1
|
Shen Q, Liu J, Zeng L, Ren Y, Liao J, Chen S, Tang Y, Zhang Z, Jiang M, Liao H, Wang L, Xu X, Chen J. Pancreas-targeted lipid nanoparticles for relatively non-invasive interleukin-12 mRNA therapy in orthotopic pancreatic ductal adenocarcinoma. J Control Release 2025; 381:113588. [PMID: 40032009 DOI: 10.1016/j.jconrel.2025.113588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents 90 % of pancreatic cancers and shows limited response to immune therapy owing to the highly immunosuppressive tumor microenvironment (TME). Cytokine-encoded mRNA therapy demonstrates a great promise in converting "cold" tumors into "hot" ones, while it is typically administered through intratumoral injection and applicable only to superficial tumors, which limites their application in PDAC. In this study, we design and develop a lipid nanoparticle (LNP) delivery system capable of targeting pancreatic tissue via intraperitoneal (I.P.) injection. This system not only efficiently delivers mRNA to pancreatic tissues but also selectively targets immune cells in PDAC. A single I.P. injection of LNP encapsulating interleukin-12 (IL-12) mRNA (LNP/mIL-12) activates both myeloid and lymphoid cells in PDAC, reprogramming the immunosuppressive TME. Remarkably, I.P. injection of LNP/mIL-12 induces eradication of orthotopic PDAC in some cases. Our work represents the first relatively non-invasive method to deliver IL-12 mRNA for targeted treatment of orthotopic PDAC, offering a novel approach for PDAC immunotherapy.
Collapse
Affiliation(s)
- Qian Shen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Jia Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China; Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Ling Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Yupeng Ren
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering 2 Taoyuan Street, Xiangtan 411201, PR China
| | - Jing Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Sijie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Yingsen Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Zixi Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Meng Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Hangping Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering 2 Taoyuan Street, Xiangtan 411201, PR China
| | - Lingyun Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China.
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China.
| | - Jinjin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China.
| |
Collapse
|
2
|
Bhutani MS, Faraoni EY, Mork ME, McAllister F. Gastric cancer prevention and screening during pancreatic cancer screening in high-risk individuals: an opportunity not to be missed. Gastrointest Endosc 2025; 101:1073-1076. [PMID: 39653170 DOI: 10.1016/j.gie.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Affiliation(s)
- Manoop S Bhutani
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Erika Y Faraoni
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maureen E Mork
- Clinical Cancer Genetics Program, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Florencia McAllister
- Department of Genetics, Clinical Cancer Genetics Program, Department of Gastrointestinal Medical Oncology, Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
3
|
Liu Y, Li C, Cui X, Li M, Liu S, Wang Z. Potentially diagnostic and prognostic roles of piRNAs/PIWIs in pancreatic cancer: A review. Biochim Biophys Acta Rev Cancer 2025; 1880:189286. [PMID: 39952623 DOI: 10.1016/j.bbcan.2025.189286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with limited early diagnostic methods and therapeutic options, contributing to its poor prognosis. Recent advances in high-throughput sequencing have highlighted the critical roles of noncoding RNAs (ncRNAs), particularly PIWI-interacting RNAs (piRNAs), in cancer biology. In this review, we systematically summarize the emerging roles of piRNAs and their associated PIWI proteins in PDAC pathogenesis, progression, and prognosis. We provide a comprehensive analysis of the molecular mechanisms by which piRNAs/PIWIs regulate gene expression and cellular signaling pathways in PDAC. Furthermore, we discuss their potential as novel biomarkers for early diagnosis and therapeutic targets. Importantly, this review identifies key piRNAs/PIWIs involved in PDAC and proposes innovative strategies for improving diagnosis and treatment outcomes. Our work not only consolidates current knowledge but also offers new perspectives for future research and clinical applications in PDAC management.
Collapse
Affiliation(s)
- Yukun Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changlei Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotong Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Miaomiao Li
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Shiguo Liu
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China.
| | - Zusen Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Farinella R, Felici A, Peduzzi G, Testoni SGG, Costello E, Aretini P, Blazquez-Encinas R, Oz E, Pastore A, Tacelli M, Otlu B, Campa D, Gentiluomo M. From classical approaches to artificial intelligence, old and new tools for PDAC risk stratification and prediction. Semin Cancer Biol 2025; 112:71-92. [PMID: 40147701 DOI: 10.1016/j.semcancer.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is recognized as one of the most lethal malignancies, characterized by late-stage diagnosis and limited therapeutic options. Risk stratification has traditionally been performed using epidemiological studies and genetic analyses, through which key risk factors, including smoking, diabetes, chronic pancreatitis, and inherited predispositions, have been identified. However, the multifactorial nature of PDAC has often been insufficiently addressed by these methods, leading to limited precision in individualized risk assessments. Advances in artificial intelligence (AI) have been proposed as a transformative approach, allowing the integration of diverse datasets-spanning genetic, clinical, lifestyle, and imaging data into dynamic models capable of uncovering novel interactions and risk profiles. In this review, the evolution of PDAC risk stratification is explored, with classical epidemiological frameworks compared to AI-driven methodologies. Genetic insights, including genome-wide association studies and polygenic risk scores, are discussed, alongside AI models such as machine learning, radiomics, and deep learning. Strengths and limitations of these approaches are evaluated, with challenges in clinical translation, such as data scarcity, model interpretability, and external validation, addressed. Finally, future directions are proposed for combining classical and AI-driven methodologies to develop scalable, personalized predictive tools for PDAC, with the goal of improving early detection and patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Sabrina Gloria Giulia Testoni
- Division of Gastroenterology and Gastrointestinal Endoscopy, IRCCS Policlinico San Donato, Vita-Salute San Raffaele University, Milan, Italy
| | - Eithne Costello
- Liverpool Experimental Cancer Medicine Centre, University of Liverpool, Liverpool, United Kingdom
| | - Paolo Aretini
- Fondazione Pisana per la Scienza, San Giuliano Terme, Italy
| | - Ricardo Blazquez-Encinas
- Department of Cell Biology, Physiology and Immunology, University of Cordoba / Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Elif Oz
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Aldo Pastore
- Fondazione Pisana per la Scienza, San Giuliano Terme, Italy
| | - Matteo Tacelli
- Pancreas Translational & Clinical Research Center, Pancreato-Biliary Endoscopy and Endosonography Division, San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Burçak Otlu
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
5
|
Bogdanski AM, Acedo P, Wallace MB, van Leerdam ME, Klatte DCF. Recommendations, evidence and sustainability of screening for pancreatic cancer in high-risk individuals. Best Pract Res Clin Gastroenterol 2025; 74:101974. [PMID: 40210328 DOI: 10.1016/j.bpg.2025.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/31/2024] [Indexed: 04/12/2025]
Abstract
Pancreatic cancer is a highly lethal malignancy and is predicted to become the second leading cause of cancer-related deaths by 2030. Early detection significantly improves outcomes, but general population screening remains infeasible due to the low prevalence of the disease and lack of specific biomarkers. This review evaluates current recommendations for pancreatic cancer surveillance in high-risk individuals, synthesises evidence from recent studies and explores the sustainability of current imaging-based surveillance programmes. Challenges such as overdiagnosis, economic feasibility and disparities in access highlight the need for targeted, cost-effective strategies. Collaborative initiatives and consortia are needed to advance biomarker research and refine risk stratification. By integrating evidence-based recommendations with sustainable approaches, this review outlines pathways to improve early detection and reduce mortality from pancreatic cancer.
Collapse
Affiliation(s)
- Aleksander M Bogdanski
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, United States; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pilar Acedo
- Institute for Liver and Digestive Health, Division of Medicine, University College London, London, United Kingdom
| | - Michael B Wallace
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, United States
| | - Monique E van Leerdam
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands; Department of Gastrointestinal Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Derk C F Klatte
- Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, United States; Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
6
|
Wu Z, Zeng L, Fang Z, Yuan Y, Zhou Y, Chen R. Life's Essential 8, genetic susceptibility, and risk of incident pancreatic cancer: A prospective cohort study. Int J Cancer 2025; 156:566-574. [PMID: 39279141 DOI: 10.1002/ijc.35184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
The association between the American Heart Association (AHA) Life's Essential 8 (LE8) and the risk of pancreatic cancer (PC) remains unclear. Our goal was to assess the relationships between LE8, genetic susceptibility, and PC risk. This cohort consisted of 234,102 participants from the UK Biobank. The components of LE8 include diet, nicotine exposure, sleep, physical activity, blood glucose, body mass index, blood lipids, and blood pressure. LE8 is classified into three categories: low cardiovascular health (CVH), moderate CVH, and high CVH. Measurements were made using Cox proportional risk models to estimate impact of associations between LE8, genetic susceptibility, and incidence of PC in participants. Compared to participants with low LE8 scores, those with moderate and high LE8 scores had a 53% (HR, 0.47; 95% CI, 0.39-0.57) and 70% (HR, 0.30; 95% CI, 0.22-0.41) lower risk of developing PC, respectively. Interestingly, among individuals with high genetic risk, high LE8 scores were associated with greater benefits (HR, 0.24; 95% CI, 0.15-0.40), whereas the protective effect was weaker among those with low genetic risk (HR, 0.40; 95% CI, 0.21-0.75). Participants with a high LE8 score and a low polygenic risk score (PRS) had the lowest risk of PC (HR, 0.19; 95% CI: 0.11-0.33). Furthermore, we observed a significant additive interaction between LE8 and PRS. A higher LE8 score is associated with a lower risk of PC, especially for participants with a high PRS. These findings have important implications for participants most genetically predisposed to PC and for targeted strategies for PC prevention.
Collapse
Affiliation(s)
- Zhuo Wu
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Liangtang Zeng
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhou Fang
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuan Yuan
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yu Zhou
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Rufu Chen
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Wiegand A, Chhoda A, Namboodiri A, Grimshaw AA, Dalela D, Farrell J. Practices and perspectives of genetic counselors about high-risk pancreatic cancer screening: A cross-sectional survey study. J Genet Couns 2025; 34:e2016. [PMID: 39814542 DOI: 10.1002/jgc4.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/26/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025]
Abstract
Surveillance of individuals at high-risk of pancreatic cancer using CAPS criteria and other expert consensus guidelines may result in earlier pancreatic cancer detection in some cases; therefore, clinicians are responsible for appropriately identifying and referring these individuals to appropriate high-risk pancreas cancer screening programs. This study aimed at assessing the perspective, knowledge, and clinical practices of cancer genetic counselors surveyed nationwide towards identification of individuals at high-risk of pancreatic cancer and utilization of high-risk pancreatic cancer screening programs. One hundred and eighty-nine genetic counselors who listed "Cancer" as their specialty on the NSGC website responded to the survey, which consisted of multiple practice-based, knowledge-based, and clinical vignette-based questions. Almost 70% of the genetic counselors surveyed accurately identified when an individual would be considered for high-risk pancreatic cancer screening, when using 2019 CAPS consensus guidelines as a benchmark. Access to high-risk pancreatic cancer screening programs and increased provider comfort in counseling individuals at high-risk of pancreatic cancer were found to be statistically associated in accurate identification of high-risk individuals in three of the clinical vignettes. Additionally, 60% of genetic counselors reported the majority of high-risk individuals accept a referral for pancreatic cancer screening, which shows a high uptake of patients accepting referrals from genetic counselors. Genetic counselors have high accuracy in determining who is eligible for high-risk pancreas screening; thus, they are the ideal providers for initiating referrals to high-risk pancreatic cancer screening programs. Genetic counseling programs and high-risk pancreatic cancer screening programs should establish a close working relationship to optimize the identification and subsequent referrals of high-risk individuals eligible for pancreas cancer screening.
Collapse
Affiliation(s)
- Amy Wiegand
- Smilow Cancer Genetics and Prevention Program, Yale New Haven Health, New Haven, Connecticut, USA
| | - Ankit Chhoda
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Interventional Endoscopy and Pancreatic Diseases, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Aparna Namboodiri
- Smilow Cancer Genetics and Prevention Program, Yale New Haven Health, New Haven, Connecticut, USA
| | - Alyssa A Grimshaw
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut, USA
| | - Disha Dalela
- Smilow Cancer Genetics and Prevention Program, Yale New Haven Health, New Haven, Connecticut, USA
- Department of Hematology/Oncology at the National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James Farrell
- Interventional Endoscopy and Pancreatic Diseases, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Walker M, Morton JP. Hydrogel models of pancreatic adenocarcinoma to study cell mechanosensing. Biophys Rev 2024; 16:851-870. [PMID: 39830124 PMCID: PMC11735828 DOI: 10.1007/s12551-024-01265-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is the predominant form of pancreatic cancer and one of the leading causes of cancer-related death worldwide, with an extremely poor prognosis after diagnosis. High mortality from PDAC arises partly due to late diagnosis resulting from a lack of early-stage biomarkers and due to chemotherapeutic drug resistance, which arises from a highly fibrotic stromal response known as desmoplasia. Desmoplasia alters tissue mechanics, which triggers changes in cell mechanosensing and leads to dysregulated transcriptional activity and disease phenotypes. Hydrogels are effective in vitro models to mimic mechanical changes in tissue mechanics during PDAC progression and to study the influence of these changes on mechanosensitive cell responses. Despite the complex biophysical changes that occur within the PDAC microenvironment, carefully designed hydrogels can very closely recapitulate these properties during PDAC progression. Hydrogels are relatively inexpensive, highly reproducible and can be designed in a humanised manner to increase their relevance for human PDAC studies. In vivo models have some limitations, including species-species differences, high variability, expense and legal/ethical considerations, which make hydrogel models a promising alternative. Here, we comprehensively review recent advancements in hydrogel bioengineering for developing our fundamental understanding of mechanobiology in PDAC, which is critical for informing advanced therapeutics.
