1
|
Fathi M, Taher HJ, Al-Rubiae SJ, Yaghoobpoor S, Bahrami A, Eshraghi R, Sadri H, Asadi Anar M, Gholamrezanezhad A. Role of molecular imaging in prognosis, diagnosis, and treatment of gastrointestinal cancers: An update on new therapeutic methods. World J Methodol 2024; 14:93461. [PMID: 39712556 PMCID: PMC11287540 DOI: 10.5662/wjm.v14.i4.93461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 07/26/2024] Open
Abstract
One of the leading causes of cancer-related death is gastrointestinal cancer, which has a significant morbidity and mortality rate. Although preoperative risk assessment is essential for directing patient care, its biological behavior cannot be accurately predicted by conventional imaging investigations. Potential pathophysiological information in anatomical imaging that cannot be visually identified can now be converted into high-dimensional quantitative image features thanks to the developing discipline of molecular imaging. In order to enable molecular tissue profile in vivo, molecular imaging has most recently been utilized to phenotype the expression of single receptors and targets of biological therapy. It is expected that molecular imaging will become increasingly important in the near future, driven by the expanding range of biological therapies for cancer. With this live molecular fingerprinting, molecular imaging can be utilized to drive expression-tailored customized therapy. The technical aspects of molecular imaging are first briefly discussed in this review, followed by an examination of the most recent research on the diagnosis, prognosis, and potential future clinical methods of molecular imaging for GI tract malignancies.
Collapse
Affiliation(s)
- Mobina Fathi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | | | | | - Shirin Yaghoobpoor
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Ashkan Bahrami
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan 1617768911, Iran
| | - Reza Eshraghi
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan 1617768911, Iran
| | - Hossein Sadri
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan 1617768911, Iran
| | - Mahsa Asadi Anar
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983969411, Iran
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| |
Collapse
|
2
|
Biswas P, Khan A, Mallick AI. Targeted Bioimaging of Microencapsulated Recombinant LAB Vector Expressing Fluorescent Reporter Protein: A Non-invasive Approach for Microbial Tracking. ACS Biomater Sci Eng 2024; 10:5210-5225. [PMID: 39087888 DOI: 10.1021/acsbiomaterials.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Lactococcus lactis (L. lactis), the first genetically modified Generally Recognized As Safe (GRAS) category Lactic Acid producing Bacteria (LAB), is best known for its generalized health-promoting benefits and ability to express heterologous proteins. However, achieving the optimal probiotic effects requires a selective approach that would allow us to study in vivo microbial biodistribution, fate, and immunological consequences. Although the chemical conjugation of fluorophores and chromophores represent the standard procedure to tag microbial cells for various downstream applications, it requires a high-throughput synthesis scheme, which is often time-consuming and expensive. On the contrary, the genetic manipulation of LAB vector, either chromosomally or extra-chromosomally, to express bioluminescent or fluorescent reporter proteins has greatly enhanced our ability to monitor bacterial transit through a complex gut environment. However, with faster passage and quick washing out from the gut due to rhythmic contractions of the digestive tract, real-time tracking of LAB vectors, particularly non-commensal ones, remains problematic. To get a deeper insight into the biodistribution of non-commensal probiotic bacteria in vivo, we bioengineered L. lactis to express fluorescence reporter proteins, mCherry (bright red monomeric fluorescent protein) and mEGFP (monomeric enhanced green fluorescent protein), followed by microencapsulation with a mucoadhesive and biodegradable polymer, chitosan. We show that coating of recombinant Lactococcus lactis (rL. lactis) with chitosan polymer, cross-linked with tripolyphosphate (TPP), retains their ability to express the reporter proteins stably without altering the specificity and sensitivity of fluorescence detection in vitro and in vivo. Further, we provide evidence of enhanced intragastric stability by chitosan-TPP (CS) coating of rL. lactis cells, allowing us to study the spatiotemporal distribution for an extended time in the gut of two unrelated hosts, avian and murine. The present scheme involving genetic modification and chitosan encapsulation of non-commensal LAB vector demonstrates great promise as a non-invasive and intensive tool for active live tracking of gut microbes.
Collapse
Affiliation(s)
- Prakash Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Afruja Khan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
3
|
Altinbasak I, Alp Y, Sanyal R, Sanyal A. Theranostic nanogels: multifunctional agents for simultaneous therapeutic delivery and diagnostic imaging. NANOSCALE 2024; 16:14033-14056. [PMID: 38990143 DOI: 10.1039/d4nr01423e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In recent years, there has been a growing interest in multifunctional theranostic agents capable of delivering therapeutic payloads while facilitating simultaneous diagnostic imaging of diseased sites. This approach offers a comprehensive strategy particularly valuable in dynamically evolving diseases like cancer, where combining therapy and diagnostics provides crucial insights for treatment planning. Nanoscale platforms, specifically nanogels, have emerged as promising candidates due to their stability, tunability, and multifunctionality as carriers. As a well-studied subgroup of soft polymeric nanoparticles, nanogels exhibit inherent advantages due to their size and chemical compositions, allowing for passive and active targeting of diseased tissues. Moreover, nanogels loaded with therapeutic and diagnostic agents can be designed to respond to specific stimuli at the disease site, enhancing their efficacy and specificity. This capability enables fine-tuning of theranostic platforms, garnering significant clinical interest as they can be tailored for personalized treatments. The ability to monitor tumor progression in response to treatment facilitates the adaptation of therapies according to individual patient responses, highlighting the importance of designing theranostic platforms to guide clinicians in making informed treatment decisions. Consequently, the integration of therapy and diagnostics using theranostic platforms continues to advance, offering intelligent solutions to address the challenges of complex diseases such as cancer. In this context, nanogels capable of delivering therapeutic payloads and simultaneously armed with diagnostic modalities have emerged as an attractive theranostic platform. This review focuses on advances made toward the fabrication and utilization of theranostic nanogels by highlighting examples from recent literature where their performances through a combination of therapeutic agents and imaging methods have been evaluated.
Collapse
Affiliation(s)
- Ismail Altinbasak
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
| | - Yasin Alp
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye.
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Türkiye
| |
Collapse
|
4
|
Gao G, Miyasato D, Barner LA, Serafin R, Bishop KW, Xie W, Glaser AK, Rosenthal EL, True LD, Liu JT. Comprehensive Surface Histology of Fresh Resection Margins With Rapid Open-Top Light-Sheet (OTLS) Microscopy. IEEE Trans Biomed Eng 2023; 70:2160-2171. [PMID: 37021859 PMCID: PMC10324671 DOI: 10.1109/tbme.2023.3237267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE For tumor resections, margin status typically correlates with patient survival but positive margin rates are generally high (up to 45% for head and neck cancer). Frozen section analysis (FSA) is often used to intraoperatively assess the margins of excised tissue, but suffers from severe under-sampling of the actual margin surface, inferior image quality, slow turnaround, and tissue destructiveness. METHODS Here, we have developed an imaging workflow to generate en face histologic images of freshly excised surgical margin surfaces based on open-top light-sheet (OTLS) microscopy. Key innovations include (1) the ability to generate false-colored H&E-mimicking images of tissue surfaces stained for < 1 min with a single fluorophore, (2) rapid OTLS surface imaging at a rate of 15 min/cm2 followed by real-time post-processing of datasets within RAM at a rate of 5 min/cm2, and (3) rapid digital surface extraction to account for topological irregularities at the tissue surface. RESULTS In addition to the performance metrics listed above, we show that the image quality generated by our rapid surface-histology method approaches that of gold-standard archival histology. CONCLUSION OTLS microscopy has the feasibility to provide intraoperative guidance of surgical oncology procedures. SIGNIFICANCE The reported methods can potentially improve tumor-resection procedures, thereby improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Gan Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Dominie Miyasato
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Lindsey A. Barner
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Robert Serafin
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Kevin W. Bishop
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Weisi Xie
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - Adam K. Glaser
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Eben L. Rosenthal
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lawrence D. True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Jonathan T.C. Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Song B, Yan H, Jiang J, Yu J, Huang S, Yuan J. An activatable nanoprobe based on nanocomposites of visible-light-excitable europium(III) complex-anchored MnO 2 nanosheets for bimodal time-gated luminescence and magnetic resonance imaging of tumor cells. Analyst 2023; 148:2493-2500. [PMID: 37183980 DOI: 10.1039/d3an00405h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Bimodal imaging probes that combine magnetic resonance imaging (MRI) and photoluminescence imaging are quite appealing since they can supply both anatomical and molecular information to effectively ameliorate the accuracy of detection. In this study, an activatable nanoprobe, [Eu(BTD)3(DPBT)]@MnO2, for bimodal time-gated luminescence imaging (TGLI) and MRI has been constructed by anchoring visible-light-excitable Eu3+ complexes on lamellar MnO2 nanosheets. Due to the luminescence quenching effect and non-magnetic resonance (MR) activity of MnO2 nanosheets, the developed nanoprobe presents quite weak TGL and MR signals. After exposure to H2O2 or GSH, accompanied by the transformation from MnO2 to Mn2+, the nanoprobe exhibits rapid, sensitive, and selective "turn-on" responses towards GSH and H2O2 in TGL and MR detection modes. Furthermore, the nanoprobe displays high stability, low cytotoxicity, good biocompatibility and water dispersion. Given the high contents of GSH and H2O2 in cancer cells, the nanoprobe was used for the identification of cancer cells by TGLI of intracellular GSH and H2O2, as well as for the tracing of tumor cells in tumor-bearing mice by tumor-targeting in vivo MRI and TGLI of tumor tissues. The research outcomes proved the potential of [Eu(BTD)3(DPBT)]@MnO2 as a useful nanoprobe for the tracing and accurate detection of cancer cells in vitro and in vivo via bimodal TGLI and MRI.
Collapse
Affiliation(s)
- Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Huinan Yan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Jiao Jiang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Jin Yu
- Second Affiliated Hospital, Dalian Medical University, Dalian 116027, China
| | - Shengjun Huang
- Division of Fossil Energy Conversion, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
6
|
Du Z, Wang T. Knowledge domain and dynamic patterns in multimodal molecular imaging from 2012 to 2021: A visual bibliometric analysis. Medicine (Baltimore) 2023; 102:e32780. [PMID: 36705366 PMCID: PMC9875962 DOI: 10.1097/md.0000000000032780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Multimodal molecular imaging technologies have been widely used to optimize medical research and clinical practice. Bibliometric analysis was performed to identify global research trends, hot spots, and scientific frontiers of multimodal molecular imaging technology from 2012 to 2021. The articles and reviews related to multimodal molecular imaging were retrieved from the Web of Science Core Collection. A bibliometric study was performed using CiteSpace and VOSviewer. A total of 4169 articles and reviews from 2012 to 2021 were analyzed. An increasing trend in the number of articles on multimodal molecular imaging technology was observed. These publications mainly come from 417 institutions in 92 countries, led by the USA and China. K. Bailey Freund published the most papers amongst the publications, while R.F. Spaide had the most co-citations. A dual map overlay of the literature shows that most publications were specialized in physics/materials/chemistry, and molecular/biology/immunology. Synergistic therapy in cancer, advanced nanotechnology, and multimodal imaging in ophthalmology are new trends and developing areas of interest. A global bibliometric and visualization analysis was used to comprehensively review the published research related to multimodal molecular imaging. This study may help in understanding the dynamic patterns of multimodal molecular imaging technology research and point out the developing areas of this field.
