Expert Opin Investig Drugs 2010; 19:1439-49. [DOI: 10.1517/13543784.2010.527945] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Khan F, Sherwani AF, Afzal M. Analysis of genotoxic damage induced by dacarbazine: an in vitro study. TOXIN REV 2010. [DOI: 10.3109/15569543.2010.516463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Hassel JC, Sucker A, Edler L, Kurzen H, Moll I, Stresemann C, Spieth K, Mauch C, Rass K, Dummer R, Schadendorf D. MGMT gene promoter methylation correlates with tolerance of temozolomide treatment in melanoma but not with clinical outcome. Br J Cancer 2010; 103:820-6. [PMID: 20736948 PMCID: PMC2966614 DOI: 10.1038/sj.bjc.6605796] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Despite limited clinical efficacy, treatment with dacarbazine or temozolomide (TMZ) remains the standard therapy for metastatic melanoma. In glioblastoma, promoter methylation of the counteracting DNA repair enzyme O6-methylguanine-DNA-methyltransferase (MGMT) correlates with survival of patients exposed to TMZ in combination with radiotherapy. For melanoma, data are limited and controversial. Methods: Biopsy samples from 122 patients with metastatic melanoma being treated with TMZ in two multicenter studies of the Dermatologic Cooperative Oncology Group were investigated for MGMT promoter methylation. We used the COBRA (combined bisulphite restriction analysis) technique to determine aberrant methylation of CpG islands in small amounts of genomic DNA isolated from paraffin-embedded tissue sections. To detect aberrant methylation, bisulphite-treated DNA was amplified by PCR, enzyme restricted, and visualised by gel electrophoresis. Results: Correlation with clinical data from 117 evaluable patients in a best-response evaluation indicated no statistically significant association between MGMT promoter methylation status and response. A methylated MGMT promoter was observed in 34.8% of responders and 23.4% of non-responders (P=0.29). In addition, no survival advantage for patients with a methylated MGMT promoter was detectable (P=0.79). Interestingly, we found a significant correlation between MGMT methylation and tolerance of therapy. Patients with a methylated MGMT promoter had more severe adverse events, requiring more TMZ dose reductions or discontinuations (P=0.007; OR 2.7 (95% CI: 1.32–5.7)). Analysis of MGMT promoter methylation comparing primaries and different metastases over the clinical course revealed no statistical difference (P=0.49). Conclusions: In advanced melanoma MGMT promoter, methylation correlates with tolerance of therapy, but not with clinical outcome.
Collapse
Affiliation(s)
- J C Hassel
- Skin Cancer Unit, German Cancer Research Center, University Hospital Mannheim, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mocellin S, Shrager J, Scolyer R, Pasquali S, Verdi D, Marincola FM, Briarava M, Gobbel R, Rossi C, Nitti D. Targeted Therapy Database (TTD): a model to match patient's molecular profile with current knowledge on cancer biology. PLoS One 2010; 5:e11965. [PMID: 20706624 PMCID: PMC2919374 DOI: 10.1371/journal.pone.0011965] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 07/08/2010] [Indexed: 01/08/2023] Open
Abstract
Background The efficacy of current anticancer treatments is far from satisfactory and many patients still die of their disease. A general agreement exists on the urgency of developing molecularly targeted therapies, although their implementation in the clinical setting is in its infancy. In fact, despite the wealth of preclinical studies addressing these issues, the difficulty of testing each targeted therapy hypothesis in the clinical arena represents an intrinsic obstacle. As a consequence, we are witnessing a paradoxical situation where most hypotheses about the molecular and cellular biology of cancer remain clinically untested and therefore do not translate into a therapeutic benefit for patients. Objective To present a computational method aimed to comprehensively exploit the scientific knowledge in order to foster the development of personalized cancer treatment by matching the patient's molecular profile with the available evidence on targeted therapy. Methods To this aim we focused on melanoma, an increasingly diagnosed malignancy for which the need for novel therapeutic approaches is paradigmatic since no effective treatment is available in the advanced setting. Relevant data were manually extracted from peer-reviewed full-text original articles describing any type of anti-melanoma targeted therapy tested in any type of experimental or clinical model. To this purpose, Medline, Embase, Cancerlit and the Cochrane databases were searched. Results and Conclusions We created a manually annotated database (Targeted Therapy Database, TTD) where the relevant data are gathered in a formal representation that can be computationally analyzed. Dedicated algorithms were set up for the identification of the prevalent therapeutic hypotheses based on the available evidence and for ranking treatments based on the molecular profile of individual patients. In this essay we describe the principles and computational algorithms of an original method developed to fully exploit the available knowledge on cancer biology with the ultimate goal of fruitfully driving both preclinical and clinical research on anticancer targeted therapy. In the light of its theoretical nature, the prediction performance of this model must be validated before it can be implemented in the clinical setting.