Collapse
Affiliation(s)
- M Walker
- Centre for the Cellular Microenvironment, Advanced Research Centre, 11 Chapel Lane, James Watt School of Engineering, University of Glasgow, Glasgow, G11 6EW UK
| | - JP Morton
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Rd, Glasgow, G61 1BD UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Rd, Glasgow, G61 1QH UK
| |
Collapse
|
9
|
Erreni M, Fumagalli MR, D’Anna R, Sollai M, Bozzarelli S, Nappo G, Zanini D, Parente R, Garlanda C, Rimassa L, Terracciano LM, Biswas SK, Zerbi A, Mantovani A, Doni A. Depicting the cellular complexity of pancreatic adenocarcinoma by Imaging Mass Cytometry: focus on cancer-associated fibroblasts. Front Immunol 2024; 15:1472433. [PMID: 39575252 PMCID: PMC11578750 DOI: 10.3389/fimmu.2024.1472433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) represents the complexity of interaction between cancer and cells of the tumor microenvironment (TME). Immune cells affect tumor cell behavior, thus driving cancer progression. Cancer-associated fibroblasts (CAFs) are responsible of the desmoplastic and fibrotic reaction by regulating deposition and remodeling of extracellular matrix (ECM). As tumor-promoting cells abundant in PDAC ECM, CAFs represent promising targets for novel anticancer interventions. However, relevant clinical trials are hampered by the lack of specific markers and elusive differences among CAF subtypes. Indeed, while single-cell transcriptomic analyses have provided important information on the cellular constituents of PDACs and related molecular pathways, studies based on the identification of protein markers in tissues aimed at identifying CAF subtypes and new molecular targets result incomplete. Methods Herein, we applied multiplexed Imaging Mass Cytometry (IMC) at single-cell resolution on 8 human PDAC tissues to depict the PDAC composing cells, and profiling immune cells, endothelial cells (ECs), as well as endocrine cells and tumor cells. Results We focused on CAFs by characterizing up to 19 clusters distinguished by phenotype, spatiality, and interaction with immune and tumor cells. We report evidence that specific subtypes of CAFs (CAFs 10 and 11) predominantly are enriched at the tumor-stroma interface and closely associated with tumor cells. CAFs expressing different combinations of FAP, podoplanin and cadherin-11, were associated with a higher level of CA19-9. Moreover, we identified specific subsets of FAP+ and podoplanin+/cadherin-11+ CAFs enriched in patients with negative prognosis. Discussion The present study provides new general insights into the complexity of the PDAC microenvironment by defining phenotypic heterogeneities and spatial distributions of CAFs, thus suggesting different functions of their subtypes in the PDAC microenvironment.
Collapse
Affiliation(s)
- Marco Erreni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Maria Rita Fumagalli
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Raffaella D’Anna
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Mauro Sollai
- Pathology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvia Bozzarelli
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Gennaro Nappo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Damiano Zanini
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Raffaella Parente
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Luigi Maria Terracciano
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pathology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Subhra K. Biswas
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Alessandro Zerbi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alberto Mantovani
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Andrea Doni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
10
|
Paranal RM, Wood LD, Klein AP, Roberts NJ. Understanding familial risk of pancreatic ductal adenocarcinoma. Fam Cancer 2024; 23:419-428. [PMID: 38609521 PMCID: PMC11660179 DOI: 10.1007/s10689-024-00383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is the result of an accumulation of sequential genetic alterations. These genetic alterations can either be inherited, such as pathogenic germline variants that are associated with an increased risk of cancer, or acquired, such as somatic mutations that occur during the lifetime of an individual. Understanding the genetic basis of inherited risk of PDAC is essential to advancing patient care and outcomes through improved clinical surveillance, early detection initiatives, and targeted therapies. In this review we discuss factors associated with an increased risk of PDAC, the prevalence of genetic variants associated with an increased risk in patients with PDAC, estimates of PDAC risk in carriers of pathogenic germline variants in genes associated with an increased risk of PDAC. The role of common variants in pancreatic cancer risk will also be discussed.
Collapse
Affiliation(s)
- Raymond M Paranal
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Human Genetics Predoctoral Training Program, the McKusick-Nathans Department of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P Klein
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
| | - Nicholas J Roberts
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Archasappawat S, Al-Musawi F, Liu P, Lee E, Hwang CI. Familial Pancreatic Cancer Research: Bridging Gaps in Basic Research and Clinical Application. Biomolecules 2024; 14:1381. [PMID: 39595558 PMCID: PMC11592027 DOI: 10.3390/biom14111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Familial pancreatic cancer (FPC) represents a significant yet underexplored area in pancreatic cancer research. Basic research efforts are notably limited, and when present, they are predominantly centered on the BRCA1 and BRCA2 mutations due to the scarcity of other genetic variants associated with FPC, leading to a limited understanding of the broader genetic landscape of FPC. This review examines the current state of FPC research, focusing on the molecular mechanisms driving pancreatic ductal adenocarcinoma (PDAC) progression. It highlights the role of homologous recombination (HR) and its therapeutic exploitation via synthetic lethality with PARP inhibitors in BRCA1/2-deficient tumors. The review discusses various pre-clinical models of FPC, including conventional two-dimensional (2D) cell lines, patient-derived organoids (PDOs), patient-derived xenografts (PDXs), and genetically engineered mouse models (GEMMs), as well as new advancements in FPC research.
Collapse
Affiliation(s)
- Suyakarn Archasappawat
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
- University of California Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| | - Fatimah Al-Musawi
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
| | - Peiyi Liu
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
| | - EunJung Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
| | - Chang-il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (S.A.); (F.A.-M.); (P.L.)
- University of California Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
12
|
Chen PH, Lee CH, Liaw CC, Liang RT, Khan MAR, Tsai JN, Huang SY, Liu W, Tsai WC. Metachromin C, a marine-derived natural compound, shows potential in antitumor activity. Int J Med Sci 2024; 21:2578-2594. [PMID: 39439453 PMCID: PMC11492879 DOI: 10.7150/ijms.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/14/2024] [Indexed: 10/25/2024] Open
Abstract
Metachromin C was first isolated from the marine sponge Hippospongia metachromia and has been reported to possess potent cytotoxicity against leukemia cells. However, its antitumor activity and possible mechanisms in pancreatic cancer remain unclear. The effects of Metachromin C on cell viability were estimated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The compound demonstrated a cytotoxic effect on four pancreatic cancer cell lines (PANC-1, BxPC-3, MiaPaCa-2, and AsPC-1). The significant S phase arrest observed with Metachromin C treatment suggests its impact on DNA replication machinery. Metachromin C might interfere with the binding of Topoisomerase I (TOPO I) to DNA, inhibit TOPO I activity, prevent DNA relaxation, cause DNA damage, and consequently activate the DNA repair pathway. Additionally, anti-migration and anti-invasion abilities of Metachromin C were confirmed using the transwell assay. It also inhibited angiogenesis in human endothelial cells by reducing cell proliferation, migration, and disrupting tube formation. Moreover, Metachromin C dose-dependently inhibited the growth of intersegmental vessels, subintestinal vessels, and the caudal vein plexus in a zebrafish embryo model, confirming its inhibitory effect on new vessel formation in vivo. Taken together, Metachromin C could not only inhibit the growth of pancreatic cancer cells but also act as an anti-angiogenic compound simultaneously.
Collapse
Affiliation(s)
- Pei-Hsuan Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- College of Semiconductor and Advanced Technology Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Rei-Ting Liang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Mo Aqib Raza Khan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Jen-Ning Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 402, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shin-Yi Huang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
13
|
Fuller RN, Morcos A, Bustillos JG, Molina DC, Wall NR. Small non-coding RNAs and pancreatic ductal adenocarcinoma: Linking diagnosis, pathogenesis, drug resistance, and therapeutic potential. Biochim Biophys Acta Rev Cancer 2024; 1879:189153. [PMID: 38986720 DOI: 10.1016/j.bbcan.2024.189153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
This review comprehensively investigates the intricate interplay between small non-coding RNAs (sncRNAs) and pancreatic ductal adenocarcinoma (PDAC), a devastating malignancy with limited therapeutic options. Our analysis reveals the pivotal roles of sncRNAs in various facets of PDAC biology, spanning diagnosis, pathogenesis, drug resistance, and therapeutic strategies. sncRNAs have emerged as promising biomarkers for PDAC, demonstrating distinct expression profiles in diseased tissues. sncRNA differential expression patterns, often detectable in bodily fluids, hold potential for early and minimally invasive diagnostic approaches. Furthermore, sncRNAs exhibit intricate involvement in PDAC pathogenesis, regulating critical cellular processes such as proliferation, apoptosis, and metastasis. Additionally, mechanistic insights into sncRNA-mediated pathogenic pathways illuminate novel therapeutic targets and interventions. A significant focus of this review is dedicated to unraveling sncRNA mechanisms underlying drug resistance in PDAC. Understanding these mechanisms at the molecular level is imperative for devising strategies to overcome drug resistance. Exploring the therapeutic landscape, we discuss the potential of sncRNAs as therapeutic agents themselves as their ability to modulate gene expression with high specificity renders them attractive candidates for targeted therapy. In summary, this review integrates current knowledge on sncRNAs in PDAC, offering a holistic perspective on their diagnostic, pathogenic, and therapeutic relevance. By elucidating the roles of sncRNAs in PDAC biology, this review provides valuable insights for the development of novel diagnostic tools and targeted therapeutic approaches, crucial for improving the prognosis of PDAC patients.
Collapse
Affiliation(s)
- Ryan N Fuller
- Department of Basic Science, Division of Biochemistry, Center for Health Disparity and Mol. Med., Loma Linda University, Loma Linda, CA 92350, USA; Department of Radiation Medicine, James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ann Morcos
- Department of Basic Science, Division of Biochemistry, Center for Health Disparity and Mol. Med., Loma Linda University, Loma Linda, CA 92350, USA; Department of Radiation Medicine, James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92350, USA
| | - Joab Galvan Bustillos
- Department of Basic Science, Division of Biochemistry, Center for Health Disparity and Mol. Med., Loma Linda University, Loma Linda, CA 92350, USA; Division of Surgical Oncology, Department of Surgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - David Caba Molina
- Division of Surgical Oncology, Department of Surgery, Loma Linda University, Loma Linda, CA 92350, USA
| | - Nathan R Wall
- Department of Basic Science, Division of Biochemistry, Center for Health Disparity and Mol. Med., Loma Linda University, Loma Linda, CA 92350, USA; Department of Radiation Medicine, James M. Slater, MD Proton Treatment and Research Center, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
14
|
Zhong Y, Zhang H, Wang P, Zhao J, Ge Y, Sun Z, Wang Z, Li J, Hu S. Auger emitter in combination with Olaparib suppresses tumor growth via promoting antitumor immune responses in pancreatic cancer. Invest New Drugs 2024; 42:442-453. [PMID: 38941055 DOI: 10.1007/s10637-024-01454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
The present study aimed to clarify the hypothesis that auger emitter 125I particles in combination with PARP inhibitor Olaparib could inhibit pancreatic cancer progression by promoting antitumor immune response. Pancreatic cancer cell line (Panc02) and mice subcutaneously inoculated with Panc02 cells were employed for the in vitro and in vivo experiments, respectively, followed by 125I and Olaparib administrations. The apoptosis and CRT exposure of Panc02 cells were detected using flow cytometry assay. QRT-PCR, immunofluorescence, immunohistochemical analysis, and western blot were employed to examine mRNA and protein expression. Experimental results showed that 125I combined with Olaparib induced immunogenic cell death and affected antigen presentation in pancreatic cancer. 125I in combination with Olaparib influenced T cells and dendritic cells by up-regulating CD4, CD8, CD69, Caspase3, CD86, granzyme B, CD80, and type I interferon (IFN)-γ and down-regulating Ki67 in vivo. The combination also activated the cyclic GMP-AMP synthase stimulator of IFN genes (Sting) pathway in Panc02 cells. Moreover, Sting knockdown alleviated the effect of the combination of 125I and Olaparib on pancreatic cancer progression. In summary, 125I in combination with Olaparib inhibited pancreatic cancer progression through promoting antitumor immune responses, which may provide a potential treatment for pancreatic cancer.
Collapse
Affiliation(s)
- Yanqi Zhong
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Heng Zhang
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Peng Wang
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Jing Zhao
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Yuxi Ge
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Zongqiong Sun
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Zi Wang
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China
| | - Jie Li
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China.
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital of Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214000, China.