Collapse
Affiliation(s)
- Zhe Du
- Trauma Center, Peking University People’s Hospital, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education), Beijing, China
| | - Tianbing Wang
- Trauma Center, Peking University People’s Hospital, National Center for Trauma Medicine, Key Laboratory of Trauma and Neural Regeneration (Ministry of Education), Beijing, China
- *Correspondence: Tianbing Wang, Trauma Center, Peking University People’s Hospital, No.11 South Xizhimen Street, Beijing 100044, China (e-mail: )
| |
Collapse
|
7
|
Nguyen A, Kumar S, Kulkarni AA. Nanotheranostic Strategies for Cancer Immunotherapy. SMALL METHODS 2022; 6:e2200718. [PMID: 36382571 PMCID: PMC11056828 DOI: 10.1002/smtd.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Despite advancements in cancer immunotherapy, heterogeneity in tumor response impose barriers to successful treatments and accurate prognosis. Effective therapy and early outcome detection are critical as toxicity profiles following immunotherapies can severely affect patients' quality of life. Existing imaging techniques, including positron emission tomography, computed tomography, magnetic resonance imaging, or multiplexed imaging, are often used in clinics yet suffer from limitations in the early assessment of immune response. Conventional strategies to validate immune response mainly rely on the Response Evaluation Criteria in Solid Tumors (RECIST) and the modified iRECIST for immuno-oncology drug trials. However, accurate monitoring of immunotherapy efficacy is challenging since the response does not always follow conventional RECIST criteria due to delayed and variable kinetics in immunotherapy responses. Engineered nanomaterials for immunotherapy applications have significantly contributed to overcoming these challenges by improving drug delivery and dynamic imaging techniques. This review summarizes challenges in recent immune-modulation approaches and traditional imaging tools, followed by emerging developments in three-in-one nanoimmunotheranostic systems co-opting nanotechnology, immunotherapy, and imaging. In addition, a comprehensive overview of imaging modalities in recent cancer immunotherapy research and a brief outlook on how nanotheranostic platforms can potentially advance to clinical translations for the field of immuno-oncology is presented.
Collapse
Affiliation(s)
- Anh Nguyen
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Sahana Kumar
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Ashish A. Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
8
|
Dell'Olio F. Multiplexed Liquid Biopsy and Tumor Imaging Using Surface-Enhanced Raman Scattering. BIOSENSORS 2021; 11:449. [PMID: 34821665 PMCID: PMC8615571 DOI: 10.3390/bios11110449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The recent improvements in diagnosis enabled by advances in liquid biopsy and oncological imaging significantly better cancer care. Both these complementary approaches, which are used for early tumor detection, characterization, and monitoring, can benefit from applying techniques based on surface-enhanced Raman scattering (SERS). With a detection sensitivity at the single-molecule level, SERS spectroscopy is widely used in cell and molecular biology, and its capability for the in vitro detection of several types of cancer biomarkers is well established. In the last few years, several intriguing SERS applications have emerged, including in vivo imaging for tumor targeting and the monitoring of drug release. In this paper, selected recent developments and trends in SERS applications in the field of liquid biopsy and tumor imaging are critically reviewed, with a special emphasis on results that demonstrate the clinical utility of SERS.
Collapse
Affiliation(s)
- Francesco Dell'Olio
- Department of Electrical and Information Engineering, Polytechnic University of Bari, 70125 Bari, Italy
| |
Collapse
|
9
|
Burns JM, Shafer E, Vankayala R, Kundra V, Anvari B. Near Infrared Fluorescence Imaging of Intraperitoneal Ovarian Tumors in Mice Using Erythrocyte-Derived Optical Nanoparticles and Spatially-Modulated Illumination. Cancers (Basel) 2021; 13:cancers13112544. [PMID: 34067308 PMCID: PMC8196853 DOI: 10.3390/cancers13112544] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Ovarian cancer has a greater mortality rate than all gynecological malignancies combined. While cytoreductive surgery remains the primary therapeutic approach, its success is limited by the inability to visualize all tumor nodules for resection. We developed light activated nano-sized particles derived from red blood cells as potential imaging probes for near infrared fluorescence imaging of tumors during cytoreductive surgery. We present the first demonstration of the use of these nanoparticles in conjunction a spatially-modulated illumination (SMI) modality to image ovarian intraperitoneal tumors in mice. Our findings indicate that, at 24 h post-administration, these nanoparticles accumulated at higher levels in tumors as compared to organs, and that use of SMI enhances the image contrast. Abstract Ovarian cancer is the deadliest gynecological cancer. Cytoreductive surgery to remove primary and intraperitoneal tumor deposits remains as the standard therapeutic approach. However, lack of an intraoperative image-guided approach to enable the visualization of all tumors can result in incomplete cytoreduction and recurrence. We engineered nano-sized particles derived from erythrocytes that encapsulate the near infrared (NIR) fluorochrome, indocyanine green, as potential imaging probes for tumor visualization during cytoreductive surgery. Herein, we present the first demonstration of the use of these nanoparticles in conjunction with spatially-modulated illumination (SMI), at spatial frequencies in the range of 0–0.5 mm−1, to fluorescently image intraperitoneal ovarian tumors in mice. Results of our animal studies suggest that the nanoparticles accumulated at higher levels within tumors 24 h post-intraperitoneal injection as compared to various other organs. We demonstrate that, under the imaging specifications reported here, use of these nanoparticles in conjunction with SMI enhances the fluorescence image contrast between intraperitoneal tumors and liver, and between intraperitoneal tumors and spleen by nearly 2.1, and 3.0 times, respectively, at the spatial frequency of 0.2 mm−1 as compared to the contrast values at spatially-uniform (non-modulated) illumination. These results suggest that the combination of erythrocyte-derived NIR nanoparticles and structured illumination provides a promising approach for intraoperative fluorescence imaging of ovarian tumor nodules at enhanced contrast.
Collapse
Affiliation(s)
- Joshua M. Burns
- Department of Bioengineering, University of California, 900 University Ave., Riverside, CA 92521, USA; (J.M.B.); (E.S.); (R.V.)
| | - Elise Shafer
- Department of Bioengineering, University of California, 900 University Ave., Riverside, CA 92521, USA; (J.M.B.); (E.S.); (R.V.)
| | - Raviraj Vankayala
- Department of Bioengineering, University of California, 900 University Ave., Riverside, CA 92521, USA; (J.M.B.); (E.S.); (R.V.)
- Radoptics, LLC, 1002 Health Science Rd. E., Suite P214, Irvine, CA 92612, USA
| | - Vikas Kundra
- Department of Cancer Systems Imaging and Department of Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, #57, Houston, TX 77030, USA;
| | - Bahman Anvari
- Department of Bioengineering, University of California, 900 University Ave., Riverside, CA 92521, USA; (J.M.B.); (E.S.); (R.V.)
- Correspondence:
| |
Collapse
|
10
|
Armanetti P, Chillà A, Margheri F, Biagioni A, Menichetti L, Margheri G, Ratto F, Centi S, Bianchini F, Severi M, Traversi R, Bani D, Lulli M, Del Rosso T, Mocali A, Rovida E, Del Rosso M, Fibbi G, Laurenzana A. Enhanced Antitumoral Activity and Photoacoustic Imaging Properties of AuNP-Enriched Endothelial Colony Forming Cells on Melanoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001175. [PMID: 33643785 PMCID: PMC7887578 DOI: 10.1002/advs.202001175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/18/2020] [Indexed: 05/03/2023]
Abstract
Near infrared (NIR)-resonant gold nanoparticles (AuNPs) hold great promise in cancer diagnostics and treatment. However, translating the theranostic potential of AuNPs into clinical applications still remains a challenge due to the difficulty to improve the efficiency and specificity of tumor delivery in vivo as well as the clearance from liver and spleen to avoid off target toxicity. In this study, endothelial colony forming cells (ECFCs) are exploited as vehicles to deliver AuNPs to tumors. It is first demonstrated that ECFCs display a great capability to intake AuNPs without losing viability, and exert antitumor activity per se. Using a human melanoma xenograft mouse model, it is next demonstrated that AuNP-loaded ECFCs retain their capacity to migrate to tumor sites in vivo 1 day after injection and stay in the tumor mass for more than 1 week. In addition, it is demonstrated that ECFC-loaded AuNPs are efficiently cleared by the liver over time and do not elicit any sign of damage to healthy tissue.
Collapse
Affiliation(s)
- Paolo Armanetti
- Institute of Clinical Physiology (IFC)National Research CouncilPisa56124Italy
| | - Anastasia Chillà
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Luca Menichetti
- Institute of Clinical Physiology (IFC)National Research CouncilPisa56124Italy
| | - Giancarlo Margheri
- Institute for Complex SystemsNational Research CouncilSesto Fiorentino50019Italy
| | - Fulvio Ratto
- Institute of Applied Physics “N. Carrara”National Research CouncilSesto Fiorentino50019Italy
| | - Sonia Centi
- Institute of Applied Physics “N. Carrara”National Research CouncilSesto Fiorentino50019Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Mirko Severi
- Department of Chemistry “Ugo Schiff”University of FlorenceSesto Fiorentino50019Italy
| | - Rita Traversi
- Department of Chemistry “Ugo Schiff”University of FlorenceSesto Fiorentino50019Italy
| | - Daniele Bani
- Department of Clinical and Experimental MedicineUniversity of FlorenceFlorence50134Italy
| | - Matteo Lulli
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Tommaso Del Rosso
- Department of PhysicsPontifícia Universidade Católica do Rio de JaneiroRio de Janeiro22451‐900Brazil
| | - Alessandra Mocali
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Elisabetta Rovida
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorence50134Italy
| |
Collapse
|
11
|
Smartphone Mammography for Breast Cancer Screening. BIG DATA ANALYTICS 2021. [DOI: 10.1007/978-3-030-93620-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
12
|
Pal UM, Gk AV, Gogoi G, Rila S, Shroff S, Am G, Borah P, Varma M, Kurpad V, Baruah D, Vaidya JS, Pandya HJ. Towards a Portable Platform Integrated With Multispectral Noncontact Probes for Delineating Normal and Breast Cancer Tissue Based on Near-Infrared Spectroscopy. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2020; 14:879-888. [PMID: 32746350 DOI: 10.1109/tbcas.2020.3005971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Currently, the confirmation of diagnosis of breast cancer is made by microscopic examination of an ultra-thin slice of a needle biopsy specimen. This slice is conventionally formalin-fixed and stained with hematoxylin-eosin and visually examined under a light microscope. This process is labor-intensive and requires highly skilled doctors (pathologists). In this paper, we report a novel tool based on near-infrared spectroscopy (Spectral-IRDx) which is a portable, non-contact, and cost-effective system and could provide a rapid and accurate diagnosis of cancer. The Spectral-IRDx tool performs absorption spectroscopy at near-infrared (NIR) wavelengths of 850, 935, and 1060 nm. We measure normalized detected voltage (Vdn) with the tool in 10 deparaffinized breast biopsy tissue samples, 5 of which were cancer (C) and 5 were normal (N) tissues. The difference in Vdn at 935 nm and 1060 nm between cancer and normal tissues is statistically significant with p-values of 0.0038 and 0.0022 respectively. Absorption contrast factor (N/C) of 1.303, 1.551, and 1.45 are observed for 850, 935, and 1060 nm respectively. The volume fraction contrast (N/C) of lipids and collagens are reported as 1.28 and 1.10 respectively. Higher absorption contrast factor (N/C) and volume fraction contrast (N/C) signifies higher concentration of lipids in normal tissues as compared to cancerous tissues, a basis for delineation. These preliminary results support the envisioned concept for noninvasive and noncarcinogenic NIR-based breast cancer diagnostic platform, which will be tested using a larger number of samples.
