1
|
Sundrani A, Kamble R, Suchak D, Kaiser J, Agarwal N, Toshniwal N. A Comparative Analysis of Alkaline Phosphatase Levels in Gingival Crevicular Fluid of Patients Undergoing Growth Modulation Therapy With Twin Block, Forsus Fatigue Resistant, and Clear Block Appliances Compared to Normal Individuals: An In Vivo Study. Cureus 2024; 16:e63374. [PMID: 39077288 PMCID: PMC11283920 DOI: 10.7759/cureus.63374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
Background In the contemporary era, where science and technology know no boundaries, this in vivo study explores the impact of growth modulation therapy using Twin Block, Forsus Fatigue Resistant, and Clear Block appliances on alkaline phosphatase (ALP) levels in gingival crevicular fluid (GCF). Bone physiology involves modeling and remodeling, with orthodontics applying forces to teeth, influencing tissue reactivity and bone modeling. ALP, a marker of osteoblast function, plays a crucial role in bone growth. GCF reflects immunological and inflammatory responses during orthodontic force application, making it a valuable medium for studying ongoing metabolic processes related to bone turnover. Aim The study aims to comparatively analyze ALP levels in GCF during growth modulation therapy, assessing the efficacy of Twin Block, Forsus Fatigue Resistant, and Clear Block appliances. The research involves 30 experimental samples divided into three study groups and a control group. The samples are collected at various time intervals, and ALP levels are analyzed using a spectrophotometer. Statistical analysis includes paired and unpaired t-tests, one-way analysis of variance (ANOVA), and multiple comparisons. Results Results demonstrate a significant increase in ALP levels during the growth modulation therapy, indicating a positive correlation with bone remodeling. Twin Block appears to be the most effective appliance, exhibiting higher ALP activity compared to Clear Block and Forsus groups. Conclusion In conclusion, this study provides valuable insights into the biochemical responses during growth modulation therapy, emphasizing the potential of GCF analysis in understanding orthodontic treatment effects.
Collapse
Affiliation(s)
- Ayush Sundrani
- Orthodontics and Dentofacial Orthopaedics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
- Orthodontics and Dentofacial Orthopaedics, Smile Care Centre, Raipur, IND
| | - Ranjit Kamble
- Orthodontics and Dentofacial Orthopaedics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Dhwani Suchak
- Orthodontics and Dentofacial Orthopaedics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Japneet Kaiser
- Orthodontics and Dentofacial Orthopaedics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nishu Agarwal
- Orthodontics and Dentofacial Orthopaedics, Sharad Pawar Dental College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Nandalal Toshniwal
- Orthodontics and Dentofacial Orthopaedics, Rural Dental College, Pravara Institute of Medical Sciences (Deemed to be University), Loni, IND
| |
Collapse
|
2
|
Li Q, Zhang X, Wang C, Hu H, Tang Z, Fan Y. Biomechanical evaluation of customized root implants in alveolar bone: A comparative study with traditional implants and natural teeth. J Prosthodont 2023; 32:e30-e40. [PMID: 35950785 DOI: 10.1111/jopr.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To compare and evaluate density changes in alveolar bones and biomechanical responses including stress/strain distributions around customized root implants (CRIs), traditional implants, and natural teeth. MATERIALS AND METHODS A three-dimensional finite element model of the maxillary dentition defect, CRI models, traditional restored implant models, and natural teeth with periodontal tissue models were established. The chewing load of the central incisor, the traditional implant, and the CRI was 100N, and the load direction was inclined by 11° in the sagittal plane. According to the bone remodeling numerical algorithm, the bone mineral density and distribution were calculated and predicted. In addition, animal experiments were performed to verify the feasibility of the implant design. The results of the simulation calculations were compared with animal experimental data in vivo to verify their validity. RESULTS No significant differences in bone mineral density and stress/strain distribution were found between the CRI and traditional implant models. The animal experimental results (X-ray images and histological staining) were consistent with the numerical simulated results. CONCLUSIONS CRIs were more similar to traditional implants than to natural teeth in terms of biomechanical and biological evaluation. Considering the convenience of clinical application, this biomechanical evaluation provides basic theoretical support for further applications of CRI.