- Institute of Translational Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
15
|
Cristina-Marianini-Rios, Sanchez MEC, de Paredes AGG, Rodríguez M, Barreto E, López JV, Fuentes R, Beltrán MM, Sanjuanbenito A, Lobo E, Caminoa A, Ruz-Caracuel I, Durán SL, Olcina JRF, Blázquez J, Sequeros EV, Carrato A, Ávila JCM, Earl J. The best linear unbiased prediction (BLUP) method as a tool to estimate the lifetime risk of pancreatic ductal adenocarcinoma in high-risk individuals with no known pathogenic germline variants. Fam Cancer 2024; 23:233-246. [PMID: 38780705 PMCID: PMC11254992 DOI: 10.1007/s10689-024-00397-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death in the Western world. The number of diagnosed cases and the mortality rate are almost equal as the majority of patients present with advanced disease at diagnosis. Between 4 and 10% of pancreatic cancer cases have an apparent hereditary background, known as hereditary pancreatic cancer (HPC) and familial pancreatic cancer (FPC), when the genetic basis is unknown. Surveillance of high-risk individuals (HRI) from these families by imaging aims to detect PDAC at an early stage to improve prognosis. However, the genetic basis is unknown in the majority of HRIs, with only around 10-13% of families carrying known pathogenic germline mutations. The aim of this study was to assess an individual's genetic cancer risk based on sex and personal and family history of cancer. The Best Linear Unbiased Prediction (BLUP) methodology was used to estimate an individual's predicted risk of developing cancer during their lifetime. The model uses different demographic factors in order to estimate heritability. A reliable estimation of heritability for pancreatic cancer of 0.27 on the liability scale, and 0.07 at the observed data scale as obtained, which is different from zero, indicating a polygenic inheritance pattern of PDAC. BLUP was able to correctly discriminate PDAC cases from healthy individuals and those with other cancer types. Thus, providing an additional tool to assess PDAC risk HRI with an assumed genetic predisposition in the absence of known pathogenic germline mutations.
Collapse
Affiliation(s)
- Cristina-Marianini-Rios
- Department of Agricultural Economics, Statistics and Business Management, Universidad Politécnica de Madrid, Madrid, Spain
| | - María E Castillo Sanchez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
| | - Ana García García de Paredes
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Rodríguez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, 28034, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
- University of Alcalá, Madrid, Spain
| | - Emma Barreto
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
- University of Alcalá, Madrid, Spain
| | - Jorge Villalón López
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
| | - Raquel Fuentes
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, 28034, Spain
| | | | - Alfonso Sanjuanbenito
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
- Pancreatic and Biliopancreatic Surgery Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Eduardo Lobo
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Pancreatic and Biliopancreatic Surgery Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alejandra Caminoa
- Department of Pathology, Hospital Universitario Ramón y Cajal, Madrid, 28034, Spain
| | - Ignacio Ruz-Caracuel
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
- Department of Pathology, Hospital Universitario Ramón y Cajal, Madrid, 28034, Spain
| | - Sergio López Durán
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - José Ramón Foruny Olcina
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Javier Blázquez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Radiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Enrique Vázquez Sequeros
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
| | - Alfredo Carrato
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain
- University of Alcalá, Madrid, Spain
- Pancreatic Cancer Europe, Brussels, Belgium
| | - Jose Carlos Martínez Ávila
- Department of Agricultural Economics, Statistics and Business Management, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Julie Earl
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, Madrid, 28034, Spain.
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid, 28029, Spain.
| |
Collapse
|
16
|
Jacobs MF, Stoffel EM. Genetic and other risk factors for pancreatic ductal adenocarcinoma (PDAC). Fam Cancer 2024; 23:221-232. [PMID: 38573398 DOI: 10.1007/s10689-024-00372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often diagnosed at an advanced stage, resulting in poor prognosis and low 5-year survival rates. While early evidence suggests increased long-term survival in those with screen-detected resectable cancers, surveillance imaging is currently only recommended for individuals with a lifetime risk of PDAC ≥ 5%. Identification of risk factors for PDAC provides opportunities for early detection, risk reducing interventions, and targeted therapies, thus potentially improving patient outcomes. Here, we summarize modifiable and non-modifiable risk factors for PDAC. We review hereditary cancer syndromes associated with risk for PDAC and their implications for patients and their relatives. In addition, other biologically relevant pathways and environmental and lifestyle risk factors are discussed. Future work may focus on elucidating additional genetic, environmental, and lifestyle risk factors that may modify PDAC risk to continue to identify individuals at increased risk for PDAC who may benefit from surveillance and risk reducing interventions.
Collapse
Affiliation(s)
- Michelle F Jacobs
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Elena M Stoffel
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
17
|
Earl J, Fuentes R, Sanchez MEC, de Paredes AGG, Muñoz M, Sanjuanbenito A, Lobo E, Caminoa A, Rodríguez M, Barreto E, López JV, Ruz-Caracuel I, Durán SL, Olcina JRF, Sánchez BL, Páez SC, Torres A, Blázquez J, Sequeros EV, Carrato A. The Spanish Familial Pancreatic Cancer Registry (PANGENFAM): a decade follow-up of individuals at high-risk for pancreatic cancer. Fam Cancer 2024; 23:383-392. [PMID: 38753287 PMCID: PMC11254983 DOI: 10.1007/s10689-024-00388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/04/2024] [Indexed: 07/18/2024]
Abstract
The Spanish Familial Pancreatic Cancer Registry (PANGENFAM) was established in 2009 and aims to characterize the genotype and phenotype of familial pancreatic cancer (FPC). Furthermore, an early detection screening program for pancreatic ductal adenocarcinoma (PDAC) is provided to healthy high-risk individuals from FPC and hereditary pancreatic cancer families (first-degree relatives). This article describes our experience over the last 10 years in high-risk screening. Hereditary and familial pancreatic cancer families were identified through the oncology and gastroenterology units. High-risk individuals underwent annual screening with endoscopic ultrasound (EUS) and magnetic resonance (MRI) from age 40 or 10 years younger than the youngest affected family member. Results: PANGENFAM has enrolled 290 individuals from 143 families, including 52 PDAC cases and 238 high-risk individuals. All high-risk individuals eligible for screening were offered to enter the surveillance program, with 143 currently participating. Pancreatic abnormalities were detected in 94 individuals (median age 53 years (29-83), with common findings including cystic lesions and inhomogeneous parenchyma. Imaging test concordance was 66%. Surgical intervention was performed in 4 high-risk individuals following highly suspicious lesions detected by imaging. PANGENFAM is a valuable resource for science innovation, such as biobanking, with clinical and imaging data available for analysis. For high-risk families, it may offer a potential for early diagnosis. Collaboration with other national and international registries is needed to increase our understanding of the disease biology and to standardize criteria for inclusion and follow-up, optimizing cost-effectiveness and efficacy.
Collapse
Affiliation(s)
- Julie Earl
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain.
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain.
- Biobank and Biomodels Platform, Spanish National Biobanks Network (ISCIII Biobank Register No. B.0000678), ISCIII Research and Development Platforms in Biomedicine and Health Sciences, BioBank Hospital Ramón y Cajal-IRYCIS, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, PT20/004528034, Madrid, Spain.
| | - Raquel Fuentes
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - María E Castillo Sanchez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
| | - Ana García García de Paredes
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María Muñoz
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Radiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alfonso Sanjuanbenito
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Pancreatic and Biliopancreatic Surgery Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Eduardo Lobo
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Pancreatic and Biliopancreatic Surgery Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alejandra Caminoa
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Department of Pathology, Hospital Universitario Ramón y Cajal, 28034, Madrid, Spain
| | - Mercedes Rodríguez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - Emma Barreto
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
- University of Alcalá, Madrid, Spain
| | - Jorge Villalón López
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Biobank and Biomodels Platform, Spanish National Biobanks Network (ISCIII Biobank Register No. B.0000678), ISCIII Research and Development Platforms in Biomedicine and Health Sciences, BioBank Hospital Ramón y Cajal-IRYCIS, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, PT20/004528034, Madrid, Spain
| | - Ignacio Ruz-Caracuel
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
- Department of Pathology, Hospital Universitario Ramón y Cajal, 28034, Madrid, Spain
| | - Sergio López Durán
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - José Ramón Foruny Olcina
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Bárbara Luna Sánchez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Biobank and Biomodels Platform, Spanish National Biobanks Network (ISCIII Biobank Register No. B.0000678), ISCIII Research and Development Platforms in Biomedicine and Health Sciences, BioBank Hospital Ramón y Cajal-IRYCIS, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, PT20/004528034, Madrid, Spain
| | - Sonia Camaño Páez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Biobank and Biomodels Platform, Spanish National Biobanks Network (ISCIII Biobank Register No. B.0000678), ISCIII Research and Development Platforms in Biomedicine and Health Sciences, BioBank Hospital Ramón y Cajal-IRYCIS, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, PT20/004528034, Madrid, Spain
| | - Ana Torres
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Biobank and Biomodels Platform, Spanish National Biobanks Network (ISCIII Biobank Register No. B.0000678), ISCIII Research and Development Platforms in Biomedicine and Health Sciences, BioBank Hospital Ramón y Cajal-IRYCIS, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9, 100, PT20/004528034, Madrid, Spain
| | - Javier Blázquez
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Vázquez Sequeros
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - Alfredo Carrato
- Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9,100, 28034, Madrid, Spain
- The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
- University of Alcalá, Madrid, Spain
- Pancreatic Cancer Europe, Brussels, Belgium
| |
Collapse
|
18
|
Yamane K, Tsukano K, Umino Y, Nagami T, Tarumoto K, Hattori K, Maemoto R, Iwasaki J, Kanazawa A. Successful curative treatment for a ruptured pancreatic acinar cell carcinoma by radical resection following modified FOLFIRINOX: a case report and literature review. Int Cancer Conf J 2024; 13:281-288. [PMID: 38962046 PMCID: PMC11217244 DOI: 10.1007/s13691-024-00679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/28/2024] [Indexed: 07/05/2024] Open
Abstract
Pancreatic acinar cell carcinoma (PACC) is a rare pancreatic tumor type, and ruptured pancreatic tumors are rarer. Computed tomography (CT) in a 48-year-old man incidentally revealed a raptured pancreatic tail tumor. The patient was treated conservatively because he was asymptomatic, and his general condition was stable. After a detailed examination, the pancreatic tumor was diagnosed as raptured PACC. Considering the potential infiltration of tumor cells into the hematoma within the omental sac, our decision is to initiate chemotherapy as the primary course of action. A liquid biopsy was performed, and comprehensive genomic profiling of circulating tumor DNA showed a tumor BRCA2 mutation. Chemotherapy with modified FOLFIRINOX (mFFX) was selected as the first treatment. After seven courses of mFFX, the primary tumor diminished remarkably. At this time, the radical resection was performed via distal pancreatectomy with simultaneous resection of the gastric wall and colon, which had adhered strongly to the tumor. Histopathological examination revealed that the tumor had shrunk to less than 5% of its original size due to chemotherapy (Grade 3 of Evans Classification). Devising treatment strategies for ruptured pancreatic malignant tumors is challenging due to the worsening general condition caused by severe abdominal symptoms and intra-abdominal bleeding. In this context, this case-report documents a rare instance of raptured PACC with a tumor BRCA2 mutation that underwent radical resection following mFFX treatment.
Collapse
Affiliation(s)
- Kei Yamane
- Department of Surgery, Shimane Prefectural Central Hospital, Izumo-Shi, Shimane, 693-8555 Japan
| | - Kosuke Tsukano
- Department of Gastroenterology, Shimane Prefectural Central Hospital, Izumo-Shi, Shimane, 693-8555 Japan
| | - Yosuke Umino
- Department of Surgery, Shimane Prefectural Central Hospital, Izumo-Shi, Shimane, 693-8555 Japan
| | - Tadashi Nagami
- Department of Surgery, Shimane Prefectural Central Hospital, Izumo-Shi, Shimane, 693-8555 Japan
| | - Koji Tarumoto
- Department of Surgery, Shimane Prefectural Central Hospital, Izumo-Shi, Shimane, 693-8555 Japan
| | - Kuniaki Hattori
- Department of Surgery, Shimane Prefectural Central Hospital, Izumo-Shi, Shimane, 693-8555 Japan
| | - Ryo Maemoto
- Department of Surgery, Shimane Prefectural Central Hospital, Izumo-Shi, Shimane, 693-8555 Japan
| | - Junji Iwasaki
- Department of Surgery, Shimane Prefectural Central Hospital, Izumo-Shi, Shimane, 693-8555 Japan
| | - Akiyoshi Kanazawa
- Department of Surgery, Shimane Prefectural Central Hospital, Izumo-Shi, Shimane, 693-8555 Japan
| |
Collapse
|
19
|
Joris S, Giron P, Olsen C, Seneca S, Gheldof A, Staessens S, Shahi RB, De Brakeleer S, Teugels E, De Grève J, Hes FJ. Identification of RAD17 as a candidate cancer predisposition gene in families with histories of pancreatic and breast cancers. BMC Cancer 2024; 24:723. [PMID: 38872153 PMCID: PMC11170902 DOI: 10.1186/s12885-024-12442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Among the 10% of pancreatic cancers that occur in a familial context, around a third carry a pathogenic variant in a cancer predisposition gene. Genetic studies of pancreatic cancer predisposition are limited by high mortality rates amongst index patients and other affected family members. The genetic risk for pancreatic cancer is often shared with breast cancer susceptibility genes, most notably BRCA2, PALB2, ATM and BRCA1. Therefore, we hypothesized that additional shared genetic etiologies might be uncovered by studying families presenting with both breast and pancreatic cancer. METHODS Focusing on a multigene panel of 276 DNA Damage Repair (DDR) genes, we performed next-generation sequencing in a cohort of 41 families with at least three breast cancer cases and one pancreatic cancer. When the index patient with pancreatic cancer was deceased, close relatives (first or second-degree) affected with breast cancer were tested (39 families). RESULTS We identified 27 variants of uncertain significance in DDR genes. A splice site variant (c.1605 + 2T > A) in the RAD17 gene stood out, as a likely loss of function variant. RAD17 is a checkpoint protein that recruits the MRN (MRE11-RAD50-NBS1) complex to initiate DNA signaling, leading to DNA double-strand break repair. CONCLUSION Within families with breast and pancreatic cancer, we identified RAD17 as a novel candidate predisposition gene. Further genetic studies are warranted to better understand the potential pathogenic effect of RAD17 variants and in other DDR genes.