Collapse
Affiliation(s)
- Simone Mocellin
- Clinica Chirurgica Generale 2, Department of Oncological and Surgical Sciences, University of Padova, Padova, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kudela P, Koller VJ, Lubitz W. Bacterial ghosts (BGs)—Advanced antigen and drug delivery system. Vaccine 2010; 28:5760-7. [DOI: 10.1016/j.vaccine.2010.06.087] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/11/2010] [Accepted: 06/28/2010] [Indexed: 11/28/2022]
|
34
|
Kundu S, Fan K, Cao M, Lindner DJ, Tuthill R, Liu L, Gerson S, Borden E, Yi T. Tyrosine phosphatase inhibitor-3 sensitizes melanoma and colon cancer to biotherapeutics and chemotherapeutics. Mol Cancer Ther 2010; 9:2287-96. [PMID: 20682647 PMCID: PMC2942023 DOI: 10.1158/1535-7163.mct-10-0159] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Drug resistance is a major obstacle in cancer treatments and diminishes the clinical efficacy of biological, cytotoxic, or targeted therapeutics. Being an antiapoptotic mediator of chemoresistance in breast and lung cancer cells, MKP1 phosphatase might be targeted for overcoming chemoresistance and improving therapeutic efficacy. In this work, tyrosine phosphatase inhibitor-3 (TPI-3) was identified as a novel small molecule inhibitor of MKP1 and was capable of sensitizing tumors to bio- and chemotherapeutics in mice as a tolerated oral agent. Effective against recombinant MKP1, TPI-3 selectively increased MKP1 phosphosubstrates in Jurkat cells and induced cell death via apoptosis at nanomolar concentrations. TPI-3 also increased MKP1 phosphosubstrates in WM9 human melanoma cells and synergized with biotherapeutic IFN alpha 2b in the growth inhibition of melanoma cells in vitro (combination index, <1). WM9 xenografts unresponsive to individual agents were significantly inhibited (62%, P = 0.001) in mice by a tolerated combination of oral TPI-3 (10 mg/kg, 5 d/wk) and IFN alpha 2b. MKP1 expression was detected in human melanoma cell lines and tissue samples at levels up to six times higher than those in normal or nonmalignant melanocytes. TPI-3 also interacted positively with chemotherapeutics, 5-fluorouracil/leucovorin, against MC-26 colon cancer cells in vitro and in mice. Altogether, our data show the preclinical activities of TPI-3 in overcoming cancer resistance to bio- and chemotherapeutics, implicate MKP1 as a drug-resistant molecule in melanoma, and support the targeting of MKP1 for improving cancer therapeutic efficacy.
Collapse
Affiliation(s)
- Suman Kundu
- Department of Cancer Biology of Lerner Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Keke Fan
- Department of Cancer Biology of Lerner Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Mingli Cao
- Department of Cancer Biology of Lerner Research Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel J. Lindner
- Department of Cancer Biology of Lerner Research Institute, Case Western Reserve University, Cleveland, OH, USA
- Department of Translational Hematology, Case Western Reserve University, Cleveland, OH, USA
- Oncology of Taussig Cancer Institute, Case Western Reserve University, Cleveland, OH, USA
| | - Ralph Tuthill
- Department of Pathology, The Cleveland Clinic, Case Western Reserve University, Cleveland, OH, USA
| | - Lili Liu
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Stanton Gerson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Ernest Borden
- Department of Cancer Biology of Lerner Research Institute, Case Western Reserve University, Cleveland, OH, USA
- Department of Translational Hematology, Case Western Reserve University, Cleveland, OH, USA
- Oncology of Taussig Cancer Institute, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Taolin Yi
- Department of Cancer Biology of Lerner Research Institute, Case Western Reserve University, Cleveland, OH, USA
- Oncology of Taussig Cancer Institute, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
35
|