Collapse
Affiliation(s)
- Qing Li
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.,Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology and National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xinyue Zhang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology and National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Chao Wang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Hongcheng Hu
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology and National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Zhihui Tang
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology and National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
3
|
Wang B, Nguyen N, Kang M, Srirangapatanam S, Connelly S, Souza R, Ho SP. Contact ratio and adaptations in the maxillary and mandibular dentoalveolar joints in rats and human clinical analogs. J Mech Behav Biomed Mater 2022; 136:105485. [PMID: 36209587 DOI: 10.1016/j.jmbbm.2022.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022]
Abstract
Spatial maps of function-based contact areas and resulting mechanical strains in bones of intact fibrous joints in preclinical small-scale animal models are limited. Functional imaging in situ on intact dentoalveolar fibrous joints (DAJs) in hemimandibles and hemimaxillae harvested from 10 male Sprague-Dawley rats (N = 5 at 12 weeks, N = 5 at 20 weeks) was performed in this study. Physical features including bone volume fraction (BVF), bone pore diameter and pore density, and cementum fraction (CF) of the molars in the maxillary and mandibular joints were evaluated. Biomechanical testing in situ provided estimates of joint stiffness, changes in periodontal ligament spaces (PDL-space) between the molar and bony socket, and thereby localization of contact area in the respective joints. Contact area localization revealed mechanically stressed interradicular and apical regions in the joints. These anatomy-specific contact stresses in maxillary and mandibular joints were correlated with the physical features and resulting strains in interradicular and bony socket compartments. The mandibular joint spaces, in general, were higher than maxillary, and this trend was consistent with age (younger loaded: Mn - 134 ± 55 μm, Mx - 110 ± 47 μm; older loaded: Mn - 122 ± 49 μm, Mx - 105 ± 48 μm). However, a significant decrease (P < 0.05) in mandibular and maxillary joint spaces with age (younger unloaded: Mn - 147 ± 51 μm; Mx - 125 ± 42 μm; older unloaded: Mn - 134 ± 46 μm; Mx - 116 ± 44 μm) was observed. The bone volume fraction (BVF) of mandibular interradicular bone (IR bone) increased significantly with age (P < 0.05) with the percent porosity of coronal mandibular bone lower than its maxillary counterpart. The contact ratio (contact area to total surface area) of maxillary teeth was significantly greater (P < 0.05) than mandibular teeth; both maxillary interradicular and apical contact ratios (IR bone: 41%, 56%; Apical bone: 4%, 12%) increased with age, and were higher than the mandibular (IR bone: 19%, 44%; Apical bone: 1%, 4%) counterpart. Resulting higher but uniform strains in maxillary bone contrasted with lower but higher variance in mandibular strains at a younger age. Anatomy-specific colocalization of physical properties and functional strains in bone provided insights into form-guided adaptive dominance of the maxilla compared to material property-guided adaptive dominance of the mandible. These age-related trends from the preclinical animal model paralleled with age- and tooth position-specific variabilities in mandibular craniofacial bones of adolescent and adult patients following orthodontic treatment.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116023, PR China; International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116023, PR China; Ningbo Institute of Dalian University of Technology, Ningbo, 315016, PR China; DUT-BSU Joint Institute, Dalian University of Technology, 116023, PR China; Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, CA 94143, USA
| | - Nam Nguyen
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, CA 94143, USA
| | - Misun Kang
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, CA 94143, USA
| | | | - Stephen Connelly
- Division of Oral Surgery, Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, CA, 94143, USA
| | - Richard Souza
- Departments of Physical Therapy and Rehabilitation Science, Radiology and Biomedical Orthopaedic Surgery, School of Medicine, University of California San Francisco, CA, 94143, USA
| | - Sunita P Ho
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, CA 94143, USA.
| |
Collapse
|
4
|
Roberts WE, Mangum JE, Schneider PM. Pathophysiology of Demineralization, Part I: Attrition, Erosion, Abfraction, and Noncarious Cervical Lesions. Curr Osteoporos Rep 2022; 20:90-105. [PMID: 35129809 PMCID: PMC8930910 DOI: 10.1007/s11914-022-00722-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF THE REVIEW Compare pathophysiology for infectious and noninfectious demineralization disease relative to mineral maintenance, physiologic fluoride levels, and mechanical degradation. RECENT FINDINGS Environmental acidity, biomechanics, and intercrystalline percolation of endemic fluoride regulate resistance to demineralization relative to osteopenia, noncarious cervical lesions, and dental caries. Demineralization is the most prevalent chronic disease in the world: osteoporosis (OP) >10%, dental caries ~100%. OP is severely debilitating while caries is potentially fatal. Mineralized tissues have a common physiology: cell-mediated apposition, protein matrix, fluid logistics (blood, saliva), intercrystalline ion percolation, cyclic demineralization/remineralization, and acid-based degradation (microbes, clastic cells). Etiology of demineralization involves fluid percolation, metabolism, homeostasis, biomechanics, mechanical wear (attrition or abrasion), and biofilm-related infections. Bone mineral density measurement assesses skeletal mass. Attrition, abrasion, erosion, and abfraction are diagnosed visually, but invisible subsurface caries <400μm cannot be detected. Controlling demineralization at all levels is an important horizon for cost-effective wellness worldwide.