Collapse
|
13
|
Voskuil FJ, Steinkamp PJ, Zhao T, van der Vegt B, Koller M, Doff JJ, Jayalakshmi Y, Hartung JP, Gao J, Sumer BD, Witjes MJH, van Dam GM. Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery. Nat Commun 2020; 11:3257. [PMID: 32591522 PMCID: PMC7320194 DOI: 10.1038/s41467-020-16814-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/27/2020] [Indexed: 02/04/2023] Open
Abstract
Cancer cell metabolism leads to a uniquely acidic microenvironment in solid tumors, but exploiting the labile extracellular pH differences between cancer and normal tissues for clinical use has been challenging. Here we describe the clinical translation of ONM-100, a nanoparticle-based fluorescent imaging agent. This is comprised of an ultra-pH sensitive amphiphilic polymer, conjugated with indocyanine green, which rapidly and irreversibly dissociates to fluoresce in the acidic extracellular tumor microenvironment due to the mechanism of nanoscale macromolecular cooperativity. Primary outcomes were safety, pharmacokinetics and imaging feasilibity of ONM-100. Secondary outcomes were to determine a range of safe doses of ONM-100 for intra-operative imaging using commonly used fluorescence camera systems. In this study (Netherlands National Trial Register #7085), we report that ONM-100 was well tolerated, and four solid tumor types could be visualized both in- and ex vivo in thirty subjects. ONM-100 enables detection of tumor-positive resection margins in 9/9 subjects and four additional otherwise missed occult lesions. Consequently, this pH-activatable optical imaging agent may be clinically beneficial in differentiating previously unexploitable narrow physiologic differences. It is well known that the pH of tumor tissue is lower than that of the corresponding normal adjacent tissue. Here, the authors report a clinical trial of a pH activatable nanoparticle for imaging tumours.
Collapse
Affiliation(s)
- F J Voskuil
- Department of Oral & Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - P J Steinkamp
- Departments of Surgery, Nuclear Medicine and Molecular Imaging, Medical Imaging Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - T Zhao
- OncoNano Medicine Inc., Dallas, TX, 75390, USA
| | - B van der Vegt
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - M Koller
- Departments of Surgery, Nuclear Medicine and Molecular Imaging, Medical Imaging Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J J Doff
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - J P Hartung
- JPH Clinical Development, San Diego, CA, 92131, USA
| | - J Gao
- Department of Otolaryngology Head and Neck Surgery, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - B D Sumer
- Department of Otolaryngology Head and Neck Surgery, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - M J H Witjes
- Department of Oral & Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - G M van Dam
- Departments of Surgery, Nuclear Medicine and Molecular Imaging, Medical Imaging Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. .,AxelaRx/TRACER B.V, Groningen, The Netherlands.
| | | |
Collapse
|
14
|
Abelha TF, Dreiss CA, Green MA, Dailey LA. Conjugated polymers as nanoparticle probes for fluorescence and photoacoustic imaging. J Mater Chem B 2020; 8:592-606. [DOI: 10.1039/c9tb02582k] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this review, the role of conjugated polymer nanoparticles (CPNs) in emerging bioimaging techniques is described.
Collapse
Affiliation(s)
- Thais Fedatto Abelha
- King's College London
- Institute of Pharmaceutical Science
- London
- UK
- School of Pharmacy
| | - Cécile A. Dreiss
- King's College London
- Institute of Pharmaceutical Science
- London
- UK
| | | | | |
Collapse
|
15
|
Walia S, Sharma C, Acharya A. Biocompatible Fluorescent Nanomaterials for Molecular Imaging Applications. NANOMATERIAL - BASED BIOMEDICAL APPLICATIONS IN MOLECULAR IMAGING, DIAGNOSTICS AND THERAPY 2020:27-53. [DOI: 10.1007/978-981-15-4280-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Jenjob R, Phakkeeree T, Crespy D. Core–shell particles for drug-delivery, bioimaging, sensing, and tissue engineering. Biomater Sci 2020; 8:2756-2770. [DOI: 10.1039/c9bm01872g] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Core–shell particles offer significant advantages in their use for bioimaging and biosensors.
Collapse
Affiliation(s)
- Ratchapol Jenjob
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Treethip Phakkeeree
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|
17
|
Abuelmakarem HS, Sliem MA, El-Azab J, Farghaly MMA, Ahmed WA. Toward Highly Efficient Cancer Imaging and Therapy Using the Environment-Friendly Chitosan Nanoparticles and NIR Laser. BIOSENSORS-BASEL 2019; 9:bios9010028. [PMID: 30781627 PMCID: PMC6469023 DOI: 10.3390/bios9010028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/27/2019] [Accepted: 02/13/2019] [Indexed: 11/24/2022]
Abstract
Chitosan-tripolyphosphate nanoparticles (C-TPP NPs) were synthesized to investigate their cytotoxicity against colon cancer cells (Caco2 cells) in the absence and the presence of a near-infrared (NIR) laser to evaluate their influence in cancer detection using the NIR laser and to evaluate the NIR laser on cancer treatment. The synthesized NPs were characterized by Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), zeta potential (ZP), and transmission electronic microscope (TEM). The cytotoxicity was analyzed by the MTT test and the cell viability was assessed using the Trypan blue method. C-TPP NPs showed increased cytotoxicity and decreased cell viability against Caco2 cells. Upon laser exposure only, the cell viability decreased. The C-TPP NPs appeared to have a shining light on the cancerous cells which were photographed under the inverted microscope.
Collapse
Affiliation(s)
- Hala S Abuelmakarem
- System and Biomedical Engineering Department, The Higher Institute of Engineering, El Shorouk City, Cairo 11837, Egypt.
| | - Mahmoud A Sliem
- Department of Laser Applications in Metrology, Photochemistry and Agriculture (LAMPA), National Institute of Laser Enhanced Sciences (NILE), Cairo University, Giza 12613, Egypt.
| | - Jala El-Azab
- Department of Engineering Applications of Laser, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt.
| | - Moustafa M A Farghaly
- System and Biomedical Engineering Department, The Higher Institute of Engineering, El Shorouk City, Cairo 11837, Egypt.
| | - Wafaa A Ahmed
- Cancer Biology Department, Biochemistry and Molecular Biology Unit, National Cancer Institute, Cairo University, Giza 11796, Egypt.
| |
Collapse
|
18
|
Avitabile E, Bedognetti D, Ciofani G, Bianco A, Delogu LG. How can nanotechnology help the fight against breast cancer? NANOSCALE 2018; 10:11719-11731. [PMID: 29917035 DOI: 10.1039/c8nr02796j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this review we provide a broad overview on the use of nanotechnology for the fight against breast cancer (BC). Nowadays, detection, diagnosis, treatment, and prevention may be possible thanks to the application of nanotechnology to clinical practice. Taking into consideration the different forms of BC and the disease status, nanomaterials can be designed to meet the most forefront objectives of modern therapy and diagnosis. We have analyzed in detail three main groups of nanomaterial applications for BC treatment and diagnosis. We have identified several types of drugs successfully conjugated with nanomaterials. We have analyzed the main important imaging techniques and all nanomaterials used to help the non-invasive, early detection of the lesions. Moreover, we have examined theranostic nanomaterials as unique tools, combining imaging, detection, and therapy for BC. This state of the art review provides a useful guide depicting how nanotechnology can be used to overcome the current barriers in BC clinical practice, and how it will shape the future scenario of treatments, prevention, and diagnosis, revolutionizing the current approaches, e.g., reducing the suffering related to chemotherapy.
Collapse
Affiliation(s)
- Elisabetta Avitabile
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100 Sassari, Italy.
| | | | | | | | | |
Collapse
|
19
|
Wu M, Shu J. Multimodal Molecular Imaging: Current Status and Future Directions. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:1382183. [PMID: 29967571 PMCID: PMC6008764 DOI: 10.1155/2018/1382183] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
Molecular imaging has emerged at the end of the last century as an interdisciplinary method involving in vivo imaging and molecular biology aiming at identifying living biological processes at a cellular and molecular level in a noninvasive manner. It has a profound role in determining disease changes and facilitating drug research and development, thus creating new medical modalities to monitor human health. At present, a variety of different molecular imaging techniques have their advantages, disadvantages, and limitations. In order to overcome these shortcomings, researchers combine two or more detection techniques to create a new imaging mode, such as multimodal molecular imaging, to obtain a better result and more information regarding monitoring, diagnosis, and treatment. In this review, we first describe the classic molecular imaging technology and its key advantages, and then, we offer some of the latest multimodal molecular imaging modes. Finally, we summarize the great challenges, the future development, and the great potential in this field.
Collapse
Affiliation(s)
- Min Wu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
20
|
Matsuoka D, Watanabe H, Shimizu Y, Kimura H, Yagi Y, Kawai R, Ono M, Saji H. Structure–activity relationships of succinimidyl-Cys-C(O)-Glu derivatives with different near-infrared fluorophores as optical imaging probes for prostate-specific membrane antigen. Bioorg Med Chem 2018; 26:2291-2301. [DOI: 10.1016/j.bmc.2018.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/18/2022]
|
21
|
Denkova AG, de Kruijff RM, Serra‐Crespo P. Nanocarrier-Mediated Photochemotherapy and Photoradiotherapy. Adv Healthc Mater 2018; 7:e1701211. [PMID: 29282903 DOI: 10.1002/adhm.201701211] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/17/2017] [Indexed: 12/15/2022]
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) both utilize light to induce a therapeutic effect. These therapies are rapidly gaining importance due to the noninvasiveness of light and the limited adverse effect associated with these treatments. However, most preclinical studies show that complete elimination of tumors is rarely observed. Combining PDT and PTT with chemotherapy or radiotherapy can improve the therapeutic outcome and simultaneously decrease side effects of these conventional treatments. Nanocarriers can help to facilitate such a combined treatment. Here, the most recent advancements in the field of photochemotherapy and photoradiotherapy, in which nanocarriers are employed, are reviewed.