Cabezón Gutiérrez L, Márquez-Rodas I, Soria Lovelle A, Martín Marino A, Álvarez Álvarez R, Muñoz Martín A. Melanoma de uretra masculina: caso clínico. Actas Urol Esp 2010. [DOI: 10.1016/j.acuro.2010.02.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Prieto PA, Durflinger KH, Wunderlich JR, Rosenberg SA, Dudley ME. Enrichment of CD8+ cells from melanoma tumor-infiltrating lymphocyte cultures reveals tumor reactivity for use in adoptive cell therapy. J Immunother 2010; 33:547-56. [PMID: 20463593 PMCID: PMC6309789 DOI: 10.1097/cji.0b013e3181d367bd] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) for metastatic melanoma has shown objective response rates as high as 72%. The successful application of this therapy requires the selection of unique tumor-reactive lymphocyte cultures for each patient. This is a technically and logistically difficult undertaking, and patients who do not have tumor-reactive TIL are not considered eligible for treatment. To simplify the methods of TIL generation and extend TIL-based immunotherapy to additional patients, methods were developed to use unselected, minimally cultured ("young") TIL. Young TIL cultures contain a variable number of CD8(+), CD4(+), and CD3(-)CD56(+) natural killer cells. In this study we retrospectively investigated a role for these subsets in the clinical outcome of patients treated with TIL derived from selected microcultures. This analysis demonstrated a suggestive but nonsignificant association between the number of CD8(+) cells administered and tumor regression. We therefore investigated the feasibility of selecting CD8(+) cells from young TIL cultures for ACT therapy. The available methods for clinical scale CD8(+) enrichment proved inadequate for TIL, so an optimized CD8(+) enrichment method was developed and is reported here. We observed that CD8 (+)enrichment of some TIL cultures revealed in vitro tumor recognition that was not evident in bulk culture, and an improved in vitro recognition of tumor in other TIL cultures. In addition, the enriched CD8(+) young TIL expanded more reliably and predictably in rapid expansions than the bulk TIL. Thus, optimized CD8(+) selection combines the benefits of antigen-selected TIL and young TIL for generating lymphocyte cultures for ACT, and should be evaluated in cell transfer therapy protocols.
Collapse
Affiliation(s)
- Peter A Prieto
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1201, USA.
| | | | | | | | | |
Collapse
|
37
|
Krug B, Crott R, Roch I, Lonneux M, Beguin C, Baurain JF, Pirson AS, Vander Borght T. Cost-effectiveness analysis of FDG PET-CT in the management of pulmonary metastases from malignant melanoma. Acta Oncol 2010; 49:192-200. [PMID: 20059314 DOI: 10.3109/02841860903440254] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Most guidelines consider FDG PET-CT to detect occult extra-pulmonary disease prior to lung metastasectomy. A cost-effectiveness analysis, using a Markov model over a 10 year period, was performed to compare two different surveillance programs, either PET-CT or whole-body CT, in patients with suspected pulmonary metastasised melanoma. METHODS Data from published studies provided probabilities for the model. Complication and care costs were obtained from standardised administrative databases from 19 hospitals identified by DRG codes (reported in 2009 Euros). For the cost calculation of PET-CT we performed a microcosting analysis. All costs and benefits were yearly discounted at respectively 3% and 1.5%. Outcomes included life-months gained (LMG) and the number of futile surgeries avoided. Cost-effectiveness ratios were in Euros per LMG. Univariate and probabilistic sensitivity analyses addressed uncertainty in all model parameters. RESULTS The PET-CT strategy provided 86.29 LMG (95% CI: 81.50-90.88 LMG) at a discounted cost of euro3,974 (95% CI: euro1,339-12,303), while the conventional strategy provided 86.08 LMG (95% CI: 81.37-90.68 LMG) at a discounted cost of euro5,022 (95% CI: euro1,378-16,018). This PET-CT strategy resulted in a net saving of euro1,048 with a gain of 0.2 LMG. Based on PET-CT findings, 20% of futile surgeries could be avoided. CONCLUSION Integrating PET-CT in the management of patients with high risk MM appears to be less costly and more accurate by avoiding futile thoracotomies in one of five patients as well as by providing a small survival benefit at 10 years.