Collapse
Affiliation(s)
- Sofie Joris
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium.
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| | - Philippe Giron
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Catharina Olsen
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Sara Seneca
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Alexander Gheldof
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Shula Staessens
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Rajendra Bahadur Shahi
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Sylvia De Brakeleer
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Erik Teugels
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jacques De Grève
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
- The Oncology Research Center, the Laboratory for Medical & Molecular Oncology (LMMO), Faculty of Medicine, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Frederik J Hes
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, Brussels, 1090, Belgium
| |
Collapse
|
20
|
Limijadi EKS, Muniroh M, Prajoko YW, Tjandra KC, Respati DRP. The role of germline BRCA1 & BRCA2 mutations in familial pancreatic cancer: A systematic review and meta-analysis. PLoS One 2024; 19:e0299276. [PMID: 38809921 PMCID: PMC11135687 DOI: 10.1371/journal.pone.0299276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Familial Pancreatic Cancer (FPC) presents a notable risk, with 3-10% of pancreatic adenocarcinoma cases having a family history. Studies link FPC to syndromes like HBOC, suggesting BRCA1/BRCA2 mutations play a role. BRCA gene functions in DNA repair impact FPC management, influencing sensitivity to therapies like PARP inhibitors. Identifying mutations not only aids FPC treatment but also reveals broader cancer risks. However, challenges persist in selectively applying genetic testing due to cost constraints. This Systematic Review focuses on BRCA1/BRCA2 significance in FPC, diagnostic criteria, prognostic value, and limitations. METHOD Original articles published from 2013 to January 2023 were sourced from databases such as Scopus, PubMed, ProQuest, and ScienceDirect. Inclusion criteria comprised observational cohort or diagnostic studies related to the role of BRCA1/2 mutation in correlation to familial pancreatic cancer (FPC), while article reviews, narrative reviews, and non-relevant content were excluded. The assessment of bias used ROBINS-I, and the results were organized using PICOS criteria in a Google spreadsheet table. The systematic review adhered to the PRISMA 2020 checklist. RESULT We analyzed 9 diagnostic studies encompassing 1325 families and 4267 patients from Italy, USA, and Poland. Despite the limitation of limited homogenous PICO studies, our findings effectively present evidence. BRCA1/2 demonstrates benefits in detecting first-degree relatives FPC involvement with 2.26-10 times higher risk. These mutation findings also play an important role since with the BRCA1/2 targeted therapy, Poly-ADP Ribose Polymerase inhibitors (PARP) may give better outcomes of FPC treatment. Analysis of BRCA1 and BRCA2 administration's impact on odds ratio (OR) based on six and five studies respectively. BRCA1 exhibited non-significant effects (OR = 1.26, P = 0.51), while BRCA2 showed significance (OR = 1.68, P = 0.04). No heterogeneity observed, indicating consistent results. Further research on BRCA1 is warranted. CONCLUSION Detecting the BRCA1/2 mutation gene offers numerous advantages, particularly in its correlation with FPC. For diagnostic and prognostic purposes, testing is strongly recommended for first-degree relatives, who face a significantly higher risk (2.26-10 times) of being affected. Additionally, FPC patients with identified BRCA1/2 mutations exhibit a more favorable prognosis compared to the non-mutated population. This is attributed to the availability of targeted BRCA1/2 therapy, which maximizes treatment outcomes.
Collapse
Affiliation(s)
- Edward Kurnia Setiawan Limijadi
- Doctoral Study Program of Medical and Health Science, Universitas Diponegoro, Semarang, Indonesia
- Faculty of Medicine, Department of Clinical Pathology, Universitas Diopnegoro, Semarang, Indonesia
| | - Muflihatul Muniroh
- Faculty of Medicine, Department of Physiology, Universitas Diponegoro, Semarang, Indonesia
| | - Yan Wisnu Prajoko
- Faculty of Medicine, Department of Surgical Oncology, Universitas Diponegoro, Semarang, Indonesia
- Kariadi General Hospital, Semarang, Indonesia
| | - Kevin Christian Tjandra
- Kariadi General Hospital, Semarang, Indonesia
- Faculty of Medicine, Departement of Medicine, Universitas Diponegoro, Semarang, Indonesia
| | - Danendra Rakha Putra Respati
- Kariadi General Hospital, Semarang, Indonesia
- Faculty of Medicine, Departement of Medicine, Universitas Diponegoro, Semarang, Indonesia
| |
Collapse
|
21
|
Saleh O, Shihadeh H, Yousef A, Erekat H, Abdallh F, Al-Leimon A, Elsalhy R, Altiti A, Dajani M, AlBarakat MM. The Effect of Intratumor Heterogeneity in Pancreatic Ductal Adenocarcinoma Progression and Treatment. Pancreas 2024; 53:e450-e465. [PMID: 38728212 DOI: 10.1097/mpa.0000000000002342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND AND OBJECTIVES Pancreatic cancer is one of the most lethal malignancies. Even though many substantial improvements in the survival rates for other major cancer forms were made, pancreatic cancer survival rates have remained relatively unchanged since the 1960s. Even more, no standard classification system for pancreatic cancer is based on cellular biomarkers. This review will discuss and provide updates about the role of stem cells in the progression of PC, the genetic changes associated with it, and the promising biomarkers for diagnosis. MATERIALS AND METHODS The search process used PubMed, Cochrane Library, and Scopus databases to identify the relevant and related articles. Articles had to be published in English to be considered. RESULTS The increasing number of studies in recent years has revealed that the diversity of cancer-associated fibroblasts is far greater than previously acknowledged, which highlights the need for further research to better understand the various cancer-associated fibroblast subpopulations. Despite the huge diversity in pancreatic cancer, some common features can be noted to be shared among patients. Mutations involving CDKN2, P53, and K-RAS can be seen in a big number of patients, for example. Similarly, some patterns of genes and biomarkers expression and the level of their expression can help in predicting cancer behavior such as metastasis and drug resistance. The current trend in cancer research, especially with the advancement in technology, is to sequence everything in hopes of finding disease-related mutations. CONCLUSION Optimizing pancreatic cancer treatment requires clear classification, understanding CAF roles, and exploring stroma reshaping approaches.
Collapse
Affiliation(s)
- Othman Saleh
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | | | | | - Hana Erekat
- School of medicine, University of Jordan, Amman
| | - Fatima Abdallh
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | | | | | | | - Majd Dajani
- From the Faculty of Medicine, The Hashemite University, Zarqa
| | - Majd M AlBarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
22
|
Ghosh AK, Bhushan S, Abidoye O, Robinson SS, Rynarzewska AI, Sampat D. Evaluating implementation of NCCN guideline-directed genetic screening recommendations for patients with pancreatic ductal adenocarcinoma. Cancer Causes Control 2024; 35:679-684. [PMID: 38015388 DOI: 10.1007/s10552-023-01825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE In 2019, the National Comprehensive Cancer Network (NCCN) recommended genetic testing for all patients with pancreatic ductal adenocarcinoma (PDAC). To evaluate the status of implementation of these guidelines in a loco-regional setting, we performed a retrospective, observational study among patients with newly diagnosed PDAC who received oncologic care at Northeast Georgia Medical Center in Georgia. METHODS Chart abstraction of patients with newly diagnosed PDAC from 1 January 2020 to 31 December 2021 was performed to include information on genetic testing recommendation and completion, and time from diagnosis to testing. The deidentified dataset was then analyzed using appropriate descriptive and associative statistical testing. RESULTS Of the cohort of 109 patients, 32 (29.4%) completed genetic screening; 16 (14.7%) were screened within 10 days of diagnosis. Among the 77 (70.6%) patients who did not receive genetic screening, 45 (41.3%) were not recommended genetic screening despite treatment intent with standard of care therapy. However, 32 (29.4%) were not recommended genetic screening in conjunction with a desire to pursue palliative care/hospice/or due to terminal illness. CONCLUSIONS The study highlighted the gap in implementation of NCCN guideline-directed genetic testing in PDAC patients as only a third underwent testing suggesting the need for systematic processes to facilitate testing. The test was more likely to be completed if done early in the course, especially soon after the diagnosis. Research is needed to explore discussing genetic testing for the large proportion of patients who are terminally ill at diagnosis where genetic screening would potentially benefit the family members.
Collapse
Affiliation(s)
| | | | | | | | | | - Devi Sampat
- Longstreet Clinic Cancer Center, Gainesville, GA, USA
| |
Collapse
|
23
|
Reshkin SJ, Cardone RA, Koltai T. Genetic Signature of Human Pancreatic Cancer and Personalized Targeting. Cells 2024; 13:602. [PMID: 38607041 PMCID: PMC11011857 DOI: 10.3390/cells13070602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Pancreatic cancer is a highly lethal disease with a 5-year survival rate of around 11-12%. Surgery, being the treatment of choice, is only possible in 20% of symptomatic patients. The main reason is that when it becomes symptomatic, IT IS the tumor is usually locally advanced and/or has metastasized to distant organs; thus, early diagnosis is infrequent. The lack of specific early symptoms is an important cause of late diagnosis. Unfortunately, diagnostic tumor markers become positive at a late stage, and there is a lack of early-stage markers. Surgical and non-surgical cases are treated with neoadjuvant and/or adjuvant chemotherapy, and the results are usually poor. However, personalized targeted therapy directed against tumor drivers may improve this situation. Until recently, many pancreatic tumor driver genes/proteins were considered untargetable. Chemical and physical characteristics of mutated KRAS are a formidable challenge to overcome. This situation is slowly changing. For the first time, there are candidate drugs that can target the main driver gene of pancreatic cancer: KRAS. Indeed, KRAS inhibition has been clinically achieved in lung cancer and, at the pre-clinical level, in pancreatic cancer as well. This will probably change the very poor outlook for this disease. This paper reviews the genetic characteristics of sporadic and hereditary predisposition to pancreatic cancer and the possibilities of a personalized treatment according to the genetic signature.
Collapse
Affiliation(s)
- Stephan J. Reshkin
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Tomas Koltai
- Oncomed, Via Pier Capponi 6, 50132 Florence, Italy
| |
Collapse
|
24
|
Koukaki T, Balgkouranidou I, Biziota E, Karayiannakis A, Bolanaki H, Karamitrousis E, Zarogoulidis P, Deftereos S, Charalampidis C, Ioannidis A, Matthaios D, Amarantidis K, Kakolyris S. Prognostic significance of BRCA1 and BRCA2 methylation status in circulating cell-free DNA of Pancreatic Cancer patients. J Cancer 2024; 15:2573-2579. [PMID: 38577595 PMCID: PMC10988318 DOI: 10.7150/jca.93184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction: Pancreatic cancer is the most fatal cancer type in the world. Its high mortality is mostly correlated to the absence of symptoms and the difficulty in early diagnosis, which in the majority of the cases occurs when the disease has already spread metastasis. Nowadays, tests that could predict early diagnosis are not available yet and the number of prognostic tests is limited. Hence, there is an urgent need for biomarkers capable of detecting early development or the rapid progression of the disease. Patients and Methods: DNA methylation represents the most frequent epigenetic event among tumor suppressor genes that are involved in various carcinogenic pathways. In the recent study we have tried to evaluate, for the first time, the prognostic value of BRCA1 and BRCA2 methylation in the cell-free DNA of pancreatic cancer patients. Using methylation-specific real-time PCR we examined the methylation status of BRCA1 and BRCA2 in 55 patients with operable and 50 patients with metastatic pancreatic cancer. In the operable disease setting, BRCA1 was found to be methylated in 33/55 (63.5%) patients examined while BRCA2 was also highly methylated in 31/55 (56.3%). In the metastatic disease, BRCA1 was found to be methylated in 26/50 (52%) while BRCA2 was found methylated in 23/50 (46%). Results: All control samples were negative for BRCA1 orBRCA2 promoter methylation. Patients with operable pancreatic cancer and a methylated BRCA1 and BRCA2 promoter status had a statistically significant poorer outcome as compared with patients with a non-methylated one (p=0.012 and p=0.001, respectively). Conclusion: In this study plasma methylation of BRCA1 and BRCA2 represents a frequent event in both the operable as well as in the metastatic setting. BRCA1 and BRCA2 methylation was significant and correlated with decreased survival in patients with operable pancreatic cancer. A larger cohort of patients is required to further explore the potential of these findings as well as to investigate whether BRCA1/2 methylation in plasma could serve as a potential prognostic biomarker in pancreatic cancer.