Collapse
Affiliation(s)
- Antonia G. Denkova
- Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Robine M. de Kruijff
- Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Pablo Serra‐Crespo
- Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| |
Collapse
|
22
|
Gao RW, Teraphongphom N, de Boer E, Berg NSVD, Divi V, Kaplan MJ, Oberhelman NJ, Hong SS, Capes E, Colevas AD, Warram JM, Rosenthal EL. Safety of panitumumab-IRDye800CW and cetuximab-IRDye800CW for fluorescence-guided surgical navigation in head and neck cancers. Am J Cancer Res 2018; 8:2488-2495. [PMID: 29721094 PMCID: PMC5928904 DOI: 10.7150/thno.24487] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/20/2018] [Indexed: 01/24/2023] Open
Abstract
Purpose: To demonstrate the safety and feasibility of leveraging therapeutic antibodies for surgical imaging. Procedures: We conducted two phase I trials for anti-epidermal growth factor receptor antibodies cetuximab-IRDye800CW (n=12) and panitumumab-IRDye800CW (n=15). Adults with biopsy-confirmed head and neck squamous cell carcinoma scheduled for standard-of-care surgery were eligible. For cetuximab-IRDye800CW, cohort 1 was intravenously infused with 2.5 mg/m2, cohort 2 received 25 mg/m2, and cohort 3 received 62.5 mg/m2. For panitumumab-IRDye800CW, cohorts received 0.06 mg/kg, 0.5 mg/kg, and 1 mg/kg, respectively. Electrocardiograms and blood samples were obtained, and patients were followed for 30 days post-study drug infusion. Results: Both fluorescently labeled antibodies had similar pharmacodynamic properties and minimal toxicities. Two infusion reactions occurred with cetuximab and none with panitumumab. There were no grade 2 or higher toxicities attributable to cetuximab-IRDye800CW or panitumumab-IRDye800CW; fifteen grade 1 adverse events occurred with cetuximab-IRDye800CW, and one grade 1 occurred with panitumumab-IRDye800CW. There were no significant differences in QTc prolongation between the two trials (p=0.8). Conclusions: Panitumumab-IRDye800CW and cetuximab-IRDye800CW have toxicity and pharmacodynamic profiles that match the parent compound, suggesting that other therapeutic antibodies may be repurposed as imaging agents with limited preclinical toxicology data.
Collapse
|
23
|
Nguyen JQM, McWade M, Thomas G, Beddard BT, Herington JL, Paria BC, Schwartz HS, Halpern JL, Holt GE, Mahadevan-Jansen A. Development of a modular fluorescence overlay tissue imaging system for wide-field intraoperative surgical guidance. J Med Imaging (Bellingham) 2018. [PMID: 29531968 DOI: 10.1117/1.jmi.5.2.021220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fluorescence imaging is a well-established optical modality that has been used to localize and track fluorophores in vivo and has demonstrated great potential for surgical guidance. Despite the variety of fluorophores currently being researched, many existing intraoperative fluorescence imaging systems are specifically designed for a limited number of applications. We present a modular wide-field fluorescence overlay tissue imaging system for intraoperative surgical guidance that is comprised of commercially available standardized components. Its modular layout allows for the accommodation of a broad range of fluorophores, fields of view (FOV), and spatial resolutions while maintaining an integrated portable design for intraoperative use. Measurements are automatic and feature a real-time projection overlay technique that intuitively displays fluorescence maps directly onto a [Formula: see text] FOV from a working distance of 35 cm. At a 20-ms exposure time, [Formula: see text] samples of indocyanine green could be measured with high signal-to-noise ratio and was later tested in an in vivo mouse model before finally being demonstrated for intraoperative autofluorescence imaging of human soft tissue sarcoma margins. The system's modular design and ability to enable naked-eye visualization of wide-field fluorescence allow for the flexibility to adapt to numerous clinical applications and can potentially extend the adoption of fluorescence imaging for intraoperative use.
Collapse
Affiliation(s)
| | - Melanie McWade
- Vanderbilt University, Biophotonics Center, Nashville, Tennessee, United States
| | - Giju Thomas
- Vanderbilt University, Biophotonics Center, Nashville, Tennessee, United States
| | - Bryce T Beddard
- Vanderbilt University, Biophotonics Center, Nashville, Tennessee, United States
| | - Jennifer L Herington
- Vanderbilt University, Department of Pediatrics, Nashville, Tennessee, United States
| | - Bibhash C Paria
- Vanderbilt University, Department of Pediatrics, Nashville, Tennessee, United States
| | - Herbert S Schwartz
- Vanderbilt University Medical Center, Department of Orthopaedic Surgery and Rehabilitation, Nashville, Tennessee, United States
| | - Jennifer L Halpern
- Vanderbilt University Medical Center, Department of Orthopaedic Surgery and Rehabilitation, Nashville, Tennessee, United States
| | - Ginger E Holt
- Vanderbilt University Medical Center, Department of Orthopaedic Surgery and Rehabilitation, Nashville, Tennessee, United States
| | | |
Collapse
|
24
|
Wilson BC, Jermyn M, Leblond F. Challenges and opportunities in clinical translation of biomedical optical spectroscopy and imaging. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-13. [PMID: 29512358 PMCID: PMC5838403 DOI: 10.1117/1.jbo.23.3.030901] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/24/2018] [Indexed: 05/03/2023]
Abstract
Medical devices face many hurdles before they enter routine clinical practice to address unmet clinical needs. This is also the case for biomedical optical spectroscopy and imaging systems that are used here to illustrate the opportunities and challenges involved. Following initial concept, stages in clinical translation include instrument development, preclinical testing, clinical prototyping, clinical trials, prototype-to-product conversion, regulatory approval, commercialization, and finally clinical adoption and dissemination, all in the face of potentially competing technologies. Optical technologies face additional challenges from their being extremely diverse, often targeting entirely different diseases and having orders-of-magnitude differences in resolution and tissue penetration. However, these technologies can potentially address a wide variety of unmet clinical needs since they provide rich intrinsic biochemical and structural information, have high sensitivity and specificity for disease detection and localization, and are practical, safe (minimally invasive, nonionizing), and relatively affordable.
Collapse
Affiliation(s)
- Brian C. Wilson
- University of Toronto and Princess Margaret Cancer Centre/University Health Network, Department of Medical Biophysics, Toronto, Ontario, Canada
| | - Michael Jermyn
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Frederic Leblond
- Polytechnique Montreal, Department of Engineering Physics, Montreal, Québec, Canada
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, Québec, Canada
- Address all correspondence to: Frederic Leblond, E-mail:
| |
Collapse
|
25
|
De Leeuw F, Breuskin I, Abbaci M, Casiraghi O, Mirghani H, Ben Lakhdar A, Laplace-Builhé C, Hartl D. Intraoperative Near-infrared Imaging for Parathyroid Gland Identification by Auto-fluorescence: A Feasibility Study. World J Surg 2017; 40:2131-8. [PMID: 27220510 DOI: 10.1007/s00268-016-3571-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Parathyroid glands (PGs) can be particularly hard to distinguish from surrounding tissue and thus can be damaged or removed during thyroidectomy. Postoperative hypoparathyroidism is the most common complication after thyroidectomy. Very recently, it has been found that the parathyroid tissue shows near-infrared (NIR) auto-fluorescence which could be used for intraoperative detection, without any use of contrast agents. The work described here presents a histological validation ex vivo of the NIR imaging procedure and evaluates intraoperative PG detection by NIR auto-fluorescence using for the first time to our knowledge a commercially available clinical NIR imaging device. METHODS Ex vivo study on resected operative specimens combined with a prospective in vivo study of consecutive patients who underwent total or partial thyroid, or parathyroid surgery at a comprehensive cancer center. During surgery, any tissue suspected to be a potential PG by the surgeon was imaged with the Fluobeam 800 (®) system. NIR imaging was compared to conventional histology (ex vivo) and/or visual identification by the surgeon (in vivo). RESULTS We have validated NIR auto-fluorescence with an ex vivo study including 28 specimens. Sensitivity and specificity were 94.1 and 80 %, respectively. Intraoperative NIR imaging was performed in 35 patients and 81 parathyroids were identified. In 80/81 cases, the fluorescence signal was subjectively obvious on real-time visualization. We determined that PG fluorescence is 2.93 ± 1.59 times greater than thyroid fluorescence in vivo. CONCLUSIONS Real-time NIR imaging based on parathyroid auto-fluorescence is fast, safe, and non-invasive and shows very encouraging results, for intraoperative parathyroid identification.
Collapse
Affiliation(s)
- Frederic De Leeuw
- Plateforme d'Imagerie et Cytométrie, UMS AMMICa, Gustave Roussy, Université Paris-Saclay, 114, rue Édouard-Vaillant, 94805, Villejuif, France.
- UMR CNRS 8081- IR4M, Université Paris-Sud, Université Paris-Saclay, 91401, Orsay, France.
| | - Ingrid Breuskin
- Département de Chirurgie ORL, Unité Thyroïde, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Muriel Abbaci
- Plateforme d'Imagerie et Cytométrie, UMS AMMICa, Gustave Roussy, Université Paris-Saclay, 114, rue Édouard-Vaillant, 94805, Villejuif, France
- UMR CNRS 8081- IR4M, Université Paris-Sud, Université Paris-Saclay, 91401, Orsay, France
| | - Odile Casiraghi
- Département de Pathologie, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Haïtham Mirghani
- Département de Chirurgie ORL, Unité Thyroïde, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Aïcha Ben Lakhdar
- Département de Pathologie, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| | - Corinne Laplace-Builhé
- Plateforme d'Imagerie et Cytométrie, UMS AMMICa, Gustave Roussy, Université Paris-Saclay, 114, rue Édouard-Vaillant, 94805, Villejuif, France
- UMR CNRS 8081- IR4M, Université Paris-Sud, Université Paris-Saclay, 91401, Orsay, France
| | - Dana Hartl
- Département de Chirurgie ORL, Unité Thyroïde, Gustave Roussy, Université Paris-Saclay, 94805, Villejuif, France
| |
Collapse
|
26
|
Cordova JS, Gurbani SS, Holder CA, Olson JJ, Schreibmann E, Shi R, Guo Y, Shu HKG, Shim H, Hadjipanayis CG. Semi-Automated Volumetric and Morphological Assessment of Glioblastoma Resection with Fluorescence-Guided Surgery. Mol Imaging Biol 2017; 18:454-62. [PMID: 26463215 DOI: 10.1007/s11307-015-0900-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Glioblastoma (GBM) neurosurgical resection relies on contrast-enhanced MRI-based neuronavigation. However, it is well-known that infiltrating tumor extends beyond contrast enhancement. Fluorescence-guided surgery (FGS) using 5-aminolevulinic acid (5-ALA) was evaluated to improve extent of resection (EOR) of GBMs. Preoperative morphological tumor metrics were also assessed. PROCEDURES Thirty patients from a phase II trial evaluating 5-ALA FGS in newly diagnosed GBM were assessed. Tumors were segmented preoperatively to assess morphological features as well as postoperatively to evaluate EOR and residual tumor volume (RTV). RESULTS Median EOR and RTV were 94.3 % and 0.821 cm(3), respectively. Preoperative surface area to volume ratio and RTV were significantly associated with overall survival, even when controlling for the known survival confounders. CONCLUSIONS This study supports claims that 5-ALA FGS is helpful at decreasing tumor burden and prolonging survival in GBM. Moreover, morphological indices are shown to impact both resection and patient survival.