Collapse
Affiliation(s)
- Bruno Krug
- Nuclear Medicine Division, Mont-Godinne University Hospital, Université Catholique de Louvain, Yvoir, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
IMPORTANCE OF THE FIELD The incidence of malignant melanoma is increasing throughout the world and is currently rising faster than any other cancer in men and second only to lung cancer in women. Current strategies focused on systemic therapy for treatment of melanoma have shown no effect on survival. Therefore there is a pressing need for developing novel targeted therapeutics. AREAS COVERED IN THIS REVIEW Our goal is to provide an overview regarding targeting CXCR1/2 in malignant melanoma, the rationale behind these approaches and the future perspective. WHAT THE READER WILL GAIN This review illustrates our current understanding of CXCR1/2 receptor in melanoma progression and metastasis. We describe approaches that are being developed to block CXCR1/2 activation, including low-molecular-weight antagonists, modified chemokines and antibodies directed against ligands and receptors. TAKE HOME MESSAGE The chemokine receptors CXCR1 and CXCR2 and their ligands play an important role in the pathogenesis of malignant melanoma. Recent reports demonstrated that CXCR1 is constitutively expressed in all melanoma cases irrespective of stage and grade, however, CXCR2 expression was restricted to aggressive melanoma tumors,. Furthermore, modulation of CXCR1/2 expression and/or activity has been shown to regulate malignant melanoma growth, angiogenesis and metastasis, suggesting CXCR1/2 targeting as a novel therapeutic approach for malignant melanoma.
Collapse
Affiliation(s)
- Bhawna Sharma
- University of Nebraska Medical Center, Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Seema Singh
- University of South Alabama, Mitchell Cancer Institute, Department of Oncologic Sciences, Mobile, AL, USA
| | - Michelle L Varney
- University of Nebraska Medical Center, Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA
| | - Rakesh K Singh
- University of Nebraska Medical Center, Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, USA
| |
Collapse
|
39
|
Tsai WB, Aiba I, Lee SY, Feun L, Savaraj N, Kuo MT. Resistance to arginine deiminase treatment in melanoma cells is associated with induced argininosuccinate synthetase expression involving c-Myc/HIF-1alpha/Sp4. Mol Cancer Ther 2010; 8:3223-33. [PMID: 19934275 DOI: 10.1158/1535-7163.mct-09-0794] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Arginine deiminase (ADI)-based arginine depletion is a novel strategy under clinical trials for the treatment of malignant melanoma with promising results. The sensitivity of melanoma to ADI treatment is based on its auxotrophy for arginine due to a lack of argininosuccinate synthetase (AS) expression, the rate-limiting enzyme for the de novo biosynthesis of arginine. We show here that AS expression can be transcriptionally induced by ADI in melanoma cell lines A2058 and SK-MEL-2 but not in A375 cells, and this inducibility was correlated with resistance to ADI treatment. The proximal region of the AS promoter contains an E-box that is recognized by c-Myc and HIF-1alpha and a GC-box by Sp4. Through ChIP assays, we showed that under noninduced conditions, the E-box was bound by HIF-1alpha in all the three melanoma cell lines. Under arginine depletion conditions, HIF-1alpha was replaced by c-Myc in A2058 and SK-MEL-2 cells but not in A375 cells. Sp4 was constitutively bound to the GC-box regardless of arginine availability in all three cell lines. Overexpressing c-Myc by transfection upregulated AS expression in A2058 and SK-MEL-2 cells, whereas cotransfection with HIF-1alpha suppressed c-Myc-induced AS expression. These results suggest that regulation of AS expression involves interplay among positive transcriptional regulators c-Myc and Sp4, and negative regulator HIF-1alpha that confers resistance to ADI treatment in A2058 and SK-MEL-2 cells. Inability of AS induction in A375 cells under arginine depletion conditions was correlated by the failure of c-Myc to interact with the AS promoter.
