1
|
Xiao H, Han Z, Xu M, Gao X, Qiu S, Ren N, Yi Y, Zhou C. The Role of Post-Translational Modifications in Necroptosis. Biomolecules 2025; 15:549. [PMID: 40305291 PMCID: PMC12024652 DOI: 10.3390/biom15040549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 05/02/2025] Open
Abstract
Necroptosis, a distinct form of regulated necrosis implicated in various human pathologies, is orchestrated through sophisticated signaling pathways. During this process, cells undergoing necroptosis exhibit characteristic necrotic morphology and provoke substantial inflammatory responses. Post-translational modifications (PTMs)-chemical alterations occurring after protein synthesis that critically regulate protein functionality-constitute essential regulatory components within these complex signaling cascades. This intricate crosstalk between necroptotic pathways and PTM networks presents promising therapeutic opportunities. Our comprehensive review systematically analyzes the molecular mechanisms underlying necroptosis, with particular emphasis on the regulatory roles of PTMs in signal transduction. Through systematic evaluation of key modifications including ubiquitination, phosphorylation, glycosylation, methylation, acetylation, disulfide bond formation, caspase cleavage, nitrosylation, and SUMOylation, we examine potential therapeutic applications targeting necroptosis in disease pathogenesis. Furthermore, we synthesize current pharmacological strategies for manipulating PTM-regulated necroptosis, offering novel perspectives on clinical target development and therapeutic intervention.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Zeping Han
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Min Xu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Xukang Gao
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Shuangjian Qiu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| | - Chenhao Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.X.); (Z.H.)
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
2
|
Zhang H, Zhao R, Wang X, Qi Y, Sandai D, Wang W, Song Z, Liang Q. Interruption of mitochondrial symbiosis is associated with the development of osteoporosis. Front Endocrinol (Lausanne) 2025; 16:1488489. [PMID: 39963284 PMCID: PMC11830588 DOI: 10.3389/fendo.2025.1488489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025] Open
Abstract
Mitochondria maintain bacterial traits because of their endosymbiotic origins, yet the host cell recognizes them as non-threatening since the organelles are compartmentalized. Nevertheless, the controlled release of mitochondrial components into the cytoplasm can initiate cell death, activate innate immunity, and provoke inflammation. This selective interruption of endosymbiosis as early as 2 billion years ago allowed mitochondria to become intracellular signaling hubs. Recent studies have found that the interruption of mitochondrial symbiosis may be closely related to the occurrence of various diseases, especially osteoporosis (OP). OP is a systemic bone disease characterized by reduced bone mass, impaired bone microstructure, elevated bone fragility, and susceptibility to fracture. The interruption of intra-mitochondrial symbiosis affects the energy metabolism of bone cells, leads to the imbalance of bone formation and bone absorption, and promotes the occurrence of osteoporosis. In this paper, we reviewed the mechanism of mitochondrial intersymbiosis interruption in OP, discussed the relationship between mitochondrial intersymbiosis interruption and bone marrow mesenchymal stem cells, osteoblasts and osteoclasts, as well as the inheritance and adaptation in the evolutionary process, and prospected the future research direction to provide new ideas for clinical treatment.
Collapse
Affiliation(s)
- Haoling Zhang
- Department of Spinal and Trauma Surgery, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan, China
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuemei Wang
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yaqian Qi
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Doblin Sandai
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Wei Wang
- College of Acupuncture and Massage, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhijing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Dunhuang Medicine and Transformation, Ministry of Education, Lanzhou, China
| | - Qiudong Liang
- Department of Spinal and Trauma Surgery, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, Henan, China
| |
Collapse
|
3
|
Liu G, Lu D, Wu J, Wang S, Duan A, Ren Y, Zhang Y, Meng L, Shou R, Li H, Wang Z, Wang Z, Sun X. Enhancing S-nitrosoglutathione reductase decreases S-nitrosylation of ERO1α and reduces neuronal death in secondary traumatic brain injury. Nitric Oxide 2025; 154:29-41. [PMID: 39566653 DOI: 10.1016/j.niox.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Traumatic brain injury (TBI) has the highest incidence of all common neurological disorders, along with high mortality and disability rates. Pathological conversion of excess nitric oxide (NO) to S-nitrosoglutathion (GSNO) after TBI leads to high S-nitrosylation of intracellular proteins, causing nitrative stress. GSNO reductase (GSNOR) plays an important role by regulating GSNO and SNO-proteins (PSNOs) and as a redox regulator of the nervous system. However, the effect of GSNOR on protein S-nitrosylation in secondary brain injury after TBI is not clear. In vivo TBI model was established in male C57BL/6 mice via controlled cortical impact (CCI). Neuron-targeted GSNOR-overexpression adeno-associated virus (AAV) was constructed and administered to mice by stereotactic cortical injection. The results showed that NO, GSNO, neuronal protein S-nitrosylation and neuronal death increased after TBI, while the level and activity of GSNOR decreased. Overexpression of GSNOR by AAV decreased GSNO and NO and improved short-term neurobehavioral outcomes in mice. GSNOR overexpression can reduce endoplasmic reticulum stress and neuronal death by reducing the S-nitrosylation of ERO1α via H2O2 generation and plays a neuroprotective role. In conclusion, our results suggest that GSNOR regulating S-nitrosylation of ERO1α may participate in neuronal death, and overexpression of GSNOR in neurons after experimental brain injury alleviates secondary brain injury. Our research provides a potential therapeutic approach for the treatment of TBI.