Collapse
Affiliation(s)
- J Scott Cordova
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Saumya S Gurbani
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Chad A Holder
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA.,Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Eduard Schreibmann
- Department of Radiation Oncology, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Ran Shi
- Department of Biostatistics, Emory University School of Public Health, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Ying Guo
- Department of Biostatistics, Emory University School of Public Health, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA
| | - Hui-Kuo G Shu
- Department of Radiation Oncology, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA.,Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA
| | - Hyunsuk Shim
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA. .,Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| | - Costas G Hadjipanayis
- Department of Neurosurgery, Emory University School of Medicine, 1701 Uppergate Drive, C5018, Atlanta, GA, 30322, USA. .,Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA. .,Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, 10 Union Square, 5th Floor, Suite 5E, New York, NY, 10003, USA.
| |
Collapse
|
27
|
Prince AC, Jani A, Korb M, Tipirneni KE, Kasten BB, Rosenthal EL, Warram JM. Characterizing the detection threshold for optical imaging in surgical oncology. J Surg Oncol 2017. [PMID: 28628728 DOI: 10.1002/jso.24733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Optical imaging to guide cancer resections is rapidly transitioning into the operating room. However, the sensitivity of this technique to detect subclinical disease is yet characterized. The purpose of this study was to determine the minimum range of cancer cells that can be detected by antibody-based fluorescence imaging. METHODS 2LMP (breast), COLO-205 (colon), MiaPaca-2 (pancreas), and SCC-1 (head and neck) cells incubated in vitro with cetuximab-IRDye800CW (dose range 8.6-86 nM) were implanted subcutaneously in mice (n = 3 mice, 5 tumors/mouse). Following incubation with 8.6 × 10-2 µM of cetuximab-IRDye800CW in vitro, serial dilutions of each cell type (1 × 103 -1 × 106 ) were implanted subcutaneously (n = 3, 5 tumors/mouse). Tumors were imaged with Pearl Impulse and Xenogen IVIS 100 imaging systems. Scatchard analysis was performed to determine receptor density and kinetics for each cell line. RESULTS Under conditions of minimal cetuximab-IRDye800CW exposure to low cellular quantity, closed-field fluorescence imaging theoretically detected a minimum of 4.2 × 104 -9.5 × 104 2LMP cells, 1.9 × 105 -4.5 × 105 MiaPaca-2 cells, and 2.4 × 104 -6.7 × 104 SCC-1 cells; COLO-205 cells could not be identified. Higher EGFR-mediated uptake of cetuximab correlated with sensitivity of detection. CONCLUSION This study supports the clinical utility of cetuximab-IRDye800CW to sensitively localize subclinical disease in the surgical setting.
Collapse
Affiliation(s)
- Andrew C Prince
- School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aditi Jani
- School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Melissa Korb
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kiranya E Tipirneni
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Benjamin B Kasten
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eben L Rosenthal
- Department of Otolaryngology, Stanford University, Stanford, California
| | - Jason M Warram
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
28
|
Bailey MJ, Verma N, Fradkin L, Lam S, MacAulay C, Poh C, Markey MK, Sokolov K. Detection of precancerous lesions in the oral cavity using oblique polarized reflectance spectroscopy: a clinical feasibility study. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:65002. [PMID: 28609512 PMCID: PMC5469421 DOI: 10.1117/1.jbo.22.6.065002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/18/2017] [Indexed: 05/20/2023]
Abstract
We developed a multifiber optical probe for oblique polarized reflectance spectroscopy (OPRS) in vivo and evaluated its performance in detection of dysplasia in the oral cavity. The probe design allows the implementation of a number of methods to enable depth resolved spectroscopic measurements including polarization gating, source–detector separation, and differential spectroscopy; this combination was evaluated in carrying out binary classification tasks between four major diagnostic categories: normal, benign, mild dysplasia (MD), and severe dysplasia (SD). Multifiber OPRS showed excellent performance in the discrimination of normal from benign, MD, SD, and MD plus SD yielding sensitivity/specificity values of 100%/93%, 96%/95%, 100%/98%, and 100%/100%, respectively. The classification of benign versus dysplastic lesions was more challenging with sensitivity and specificity values of 80%/93%, 71%/93%, and 74%/80% in discriminating benign from SD, MD, and SD plus MD categories, respectively; this challenge is most likely associated with a strong and highly variable scattering from a keratin layer that was found in these sites. Classification based on multiple fibers was significantly better than that based on any single detection pair for tasks dealing with benign versus dysplastic sites. This result indicates that the multifiber probe can perform better in the detection of dysplasia in keratinized tissues.
Collapse
Affiliation(s)
- Maria J. Bailey
- University of Texas M.D. Anderson Cancer Center, Department of Imaging Physics, Houston, Texas, United States
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Nishant Verma
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Leonid Fradkin
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Sylvia Lam
- British Columbia Cancer Agency, Integrative Oncology Department, Vancouver, British Columbia, Canada
| | - Calum MacAulay
- British Columbia Cancer Agency, Integrative Oncology Department, Vancouver, British Columbia, Canada
| | - Catherine Poh
- British Columbia Cancer Agency, Integrative Oncology Department, Vancouver, British Columbia, Canada
| | - Mia K. Markey
- University of Texas M.D. Anderson Cancer Center, Department of Imaging Physics, Houston, Texas, United States
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Konstantin Sokolov
- University of Texas M.D. Anderson Cancer Center, Department of Imaging Physics, Houston, Texas, United States
- University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
- Rice University, Department of Bioengineering, Houston, Texas, United States
| |
Collapse
|
29
|
Jo D, Hyun H. Structure-Inherent Targeting of Near-Infrared Fluorophores for Image-Guided Surgery. Chonnam Med J 2017; 53:95-102. [PMID: 28584787 PMCID: PMC5457957 DOI: 10.4068/cmj.2017.53.2.95] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/06/2017] [Accepted: 01/10/2017] [Indexed: 12/27/2022] Open
Abstract
Although various clinical imaging modalities have been developed to visualize internal body structures and detect abnormal tissues prior to surgical procedures, most medical imaging modalities do not provide disease-specific images in real-time. Optical imaging can provide the surgeon with real-time visualization of the surgical field for intraoperative image-guided surgery. Imaging in the near-infrared (NIR) window (650-900 nm), also known as the "therapeutic window" has high potential by offering low absorbance and scattering in tissues resulting in minimized background autofluorescence. Clinically, optical fluorescence imaging with the targeted contrast agents provides opportunities for significant advances in intraoperative image-guided surgery. There are only two clinically available NIR fluorophores, indocyanine green (ICG) and methylene blue (MB), that support the image-guided surgery. However, neither of them perform in vivo by providing optimum specificity and stability for targeted image guidance. Therefore, it is of paramount importance to develop targeted NIR fluorophores for unmet clinical needs. Using the right combination of an NIR fluorescence imaging system and a targeted fluorophore, the desired target tissues can be imaged to provide real-time fluorescence guidance without changing the field-of-view during surgery. Thus, in a clinical discipline, the development of NIR fluorophores for 'structure-inherent targeting' is an unmet need for early phase diagnostics with accurate targeting.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
30
|
Haque A, Faizi MSH, Rather JA, Khan MS. Next generation NIR fluorophores for tumor imaging and fluorescence-guided surgery: A review. Bioorg Med Chem 2017; 25:2017-2034. [PMID: 28284863 DOI: 10.1016/j.bmc.2017.02.061] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/11/2022]
Abstract
Cancer is a group of diseases responsible for the major causes of mortality and morbidity among people of all ages. Even though medical sciences have made enormous growth, complete treatment of this deadly disease is still a challenging task. Last few decades witnessed an impressive growth in the design and development of near infrared (NIR) fluorophores with and without recognition moieties for molecular recognitions, imaging and image guided surgeries. The present article reviews recently reported NIR emitting organic/inorganic fluorophores that targets and accumulates in organelle/organs specifically for molecular imaging of cancerous cells. Near infrared (NIR probe) with or without a tumor-targeting warhead have been considered and discussed for their applications in the field of cancer imaging. In addition, challenges persist in this area are also delineated in this review.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman.
| | | | - Jahangir Ahmad Rather
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman
| | - Muhammad S Khan
- Department of Chemistry, College of Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
31
|
Burns JM, Saager R, Majaron B, Jia W, Anvari B. Optical properties of biomimetic probes engineered from erythrocytes. NANOTECHNOLOGY 2017; 28:035101. [PMID: 27966473 PMCID: PMC5189990 DOI: 10.1088/1361-6528/28/3/035101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Light-activated theranostic materials offer a potential platform for optical imaging and phototherapeutic applications. We have engineered constructs derived from erythrocytes, which can be doped with the FDA-approved near infrared (NIR) chromophore, indocyanine green (ICG). We refer to these constructs as NIR erythrocyte-mimicking transducers (NETs). Herein, we investigated the effects of changing the NETs mean diameter from micron- (≈4 μm) to nano- (≈90 nm) scale, and the ICG concentration utilized in the fabrication of NETs from 5 to 20 μM on the resulting absorption and scattering characteristics of the NETs. Our approach consisted of integrating sphere-based measurements of light transmittance and reflectance, and subsequent utilization of these measurements in an inverse adding-doubling algorithm to estimate the absorption (μ a) and reduced scattering (μ s') coefficients of these NETs. For a given NETs diameter, values of μ a increased over the approximate spectral band of 630-860 nm with increasing ICG concentration. Micron-sized NETs produced the highest peak value of μ a when using ICG concentrations of 10 and 20 μM, and showed increased values of μ s' as compared to nano-sized NETs. Spectral profiles of μ s' for these NETs showed a trend consistent with Mie scattering behavior for spherical objects. For all NETs investigated, changing the ICG concentration minimally affected the scattering characteristics. A Monte Carlo-based model of light distribution showed that the presence of these NETs enhanced the fluence levels within simulated blood vessels. These results provide important data towards determining the appropriate light dosimetry parameters for an intended light-based biomedical application of NETs.