Collapse
Affiliation(s)
- Wen-Bin Tsai
- Department of Molecular Pathology, Unit 951, The University of Texas M. D. Anderson Cancer Center, 7435 Fannin Street, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
40
|
Valoración inicial, diagnóstico, estadificación, tratamiento y seguimiento de los pacientes con melanoma maligno primario de la piel. Documento de consenso de la “Xarxa de Centres de Melanoma de Catalunya i Balears”. ACTAS DERMO-SIFILIOGRAFICAS 2010. [DOI: 10.1016/j.ad.2009.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
41
|
Mangas C, Paradelo C, Puig S, Gallardo F, Marcoval J, Azon A, Bartralot R, Bel S, Bigatà X, Curcó N, Dalmau J, del Pozo L, Ferrándiz C, Formigón M, González A, Just M, Llambrich A, Llistosella E, Malvehy J, Martí R, Nogués M, Pedragosa R, Rocamora V, Sàbat M, Salleras M. Initial Evaluation, Diagnosis, Staging, Treatment, and Follow-up of Patients with Primary Cutaneous Malignant Melanoma. Consensus Statement of the Network of Catalan and Balearic Melanoma Centers. ACTAS DERMO-SIFILIOGRAFICAS 2010. [DOI: 10.1016/s1578-2190(10)70599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
42
|
Mocellin S, Pasquali S, Rossi CR, Nitti D. Interferon alpha adjuvant therapy in patients with high-risk melanoma: a systematic review and meta-analysis. J Natl Cancer Inst 2010; 102:493-501. [PMID: 20179267 DOI: 10.1093/jnci/djq009] [Citation(s) in RCA: 350] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Based on previous meta-analyses of randomized controlled trials (RCTs), the use of interferon alpha (IFN-alpha) in the adjuvant setting improves disease-free survival (DFS) in patients with high-risk cutaneous melanoma. However, RCTs have yielded conflicting data on the effect of IFN-alpha on overall survival (OS). METHODS We conducted a systematic review and meta-analysis to examine the effect of IFN-alpha on DFS and OS in patients with high-risk cutaneous melanoma. The systematic review was performed by searching MEDLINE, EMBASE, Cancerlit, Cochrane, ISI Web of Science, and ASCO databases. The meta-analysis was performed using time-to-event data from which hazard ratios (HRs) and 95% confidence intervals (CIs) of DFS and OS were estimated. Subgroup and meta-regression analyses to investigate the effect of dose and treatment duration were also performed. Statistical tests were two-sided. RESULTS The meta-analysis included 14 RCTs, published between 1990 and 2008, and involved 8122 patients, of which 4362 patients were allocated to the IFN-alpha arm. IFN-alpha alone was compared with observation in 12 of the 14 trials, and 17 comparisons (IFN-alpha vs comparator) were generated in total. IFN-alpha treatment was associated with a statistically significant improvement in DFS in 10 of the 17 comparisons (HR for disease recurrence = 0.82, 95% CI = 0.77 to 0.87; P < .001) and improved OS in four of the 14 comparisons (HR for death = 0.89, 95% CI = 0.83 to 0.96; P = .002). No between-study heterogeneity in either DFS or OS was observed. No optimal IFN-alpha dose and/or treatment duration or a subset of patients more responsive to adjuvant therapy was identified using subgroup analysis and meta-regression. CONCLUSION In patients with high-risk cutaneous melanoma, IFN-alpha adjuvant treatment showed statistically significant improvement in both DFS and OS.
Collapse
Affiliation(s)
- Simone Mocellin
- Clinica Chirurgica Generale 2, Department of Oncological and Surgical Sciences, University of Padova, via Giustiniani 2, 35128 Padova, Italy.
| | | | | | | |
Collapse
|
43
|
Primot A, Mogha A, Corre S, Roberts K, Debbache J, Adamski H, Dreno B, Khammari A, Lesimple T, Mereau A, Goding CR, Galibert MD. ERK-regulated differential expression of the Mitf 6a/b splicing isoforms in melanoma. Pigment Cell Melanoma Res 2009; 23:93-102. [PMID: 19895547 DOI: 10.1111/j.1755-148x.2009.00652.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The master regulator of the melanocyte lineage Mitf is intimately involved in development as well as melanoma, controlling cell survival, differentiation, proliferation and metastasis/migration. Consistent with its central role, Mitf expression and Mitf post-translational modifications are tightly regulated. An additional potential level of regulation is afforded by differential splicing of Mitf exon-6 leading to the generation of two isoforms that differ by the presence of six amino-acids in the Mitf (+) isoform and which have differential effects on cell cycle progression. However, whether the ratio of the two isoforms is regulated and whether their expression correlates with melanoma progression is not known. Here, we show that the differential expression of the Mitf 6a/b isoforms is dependent on the MAPKinase signalling, being linked to the activation of MEK1-ERK2, but not to N-RAS/B-RAF mutation status. In addition, quantification of Mitf 6a/b splicing forms in 86 melanoma samples revealed substantially increased levels of the Mitf (-) form in a subset of metastatic melanomas. The results suggest that differential expression of the Mitf 6a/b isoforms may represent an additional mechanism for regulating Mitf function and melanoma biology.