Collapse
Affiliation(s)
- W. Eugene Roberts
- grid.257413.60000 0001 2287 3919Indiana University & Purdue University at Indianapolis, 8260 Skipjack Drive, Indianapolis, IN 46236 USA
| | - Jonathan E. Mangum
- grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Pharmacology, Dentistry and Health Sciences, University of Melbourne, Corner Grattan Street and Royal Parade, Parkville, Victoria 3010 Australia
| | - Paul M. Schneider
- grid.1008.90000 0001 2179 088XMelbourne Dental School, University of Melbourne, 720 Swanston St, Melbourne, Victoria 3010 Australia
| |
Collapse
|
5
|
Roberts WE, Mangum JE, Schneider PM. Pathophysiology of Demineralization, Part II: Enamel White Spots, Cavitated Caries, and Bone Infection. Curr Osteoporos Rep 2022; 20:106-119. [PMID: 35156182 PMCID: PMC8930953 DOI: 10.1007/s11914-022-00723-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Compare noninfectious (part I) to infectious (part II) demineralization of bones and teeth. Evaluate similarities and differences in the expression of hard tissue degradation for the two most common chronic demineralization diseases: osteoporosis and dental caries. RECENT FINDINGS The physiology of demineralization is similar for the sterile skeleton compared to the septic dentition. Superimposing the pathologic variable of infection reveals a unique pathophysiology for dental caries. Mineralized tissues are compromised by microdamage, demineralization, and infection. Osseous tissues remodel (turnover) to maintain structural integrity, but the heavily loaded dentition does not turnover so it is ultimately at risk of collapse. A carious tooth is a potential vector for periapical infection that may be life-threatening. Insipient caries is initiated as a subsurface decalcification in enamel that is not detectable until a depth of ~400μm when it becomes visible as a white spot. Reliable detection and remineralization of invisible caries would advance cost-effective wellness worldwide.
Collapse
Affiliation(s)
- W. Eugene Roberts
- American Board of Orthodontics, Indiana University & Purdue University at Indianapolis, 8260 Skipjack Drive, Indianapolis, IN 46236 USA
| | - Jonathan E. Mangum
- Translational Proteomics Laboratory, Department of Biochemistry and Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Corner Grattan Street and Royal Parade, Melbourne, Victoria 3010 Australia
| | - Paul M. Schneider
- American Board of Orthodontics, Melbourne Dental School, University of Melbourne, 720 Swanston St, Melbourne, Victoria 3010 Australia
| |
Collapse
|
6
|
Jain A, Prasantha GS, Mathew S, Sabrish S. Analysis of stress in periodontium associated with orthodontic tooth movement: a three dimensional finite element analysis. Comput Methods Biomech Biomed Engin 2021; 24:1841-1853. [PMID: 33982607 DOI: 10.1080/10255842.2021.1925255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It is well known that the initiating factor for the biologic changes is the stress induced in the periodontal tissue; but as of now there is no gauge to measure the stress in the PDL directly. Therefore finite element model can be used to study the stress-strain relation through simulation of the PDL. The aim of the study was to simulate the stress response in the periodontium for different moment to farce ratios induced by tipping, translation, rotation, intrusion, extrusion and root torque by means of finite element method. The three-dimensional finite element model of the mandibular first molar was constructed. The pattern of Von misses stress and the maximum displacement of the mandibular molar was recorded on application of different combination of moment to force ratio. The periodontium was sensitive to changes in the load values. The stress pattern in the periodontal ligament for a lingually directed force without counterbalancing moments showed high concentration at the cervical level of the root. With addition of counter-tipping and counter-rotation moments, a relatively even distribution of stress throughout PDL was obtained. Additionally, high stress concentration was observed on the root surface at the furcation level for forces applied parallel to the long axis. Translation type of tooth movement showed relatively even distribution of the stress in the PDL and makes the tooth less susceptible to root resorption.
Collapse
Affiliation(s)
- Ankita Jain
- Department of Orthodontics, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - G S Prasantha
- Department of Orthodontics, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Silju Mathew
- Department of Orthodontics, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| | - Sharanya Sabrish
- Department of Orthodontics, Faculty of Dental Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore, India
| |
Collapse
|
7
|
Jang A, Wang B, Ustriyana P, Gansky SA, Maslenikov I, Useinov A, Prevost R, Ho SP. Functional adaptation of interradicular alveolar bone to reduced chewing loads on dentoalveolar joints in rats. Dent Mater 2021; 37:486-495. [PMID: 33589268 DOI: 10.1016/j.dental.2020.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/23/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The effects of reduced chewing loads on load bearing integrity of interradicular bone (IB) within dentoalveolar joints (DAJ) in rats were investigated. METHODS Four-week-old Sprague Dawley rats (N = 60) were divided into two groups; rats were either fed normal food, which is hard-pellet food (HF) (N = 30), or soft-powdered chow (SF) (N = 30). Biomechanical testing of intact DAJs and mapping of the resulting mechanical strains within IBs from 8- through 24-week-old rats fed HF or SF were performed. Tension- and compression-based mechanical strain profiles were mapped by correlating digital volumes of IBs at no load with the same IBs under load. Heterogeneity within IB was identified by mapping cement lines and TRAP-positive multinucleated cells using histology, and mechanical properties using nanoindentation technique. RESULTS Significantly decreased interradicular functional space, IB volume fraction, and elastic modulus of IB in the SF group compared with the HF group were observed, and these trends varied with an increase in age. The elastic modulus values illustrated significant heterogeneity within IB from HF or SF groups. Both compression- and tension-based strains were localized at the coronal portion of the IB and the variation in strain profiles complemented the observed material heterogeneity using histology and nanoindentation. SIGNIFICANCE Interradicular space and IB material-related mechanoadaptations in a DAJ are optimized to meet soft food related chewing demands. Results provided insights into age-specific regulation of chewing loads as a plausible "therapeutic dose" to reverse adaptations within the periodontal complex as an attempt to regain functional competence of a dynamic DAJ.