Collapse
Affiliation(s)
- Joshua M Burns
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
32
|
Hemmer E, Acosta-Mora P, Méndez-Ramos J, Fischer S. Optical nanoprobes for biomedical applications: shining a light on upconverting and near-infrared emitting nanoparticles for imaging, thermal sensing, and photodynamic therapy. J Mater Chem B 2017; 5:4365-4392. [DOI: 10.1039/c7tb00403f] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Shining a light on spectrally converting lanthanide (Ln3+)-doped nanoparticles: progress, trends, and challenges in Ln3+-nanoprobes for near-infrared bioimaging, nanothermometry, and photodynamic therapy.
Collapse
Affiliation(s)
- E. Hemmer
- Department of Chemistry and Biomolecular Sciences
- University of Ottawa
- Ottawa (ON)
- Canada
| | - P. Acosta-Mora
- Departamento de Fíísica
- Universidad de La Laguna
- Tenerife
- Spain
| | - J. Méndez-Ramos
- Departamento de Fíísica
- Universidad de La Laguna
- Tenerife
- Spain
| | - S. Fischer
- Department of Materials Science and Engineering, University of California—Berkeley
- Berkeley
- USA
| |
Collapse
|
33
|
Oddo L, Cerroni B, Domenici F, Bedini A, Bordi F, Chiessi E, Gerbes S, Paradossi G. Next generation ultrasound platforms for theranostics. J Colloid Interface Sci 2016; 491:151-160. [PMID: 28024192 DOI: 10.1016/j.jcis.2016.12.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 01/05/2023]
Abstract
Microbubbles are a well-established contrast agent which improves diagnostic ultrasound imaging. During the last decade research has focused on expanding their use to include molecular imaging, targeted therapy and imaging modalities other than ultrasound. However, bioadhesion of targeted microbubbles under physiological flow conditions is still difficult to achieve, the main challenge being connected to the poor stability of lipid microbubbles in the body's circulation system. In this article, we investigate the use of polymeric microbubbles based on a poly (vinyl alcohol) shell as an alternative to lipid microbubbles. In particular, we report on the development of microbubble shell modification, using mild reaction conditions, with the aim of designing a multifunctional platform to enable diagnosis and therapy. Superparamagnetic iron oxide nanoparticles and a near infrared fluorescent probe, indocyanine green, are coupled to the bubbles surface in order to support magnetic resonance and fluorescence imaging. Furthermore, anchoring cyclic arginyl-glycyl-aspartic acid (RGD) peptide, and cyclodextrin molecules, allows targeting and drug loading, respectively. Last but not least, shell topography is provided by atomic force microscopy. These applications and features, together with the high echogenicity of poly (vinyl alcohol) microbubbles, may offer a more stable alternative to lipid microbubbles for the development of a multimodal theranostic platform.
Collapse
Affiliation(s)
- Letizia Oddo
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy.
| | - Barbara Cerroni
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy.
| | - Fabio Domenici
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy; Dipartimento di Fisica, Università degli Studi di Roma Sapienza, P.le A. Moro 5, 00185 Roma, Italy.
| | - Angelico Bedini
- INAIL, Settore Ricerca, Certificazione e Verifica, DITSPIA, Via Fontana Candida 1, 00040 Monteporzio Catone, Italy.
| | - Federico Bordi
- Dipartimento di Fisica, Università degli Studi di Roma Sapienza, P.le A. Moro 5, 00185 Roma, Italy.
| | - Ester Chiessi
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy.
| | - Stefan Gerbes
- MagForce AG, Max-Planck-Str. 3, 12489 Berlin, Germany.
| | - Gaio Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy.
| |
Collapse
|
34
|
Cheyuo C, Grand W, Balos LL. Near-Infrared Confocal Laser Reflectance Cytoarchitectural Imaging of the Substantia Nigra and Cerebellum in the Fresh Human Cadaver. World Neurosurg 2016; 97:465-470. [PMID: 27756668 DOI: 10.1016/j.wneu.2016.10.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cytoarchitectural neuroimaging remains critical for diagnosis of many brain diseases. Fluorescent dye-enhanced, near-infrared confocal in situ cellular imaging of the brain has been reported. However, impermeability of the blood-brain barrier to most fluorescent dyes limits clinical utility of this modality. The differential degree of reflectance from brain tissue with unenhanced near-infrared imaging may represent an alternative technique for in situ cytoarchitectural neuroimaging. METHODS We assessed the utility of unenhanced near-infrared confocal laser reflectance imaging of the cytoarchitecture of the cerebellum and substantia nigra in 2 fresh human cadaver brains using a confocal near-infrared laser probe. Cellular images based on near-infrared differential reflectance were captured at depths of 20-180 μm from the brain surface. Parts of the cerebellum and substantia nigra imaged using the probe were subsequently excised and stained with hematoxylin and eosin for histologic correlation. RESULTS Near-infrared reflectance imaging revealed the 3-layered cytoarchitecture of the cerebellum, with Purkinje cells appearing hyperreflectant. In the substantia nigra, neurons appeared hyporeflectant with hyperreflectant neuromelanin cytoplasmic inclusions. Cytoarchitecture of the cerebellum and substantia nigra revealed on near-infrared imaging closely correlated with the histology on hematoxylin-eosin staining. CONCLUSIONS We showed that unenhanced near-infrared reflectance imaging of fresh human cadaver brain can reliably identify and distinguish neurons and detailed cytoarchitecture of the cerebellum and substantia nigra.
Collapse
Affiliation(s)
- Cletus Cheyuo
- Department of Neurosurgery, West Virginia University, Morgantown, West Virginia, USA
| | - Walter Grand
- Department of Neurosurgery, Kaleida Health System, Buffalo, New York, USA; Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA.
| | - Lucia L Balos
- Department of Pathology, Kaleida Health System, Buffalo, New York, USA; Department of Pathology and Anatomic Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
35
|
Sweeny L, Prince A, Patel N, Moore LS, Rosenthal EL, Hughley BB, Warram JM. Antiangiogenic antibody improves melanoma detection by fluorescently labeled therapeutic antibodies. Laryngoscope 2016; 126:E387-E395. [PMID: 27576611 DOI: 10.1002/lary.26215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/14/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Evaluate if vascular normalization with an antiangiogenic monoclonal antibody improves detection of melanoma using fluorescently labeled antibody-based imaging. STUDY DESIGN Preclinical. METHODS Panitumumab and control IgG were covalently linked to a near-infrared fluorescent probe (IRDye800CW). Immunodeficient mice with ear xenografts of melanoma cell lines (A375 and SKMEL5) were systemically injected (200 μg, tail vein) with either IgG-IRDye800CW, panitumumab-IRDye800CW, or a combination (bevacizumab [5mg/kg], administered 72 hours prepanitumumab-IRDye800CW) (n = 5). Primary tumors were imaged with open-field (LUNA, Novadaq, Toronto, Ontario, Canada) and closed-field (Pearl, LI-COR Biosciences, Lincoln, NB) imaging devices. Postresection, the concentration of labeled antibody within the tumor (μg/g) was calculated using normalized standards. RESULTS The mean fluorescence within the melanoma tumors was greater for the combination group compared to panitumumab alone for both cell lines (P < 0.001). The tumor-to-background ratio (TBR) for the A375 tumors was greater for the combination (3.4-7.1) compared to the panitumumab alone (3.2-5.0) (P = 0.04). The TBR for SKMEL5 tumors was greater for the combination (2.4-6.0) compared to the panitumumab alone (2.2-3.9) (P = 0.02). Within A375 tumors, the concentration was lower for panitumumab (0.51 μg/g) compared to combination group (0.68 μg/g) (P = 0.036). Within SKMEL5 tumors, the concentration was lower for panitumumab (0.0.17 μg/g) compared to combination group (0.35 μg/g) (P = 0.048). Residual tumor (1.0-0.2 mg) could be differentiated from background in both panitumumab and combination groups. For both cell lines, panitumumab and combination groups had greater mean fluorescence of the tumor compared to control IgG. CONCLUSION The addition of antiangiogenic therapy improves uptake of fluorescently labeled monoclonal antibodies within melanoma tumors. Clinical translation could improve detection of melanoma intraoperatively, reducing positive margins and sparing normal tissue. LEVEL OF EVIDENCE NA Laryngoscope, 126:E387-E395, 2016.
Collapse
Affiliation(s)
- Larissa Sweeny
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Andrew Prince
- the University of Alabama School of Medicine at Birmingham, Birmingham, Alabama, U.S.A
| | - Neel Patel
- the Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Lindsay S Moore
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Eben L Rosenthal
- Department of Otolaryngology, Stanford University, Stanford, California, U.S.A
| | - Brian B Hughley
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| | - Jason M Warram
- Department of Otolaryngology-Head and Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, U.S.A
| |
Collapse
|
36
|
Kijanka MM, van Brussel ASA, van der Wall E, Mali WPTM, van Diest PJ, van Bergen En Henegouwen PMP, Oliveira S. Optical imaging of pre-invasive breast cancer with a combination of VHHs targeting CAIX and HER2 increases contrast and facilitates tumour characterization. EJNMMI Res 2016; 6:14. [PMID: 26860296 PMCID: PMC4747965 DOI: 10.1186/s13550-016-0166-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/20/2016] [Indexed: 11/30/2022] Open
Abstract
Background Optical molecular imaging is an emerging novel technology with applications in the diagnosis of cancer and assistance in image-guided surgery. A high tumour-to-background (T/B) ratio is crucial for successful imaging, which strongly depends on tumour-specific probes that rapidly accumulate in the tumour, while non-bound probes are rapidly cleared. Here, using pre-invasive breast cancer as a model, we investigate whether the use of combinations of probes with different target specificities results in higher T/B ratios and whether dual-spectral imaging leads to improvements in tumour characterization. Methods We performed optical molecular imaging of an orthotopic breast cancer model mimicking ductal carcinoma in situ (DCIS). A combination of carbonic anhydrase IX (CAIX)- and human epidermal growth factor receptor 2 (HER2)-specific variable domains of the heavy chain from heavy-chain antibodies (VHHs) was conjugated either to the same fluorophore (IRDye800CW) to evaluate T/B ratios or to different fluorophores (IRDye800CW, IRDye680RD or IRDye700DX) to analyse the expression of CAIX and HER2 simultaneously through dual-fluorescence detection. These experiments were performed non-invasively in vivo, in a mimicked intra-operative setting, and ex vivo on tumour sections. Results Application of the CAIX- and HER2-specific VHH combination resulted in an increase of the T/B ratio, as compared to T/B ratios obtained from each of these single VHHs together with an irrelevant VHH. This dual tumour marker-specific VHH combination also enabled the detection of small metastases in the lung. Furthermore, dual-spectral imaging enabled the assessment of the expression status of both CAIX and HER2 in a mimicked intra-operative setting, as well as on tumour sections, which was confirmed by immunohistochemistry. Conclusions These results establish the feasibility of the use of VHH ‘cocktails’ to increase T/B ratios and improve early detection of heterogeneous tumours and the use of multispectral molecular imaging to facilitate the assessment of the target expression status of tumours and metastases, both invasive or non-invasively. Electronic supplementary material The online version of this article (doi:10.1186/s13550-016-0166-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta M Kijanka
- Division of Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands.