Collapse
Affiliation(s)
- Aline Primot
- CNRS-UMR6061, RTO-Team/Rennes-1 University, Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hersey P, Bastholt L, Chiarion-Sileni V, Cinat G, Dummer R, Eggermont AMM, Espinosa E, Hauschild A, Quirt I, Robert C, Schadendorf D. Small molecules and targeted therapies in distant metastatic disease. Ann Oncol 2009; 20 Suppl 6:vi35-40. [PMID: 19617296 PMCID: PMC2712592 DOI: 10.1093/annonc/mdp254] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy, biological agents or combinations of both have had little impact on survival of patients with metastatic melanoma. Advances in understanding the genetic changes associated with the development of melanoma resulted in availability of promising new agents that inhibit specific proteins up-regulated in signal cell pathways or inhibit anti-apoptotic proteins. Sorafenib, a multikinase inhibitor of the RAF/RAS/MEK pathway, elesclomol (STA-4783) and oblimersen (G3139), an antisense oligonucleotide targeting anti-apoptotic BCl-2, are in phase III clinical studies in combination with chemotherapy. Agents targeting mutant B-Raf (RAF265 and PLX4032), MEK (PD0325901, AZD6244), heat-shock protein 90 (tanespimycin), mTOR (everolimus, deforolimus, temsirolimus) and VEGFR (axitinib) showed some promise in earlier stages of clinical development. Receptor tyrosine-kinase inhibitors (imatinib, dasatinib, sunitinib) may have a role in treatment of patients with melanoma harbouring c-Kit mutations. Although often studied as single agents with disappointing results, new targeted drugs should be more thoroughly evaluated in combination therapies. The future of rational use of new targeted agents also depends on successful application of analytical techniques enabling molecular profiling of patients and leading to selection of likely therapy responders.
Collapse
Affiliation(s)
- P Hersey
- Immunology and Oncology Unit, Calvary Mater Newcastle Hospital, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pandha HS, Heinemann L, Simpson GR, Melcher A, Prestwich R, Errington F, Coffey M, Harrington KJ, Morgan R. Synergistic effects of oncolytic reovirus and cisplatin chemotherapy in murine malignant melanoma. Clin Cancer Res 2009; 15:6158-66. [PMID: 19773377 DOI: 10.1158/1078-0432.ccr-09-0796] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To test combination treatment schedules of reovirus and cisplatin chemotherapy in human and murine melanoma cell lines and murine models of melanoma and to investigate the possible mechanisms of synergistic antitumor effects. EXPERIMENTAL DESIGN The effects of reovirus +/- chemotherapy on in vitro cytotoxicity and viral replication were assessed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay and plaque assay. Interactions between agents were assessed by combination index analysis. Mode of cell death was assessed by Annexin V/propidium iodide fluorescence-activated cell sorting-based assays; gene expression profiling of single versus combination treatments was completed using the Agilent microarray system. Single agent and combination therapy effects were tested in vivo in two immunocompetent models of murine melanoma. RESULTS Variable degrees of synergistic cytotoxicity between live reovirus and several chemotherapy agents were observed in B16.F10 mouse melanoma cells, most significantly with cisplatin (combination index of 0.42 +/- 0.03 at ED(50)). Combination of cisplatin and reovirus exposure led to increased late apoptotic/necrotic cell populations. Cisplatin almost completely abrogated the inflammatory cytokine gene up-regulation induced by reovirus. Combination therapy led to significantly delayed tumor growth and improved survival in vivo (P < 0.0001 and P = 0.0003, respectively). Cisplatin had no effect on the humoral response to reovirus in mice. However, cisplatin treatment suppressed the cytokine and chemokine response to reovirus in vitro and in vivo. CONCLUSION The combination of reovirus and several chemotherapeutic agents synergistically enhanced cytotoxicity in human and murine melanoma cell lines in vitro and murine tumors in vivo. The data support the current reovirus/chemotherapy combination phase I clinical studies currently ongoing in the clinic.
Collapse
Affiliation(s)
- Hardev S Pandha
- Oncology, Postgraduate Medical School, University of Surrey, Guildford, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tormo D, Chęcińska A, Alonso-Curbelo D, Pérez-Guijarro E, Cañón E, Riveiro-Falkenbach E, Calvo TG, Larribere L, Megías D, Mulero F, Piris MA, Dash R, Barral PM, Rodríguez-Peralto JL, Ortiz-Romero P, Tüting T, Fisher PB, Soengas MS. Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells. Cancer Cell 2009; 16:103-14. [PMID: 19647221 PMCID: PMC2851205 DOI: 10.1016/j.ccr.2009.07.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 05/26/2009] [Accepted: 07/08/2009] [Indexed: 12/22/2022]
Abstract
Inappropriate drug delivery, secondary toxicities, and persistent chemo- and immunoresistance have traditionally compromised treatment response in melanoma. Using cellular systems and genetically engineered mouse models, we show that melanoma cells retain an innate ability to recognize cytosolic double-stranded RNA (dsRNA) and mount persistent stress response programs able to block tumor growth, even in highly immunosuppressed backgrounds. The dsRNA mimic polyinosine-polycytidylic acid, coadministered with polyethyleneimine as carrier, was identified as an unanticipated inducer of autophagy downstream of an exacerbated endosomal maturation program. A concurrent activity of the dsRNA helicase MDA-5 driving the proapoptotic protein NOXA resulted in an efficient autodigestion of melanoma cells. These results reveal tractable links for therapeutic intervention among dsRNA helicases, endo/lysosomes, and apoptotic factors.