Collapse
Affiliation(s)
- Triantafyllia Koukaki
- Department of Medical Oncology, Medical School, Democritus University of Thrace, Greece
| | - Ioanna Balgkouranidou
- Department of Medical Oncology, Medical School, Democritus University of Thrace, Greece
| | - Eirini Biziota
- Department of Medical Oncology, Medical School, Democritus University of Thrace, Greece
| | | | - Helen Bolanaki
- Department of 2nd Surgery, Medical School, Democritus University of Thrace, Greece
| | - Evangelos Karamitrousis
- University Medical Oncology department, Aristotle University of Thessaloniki, Papageorgiou General Hospital
| | - Paul Zarogoulidis
- Pulmonary Oncology Department, General Clinic Euromedica, Thessaloniki, Greece
| | - Savas Deftereos
- Radiology Department, Medical School, Democritus University of Thrace, Greece
| | | | - Aris Ioannidis
- Surgery Department, Genesis Private Clinic, Thessaloniki, Greece
| | | | - Kyriakos Amarantidis
- Department of Medical Oncology, Medical School, Democritus University of Thrace, Greece
| | - Stylianos Kakolyris
- Department of Medical Oncology, Medical School, Democritus University of Thrace, Greece
| |
Collapse
|
25
|
Ahn ER, Rothe M, Mangat PK, Garrett-Mayer E, Calfa CJ, Alva AS, Suhag V, Alese OB, Dotan E, Hamid O, Yang ES, Marr AS, Palmer MC, Thompson FL, Yost KJ, Gregory A, Grantham GN, Hinshaw DC, Halabi S, Schilsky RL. Olaparib in Patients With Pancreatic Cancer With BRCA1/ 2 Mutations: Results From the Targeted Agent and Profiling Utilization Registry Study. JCO Precis Oncol 2024; 8:e2300240. [PMCID: PMC10896473 DOI: 10.1200/po.23.00240] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 12/04/2023] [Indexed: 03/29/2025] Open
Abstract
PURPOSE Targeted Agent and Profiling Utilization Registry (TAPUR) is a phase II basket trial evaluating the antitumor activity of commercially available targeted agents in patients with advanced cancer and genomic alterations known to be drug targets. Results of a cohort of patients with advanced pancreatic cancer with BRCA1 /2 mutations treated with olaparib are reported. METHODS Eligible patients had advanced pancreatic cancer, measurable disease, Eastern Cooperative Oncology Group performance status 0-2, adequate organ function, and no standard treatment options available. Genomic testing was performed in Clinical Laboratory Improvement Amendments–certified, College of American Pathologists-accredited site selected laboratories. Simon's two-stage design was used with a primary end point of disease control (DC), defined as objective response (OR) or stable disease of at least 16 weeks duration (SD16+) according to RECIST v1.1. Secondary end points included OR, progression-free survival (PFS), overall survival (OS), duration of response, duration of stable disease, and safety. RESULTS Thirty patients with BRCA1 /2 mutations were enrolled from November 2016 to August 2019. The median number of reported previous therapies was 3 (range, 1-10). Two patients were not evaluable and excluded from efficacy analyses. Two patients with complete response, three with partial response and three with SD16+, were observed for DC and OR rates of 31% (90% CI, 18 to 40; P = .04) and 18% (95% CI, 6 to 37), respectively. The median PFS was 8 (95% CI, 8 to 15) weeks, and the median OS was 38 (95% CI, 21 to 65) weeks. Three patients had at least one drug-related grade 3 adverse event or serious adverse event of anemia, fever, or oral mucositis. CONCLUSION Olaparib showed antitumor activity in patients with advanced pancreatic cancer with BRCA1 /2 mutations extending findings of recent studies of olaparib in patients with this disease.
Collapse
Affiliation(s)
| | - Michael Rothe
- American Society of Clinical Oncology, Alexandria, VA
| | - Pam K. Mangat
- American Society of Clinical Oncology, Alexandria, VA
| | | | - Carmen J. Calfa
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Ajjai S. Alva
- University of Michigan Rogel Comprehensive Cancer Center, Ann Arbor, MI
| | - Vijay Suhag
- Sutter Health Roseville Cancer Center, Roseville, CA
| | | | | | - Omid Hamid
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, CA
| | - Eddy S. Yang
- Department of Radiation Oncology, O'Neal Comprehensive Cancer Center at the University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tripathi S, Tabari A, Mansur A, Dabbara H, Bridge CP, Daye D. From Machine Learning to Patient Outcomes: A Comprehensive Review of AI in Pancreatic Cancer. Diagnostics (Basel) 2024; 14:174. [PMID: 38248051 PMCID: PMC10814554 DOI: 10.3390/diagnostics14020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Pancreatic cancer is a highly aggressive and difficult-to-detect cancer with a poor prognosis. Late diagnosis is common due to a lack of early symptoms, specific markers, and the challenging location of the pancreas. Imaging technologies have improved diagnosis, but there is still room for improvement in standardizing guidelines. Biopsies and histopathological analysis are challenging due to tumor heterogeneity. Artificial Intelligence (AI) revolutionizes healthcare by improving diagnosis, treatment, and patient care. AI algorithms can analyze medical images with precision, aiding in early disease detection. AI also plays a role in personalized medicine by analyzing patient data to tailor treatment plans. It streamlines administrative tasks, such as medical coding and documentation, and provides patient assistance through AI chatbots. However, challenges include data privacy, security, and ethical considerations. This review article focuses on the potential of AI in transforming pancreatic cancer care, offering improved diagnostics, personalized treatments, and operational efficiency, leading to better patient outcomes.
Collapse
Affiliation(s)
- Satvik Tripathi
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Azadeh Tabari
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Arian Mansur
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Harika Dabbara
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Christopher P. Bridge
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
Liu D, Bae YE, Zhu J, Zhang Z, Sun Y, Deng Y, Wu C, Wu L. Splicing transcriptome-wide association study to identify splicing events for pancreatic cancer risk. Carcinogenesis 2023; 44:741-747. [PMID: 37769343 DOI: 10.1093/carcin/bgad069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
A large proportion of the heritability of pancreatic cancer risk remains elusive, and the contribution of specific mRNA splicing events to pancreatic cancer susceptibility has not been systematically evaluated. In this study, we performed a large splicing transcriptome-wide association study (spTWAS) using three modeling strategies (Enet, LASSO and MCP) to develop alternative splicing genetic prediction models for identifying novel susceptibility loci and splicing introns for pancreatic cancer risk by assessing 8275 pancreatic cancer cases and 6723 controls of European ancestry. Data from 305 subjects of whom the majority are of European descent in the Genotype-Tissue Expression Project (GTEx) were used and both cis-acting and promoter-enhancer interaction regions were considered to build these models. We identified nine splicing events of seven genes (ABO, UQCRC1, STARD3, ETAA1, CELA3B, LGR4 and SFT2D1) that showed an association of genetically predicted expression with pancreatic cancer risk at a false discovery rate ≤0.05. Of these genes, UQCRC1 and LGR4 have not yet been reported to be associated with pancreatic cancer risk. Fine-mapping analyses supported likely causal associations corresponding to six splicing events of three genes (P4HTM, ABO and PGAP3). Our study identified novel genes and splicing events associated with pancreatic cancer risk, which can improve our understanding of the etiology of this deadly malignancy.
Collapse
Affiliation(s)
- Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, P.R. China
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Ye Eun Bae
- Department of Statistics, Florida State University, Tallahassee, FL 32304, USA
| | - Jingjing Zhu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Zichen Zhang
- Department of Statistics, Florida State University, Tallahassee, FL 32304, USA
| | - Yanfa Sun
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
- College of Life Science, Longyan University, Longyan, Fujian 364012, P.R. China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, Fujian 364012, P.R. China
- Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, Fujian 364012, P.R. China
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Chong Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
28
|
Roos-Mattila M, Kaprio T, Mustonen H, Hagström J, Saharinen P, Haglund C, Seppänen H. The possible dual role of Ang-2 in the prognosis of pancreatic cancer. Sci Rep 2023; 13:18725. [PMID: 37907568 PMCID: PMC10618172 DOI: 10.1038/s41598-023-45194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features a dense desmoplastic stroma, which raises the intratumoral interstitial pressure leading to vascular collapse and hypoxia, inducing angiogenesis. Vascular growth factors, such as vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang-2), increase in PDAC. A high VEGF and a high circulating Ang-2 associate with shorter survival in PDAC. In addition to the circulatory Ang-2, PDAC endothelial and epithelial cells express Ang-2. No correlation between tumor epithelial nor endothelial cell Ang-2 expression and survival has been published. We aimed to examine Ang-2 expression and survival. This study comprised PDAC surgical patients at Helsinki University Hospital in 2000-2013. Ang-2 immunohistochemistry staining was completed on 168 PDAC patient samples. Circulating Ang-2 levels were measured using ELISA in the sera of 196 patients. Ang-2 levels were assessed against clinical data and patient outcomes. A low tumor epithelial Ang-2 expression predicted shorter disease-specific survival (DSS) compared with a high expression (p = 0.003). A high serum Ang-2 associated with shorter DSS compared with a low circulating Ang-2 (p = 0.016). Ang-2 seemingly plays a dual role in PDAC survival. Further studies are needed to determine the mechanisms causing tumor cell Ang-2 expression and its positive association with survival.
Collapse
Affiliation(s)
- Matilda Roos-Mattila
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Kaprio
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland.
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Department of Pathology, Haartmaninkatu 3 (PB 21), University of Helsinki, 00014, Helsinki, Finland.
| | - Harri Mustonen
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Hagström
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Oral Pathology and Radiology, University of Turku, Turku, Finland
| | - Pipsa Saharinen
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hanna Seppänen
- Department of Surgery, Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN, Digital Cancer Precision Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
29
|
Alors-Pérez E, Pedraza-Arevalo S, Blázquez-Encinas R, Moreno-Montilla MT, García-Vioque V, Berbel I, Luque RM, Sainz B, Ibáñez-Costa A, Castaño JP. Splicing alterations in pancreatic ductal adenocarcinoma: a new molecular landscape with translational potential. J Exp Clin Cancer Res 2023; 42:282. [PMID: 37880792 PMCID: PMC10601233 DOI: 10.1186/s13046-023-02858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers worldwide, mainly due to its late diagnosis and lack of effective therapies, translating into a low 5-year 12% survival rate, despite extensive clinical efforts to improve outcomes. International cooperative studies have provided informative multiomic landscapes of PDAC, but translation of these discoveries into clinical advances are lagging. Likewise, early diagnosis biomarkers and new therapeutic tools are sorely needed to tackle this cancer. The study of poorly explored molecular processes, such as splicing, can provide new tools in this regard. Alternative splicing of pre-RNA allows the generation of multiple RNA variants from a single gene and thereby contributes to fundamental biological processes by finely tuning gene expression. However, alterations in alternative splicing are linked to many diseases, and particularly to cancer, where it can contribute to tumor initiation, progression, metastasis and drug resistance. Splicing defects are increasingly being associated with PDAC, including both mutations or dysregulation of components of the splicing machinery and associated factors, and altered expression of specific relevant gene variants. Such disruptions can be a key element enhancing pancreatic tumor progression or metastasis, while they can also provide suitable tools to identify potential candidate biomarkers and discover new actionable targets. In this review, we aimed to summarize the current information about dysregulation of splicing-related elements and aberrant splicing isoforms in PDAC, and to describe their relationship with the development, progression and/or aggressiveness of this dismal cancer, as well as their potential as therapeutic tools and targets.
Collapse
Affiliation(s)
- Emilia Alors-Pérez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Ricardo Blázquez-Encinas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - María Trinidad Moreno-Montilla
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Víctor García-Vioque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Inmaculada Berbel
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERObn), Córdoba, Spain
| | - Bruno Sainz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3, Cancer, Madrid, Spain
- Gastrointestinal Tumours Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Reina Sofía University Hospital (HURS), Cordoba, Spain.
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Reina Sofía University Hospital (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERObn), Córdoba, Spain.
| |
Collapse
|
30
|
Irajizad E, Kenney A, Tang T, Vykoukal J, Wu R, Murage E, Dennison JB, Sans M, Long JP, Loftus M, Chabot JA, Kluger MD, Kastrinos F, Brais L, Babic A, Jajoo K, Lee LS, Clancy TE, Ng K, Bullock A, Genkinger JM, Maitra A, Do KA, Yu B, Wolpin BM, Hanash S, Fahrmann JF. A blood-based metabolomic signature predictive of risk for pancreatic cancer. Cell Rep Med 2023; 4:101194. [PMID: 37729870 PMCID: PMC10518621 DOI: 10.1016/j.xcrm.2023.101194] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/20/2022] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Emerging evidence implicates microbiome involvement in the development of pancreatic cancer (PaCa). Here, we investigate whether increases in circulating microbial-related metabolites associate with PaCa risk by applying metabolomics profiling to 172 sera collected within 5 years prior to PaCa diagnosis and 863 matched non-subject sera from participants in the Prostate, Lung, Colorectal, and Ovarian (PLCO) cohort. We develop a three-marker microbial-related metabolite panel to assess 5-year risk of PaCa. The addition of five non-microbial metabolites further improves 5-year risk prediction of PaCa. The combined metabolite panel complements CA19-9, and individuals with a combined metabolite panel + CA19-9 score in the top 2.5th percentile have absolute 5-year risk estimates of >13%. The risk prediction model based on circulating microbial and non-microbial metabolites provides a potential tool to identify individuals at high risk of PaCa that would benefit from surveillance and/or from potential cancer interception strategies.