| | - Aram S A van Brussel
- Division of Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands. .,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Elsken van der Wall
- Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Willem P T M Mali
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | - Sabrina Oliveira
- Division of Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands. .,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
37
|
Kairdolf BA, Bouras A, Kaluzova M, Sharma AK, Wang MD, Hadjipanayis CG, Nie S. Intraoperative Spectroscopy with Ultrahigh Sensitivity for Image-Guided Surgery of Malignant Brain Tumors. Anal Chem 2016; 88:858-67. [PMID: 26587976 PMCID: PMC8559335 DOI: 10.1021/acs.analchem.5b03453] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Intraoperative cancer imaging and fluorescence-guided surgery have attracted considerable interest because fluorescence signals can provide real-time guidance to assist a surgeon in differentiating cancerous and normal tissues. Recent advances have led to the clinical use of a natural fluorophore called protoporphyrin IX (PpIX) for image-guided surgical resection of high-grade brain tumors (glioblastomas). However, traditional fluorescence imaging methods have only limited detection sensitivity and identification accuracy and are unable to detect low-grade or diffuse infiltrating gliomas (DIGs). Here we report a low-cost hand-held spectroscopic device that is capable of ultrasensitive detection of protoporphyrin IX fluorescence in vivo, together with intraoperative spectroscopic data obtained from both animal xenografts and human brain tumor specimens. The results indicate that intraoperative spectroscopy is at least 3 orders of magnitude more sensitive than the current surgical microscopes, allowing ultrasensitive detection of as few as 1000 tumor cells. For detection specificity, intraoperative spectroscopy allows the differentiation of brain tumor cells from normal brain cells with a contrast signal ratio over 100. In vivo animal studies reveal that protoporphyrin IX fluorescence is strongly correlated with both MRI and histological staining, confirming that the fluorescence signals are highly specific to tumor cells. Furthermore, ex vivo spectroscopic studies of excised brain tissues demonstrate that the hand-held spectroscopic device is capable of detecting diffuse tumor margins with low fluorescence contrast that are not detectable with current systems in the operating room. These results open new opportunities for intraoperative detection and fluorescence-guided resection of microscopic and low-grade glioma brain tumors with invasive or diffusive margins.
Collapse
Affiliation(s)
- Brad A. Kairdolf
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Suite E116, Atlanta, Georgia 30322, USA
| | - Alexandros Bouras
- Department of Neurosurgery, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia, 30322, USA
| | - Milota Kaluzova
- Department of Neurosurgery, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia, 30322, USA
| | - Abhinav K. Sharma
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Suite E116, Atlanta, Georgia 30322, USA
| | - May D. Wang
- Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, UA Whitaker Building 4106, Atlanta, Georgia 30332, USA
| | - Constantinos G. Hadjipanayis
- Department of Neurosurgery, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia, 30322, USA
- Department of Neurosurgery, Icahn School of Medicine, Tisch Cancer Institute at Mount Sinai, New York, NY 10029
| | - Shuming Nie
- Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, Suite E116, Atlanta, Georgia 30322, USA
| |
Collapse
|
38
|
Ma M, Lei M, Tan X, Tan F, Li N. Theranostic liposomes containing conjugated polymer dots and doxorubicin for bio-imaging and targeted therapeutic delivery. RSC Adv 2016. [DOI: 10.1039/c5ra24485d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This work was devoted to the development of a lipid-based theranostic nanoparticle able to simultaneously host conjugated polymer dots, doxorubicin (Dox) and folate acid (FA).
Collapse
Affiliation(s)
- Man Ma
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Mingzhu Lei
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Xiaoxiao Tan
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Fengping Tan
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- P. R. China
| |
Collapse
|
39
|
Bradbury MS, Pauliah M, Zanzonico P, Wiesner U, Patel S. Intraoperative mapping of sentinel lymph node metastases using a clinically translated ultrasmall silica nanoparticle. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:535-53. [PMID: 26663853 DOI: 10.1002/wnan.1380] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 09/29/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022]
Abstract
The management of regional lymph nodes in patients with melanoma has undergone a significant paradigm shift over the past several decades, transitioning from the use of more aggressive surgical approaches, such as lymph node basin dissection, to the application of minimally invasive sentinel lymph node (SLN) biopsy methods to detect the presence of nodal micrometastases. SLN biopsy has enabled reliable, highly accurate, and low-morbidity staging of regional lymph nodes in early stage melanoma as a means of guiding treatment decisions and improving patient outcomes. The accurate identification and staging of lymph nodes is an important prognostic factor, identifying those patients for whom the expected benefits of nodal resection outweigh attendant surgical risks. However, currently used standard-of-care technologies for SLN detection are associated with significant limitations. This has fueled the development of clinically promising platforms that can serve as intraoperative visualization tools to aid accurate and specific determination of tumor-bearing lymph nodes, map cancer-promoting biological properties at the cellular/molecular levels, and delineate nodes from adjacent critical structures. Among a number of promising cancer-imaging probes that might facilitate achievement of these ends is a first-in-kind ultrasmall tumor-targeting inorganic (silica) nanoparticle, designed to overcome translational challenges. The rationale driving these considerations and the application of this platform as an intraoperative treatment tool for guiding resection of cancerous lymph nodes is discussed and presented within the context of alternative imaging technologies. WIREs Nanomed Nanobiotechnol 2016, 8:535-553. doi: 10.1002/wnan.1380 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michelle S Bradbury
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY, USA.,Department of Molecular Pharmacology and Chemistry Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Mohan Pauliah
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Pat Zanzonico
- Department of Medical Physics, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Ulrich Wiesner
- Department of Material Science & Engineering, Cornell University, Ithaca, NY, USA
| | - Snehal Patel
- Department of Surgery, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| |
Collapse
|
40
|
Abstract
The ability to identify key biomolecules and molecular changes associated with cancer malignancy and the capacity to monitor the therapeutic outcome against these targets is critically important for cancer treatment. Recent developments in molecular imaging based on magnetic resonance (MR) techniques have provided researchers and clinicians with new tools to improve most facets of cancer care. Molecular imaging is broadly described as imaging techniques used to detect molecular signature at the cellular and gene expression levels. This article reviews both established and emerging molecular MR techniques in oncology and discusses the potential of these techniques in improving the clinical cancer care. It also discusses how molecular MR, in conjunction with other structural and functional MR imaging techniques, paves the way for developing tailored treatment strategies to enhance cancer care.
Collapse
|
41
|
Godavarty A, Rodriguez S, Jung YJ, Gonzalez S. Optical imaging for breast cancer prescreening. BREAST CANCER-TARGETS AND THERAPY 2015; 7:193-209. [PMID: 26229503 PMCID: PMC4516032 DOI: 10.2147/bctt.s51702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Breast cancer prescreening is carried out prior to the gold standard screening using X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical breast examination (CBE) or self-breast examinations (SBEs). Since CBE and SBE have high false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review focuses on the various hand-held optical imaging devices that have been developed and applied toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and breast cancer imaging studies. Apart from the various optical devices developed by different research groups, a wide-field fiber-free near-infrared optical scanner has been developed for transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast cancer subjects and comparison with the gold standard X-ray mammography approach.
Collapse
Affiliation(s)
- Anuradha Godavarty
- Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Suset Rodriguez
- Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| | - Young-Jin Jung
- Department of Radiological Science, Dongseo University, Busan, South Korea
| | - Stephanie Gonzalez
- Optical Imaging Laboratory, Department of Biomedical Engineering, Florida International University, Miami, FL, USA
| |
Collapse
|
42
|
Atallah I, Milet C, Henry M, Josserand V, Reyt E, Coll JL, Hurbin A, Righini CA. Near-infrared fluorescence imaging-guided surgery improves recurrence-free survival rate in novel orthotopic animal model of head and neck squamous cell carcinoma. Head Neck 2015; 38 Suppl 1:E246-55. [PMID: 25546527 DOI: 10.1002/hed.23980] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2014] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Appropriate animal models are required to test novel therapeutics for head and neck squamous cell carcinoma (HNSCC) such as near-infrared (NIR) imaging-guided surgery. METHODS We developed an optimized animal model of orthotopic HNSCC (in female athymic NMRI (Naval Medical Research Institute) nude mice) with a prolonged survival time. Resection of the orthotopic tumors was performed 30 days after implantation with or without the aid of a miniaturized clinical grade NIR optical imaging device, after systemic administration of a fluorescent RGD-based probe that targets αv β3 integrin. RESULTS NIR optical imaging-guided surgery increased the recurrence-free survival rate by 50% through the detection of fluorescent cancer residues as small as 185 µm; these fragments could remain unidentified if resection was performed exclusively under unaided visual guidance. CONCLUSION NIR optical imaging-guided surgery showed an improved HNSCC tumor resection quality in our optimized orthotopic animal model. © 2015 Wiley Periodicals, Inc. Head Neck 38: E246-E255, 2016.
Collapse
Affiliation(s)
- Ihab Atallah
- INSERM U823, Grenoble Cedex, France.,Joseph Fourier University, Grenoble Cedex, France.,Department of Otolaryngology-Head and Neck Surgery, Grenoble University Hospital, Cedex, France
| | - Clément Milet
- INSERM U823, Grenoble Cedex, France.,Joseph Fourier University, Grenoble Cedex, France
| | - Maxime Henry
- INSERM U823, Grenoble Cedex, France.,Joseph Fourier University, Grenoble Cedex, France
| | - Véronique Josserand
- INSERM U823, Grenoble Cedex, France.,Joseph Fourier University, Grenoble Cedex, France
| | - Emile Reyt
- Joseph Fourier University, Grenoble Cedex, France.,Department of Otolaryngology-Head and Neck Surgery, Grenoble University Hospital, Cedex, France
| | - Jean-Luc Coll
- INSERM U823, Grenoble Cedex, France.,Joseph Fourier University, Grenoble Cedex, France
| | - Amandine Hurbin
- INSERM U823, Grenoble Cedex, France.,Joseph Fourier University, Grenoble Cedex, France
| | - Christian Adrien Righini
- INSERM U823, Grenoble Cedex, France.,Joseph Fourier University, Grenoble Cedex, France.,Department of Otolaryngology-Head and Neck Surgery, Grenoble University Hospital, Cedex, France
| |
Collapse
|
43
|
Miernik A, Eilers Y, Nuese C, Bolwien C, Lambrecht A, Hesse A, Rassweiler JJ, Schlager D, Wilhelm K, Wetterauer U, Schoenthaler M. Is in vivo analysis of urinary stone composition feasible? Evaluation of an experimental setup of a Raman system coupled to commercial lithotripsy laser fibers. World J Urol 2015; 33:1593-9. [DOI: 10.1007/s00345-014-1477-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/29/2014] [Indexed: 12/13/2022] Open
|
44
|
Yin F, Zhang B, Zeng S, Lin G, Tian J, Yang C, Wang K, Xu G, Yong KT. Folic acid-conjugated organically modified silica nanoparticles for enhanced targeted delivery in cancer cells and tumor in vivo. J Mater Chem B 2015; 3:6081-6093. [DOI: 10.1039/c5tb00587f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Folic acid-conjugated fluorescent silica nanoparticles with biocompatibility and high-selectivity show great potential forin vivotumor imaging.