Collapse
Affiliation(s)
- Andrew Jang
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, CA 94143, United States
| | - Bo Wang
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, CA 94143, United States
| | - Putu Ustriyana
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, CA 94143, United States
| | - Stuart A Gansky
- Division of Oral Epidemiology & Dental Public Health, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, CA 94143, United States
| | - Igor Maslenikov
- Technological Institute of Superhard and New Carbon Materials (TISNUM), ul. Tsentral'naya 7, Troitsk, Moscow, 142190, Russia
| | - Alex Useinov
- Technological Institute of Superhard and New Carbon Materials (TISNUM), ul. Tsentral'naya 7, Troitsk, Moscow, 142190, Russia
| | - Richard Prevost
- LaVision Inc. 211 W. Michigan Ave./Suite 100, Ypsilanti, MI 48197, United States
| | - Sunita P Ho
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, CA 94143, United States; Department of Urology, University of California San Francisco, CA 94143, United States.
| |
Collapse
|
8
|
Effects of Twin-block vs sagittal-guidance Twin-block appliance on alveolar bone around mandibular incisors in growing patients with Class II Division 1 malocclusion. Am J Orthod Dentofacial Orthop 2020; 157:329-339. [PMID: 32115111 DOI: 10.1016/j.ajodo.2019.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 11/20/2022]
Abstract
INTRODUCTION The purpose of this study was to comparatively evaluate the effects of Twin-block (TB) appliance and sagittal-guidance Twin-block (SGTB) appliance on alveolar bone around mandibular incisors in growing patients with Class II Division 1 malocclusion, using cone-beam computed tomography. METHODS The sample consisted of 25 growing patients with Class II Division 1 malocclusion (14 boys and 11 girls, mean age 11.92 ± 1.62 years) and was randomly distributed into the TB group (n = 13) and the SGTB group (n = 12). The treatment duration was 11.56 ± 1.73 months. Pretreatment (T1) and posttreatment (T2) cone-beam computed tomography scans were taken in both groups. Height, thickness at apex level, and volume of the alveolar bone around mandibular left central incisors were measured respectively on labial and lingual side, using Mimics software (version 19.0; Materialise, Leuven, Belgium). Based on the stable structures, 3-dimensional (3D) registrations of T1 and T2 models were taken to measure the sagittal displacement of incisors. Intragroup comparisons were evaluated by paired-samples t tests and Wilcoxon tests. Independent-samples t tests and Mann-Whitney U tests were used for intergroup comparisons. RESULTS In both groups, alveolar bone height and volume on the labial side of the incisors significantly decreased after treatment (P <0.05). Lingual alveolar bone height, lingual and total alveolar bone volume, labial, lingual and total alveolar bone thickness showed no significant difference between T1 and T2 (P >0.05). In both groups the incisors tipped labially and drifted to the labial side. Compared with the TB group, less labial alveolar bone loss, less incisor proclination and crown edge drift were found in the SGTB group (P <0.05). CONCLUSIONS Labial alveolar bone loss around mandibular incisors was observed after both types of appliances treatment in growing patients with Class II Division 1 malocclusion. Less labial alveolar bone loss, less incisor proclination, and crown edge drift were found in the SGTB group than in the TB group during treatment.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Elucidate temporomandibular joint (TMJ) development and pathophysiology relative to regeneration, degeneration, and adaption. RECENT FINDINGS The pharyngeal arch produces a highly conserved stomatognathic system that supports airway and masticatory function. An induced subperiosteal layer of fibrocartilage cushions TMJ functional and parafunctional loads. If the fibrocartilage disc is present, a fractured mandibular condyle (MC) regenerates near the eminence of the fossa via a blastema emanating from the medial periosteal surface of the ramus. TMJ degenerative joint disease (DJD) is a relatively painless osteoarthrosis, resulting in extensive sclerosis, disc destruction, and lytic lesions. Facial form and symmetry may be affected, but the residual bone is vital because distraction continues to lengthen the MC with anabolic bone modeling. Extensive TMJ adaptive, healing, and regenerative potential maintains optimal, life support functions over a lifetime. Unique aspects of TMJ development, function, and pathophysiology may be useful for innovative management of other joints.
Collapse
Affiliation(s)
- W Eugene Roberts
- School of Dentistry, Department of Orthodontics and Oral Facial Genetics, Indiana University-Purdue University (IUPUI), Indianapolis, IN, USA.