Collapse
Affiliation(s)
- Ehsan Irajizad
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Kenney
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| | - Tiffany Tang
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eunice Murage
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marta Sans
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James P Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maureen Loftus
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John A Chabot
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Cancer and the Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Michael D Kluger
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Cancer and the Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Fay Kastrinos
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Cancer and the Vagelos College of Physicians and Surgeons, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Lauren Brais
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ana Babic
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kunal Jajoo
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda S Lee
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas E Clancy
- Dana-Farber Brigham and Women's Cancer Center, Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA USA
| | - Kimmie Ng
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrea Bullock
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jeanine M Genkinger
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Epidemiology, Columbia Mailman School of Public Health, New York, NY, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Yu
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| | - Brian M Wolpin
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sam Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
31
|
Koltai T. Earlier Diagnosis of Pancreatic Cancer: Is It Possible? Cancers (Basel) 2023; 15:4430. [PMID: 37760400 PMCID: PMC10526520 DOI: 10.3390/cancers15184430] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/06/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma has a very high mortality rate which has been only minimally improved in the last 30 years. This high mortality is closely related to late diagnosis, which is usually made when the tumor is large and has extensively infiltrated neighboring tissues or distant metastases are already present. This is a paradoxical situation for a tumor that requires nearly 15 years to develop since the first founding mutation. Response to chemotherapy under such late circumstances is poor, resistance is frequent, and prolongation of survival is almost negligible. Early surgery has been, and still is, the only approach with a slightly better outcome. Unfortunately, the relapse percentage after surgery is still very high. In fact, early surgery clearly requires early diagnosis. Despite all the advances in diagnostic methods, the available tools for improving these results are scarce. Serum tumor markers permit a late diagnosis, but their contribution to an improved therapeutic result is very limited. On the other hand, effective screening methods for high-risk populations have not been fully developed as yet. This paper discusses the difficulties of early diagnosis, evaluates whether the available diagnostic tools are adequate, and proposes some simple and not-so-simple measures to improve it.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires C1094, Argentina
| |
Collapse
|
32
|
Wang T, Shen YY. Rare ROS1-CENPW gene in pancreatic acinar cell carcinoma and the effect of crizotinib plus AG chemotherapy: A case report. World J Clin Cases 2023; 11:5823-5829. [PMID: 37727713 PMCID: PMC10506013 DOI: 10.12998/wjcc.v11.i24.5823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/16/2023] [Accepted: 07/28/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND This is the first report of an ROS1-CENPW fusion gene in pancreatic malignancies. CASE SUMMARY A 77-year-old woman with a pancreatic tumor and multiple liver metastases was admitted to our hospital. Genetic testing revealed the presence of the ROS1-CENPW fusion gene, a rare fusion gene that has not been previously reported in the field of pancreatic cancer. The patient received crizotinib plus AG (albumin paclitaxel plus gemcitabine) chemotherapy. After treatment, the patient's condition stabilized, and her prognosis was good. CONCLUSION The ROS1-CENPW gene treatment regimen used in this case is an excellent treatment option that provides new hope for patients with advanced pancreatic cancer and similar genetic mutations. To date, owing to the rarity of the ROS1-CENPW fusion gene, our team has encountered only a single case. Therefore, the efficacy of crizotinib plus AG chemotherapy in patients with pancreatic acinar cell carcinoma harboring the ROS1-CENPW fusion gene requires further validation.
Collapse
Affiliation(s)
- Tao Wang
- Graduate School, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Yi-Yu Shen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314051, Zhejiang Province, China
| |
Collapse
|
33
|
Chen X, Meyer MA, Kemppainen JL, Horibe M, Chandra S, Majumder S, Petersen GM, Rabe KG. Risk of Syndrome-Associated Cancers Among First-Degree Relatives of Patients With Pancreatic Ductal Adenocarcinoma With Pathogenic or Likely Pathogenic Germline Variants. JAMA Oncol 2023; 9:955-961. [PMID: 37200008 PMCID: PMC10196930 DOI: 10.1001/jamaoncol.2023.0806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/06/2023] [Indexed: 05/19/2023]
Abstract
Importance Increased cancer risk in first-degree relatives of probands with pancreatic ductal adenocarcinoma (PDAC probands) who carry pathogenic or likely pathogenic germline variants (PGVs) in cancer syndrome-associated genes encourages cascade genetic testing. To date, unbiased risk estimates for the development of cancers on a gene-specific basis have not been assessed. Objective To quantify the risk of development of PDAC and extra-PDAC among first-degree relatives of PDAC probands who carry a PGV in 1 of 9 cancer syndrome-associated genes-ATM, BRCA1, BRCA2, PALB2, MLH1, MSH2, MSH6, PMS2, and CDKN2A. Design, Setting, and Participants This case series focused on first-degree relatives of PDAC probands carrying PGVs in specific cancer syndrome-associated genes. The cohort comprised clinic-ascertained patients enrolled in the Mayo Clinic Biospecimen Resource for Pancreas Research registry with germline genetic testing. In total, 234 PDAC probands carrying PGVs were drawn from the prospective research registry of 4562 participants who had undergone genetic testing of cancer syndrome-associated genes. Demographic and cancer-related family histories were obtained by questionnaire. The data were collected from October 1, 2000, to December 31, 2021. Main Outcomes and Measures For the PDAC probands, the genetic test results of the presence of PGVs in 9 cancer syndrome-associated genes were obtained by clinical testing. Cancers (ovary, breast, uterus or endometrial, colon, malignant melanoma, and pancreas) among first-degree relatives were reported by the probands. Standardized incidence ratios (SIRs) were used to estimate cancer risks among first-degree relatives of PDAC probands carrying a PGV. Results In total, 1670 first-degree relatives (mean [SD] age, 58.1 [17.8] years; 853 male [51.1%]) of 234 PDAC probands (mean [SD] age, 62.5 [10.1] years; 124 male [53.0%]; 219 [94.4%] White; 225 [98.7%] non-Hispanic or non-Latino]) were included in the study. There was a significantly increased risk of ovarian cancer in female first-degree relatives of probands who had variants in BRCA1 (SIR, 9.49; 95% CI, 3.06-22.14) and BRCA2 (SIR, 3.72; 95% CI, 1.36-8.11). Breast cancer risks were higher with BRCA2 variants (SIR, 2.62; 95% CI, 1.89-3.54). The risks of uterine or endometrial cancer (SIR, 6.53; 95% CI, 2.81-12.86) and colon cancer (SIR, 5.83; 95% CI, 3.70-8.75) were increased in first-degree relatives of probands who carried Lynch syndrome mismatch repair variants. Risk of PDAC was also increased for variants in ATM (SIR, 4.53; 95% CI, 2.69-7.16), BRCA2 (SIR, 3.45; 95% CI, 1.72-6.17), CDKN2A (SIR, 7.38; 95% CI, 3.18-14.54), and PALB2 (SIR, 5.39; 95% CI, 1.45-13.79). Melanoma risk was elevated for first-degree relatives of probands with CDKN2A variants (SIR, 7.47; 95% CI, 3.97-12.77). Conclusions and Relevance In this case series, the presence of PGVs in 9 cancer syndrome-associated genes in PDAC probands was found to be associated with increased risk of 6 types of cancers in first-degree relatives. These gene-specific PDAC and extra-PDAC cancer risks may provide justification for clinicians to counsel first-degree relatives about the relevance and importance of genetic cascade testing, with the goal of higher uptake of testing.
Collapse
Affiliation(s)
- Xuan Chen
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota
| | - Margaret A Meyer
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis
| | | | - Masayasu Horibe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shruti Chandra
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Shounak Majumder
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Gloria M Petersen
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Kari G Rabe
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
34
|
Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, Maitra A. Pancreatic cancer: Advances and challenges. Cell 2023; 186:1729-1754. [PMID: 37059070 PMCID: PMC10182830 DOI: 10.1016/j.cell.2023.02.014] [Citation(s) in RCA: 486] [Impact Index Per Article: 243.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers. Significant efforts have largely defined major genetic factors driving PDAC pathogenesis and progression. Pancreatic tumors are characterized by a complex microenvironment that orchestrates metabolic alterations and supports a milieu of interactions among various cell types within this niche. In this review, we highlight the foundational studies that have driven our understanding of these processes. We further discuss the recent technological advances that continue to expand our understanding of PDAC complexity. We posit that the clinical translation of these research endeavors will enhance the currently dismal survival rate of this recalcitrant disease.
Collapse
Affiliation(s)
- Christopher J Halbrook
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA.
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
35
|
Tovar DR, Rosenthal MH, Maitra A, Koay EJ. Potential of artificial intelligence in the risk stratification for and early detection of pancreatic cancer. ARTIFICIAL INTELLIGENCE SURGERY 2023; 3:14-26. [PMID: 37124705 PMCID: PMC10141523 DOI: 10.20517/ais.2022.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third most lethal cancer in the United States, with a 5-year life expectancy of 11%. Most symptoms manifest at an advanced stage of the disease when surgery is no longer appropriate. The dire prognosis of PDAC warrants new strategies to improve the outcomes of patients, and early detection has garnered significant attention. However, early detection of PDAC is most often incidental, emphasizing the importance of developing new early detection screening strategies. Due to the low incidence of the disease in the general population, much of the focus for screening has turned to individuals at high risk of PDAC. This enriches the screening population and balances the risks associated with pancreas interventions. The cancers that are found in these high-risk individuals by MRI and/or EUS screening show favorable 73% 5-year overall survival. Even with the emphasis on screening in enriched high-risk populations, only a minority of incident cancers are detected this way. One strategy to improve early detection outcomes is to integrate artificial intelligence (AI) into biomarker discovery and risk models. This expert review summarizes recent publications that have developed AI algorithms for the applications of risk stratification of PDAC using radiomics and electronic health records. Furthermore, this review illustrates the current uses of radiomics and biomarkers in AI for early detection of PDAC. Finally, various challenges and potential solutions are highlighted regarding the use of AI in medicine for early detection purposes.
Collapse
Affiliation(s)
- Daniela R. Tovar
- Department of Gastrointestinal Radiation Oncology, The University of Texas, Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Anirban Maitra
- Department of Radiology, The University of Texas, Anderson Cancer Center, Houston, TX 77030, USA
| | - Eugene J. Koay
- Department of Gastrointestinal Radiation Oncology, The University of Texas, Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
36
|
Zannini G, Facchini G, De Sio M, De Vita F, Ronchi A, Orditura M, Vietri MT, Ciardiello F, Franco R, Accardo M, Zito Marino F. Implementation of BRCA mutations testing in formalin-fixed paraffin-embedded (FFPE) samples of different cancer types. Pathol Res Pract 2023; 243:154336. [PMID: 36736144 DOI: 10.1016/j.prp.2023.154336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
BRCA1 and BRCA2 are onco-suppressor genes involved in the DNA repair mechanism. The presence of BRCA1/2 mutations confers a higher risk of developing several cancer types. To date, the FDA approved various PARP inhibitors to treat selected BRCA1/2 mutated oncologic patients. At first, PARP inhibitors were approved for patients with ovarian and breast cancers, and subsequently for metastatic pancreatic adenocarcinoma and metastatic castration-resistant prostate cancer after the treatment with chemotherapy. The current guidelines for BRCA testing are very heterogeneous between the different types of tumors regarding the diagnostic algorithm and the type of sample to analyze, such as the blood for the germline mutations and the tumoral tissue for the somatic mutations. Few data have currently been described regarding the detection of BRCA1/2 somatic mutations in formalin-fixed paraffin-embedded (FFPE) samples. In this review, we propose an overview of the BRCA mutations in FFPE samples of several cancers, including breast, ovarian, fallopian tube, primary peritoneal, prostate, and pancreatic cancer. We summarize the types and the frequency of BRCA mutations, the guidelines approved for the test, the molecular assays used for the detection and the PARP inhibitors approved for each tumor type.
Collapse
Affiliation(s)
- Giuseppa Zannini
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, Naples 80138, Italy.
| | - Gaetano Facchini
- Medical Oncology Unit, SM delle Grazie Hospital, Via Domitiana, Pozzuoli 80078, Italy.
| | - Marco De Sio
- Urology Unit, Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via S. Pansini 5, Naples 80131, Italy.
| | - Ferdinando De Vita
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via S. Pansini 5, Naples 80131, Italy.
| | - Andrea Ronchi
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, Naples 80138, Italy.
| | - Michele Orditura
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via S. Pansini 5, Naples 80131, Italy.
| | - Maria Teresa Vietri
- U.O.C. Clinical and Molecular Pathology, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples 80138, Italy.
| | - Fortunato Ciardiello
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, University of Campania "Luigi Vanvitelli", Via S. Pansini 5, Naples 80131, Italy.