Collapse
Affiliation(s)
- Feng Yin
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Butian Zhang
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
- CINTRA CNRS/NTU/THALES
| | - Guimiao Lin
- The key lab of Biomedical Engineering and Research Institute of Uropoiesis and Reproduction
- School of Medical Sciences
- Shenzhen University
- Shenzhen
- China
| | - Jinglin Tian
- The key lab of Biomedical Engineering and Research Institute of Uropoiesis and Reproduction
- School of Medical Sciences
- Shenzhen University
- Shenzhen
- China
| | - Chengbin Yang
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Kuan Wang
- Nanomedicine Program and Institute of Biological Chemistry
- Academia Sinica
- Nankang
- Taiwan
| | - Gaixia Xu
- CINTRA CNRS/NTU/THALES
- UMI 3288
- Singapore
- Singapore
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| |
Collapse
|
45
|
McWade MA, Paras C, White LM, Phay JE, Solórzano CC, Broome JT, Mahadevan-Jansen A. Label-free intraoperative parathyroid localization with near-infrared autofluorescence imaging. J Clin Endocrinol Metab 2014; 99:4574-80. [PMID: 25148235 PMCID: PMC4255111 DOI: 10.1210/jc.2014-2503] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The inability to accurately localize the parathyroid glands during parathyroidectomy and thyroidectomy procedures can prevent patients from achieving postoperative normocalcemia. There is a critical need for an improved intraoperative method for real-time parathyroid identification. OBJECTIVE The objective of the study was to test the accuracy of a real-time, label-free technique that uses near-infrared (NIR) autofluorescence imaging to localize the parathyroid. SETTING The study was conducted at the Vanderbilt University endocrine surgery center. SUBJECTS AND METHODS Patients undergoing parathyroidectomy and/or thyroidectomy were included in this study. To validate the intrinsic fluorescence signal in parathyroid, point measurements from 110 patients were collected using NIR fluorescence spectroscopy. Fluorescence imaging was performed on 6 patients. Imaging contrast is based on a previously unreported intrinsic NIR fluorophore in the parathyroid gland. The accuracy of fluorescence imaging was analyzed in comparison with visual assessment and histological findings. MAIN OUTCOME MEASURE The detection rate of parathyroid glands was measured. RESULTS The parathyroid glands in 100% of patients measured with fluorescence imaging were successfully detected in real time. Fluorescence images consistently showed 2.4 to 8.5 times higher emission intensity from the parathyroid than surrounding tissue. Histological validation confirmed that the high intrinsic fluorescence signal in the parathyroid gland can be used to localize the parathyroid gland regardless of disease state. CONCLUSION NIR fluorescence imaging represents a highly sensitive, real-time, label-free tool for parathyroid localization during surgery. The elegance and effectiveness of NIR autofluorescence imaging of the parathyroid gland makes it highly attractive for clinical application in endocrine surgery.
Collapse
Affiliation(s)
- Melanie A McWade
- Biomedical Photonics Laboratory (M.A.W., C.P., A.M.-J.), Department of Biomedical Engineering Vanderbilt University, Nashville, Tennessee 37235; Murfreesboro Surgical Center (L.M.W.), Murfreesboro, Tennessee 37129; Division of Surgical Oncology (J.E.P.), Ohio State University, Columbus, Ohio 43210; Division of Surgical Oncology and Endocrine Surgery (C.C.S.), Vanderbilt University, Nashville, Tennessee 37232; and Division of Surgical Endocrinology (J.T.B.), St Thomas Midtown Hospital, Nashville, Tennessee 37203
| | | | | | | | | | | | | |
Collapse
|
46
|
Preclinical comparison of near-infrared-labeled cetuximab and panitumumab for optical imaging of head and neck squamous cell carcinoma. Mol Imaging Biol 2014; 15:722-9. [PMID: 23715932 DOI: 10.1007/s11307-013-0652-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Though various targets have been proposed and evaluated, no agent has yet been investigated in a clinical setting for head and neck cancer. The present study aimed to compare two fluorescently labeled anti-epidermal growth factor receptor (EGFR) antibodies for detection of head and neck squamous cell carcinoma (HNSCC). PROCEDURES Antigen specificities and in vitro imaging of the fluorescently labeled anti-EGFR antibodies were performed. Next, immunodeficient mice (n = 22) bearing HNSCC (OSC-19 and SCC-1) tongue tumors received systemic injections of cetuximab-IRDye800CW, panitumumab-IRDye800CW, or IgG-IRDye800CW (a nonspecific control). Tumors were imaged and resected using two near-infrared imaging systems, SPY and Pearl. Fluorescent lymph nodes were also identified, and all resected tissues were sent for pathology. RESULTS Panitumumab-IRDye800CW and cetuximab-IRDye800CW had specific and high affinity binding for EGFR (K D = 0.12 and 0.31 nM, respectively). Panitumumab-IRDye800CW demonstrated a 2-fold increase in fluorescence intensity compared to cetuximab-IRDye800CW in vitro. In vivo, both fluorescently labeled antibodies produced higher tumor-to-background ratios compared to IgG-IRDye800CW. However, there was no significant difference between the two in either cell line or imaging modality (OSC-19: p = 0.08 SPY, p = 0.48 Pearl; SCC-1: p = 0.77 SPY, p = 0.59 Pearl; paired t tests). CONCLUSIONS There was no significant difference between the two fluorescently labeled anti-EGFR monoclonal antibodies in murine models of HNSCC. Both cetuximab and panitumumab can be considered suitable targeting agents for fluorescent intraoperative detection of HNSCC.
Collapse
|
47
|
Abstract
In almost all cardiac diseases, an increase in extracellular matrix (ECM) deposition or fibrosis occurs, mostly consisting of collagen I. Whereas replacement fibrosis follows cardiomyocyte loss in myocardial infarction, reactive fibrosis is triggered by myocardial stress or inflammatory mediators and often results in ventricular stiffening, functional deterioration, and development of heart failure. Given the importance of ECM deposition in cardiac disease, ECM imaging could be a valuable clinical tool. Molecular imaging of ECM may help understand pathology, evaluate impact of novel therapy, and may eventually find a role in predicting the extent of ECM expansion and development of personalized treatment. In the current review, we provide an overview of ECM imaging including the assessment of ECM volume and molecular targeting of key players involved in ECM deposition and degradation. The targets comprise myofibroblasts, intracardiac renin-angiotensin axis, matrix metalloproteinases, and matricellular proteins.
Collapse
Affiliation(s)
- Hans J de Haas
- From Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY (H.J.d.H., V.F., J.N.); Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, the Netherlands (H.J.d.H.); Centre for Inherited Cardiovascular Diseases, IRCCS Policlinico San Matteo, Pavia, Italy (E.A.); Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain (V.F.); and Departments of Medicine and Radiology, University of Virginia Health System, Charlottesville, VA (C.M.K.)
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Sun JY, Shen J, Thibodeaux J, Huang G, Wang Y, Gao J, Low PS, Dimitrov DS, Sumer BD. In vivo optical imaging of folate receptor-β in head and neck squamous cell carcinoma. Laryngoscope 2014; 124:E312-9. [PMID: 24448885 DOI: 10.1002/lary.24606] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS Folate receptor (FR) expression, although known to be elevated in many types of cancer and inflammatory cells, has not been well characterized in head and neck squamous cell carcinoma (HNSCC). We hypothesized that tumor infiltrating inflammatory cells expressing FR-β could allow fluorescent visualization of HNSCC tumors using folate conjugated dyes even when FR expression in cancer cells is low. STUDY DESIGN Retrospective review of clinical pathologic specimens and in vivo animal study. METHODS A tissue microarray with tumor and tumor-free tissue from 22 patients with HNSCC was stained with antibodies to FR-α and FR-β. We characterized FR-β(+) cells by examining CD45, CD68, CD206, and transforming growth factor (TGF)-β expression. To investigate fluorescent imaging, mice with orthotopic tumor xenografts were imaged in vivo after intravenous injections of folate conjugated fluorescein isothiocyanate (folate-FITC) and were histologically evaluated ex vivo. RESULTS All tumor samples demonstrated significant FR-β staining and negligible FR-α staining. FR-β(+) cells found in tumors coexpressed CD68 and had increased expression of CD206 and TGF-β characteristic of tumor-associated macrophages. In the xenograft models, tumors showed strong in vivo fluorescence after folate-FITC injection in contrast to surrounding normal tissues. Histologic examination of the xenograft tissue similarly showed folate-FITC uptake in areas of inflammatory cellular infiltrate. CONCLUSIONS Although HNSCC tumor cells do not express FR, HNSCC tumors contain a significant population of FR-β-expressing macrophages. Folate conjugated fluorescent dye is able to specifically target and label tumor xenografts to permit macroscopic fluorescence imaging due to FR-β expression on the infiltrating inflammatory cells.
Collapse
Affiliation(s)
- Joel Y Sun
- Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wayua C, Low PS. Evaluation of a cholecystokinin 2 receptor-targeted near-infrared dye for fluorescence-guided surgery of cancer. Mol Pharm 2013; 11:468-76. [PMID: 24325469 DOI: 10.1021/mp400429h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Surgical resection of malignant disease remains one of the most effective tools for treating cancer. Tumor-targeted near-infrared dyes have the potential to improve contrast between normal and malignant tissues, thereby enabling surgeons to more quantitatively resect malignant disease. Because the cholecystokinin 2 receptor (CCK2R and its tumor-specific splice variant CCK2i4svR) is overexpressed in cancers of the lungs, colon, thyroid, pancreas, and stomach, but absent or inaccessible to parenterally administered drugs in most normal tissues, we have undertaken to design a targeting ligand that can deliver attached near-infrared dyes to CCK2R+ tumors. We report here the synthesis and biological characterization of a CCK2R-targeted conjugate of the near-infrared dye, LS-288 (CRL-LS288). We demonstrate that CRL-LS288 binds selectively to CCK2R+ cancer cells with low nanomolar affinity (Kd = 7 × 10(-9) M). We further show that CRL-LS288 localizes primarily to CCK2R-expressing HEK 293 murine tumor xenografts and that dye uptake in these xenografts is significantly reduced when CCK2R are blocked by preinjection of excess ligand (CRL) or when mice are implanted with CCK2R-negative tumors. Because CRL-LS288 is also found to reveal the locations of distant tumor metastases, we suggest that CRL-LS288 has the potential to facilitate intraoperative identification of malignant disease during a variety of cancer debulking surgeries.
Collapse
Affiliation(s)
- Charity Wayua
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | | |
Collapse
|