- Department of Orthodontics, Loma Linda University, Loma Linda, CA, USA.
- Advanced Dental Education, St. Louis University, St. Louis, MO, USA.
| | - David L Stocum
- School of Science, Department of Biology, Indiana University-Purdue University (IUPUI), Indianapolis, IN, USA
| |
Collapse
|
10
|
Utreja A, Bain C, Turek B, Holland R, AlRasheed R, Sorkhdini P, Roberts WE. Maxillary expansion in an animal model with light, continuous force. Angle Orthod 2018; 88:306-313. [PMID: 29364697 DOI: 10.2319/070717-451.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Maxillary constriction is routinely addressed with rapid maxillary expansion (RME). However, the heavy forces delivered by most RME appliances to expand the palate may lead to deleterious effects on the teeth and supporting tissues. The objective of this study was to explore a more physiologic maxillary expansion with light continuous force. MATERIALS AND METHODS Twenty 6-week-old Sprague-Dawley rats were equally divided into experimental (EXPT) and control (CTRL) groups. A custom-fabricated archwire expansion appliance made from 0.014-inch copper-nickel-titanium wire was activated 5 mm and bonded to the maxillary molar segments of animals in the EXPT group for 21 days. The force applied to each maxillary segment was 5 cN. Microfocus x-ray computed tomography and histological analyses were used to compare the tooth movement and bone morphology in the midpalatal suture and buccal aspect of the alveolar process between the EXPT and CTRL groups. Descriptive statistics (mean ± standard error of the mean) and nonparametric statistical tests were used to compare the outcomes across groups. RESULTS Compared to the CTRL group, there was a statistically significant increase in buccal tooth movement and expansion of the midpalatal suture in the EXPT group. There was no difference in the bone morphologic parameters between groups. The mineral apposition rate was increased on the buccal surface of the alveolar process in the EXPT group. CONCLUSIONS Application of light, continuous force resulted in maxillary osseous expansion due to bilateral sutural apposition and buccal drift of the alveolar processes. This animal experiment provides a more physiologic basis for maxillary expansion.
Collapse
|
11
|
Lin JD, Jang AT, Kurylo MP, Hurng J, Yang F, Yang L, Pal A, Chen L, Ho SP. Periodontal ligament entheses and their adaptive role in the context of dentoalveolar joint function. Dent Mater 2017; 33:650-666. [PMID: 28476202 DOI: 10.1016/j.dental.2017.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/09/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The dynamic bone-periodontal ligament (PDL)-tooth fibrous joint consists of two adaptive functionally graded interfaces (FGI), the PDL-bone and PDL-cementum that respond to mechanical strain transmitted during mastication. In general, from a materials and mechanics perspective, FGI prevent catastrophic failure during prolonged cyclic loading. This review is a discourse of results gathered from literature to illustrate the dynamic adaptive nature of the fibrous joint in response to physiologic and pathologic simulated functions, and experimental tooth movement. METHODS Historically, studies have investigated soft to hard tissue transitions through analytical techniques that provided insights into structural, biochemical, and mechanical characterization methods. Experimental approaches included two dimensional to three dimensional advanced in situ imaging and analytical techniques. These techniques allowed mapping and correlation of deformations to physicochemical and mechanobiological changes within volumes of the complex subjected to concentric and eccentric loading regimes respectively. RESULTS Tooth movement is facilitated by mechanobiological activity at the interfaces of the fibrous joint and generates elastic discontinuities at these interfaces in response to eccentric loading. Both concentric and eccentric loads mediated cellular responses to strains, and prompted self-regulating mineral forming and resorbing zones that in turn altered the functional space of the joint. SIGNIFICANCE A multiscale biomechanics and mechanobiology approach is important for correlating joint function to tissue-level strain-adaptive properties with overall effects on joint form as related to physiologic and pathologic functions. Elucidating the shift in localization of biomolecules specifically at interfaces during development, function, and therapeutic loading of the joint is critical for developing "functional regeneration and adaptation" strategies with an emphasis on restoring physiologic joint function.
Collapse
Affiliation(s)
- Jeremy D Lin
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Andrew T Jang
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Michael P Kurylo
- South of Market Health Center, San Francisco, CA 94103, United States
| | - Jonathan Hurng
- Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA 02115, United States
| | - Feifei Yang
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Lynn Yang
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Arvin Pal
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Ling Chen
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States
| | - Sunita P Ho
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, United States.
| |
Collapse
|
12
|
Abstract
When orthodontic patients desire shorter treatment times with aesthetic results and long-term stability, it is important for the orthodontist to understand the potential limitations and problems that may arise during standard and/or technology-assisted accelerated treatment. Bone density plays an important role in facilitating orthodontic tooth movement (OTM), such that reductions in bone density can significantly increase movement velocity. Lifestyle, genetic background, environmental factors, and disease status all can influence a patients' overall health and bone density. In some individuals, these factors may create specific conditions that influence systemic-wide bone metabolism. Both genetic variation and the onset of a bone-related disease can influence systemic bone density and local bone density, such as observed in the mandible and maxilla. These types of localized density changes can affect the rate of OTM and may also influence the risk of unwanted outcomes, i.e., the occurrence of dental external apical root resorption (EARR).