Collapse
Affiliation(s)
- Damià Tormo
- Melanoma Laboratory, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28049, Spain
| | - Agnieszka Chęcińska
- Melanoma Laboratory, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28049, Spain
| | - Direna Alonso-Curbelo
- Melanoma Laboratory, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28049, Spain
| | - Eva Pérez-Guijarro
- Melanoma Laboratory, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28049, Spain
| | - Estela Cañón
- Melanoma Laboratory, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28049, Spain
| | - Erica Riveiro-Falkenbach
- Melanoma Laboratory, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28049, Spain
| | - Tonantzin G. Calvo
- Melanoma Laboratory, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28049, Spain
| | - Lionel Larribere
- Melanoma Laboratory, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28049, Spain
| | - Diego Megías
- Confocal Microscopy and Cytometry Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28049, Spain
| | - Francisca Mulero
- Confocal Microscopy and Cytometry Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28049, Spain
| | - Miguel A. Piris
- Lymphoma Laboratory, Spanish National Cancer Research Centre (CNIO), Madrid 28049, Spain
| | - Rupesh Dash
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia 23298-0033, USA
| | - Paola M. Barral
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia 23298-0033, USA
| | | | | | - Thomas Tüting
- Laboratory of Experimental Dermatology Dermatology, Department of Dermatology, University of Bonn, 53105 Bonn, Germany
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia 23298-0033, USA
| | - María S. Soengas
- Melanoma Laboratory, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid 28049, Spain
- Requests for reprints: María S. Soengas, Centro Nacional de Investigaciones Oncológicas, CNIO, Melchor Fernández Almagro 3. Madrid 28049, Spain. Phone: 34-91-732 8000-Ext 3680. FAX: 34-91-224 6980.
| |
Collapse
|
47
|
Hou P, Liu D, Ji M, Liu Z, Engles JM, Wahl RL, Xing M. Induction of thyroid gene expression and radioiodine uptake in melanoma cells: novel therapeutic implications. PLoS One 2009; 4:e6200. [PMID: 19593429 PMCID: PMC2703805 DOI: 10.1371/journal.pone.0006200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 06/08/2009] [Indexed: 01/17/2023] Open
Abstract
Both the MAP kinase and PI3K/Akt pathways play an important role in the pathogenesis of melanoma. We conducted the present study to test the hypothesis that targeting the two pathways to potently induce cell inhibition accompanied with thyroid iodide-handling gene expression for adjunct radioiodine ablation could be a novel effective therapeutic strategy for melanoma. We used specific shRNA approaches and inhibitors to individually or dually suppress the MAP kinase and PI3K/Akt pathways and examined the effects on a variety of molecular and cellular responses of melanoma cells that harbored activating genetic alterations in the two pathways. Suppression of the MAP kinase and PI3K/Akt pathways showed potent anti-melanoma cell effects, including the inhibition of cell proliferation, transformation and invasion, induction of G0/G1 cell cycle arrest and, when the two pathways were dually suppressed, cell apoptosis. Remarkably, suppression of the two pathways, particularly simultaneous suppression of them, also induced expression of genes that are normally expressed in the thyroid gland, such as the genes for sodium/iodide symporter and thyroid-stimulating hormone receptor. Melanoma cells were consequently conferred the ability to take up radioiodide. We conclude that dually targeting the MAP kinase and PI3K/Akt pathways for potent cell inhibition coupled with induction of thyroid gene expression for adjunct radioiodine ablation therapy may prove to be a novel and effective therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Peng Hou
- Division of Endocrinology and Metabolism, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Dingxie Liu
- Division of Endocrinology and Metabolism, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Meiju Ji
- Division of Endocrinology and Metabolism, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - James M. Engles
- Division of Nuclear Medicine, Department of Radiology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard L. Wahl
- Division of Nuclear Medicine, Department of Radiology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Mingzhao Xing
- Division of Endocrinology and Metabolism, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
48
|