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, Naples 80138, Italy.
| | - Marina Accardo
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, Naples 80138, Italy.
| | - Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Via L. Armanni 5, Naples 80138, Italy.
| |
Collapse
|
37
|
CAI X, CAO Z, PAN J, ZHENG H. Transcription factor NFIC activates STK11 transcription to repress the proliferation, migration, and invasion of lung adenocarcinoma cells. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.23.02918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
38
|
Are Aspects of Integrative Concepts Helpful to Improve Pancreatic Cancer Therapy? Cancers (Basel) 2023; 15:cancers15041116. [PMID: 36831465 PMCID: PMC9953994 DOI: 10.3390/cancers15041116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Numerous clinical studies have been conducted to improve the outcomes of patients suffering from pancreatic cancer. Different approaches using targeted therapeutic strategies and precision medicine methods have been investigated, and synergies and further therapeutic advances may be achieved through combinations with integrative methods. For pancreatic tumors, a particular challenge is the presence of a microenvironment and a dense stroma, which is both a physical barrier to drug penetration and a complex entity being controlled by the immune system. Therefore, the state of immunological tolerance in the tumor microenvironment must be overcome, which is a considerable challenge. Integrative approaches, such as hyperthermia, percutaneous irreversible electroporation, intra-tumoral injections, phytotherapeutics, or vitamins, in combination with standard-oncological therapies, may potentially contribute to the control of pancreatic cancer. The combined application of standard-oncological and integrative methods is currently being studied in ongoing clinical trials. An actual overview is given here.
Collapse
|
39
|
Liu J, Mroczek M, Mach A, Stępień M, Aplas A, Pronobis-Szczylik B, Bukowski S, Mielczarek M, Gajewska E, Topolski P, Król ZJ, Szyda J, Dobosz P. Genetics, Genomics and Emerging Molecular Therapies of Pancreatic Cancer. Cancers (Basel) 2023; 15:779. [PMID: 36765737 PMCID: PMC9913594 DOI: 10.3390/cancers15030779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/01/2023] Open
Abstract
The number of cases of pancreatic cancers in 2019 in Poland was 3852 (approx. 2% of all cancers). The course of the disease is very fast, and the average survival time from the diagnosis is 6 months. Only <2% of patients live for 5 years from the diagnosis, 8% live for 2 years, and almost half live for only about 3 months. A family predisposition to pancreatic cancer occurs in about 10% of cases. Several oncogenes in which somatic changes lead to the development of tumours, including genes BRCA1/2 and PALB2, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1, are involved in pancreatic cancer. Between 4% and 10% of individuals with pancreatic cancer will have a mutation in one of these genes. Six percent of patients with pancreatic cancer have NTRK pathogenic fusion. The pathogenesis of pancreatic cancer can in many cases be characterised by homologous recombination deficiency (HRD)-cell inability to effectively repair DNA. It is estimated that from 24% to as many as 44% of pancreatic cancers show HRD. The most common cause of HRD are inactivating mutations in the genes regulating this DNA repair system, mainly BRCA1 and BRCA2, but also PALB2, RAD51C and several dozen others.
Collapse
Affiliation(s)
- Jakub Liu
- Biostatistics Group, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
| | - Magdalena Mroczek
- Centre for Cardiovascular Genetics and Gene Diagnostics, Foundation for People with Rare Diseases, Wagistrasse 25, 8952 Schlieren, Switzerland
| | - Anna Mach
- Department of Psychiatry, Medical University of Warsaw, 00-665 Warsaw, Poland
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Maria Stępień
- Department of Infectious Diseases, Doctoral School, Medical University of Lublin, 20-059 Lublin, Poland
| | - Angelika Aplas
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Bartosz Pronobis-Szczylik
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Szymon Bukowski
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Magda Mielczarek
- Biostatistics Group, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
- National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Ewelina Gajewska
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Piotr Topolski
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Zbigniew J. Król
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| | - Joanna Szyda
- Biostatistics Group, Wroclaw University of Environmental and Life Sciences, 51-631 Wroclaw, Poland
- National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
| | - Paula Dobosz
- Central Clinical Hospital of Ministry of the Interior and Administration in Warsaw, 02-507 Warsaw, Poland
| |
Collapse
|
40
|
Pancreatic Cancer: Beyond Brca Mutations. J Pers Med 2022; 12:jpm12122076. [PMID: 36556296 PMCID: PMC9787452 DOI: 10.3390/jpm12122076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Pancreatic cancer is the fourth-leading cause of cancer-related deaths worldwide. The outcomes in patients with pancreatic cancer remain unsatisfactory. In the current review, we summarize the genetic and epigenetic architecture of metastatic pancreatic cancer beyond the BRCA mutations, focusing on the genetic alterations and the molecular pathology in pancreatic cancer. This review focuses on the molecular targets for the treatment of pancreatic cancer, with a correlation to future treatments. The potential approach addressed in this review may lead to the identification of a subset of patients with specific biological behaviors and treatment responses.
Collapse
|
41
|
Dong M, Cao L, Cui R, Xie Y. The connection between innervation and metabolic rearrangements in pancreatic cancer through serine. Front Oncol 2022; 12:992927. [PMID: 36582785 PMCID: PMC9793709 DOI: 10.3389/fonc.2022.992927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer is a kind of aggressive tumor famous for its lethality and intractability, and pancreatic ductal adenocarcinoma is the most common type. Patients with pancreatic cancer often suffer a rapid loss of weight and abdominal neuropathic pain in their early stages and then go through cachexia in the advanced stage. These features of patients are considered to be related to metabolic reprogramming of pancreatic cancer and abundant nerve innervation responsible for the pain. With increasing literature certifying the relationship between nerves and pancreatic ductal adenocarcinoma (PDAC), more evidence point out that innervation's role is not limited to neuropathic pain but explore its anti/pro-tumor functions in PDAC, especially the neural-metabolic crosstalks. This review aims to unite pancreatic cancer's innervation and metabolic rearrangements with terminated published articles. Hopefully, this article could explore the pathogenesis of PDAC and further promote promising detecting or therapeutic measurements for PDAC according to the lavish innervation in PDAC.
Collapse
Affiliation(s)
- Mengmeng Dong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Lidong Cao
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Second Hospital of Jilin University, Changchun, China,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Peoples Hospital, Hangzhou, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China,*Correspondence: Ranji Cui, ; Yingjun Xie,
| | - Yingjun Xie
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Second Hospital of Jilin University, Changchun, China,*Correspondence: Ranji Cui, ; Yingjun Xie,
| |
Collapse
|
42
|
Abstract
Breast cancer susceptibility gene 2 (BRCA2) is the main gene associated with hereditary breast cancers. However, a mutation in BRCA2 has also been found in other tumors, such as ovarian, pancreatic, thyroid, gastric, laryngeal, and prostate cancers. In this review, we discuss the biological functions of BRCA2 and the role of BRCA2 mutations in tumor progression and therapy.
Collapse
Affiliation(s)
- Chunbao Xie
- Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangrong Luo
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yangjun He
- Department of Medical Laboratory, Southwest Medical University, Luzhou, China
| | - Lingxi Jiang
- Health Management Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Zhong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Ling Zhong and Yi Shi, 32, West Section 2, 1st Ring Road, Chengdu, Sichuan 610072, China (e-mails: and )
| | - Yi Shi
- Health Management Center, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
- *Correspondence: Ling Zhong and Yi Shi, 32, West Section 2, 1st Ring Road, Chengdu, Sichuan 610072, China (e-mails: and )
| |
Collapse
|
43
|
Astiazaran-Symonds E, Graham C, Kim J, Tucker MA, Ingvar C, Helgadottir H, Pastorino L, van Doorn R, Sampson JN, Zhu B, Bruno W, Queirolo P, Fornarini G, Sciallero S, Carter B, Hicks B, Hutchinson A, Jones K, Stewart DR, Chanock SJ, Freedman ND, Landi MT, Höiom V, Puig S, Gruis N, Yang XR, Ghiorzo P, Goldstein AM. Gene-Level Associations in Patients With and Without Pathogenic Germline Variants in CDKN2A and Pancreatic Cancer. JCO Precis Oncol 2022; 6:e2200145. [PMID: 36409970 PMCID: PMC10166474 DOI: 10.1200/po.22.00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/28/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a component of familial melanoma due to germline pathogenic variants (GPVs) in CDKN2A. However, it is unclear what role this gene or other genes play in its etiology. MATERIALS AND METHODS We analyzed 189 cancer predisposition genes using parametric rare-variant association (RVA) tests and nonparametric permutation tests to identify gene-level associations in PDAC for patients with (CDKN2A+) and without (CDKN2A-) GPV. Exome sequencing was performed on 84 patients with PDAC, 47 CDKN2A+ and 37 CDKN2A-. After variant filtering, various RVA tests and permutation tests were run separately by CDKN2A status. Genes with the strongest nominal associations were evaluated in patients with PDAC from The Cancer Genome Atlas and the UK Biobank (UKB). A secondary analysis including only GPV from UKB was also performed. RESULTS In RVA tests, ERCC4 and RET showed the most compelling evidence as plausible PDAC candidate genes for CDKN2A+ patients. In contrast, the findings in CDKN2A- patients provided evidence for HMBS, EPCAM, and MRE11 as potential new candidate genes and confirmed ATM, BRCA2, and PALB2 as PDAC genes, consistent with findings in The Cancer Genome Atlas and the UKB. As expected, CDKN2A- patients were more likely to harbor GPVs from the 189 genes investigated. When including only GPVs from UKB, significant associations with PDAC were seen for ATM, BRCA2, and CDKN2A. CONCLUSION These results suggest that variants in other genes likely play a role in PDAC in all patients and that PDAC in CDKN2A+ patients has a distinct etiology from PDAC in CDKN2A- patients.
Collapse
Affiliation(s)
- Esteban Astiazaran-Symonds
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
- National Human Genome Research Institute, NIH, Bethesda, MD
- Department of Medicine, College of Medicine-Tucson, University of Arizona, Tucson, AZ
| | - Cole Graham
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
| | | | | | - Hildur Helgadottir
- Department of Oncology Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joshua N. Sampson
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
| | - Bin Zhu
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Paola Queirolo
- Melanoma Sarcoma and Rare Tumors, IEO European Institute of Oncology, Milano, Italy
| | - Giuseppe Fornarini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefania Sciallero
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Belynda Hicks
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Kristine Jones
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, MD
| | | | | | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
| | | | - Veronica Höiom
- Department of Oncology Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Susana Puig
- Melanoma Unit, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona and CIBERER, Barcelona, Spain
| | - Nelleke Gruis
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Xiaohong R. Yang
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, MD
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | | |
Collapse
|
44
|
McGarry JL, Creavin B, Kelly ME, Gallagher TK. Risk of pancreatic ductal adenocarcinoma associated with carriage of BRCA1 and/or BRCA2 mutation: A systematic review and meta-analysis. J Surg Oncol 2022; 126:1028-1037. [PMID: 35770919 DOI: 10.1002/jso.26994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/04/2022] [Indexed: 11/11/2022]
Abstract
Germline BRCA1/2 mutations lead to malfunction of DNA damage repair pathways and predispose to pancreatic ductal adenocarcinoma (PDAC). The aim of this study is to synthesise the available research on this topic. Four studies reporting risk ratio (RR) were included in the final meta-analysis to minimise misrepresenting our results by combining separate risk estimates. Our meta-analysis revealed a statistically significant increased risk of PDAC in BRCA carriers overall (RR: 2.65, 95% confidence interval: 1.43-4.91, p = 0.002).
Collapse
Affiliation(s)
- Jennifer L McGarry
- Department of Hepatobiliary Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Ben Creavin
- Department of Hepatobiliary Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Michael E Kelly
- Department of Hepatobiliary Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Tom K Gallagher
- Department of Hepatobiliary Surgery, St. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
45
|
Liu YH, Hu CM, Hsu YS, Lee WH. Interplays of glucose metabolism and KRAS mutation in pancreatic ductal adenocarcinoma. Cell Death Dis 2022; 13:817. [PMID: 36151074 PMCID: PMC9508091 DOI: 10.1038/s41419-022-05259-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/23/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadliest cancer worldwide. The primary reasons for this are the lack of early detection methods and targeted therapy. Emerging evidence highlights the metabolic addiction of cancer cells as a potential target to combat PDAC. Oncogenic mutations of KRAS are the most common triggers that drive glucose uptake and utilization via metabolic reprogramming to support PDAC growth. Conversely, high glucose levels in the pancreatic microenvironment trigger genome instability and de novo mutations, including KRASG12D, in pancreatic cells through metabolic reprogramming. Here, we review convergent and diverse metabolic networks related to oncogenic KRAS mutations between PDAC initiation and progression, emphasizing the interplay among oncogenic mutations, glucose metabolic reprogramming, and the tumor microenvironment. Recognizing cancer-related glucose metabolism will provide a better strategy to prevent and treat the high risk PDAC population.