Collapse
Affiliation(s)
- Alejandro Iglesias-Linares
- Department of Orthodontics, Complutense University of Madrid, Plaza Ramon y Cajal sn, Phone: +34636705246,
| | - Lorri Ann Morford
- University of Kentucky Center for the Biologic Basis of Oral/Systemic Diseases, 1095 Veterans Administration Drive, HSRB Room 414, Lexington, KY 40536-0305 USA, Phone: 859-323-2595 Fax: 859-257-6566,
| | - James Kennedy Hartsfield
- University of Kentucky Center for the Biologic Basis of Oral/Systemic Diseases, 1095 Veterans Administration Drive, HSRB Room 414, Lexington, KY 40536-0305 USA, Phone: 859-323-0296 Fax: 859-257-6566,
| |
Collapse
|
13
|
Apical External Root Resorption and Repair in Orthodontic Tooth Movement: Biological Events. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4864195. [PMID: 27119080 PMCID: PMC4828521 DOI: 10.1155/2016/4864195] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/08/2016] [Indexed: 12/20/2022]
Abstract
Some degree of external root resorption is a frequent, unpredictable, and unavoidable consequence of orthodontic tooth movement mediated by odontoclasts/cementoclasts originating from circulating precursor cells in the periodontal ligament. Its pathogenesis involves mechanical forces initiating complex interactions between signalling pathways activated by various biological agents. Resorption of cementum is regulated by mechanisms similar to those controlling osteoclastogenesis and bone resorption. Following root resorption there is repair by cellular cementum, but factors mediating the transition from resorption to repair are not clear. In this paper we review some of the biological events associated with orthodontically induced external root resorption.
Collapse
|
14
|
Standerwick RG, Roberts EW, Hartsfield JK, Babler WJ, Katona TR. Comparison of the Bolton Standards to longitudinal cephalograms superimposed on the occipital condyle (I-point). J Orthod 2014; 36:23-35; discussion 13-4. [DOI: 10.1179/14653120722896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Hsu EW, Alvarez P, Shutte L, Donovan A, Liu S, Shivats AR, Hollinger JO. Bone regeneration. BIOMATERIALS AND REGENERATIVE MEDICINE 2014:449-477. [DOI: 10.1017/cbo9780511997839.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Ho SP, Kurylo MP, Grandfield K, Hurng J, Herber RP, Ryder MI, Altoe V, Aloni S, Feng JQ, Webb S, Marshall GW, Curtis D, Andrews JC, Pianetta P. The plastic nature of the human bone-periodontal ligament-tooth fibrous joint. Bone 2013; 57:455-67. [PMID: 24063947 PMCID: PMC3938967 DOI: 10.1016/j.bone.2013.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/05/2013] [Accepted: 09/11/2013] [Indexed: 12/23/2022]
Abstract
This study investigates bony protrusions within a narrowed periodontal ligament space (PDL-space) of a human bone-PDL-tooth fibrous joint by mapping structural, biochemical, and mechanical heterogeneity. Higher resolution structural characterization was achieved via complementary atomic force microscopy (AFM), nano-transmission X-ray microscopy (nano-TXM), and microtomography (MicroXCT™). Structural heterogeneity was correlated to biochemical and elemental composition, illustrated via histochemistry and microprobe X-ray fluorescence analysis (μ-XRF), and mechanical heterogeneity evaluated by AFM-based nanoindentation. Results demonstrated that the narrowed PDL-space was due to invasion of bundle bone (BB) into PDL-space. Protruded BB had a wider range with higher elastic modulus values (2-8GPa) compared to lamellar bone (0.8-6GPa), and increased quantities of Ca, P and Zn as revealed by μ-XRF. Interestingly, the hygroscopic 10-30μm interface between protruded BB and lamellar bone exhibited higher X-ray attenuation similar to cement lines and lamellae within bone. Localization of the small leucine rich proteoglycan biglycan (BGN) responsible for mineralization was observed at the PDL-bone interface and around the osteocyte lacunae. Based on these results, it can be argued that the LB-BB interface was the original site of PDL attachment, and that the genesis of protruded BB identified as protrusions occurred as a result of shift in strain. We emphasize the importance of bony protrusions within the context of organ function and that additional study is warranted.