Slominski A, Zbytek B, Slominski R. Inhibitors of melanogenesis increase toxicity of cyclophosphamide and lymphocytes against melanoma cells. Int J Cancer 2009; 124:1470-7. [PMID: 19085934 PMCID: PMC2628959 DOI: 10.1002/ijc.24005] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High mortality rate for metastatic melanoma is related to its resistant to the current methods of therapy. Melanogenesis is a metabolic pathway characteristic for normal and malignant melanocytes that can affect the behavior of melanoma cells or its surrounding environment. Human melanoma cells in which production of melanin pigment is dependent on tyrosine levels in medium were used for experiments. Peripheral blood mononuclear cells were derived from the buffy coats purchased from Lifeblood Biological Services. Cell pigmentation was evaluated macroscopically, and tyrosinase activity was measured spectrophotometrically. Cell proliferation and viability were measured using lactate dehydrogenase release MTT, [(3)H]-thymidine incorporation and DNA content analyses, and gene expression was measured by real time RT-PCR. Pigmented melanoma cells were significantly less sensitive to cyclophosphamide and to killing action of IL-2-activated peripheral blood lymphocytes. The inhibition of melanogenesis by either blocking tyrosinase catalytic site or chelating copper ions sensitized melanoma cells towards cytotoxic action of cyclophosphamide, and amplified immunotoxic activities of IL-2 activated lymphocytes. Exogenous L-DOPA inhibited lymphocyte proliferation producing the cell cycle arrest in G1/0 and dramatically inhibited the production of IL-1beta, TNF-alpha, IL-6 and IL-10. Thus, the active melanogenesis could not only impair the cytotoxic action of cyclophosphamid but also has potent immunosuppressive properties. This resistance to a chemotherapeutic agent or immunotoxic activity of lymphocytes could be reverted by the action of tyrosinase inhibitors. Thus, the inhibition of melanogenesis might represent a valid therapeutic target for the management of advanced melanotic melanomas.
Collapse
Affiliation(s)
- Andrzej Slominski
- Department of Pathology, Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| | | | | |
Collapse
|
49
|
Mathieu V, Pirker C, Martin de Lassalle E, Vernier M, Mijatovic T, DeNeve N, Gaussin JF, Dehoux M, Lefranc F, Berger W, Kiss R. The sodium pump alpha1 sub-unit: a disease progression-related target for metastatic melanoma treatment. J Cell Mol Med 2009; 13:3960-72. [PMID: 19243476 PMCID: PMC4516543 DOI: 10.1111/j.1582-4934.2009.00708.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Melanomas remain associated with dismal prognosis because they are naturally resistant to apoptosis and they markedly metastasize. Up-regulated expression of sodium pump α sub-units has previously been demonstrated when comparing metastatic to non-metastatic melanomas. Our previous data revealed that impairing sodium pump α1 activity by means of selective ligands, that are cardiotonic steroids, markedly impairs cell migration and kills apoptosis-resistant cancer cells. The objective of this study was to determine the expression levels of sodium pump α sub-units in melanoma clinical samples and cell lines and also to characterize the role of α1 sub-units in melanoma cell biology. Quantitative RT-PCR, Western blotting and immunohistochemistry were used to determine the expression levels of sodium pump α sub-units. In vitro cytotoxicity of various cardenolides and of an anti-α1 siRNA was evaluated by means of MTT assay, quantitative videomicroscopy and through apoptosis assays. The in vivo activity of a novel cardenolide UNBS1450 was evaluated in a melanoma brain metastasis model. Our data show that all investigated human melanoma cell lines expressed high levels of the α1 sub-unit, and 33% of human melanomas displayed significant α1 sub-unit expression in correlation with the Breslow index. Furthermore, cardenolides (notably UNBS1450; currently in Phase I clinical trials) displayed marked anti-tumour effects against melanomas in vitro. This activity was closely paralleled by decreases in cMyc expression and by increases in apoptotic features. UNBS1450 also displayed marked anti-tumour activity in the aggressive human metastatic brain melanoma model in vivo. The α1 sodium pump sub-unit could represent a potential novel target for combating melanoma.
Collapse
Affiliation(s)
- Véronique Mathieu
- Laboratory of Toxicology, Institute of Pharmacy, Free University of Brussels, ULB, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Carlson JA, Ross JS, Slominski AJ. New techniques in dermatopathology that help to diagnose and prognosticate melanoma. Clin Dermatol 2009; 27:75-102. [DOI: 10.1016/j.clindermatol.2008.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|