Collapse
Affiliation(s)
- Yu-Huei Liu
- grid.254145.30000 0001 0083 6092Drug Development Center, China Medical University, Taichung, Taiwan ,grid.254145.30000 0001 0083 6092Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan ,grid.411508.90000 0004 0572 9415Department of Medical Genetics and Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Mei Hu
- grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan ,grid.28665.3f0000 0001 2287 1366Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yuan-Sheng Hsu
- grid.254145.30000 0001 0083 6092Drug Development Center, China Medical University, Taichung, Taiwan ,grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan ,grid.28665.3f0000 0001 2287 1366Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Hwa Lee
- grid.254145.30000 0001 0083 6092Drug Development Center, China Medical University, Taichung, Taiwan ,grid.28665.3f0000 0001 2287 1366Genomics Research Center, Academia Sinica, Taipei, Taiwan ,grid.266093.80000 0001 0668 7243Department of Biological Chemistry, University of California, Irvine, CA USA
| |
Collapse
|
46
|
Wang Y, Golesworthy B, Cuggia A, Domecq C, Chaudhury P, Barkun J, Metrakos P, Asselah J, Bouganim N, Gao ZH, Chong G, Foulkes WD, Zogopoulos G. Oncology clinic-based germline genetic testing for exocrine pancreatic cancer enables timely return of results and unveils low uptake of cascade testing. J Med Genet 2022; 59:793-800. [PMID: 34556502 DOI: 10.1136/jmedgenet-2021-108054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Traditional medical genetics models are unable to meet the growing demand for germline genetic testing (GT) in patients with exocrine pancreatic cancer (PC). This study investigates the impact of an ambulatory oncology clinic-based GT model. METHODS From 2012 to 2021, patients with PC were prospectively enrolled and considered for GT. Two chronological cohorts were compared: (1) the preuniversal genetic testing (pre-UGT) cohort, which received GT based on clinical criteria or family history; and (2) the post-UGT cohort, where an 86-gene panel was offered to all patients with PC. RESULTS Of 847 eligible patients, 735 (86.8%) were enrolled (pre-UGT, n=579; post-UGT, n=156). A higher proportion of the post-UGT cohort received prospective GT (97.4% vs 58.5%, p<0.001). The rate of pathogenic germline alterations (PGA) across both cohorts was 9.9%, with 8.0% of PGAs in PC susceptibility genes. The post-UGT cohort had a higher prevalence of overall PGAs (17.2% vs 6.6%, p<0.001) and PGAs in PC susceptibility genes (11.9% vs 6.3%, p<0.001). The median turnaround time from enrolment to GT report was shorter in the post-UGT cohort (13 days vs 42 days, p<0.001). Probands with a PGA disclosed their GT results to 84% of their first-degree relatives (FDRs). However, only 31% of informed FDRs underwent GT, and the number of new cases per index case was 0.52. CONCLUSION A point-of-care GT model is feasible and expedites access to GT for patients with PC. Strategies to increase the uptake of cascade testing are needed to maximise the clinical impact of an oncology clinic-based GT model.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Surgery, McGill University, Montreal, Québec, Canada.,Rosalind and Morris Goodman Cancer Institute, Montreal, Québec, Canada.,The Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Bryn Golesworthy
- The Research Institute of the McGill University Health Centre, Montreal, Québec, Canada.,Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - Adeline Cuggia
- The Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Celine Domecq
- The Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | | | - Jeffrey Barkun
- Department of Surgery, McGill University, Montreal, Québec, Canada
| | - Peter Metrakos
- Department of Surgery, McGill University, Montreal, Québec, Canada.,The Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Jamil Asselah
- Department of Oncology, McGill University, Montreal, Québec, Canada
| | | | - Zu-Hua Gao
- The Research Institute of the McGill University Health Centre, Montreal, Québec, Canada.,Department of Pathology, McGill University, Montreal, Québec, Canada
| | - George Chong
- Molecular Diagnostics Laboratory, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Québec, Canada
| | - William D Foulkes
- The Research Institute of the McGill University Health Centre, Montreal, Québec, Canada.,Department of Human Genetics, McGill University, Montreal, Québec, Canada
| | - George Zogopoulos
- Department of Surgery, McGill University, Montreal, Québec, Canada .,Rosalind and Morris Goodman Cancer Institute, Montreal, Québec, Canada.,The Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
47
|
A Genome-First Approach to Estimate Prevalence of Germline Pathogenic Variants and Risk of Pancreatic Cancer in Select Cancer Susceptibility Genes. Cancers (Basel) 2022; 14:cancers14133257. [PMID: 35805029 PMCID: PMC9265005 DOI: 10.3390/cancers14133257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 12/20/2022] Open
Abstract
Patients with germline pathogenic variants (GPV) in cancer predisposition genes are at increased risk of pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer. The genes most frequently found to harbor GPV in unselected PDAC cases are ATM, BRCA1, BRCA2, CDKN2A, CHEK2, and PALB2. However, GPV prevalence and gene-specific associations have not been extensively studied in the general population. To further explore these associations, we analyzed genomic and phenotypic data obtained from the UK Biobank (UKB) and Geisinger MyCode Community Health Initiative (GHS) cohorts comprising 200,600 and 175,449 participants, respectively. We estimated the frequency and calculated relative risks (RRs) of heterozygotes in both cohorts and a subset of individuals with PDAC. The combined frequency of heterozygous carriers of GPV in the general population ranged from 1.22% for CHEK2 to 0.05% for CDKN2A. The frequency of GPV in PDAC cases varied from 2.38% (ATM) to 0.19% (BRCA1 and CDKN2A). The RRs of PDAC were elevated for all genes except for BRCA1 and varied widely by gene from high (ATM) to low (CHEK2, BRCA2). This work expands our understanding of the frequencies of GPV heterozygous carriers and associations between PDAC and GPV in several important PDAC susceptibility genes.
Collapse
|
48
|
Casolino R, Corbo V, Beer P, Hwang CI, Paiella S, Silvestri V, Ottini L, Biankin AV. Germline Aberrations in Pancreatic Cancer: Implications for Clinical Care. Cancers (Basel) 2022; 14:3239. [PMID: 35805011 PMCID: PMC9265115 DOI: 10.3390/cancers14133239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis and represents a major public health issue, as both its incidence and mortality are expecting to increase steeply over the next years. Effective screening strategies are lacking, and most patients are diagnosed with unresectable disease precluding the only chance of cure. Therapeutic options for advanced disease are limited, and the treatment paradigm is still based on chemotherapy, with a few rare exceptions to targeted therapies. Germline variants in cancer susceptibility genes-particularly those involved in mechanisms of DNA repair-are emerging as promising targets for PDAC treatment and prevention. Hereditary PDAC is part of the spectrum of several syndromic disorders, and germline testing of PDAC patients has relevant implications for broad cancer prevention. Germline aberrations in BRCA1 and BRCA2 genes are predictive biomarkers of response to poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitor olaparib and platinum-based chemotherapy in PDAC, while mutations in mismatch repair genes identify patients suitable for immune checkpoint inhibitors. This review provides a timely and comprehensive overview of germline aberrations in PDAC and their implications for clinical care. It also discusses the need for optimal approaches to better select patients for PARP inhibitor therapy, novel therapeutic opportunities under clinical investigation, and preclinical models for cancer susceptibility and drug discovery.
Collapse
Affiliation(s)
- Raffaella Casolino
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (P.B.); (A.V.B.)
- Beatson West of Scotland Cancer Centre, Glasgow G12 0YN, UK
- NHS Greater Glasgow and Clyde, Glasgow G4 0SF, UK
| | - Vincenzo Corbo
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy;
| | - Philip Beer
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (P.B.); (A.V.B.)
| | - Chang-il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA;
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA
| | - Salvatore Paiella
- General and Pancreatic Surgery Unit, Pancreas Institute, University of Verona Hospital Trust, 37134 Verona, Italy;
| | - Valentina Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (V.S.); (L.O.)
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (V.S.); (L.O.)
| | - Andrew V. Biankin
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK; (P.B.); (A.V.B.)
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, NSW 2170, Australia
| |
Collapse
|
49
|
Ulanja MB, Moody AE, Beutler BD, Antwi-Amoabeng D, Rahman GA, Alese OB. Early-onset pancreatic cancer: a review of molecular mechanisms, management, and survival. Oncotarget 2022; 13:828-841. [PMID: 35720978 PMCID: PMC9200435 DOI: 10.18632/oncotarget.28242] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Early-onset pancreatic cancer (EOPC) - defined as pancreatic cancer diagnosed before the age of 50 years - is associated with a poor prognosis as compared to later-onset pancreatic cancer (LOPC). Emerging evidence suggests that EOPC may exhibit a genetic signature and tumor biology that is distinct from that of LOPC. We review genetic mutations that are more prevalent in EOPC relative to LOPC and discuss the potential impact of these mutations on treatment and survival. MATERIALS AND METHODS Using PubMed and Medline, the following terms were searched and relevant citations assessed: "early onset pancreatic cancer," "late onset pancreatic cancer," "pancreatic cancer," "pancreatic cancer genes," and "pancreatic cancer targeted therapy." RESULTS Mutations in CDKN2, FOXC2, and SMAD4 are significantly more common in EOPC as compared to LOPC. In addition, limited data suggest that PI3KCA mutations are more frequently observed in EOPC as compared to LOPC. KRAS mutations are relatively rare in EOPC. CONCLUSIONS Genetic mutations associated with EOPC are distinct from those of LOPC. The preponderance of the evidence suggest that poor outcomes in EOPC are related both to advanced stage of presentation and unique tumor biology. The molecular and genetic features of EOPC warrant further investigation in order to optimize management.
Collapse
Affiliation(s)
- Mark B. Ulanja
- Christus Ochsner Saint Patrick Hospital, Lake Charles, LA 70601, USA
| | - Alastair E. Moody
- Department of Anesthesiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Bryce D. Beutler
- Department of Radiology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | | | - Ganiyu A. Rahman
- Department of Surgery, University of Cape Coast, School of Medical Sciences, Cape Coast, Ghana
| | - Olatunji B. Alese
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
50
|
Wang Y, Cuggia A, Chen YI, Parent J, Stanek A, Denroche RE, Zhang A, Grant RC, Domecq C, Golesworthy B, Shwaartz C, Borgida A, Holter S, Wilson JM, Chong G, O'Kane GM, Knox JJ, Fischer SE, Gallinger S, Gao ZH, Foulkes WD, Waschke KA, Zogopoulos G. Is Biannual Surveillance for Pancreatic Cancer Sufficient in Individuals With Genetic Syndromes or Familial Pancreatic Cancer? J Natl Compr Canc Netw 2022; 20:663-673.e12. [PMID: 35714671 DOI: 10.6004/jnccn.2021.7107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Individuals with a family history of pancreatic adenocarcinoma (PC) or with a germline mutation in a PC susceptibility gene are at increased risk of developing PC. These high-risk individuals (HRIs) may benefit from PC surveillance. METHODS A PC surveillance program was developed to evaluate the detection of premalignant lesions and early-stage PCs using biannual imaging and to determine whether locally advanced or metastatic PCs develop despite biannual surveillance. From January 2013 to April 2020, asymptomatic HRIs were enrolled and followed with alternating MRI and endoscopic ultrasound every 6 months. RESULTS Of 75 HRIs, 43 (57.3%) had a germline mutation in a PC susceptibility gene and 32 (42.7%) had a familial pancreatic cancer (FPC) pedigree. Branch-duct intraductal papillary mucinous neoplasms (BD-IPMNs) were identified in 26 individuals (34.7%), but only 2 developed progressive lesions. One patient with Peutz-Jeghers syndrome (PJS) developed locally advanced PC arising from a BD-IPMN. Whole-genome sequencing of this patient's PC and of a second patient with PJS-associated PC from the same kindred revealed biallelic inactivation of STK11 in a KRAS-independent manner. A review of 3,853 patients from 2 PC registries identified an additional patient with PJS-associated PC. All 3 patients with PJS developed advanced PC consistent with the malignant transformation of an underlying BD-IPMN in <6 months. The other surveillance patient with a progressive lesion had FPC and underwent resection of a mixed-type IPMN that harbored polyclonal KRAS mutations. CONCLUSIONS PC surveillance identifies a high prevalence of BD-IPMNs in HRIs. Patients with PJS with BD-IPMNs may be at risk for accelerated malignant transformation.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Surgery, McGill University, Montreal, Quebec
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Rosalind and Morris Goodman Cancer Institute
| | - Adeline Cuggia
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Rosalind and Morris Goodman Cancer Institute
| | - Yen-I Chen
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Division of Gastroenterology and Hepatology, and
| | - Josée Parent
- Division of Gastroenterology and Hepatology, and
| | - Agatha Stanek
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Department of Diagnostic Radiology, McGill University, Montreal, Quebec
| | | | - Amy Zhang
- Ontario Institute for Cancer Research, Toronto, Ontario
| | - Robert C Grant
- Ontario Institute for Cancer Research, Toronto, Ontario
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, Ontario
| | - Céline Domecq
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Rosalind and Morris Goodman Cancer Institute
| | - Bryn Golesworthy
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Rosalind and Morris Goodman Cancer Institute
| | - Chaya Shwaartz
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, Ontario
| | - Ayelet Borgida
- Ontario Pancreas Cancer Study, Mount Sinai Hospital, Toronto, Ontario
| | - Spring Holter
- Ontario Institute for Cancer Research, Toronto, Ontario
| | | | - George Chong
- Molecular Diagnostics Laboratory, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec
| | - Grainne M O'Kane
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, Ontario
| | - Jennifer J Knox
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, Ontario
| | | | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, Ontario
- Ontario Pancreas Cancer Study, Mount Sinai Hospital, Toronto, Ontario
| | | | - William D Foulkes
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Department of Human Genetics, and
- Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | | | - George Zogopoulos
- Department of Surgery, McGill University, Montreal, Quebec
- Research Institute of the McGill University Health Centre, Montreal, Quebec
- Rosalind and Morris Goodman Cancer Institute
| |
Collapse
|