Collapse
Affiliation(s)
- Sunita P Ho
- Division of Biomaterials and Bioengineering, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Campos MJDS, de Albuquerque EG, Pinto BCH, Húngaro HM, Gravina MA, Fraga MR, Vitral RWF. The role of orthodontic tooth movement in bone and root mineral density: a study of patients submitted and not submitted to orthodontic treatment. Med Sci Monit 2013. [PMID: 23197239 PMCID: PMC3560800 DOI: 10.12659/msm.883604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background Orthodontic force application to the teeth is responsible for a series of biological responses in the bone and dentin, which lead to some alterations of the mineral density of the tissues. Our objective was determine, through cone-beam computed tomography (CBCT), the mineral density of the apical third of the roots of the upper central incisors and of the periapical bone portion surrounding these teeth, in patients submitted to orthodontic treated and untreated individuals. Material/Methods 30 untreated individuals and 15 treated ones (treatment cessation at least 1 year before the study) underwent CBCT. Mineral density was assessed in the apical third of the root of the upper central incisors and in the alveolar bone in the periapical region of these teeth. In order to reduce CBCT-related mineral density variability, we standardized the cone-beam tomography device, the image-acquisition settings and the field of view positioning and size. Student’s t test was used for the analyses. Results bone mineral density (BMD) and root mineral density (RMD), in Hounsfield Units, were 674.84 and 1282.26 for the untreated group and 630.28 and 1370.29 for the treated group, respectively. The differences between the group means were statistically significant for RMD (p<0.05). Conclusions untreated individuals had a significant lower mean RMD in comparison with those submitted to orthodontic treatment.
Collapse
|
18
|
Crevicular Alkaline Phosphatase Activity and Rate of Tooth Movement of Female Orthodontic Subjects under Different Continuous Force Applications. Int J Dent 2013; 2013:245818. [PMID: 23737787 PMCID: PMC3659437 DOI: 10.1155/2013/245818] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/17/2013] [Accepted: 04/14/2013] [Indexed: 01/31/2023] Open
Abstract
Purpose. This study is aimed to compare the effects of two different orthodontic forces on crevicular alkaline phosphatase activity, rate of tooth movement, and root resorption. Materials and Methods. Twelve female subjects of class II division 1 malocclusion participated. Maxillary canines with bonded fixed appliances acted as the tested teeth, while their antagonists with no appliances acted as the controls. Canine retraction was performed using nickel titanium coil spring that delivered forces of 100 gm or 150 gm to either side. Crevicular fluid was analyzed for ALP activity, and study models were casted to measure tooth movements. Root resorption was assessed using periapical radiographs before and after the force application. Results. ALP activity at the mesial sites peaked at week 1 for 150 gm group with significant differences when compared with the 100 gm group. Cumulative canine movements were significantly greater in the 150 gm force (2.10 ± 0.50 mm) than in the 100 gm force (1.57 ± 0.44 mm). No root resorption was in the maxillary canines after retraction. Conclusions. A force of 150 gm produced faster tooth movements and higher ALP activity compared with the 100 gm group and had no detrimental effects such as root resorption.
Collapse
|
19
|
Leong NL, Hurng JM, Djomehri SI, Gansky SA, Ryder MI, Ho SP. Age-related adaptation of bone-PDL-tooth complex: Rattus-Norvegicus as a model system. PLoS One 2012; 7:e35980. [PMID: 22558292 PMCID: PMC3340399 DOI: 10.1371/journal.pone.0035980] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/26/2012] [Indexed: 01/18/2023] Open
Abstract
Functional loads on an organ induce tissue adaptations by converting mechanical energy into chemical energy at a cell-level. The transducing capacity of cells alters physico-chemical properties of tissues, developing a positive feedback commonly recognized as the form-function relationship. In this study, organ and tissue adaptations were mapped in the bone-tooth complex by identifying and correlating biomolecular expressions to physico-chemical properties in rats from 1.5 to 15 months. However, future research using hard and soft chow over relevant age groups would decouple the function related effects from aging affects. Progressive curvature in the distal root with increased root resorption was observed using micro X-ray computed tomography. Resorption was correlated to the increased activity of multinucleated osteoclasts on the distal side of the molars until 6 months using tartrate resistant acid phosphatase (TRAP). Interestingly, mononucleated TRAP positive cells within PDL vasculature were observed in older rats. Higher levels of glycosaminoglycans were identified at PDL-bone and PDL-cementum entheses using alcian blue stain. Decreasing biochemical gradients from coronal to apical zones, specifically biomolecules that can induce osteogenic (biglycan) and fibrogenic (fibromodulin, decorin) phenotypes, and PDL-specific negative regulator of mineralization (asporin) were observed using immunohistochemistry. Heterogeneous distribution of Ca and P in alveolar bone, and relatively lower contents at the entheses, were observed using energy dispersive X-ray analysis. No correlation between age and microhardness of alveolar bone (0.7 ± 0.1 to 0.9 ± 0.2 GPa) and cementum (0.6 ± 0.1 to 0.8 ± 0.3 GPa) was observed using a microindenter. However, hardness of cementum and alveolar bone at any given age were significantly different (P<0.05). These observations should be taken into account as baseline parameters, during development (1.5 to 4 months), growth (4 to 10 months), followed by a senescent phase (10 to 15 months), from which deviations due to experimentally induced perturbations can be effectively investigated.
Collapse
Affiliation(s)
- Narita L. Leong
- Division of Biomaterials & Bioengineering, University of California San Francisco, San Francisco, California, United States of America
| | - Jonathan M. Hurng
- Division of Biomaterials & Bioengineering, University of California San Francisco, San Francisco, California, United States of America
| | - Sabra I. Djomehri
- Division of Biomaterials & Bioengineering, University of California San Francisco, San Francisco, California, United States of America
| | - Stuart A. Gansky
- Division of Oral Epidemiology & Dental Public Health, Department of Preventive and Restorative Dental Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Mark I. Ryder
- Division of Periodontology, Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Sunita P. Ho
- Division of Biomaterials & Bioengineering, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
20
|
Bone density changes around teeth during orthodontic treatment. Clin Oral Investig 2011; 15:511-9. [PMID: 20393863 DOI: 10.1007/s00784-010-0410-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 03/22/2010] [Indexed: 01/16/2023]
Abstract
The objective of this study was to evaluate bone density changes around the teeth during orthodontic treatment by using cone beam computed tomography (CBCT). CBCT was used to measure the bone densities around six teeth (both maxilla central incisors, lateral incisors, and canines) before and after 7 months of orthodontic treatment in eight patients. In addition, each root was divided into three portions (cervical, intermediate, and apical) to determine whether the bone density change varied with tooth level. The mean reduction in bone density around the measured teeth was 24% after orthodontic treatment. The bone density reduction around teeth was largest for the upper-right and upper-left central incisor (29% and 26%, respectively) and ranged from 20% to 23% for the other four teeth. The mean bone density reduction did not differ significantly between the cervical, portion, and apical portions of the teeth (26%, 22%, and 24%, respectively). CBCT is useful for evaluating bone density changes around teeth during orthodontic treatment. The bone density around the teeth reduced significantly after the application of orthodontic forces for 7 months.
Collapse
|
21
|
Wang C, Zhang C, Han J, Wu H, Fan Y. Simulated evolution of the vertebral body based on basic multicellular unit activities. J Bone Miner Metab 2011; 29:466-76. [PMID: 21188609 DOI: 10.1007/s00774-010-0244-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/28/2010] [Indexed: 11/26/2022]
Abstract
A numerical model based on the theory of bone remodeling is proposed to predict the evolution of trabecular bone architecture within the vertebral body and to investigate the process of degeneration in vertebral bone. In this study, particular attention is paid on the description of microstructure changes during the aging process. To take into account the effect of basic multicellular units (BMUs), a set of computational algorithms has been developed. It is assumed that BMU activation probability depends on the state of damaged bone tissue (damage accumulation, ω), which is evaluated according to previous research concerning bone fatigue damage. Combining these algorithms with the finite-element method (FEM), the microstructure of vertebral bone has been predicted for up to 8 simulated years. Moreover, biomechanical material properties have been monitored to investigate the changes of vertebral bone with age. This study shows that the simulation based on BMU activities has the potential to define and predict the morphological evolution of the vertebral body. It can be concluded that the novel algorithms incorporating the coupled effects of both adaptive remodeling and microdamage remodeling could be utilized to gain greater insight into the mechanism of bone loss in the elderly population.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | | | | | | | | |
Collapse
|
22
|
Chang HW, Huang HL, Yu JH, Hsu JT, Li YF, Wu YF. Effects of orthodontic tooth movement on alveolar bone density. Clin Oral Investig 2011; 16:679-88. [PMID: 21519883 DOI: 10.1007/s00784-011-0552-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 04/11/2011] [Indexed: 01/28/2023]
Abstract
The object of this study was to evaluate the relationship between changes in the alveolar bone density around the teeth and the direction of tooth movement by using cone-beam computed tomography (CBCT). CBCT was used to measure the bone densities around six maxilla anterior teeth before and after 7 months of orthodontic treatment in eight patients. Each root was divided into three levels (cervical, intermediate, and apical) to determine whether the bone density change varied with the tooth level. Moreover, each level was divided into four regions (palatal, distal, mesial, and buccal sides). Three-dimensional computer models of the maxilla before and after orthodontic treatment were created to detect the direction of tooth movement. The percentage for all 144 samples [8 (patients) × 6 (teeth) × 3 (levels)] in which the side (palatal, distal, mesial, or buccal sides) of maximum bone density reduction (before and after orthodontic treatment) coincided with the direction of tooth movement was calculated; this was referred to as the "coincidence percentage". The bone density around the teeth reduced by 24.3 ± 9.5%. The average coincidence percentage for the eight patients was 59.0%. The coincidence percentages for the eight patients were 62.5%, 62.5%, and 52.1% at the cervical, intermediate, and apical levels, respectively. The obtained results demonstrate that the direction of tooth movement is associated with the side of maximum bone density reduction, and that CBCT is a useful approach for evaluating bone density changes around teeth induced by orthodontic treatment.
Collapse
Affiliation(s)
- Hsing-Wen Chang
- School of Dentistry, College of Medicine, China Medical University and Hospital, 91 Hsueh-Shih Road, Taichung 404, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
|