Collapse
Affiliation(s)
- Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China; Department of Neurosurgery, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215008, China
| | - Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Jie Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Shixin Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Aojie Duan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Yu Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Lei Meng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Renjie Shou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
4
|
Seyrek K, Espe J, Reiss E, Lavrik IN. The Crosstalk of Apoptotic and Non-Apoptotic Signaling in CD95 System. Cells 2024; 13:1814. [PMID: 39513921 PMCID: PMC11545656 DOI: 10.3390/cells13211814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The mechanisms of CD95 (Fas/APO-1)-mediated extrinsic apoptotic pathway in cancer cells have been extensively studied. The majority of human cells express CD95, but not all these cells can induce extrinsic apoptosis. Accumulating evidence has shown that CD95 is a multifunctional protein, and its stimulation can also elicit non-apoptotic or even survival signals. It has become clear that under certain cellular contexts, due to the various checkpoints, CD95 activation can trigger both apoptotic and non-apoptotic signals. The crosstalk of death and survival signals may occur at different levels of signal transduction. The strength of the CD95 stimulation, initial levels of anti-apoptotic proteins, and posttranslational modifications of the core DISC components have been proposed to be the most important factors in the life/death decisions at CD95. Successful therapeutic targeting of CD95 signaling pathways will require a better understanding of the crosstalk between CD95-induced apoptotic and cell survival pathways. In this review, in order to gain a systematic understanding of the crosstalk between CD95-mediated apoptosis and non-apoptotic signaling, we will discuss these issues in a step-by-step way.
Collapse
Affiliation(s)
| | | | | | - Inna N. Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (K.S.); (J.E.); (E.R.)
| |
Collapse
|
5
|
Zhang W, Zhu C, Liao Y, Zhou M, Xu W, Zou Z. Caspase-8 in inflammatory diseases: a potential therapeutic target. Cell Mol Biol Lett 2024; 29:130. [PMID: 39379817 PMCID: PMC11463096 DOI: 10.1186/s11658-024-00646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Caspase-8, a renowned cysteine-aspartic protease within its enzyme family, initially garnered attention for its regulatory role in extrinsic apoptosis. With advancing research, a growing body of evidence has substantiated its involvement in other cell death processes, such as pyroptosis and necroptosis, as well as its modulatory effects on inflammasomes and proinflammatory cytokines. PANoptosis, an emerging concept of cell death, encompasses pyroptosis, apoptosis, and necroptosis, providing insight into the often overlapping cellular mortality observed during disease progression. The activation or deficiency of caspase-8 enzymatic activity is closely linked to PANoptosis, positioning caspase-8 as a key regulator of cell survival or death across various physiological and pathological processes. Aberrant expression of caspase-8 is closely associated with the development and progression of a range of inflammatory diseases, including immune system disorders, neurodegenerative diseases (NDDs), sepsis, and cancer. This paper delves into the regulatory role and impact of caspase-8 in these conditions, aiming to elucidate potential therapeutic strategies for the future intervention.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Liao
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Miao Zhou
- Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, 210009, Jiangsu, China.
| | - Wenyun Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Chakraborty S, Mishra A, Choudhuri A, Bhaumik T, Sengupta R. Leveraging the redundancy of S-denitrosylases in response to S-nitrosylation of caspases: Experimental strategies and beyond. Nitric Oxide 2024; 149:18-31. [PMID: 38823434 DOI: 10.1016/j.niox.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Redox-based protein posttranslational modifications, such as S-nitrosylation of critical, active site cysteine thiols have garnered significant clinical attention and research interest, reasoning for one of the crucial biological implications of reactive messenger molecule, nitric oxide in the cellular repertoire. The stringency of the S-(de)nitrosylation-based redox switch governs the activity and contribution of several susceptible enzymes in signal transduction processes and diverse pathophysiological settings, thus establishing it as a transient yet reasonable, and regulated mechanism of NO adduction and release. Notably, endogenous proteases like cytosolic and mitochondrial caspases with a molecular weight ranging from 33 to 55 kDa are susceptible to performing this biochemistry in the presence of major oxidoreductases, which further unveils the enormous redox-mediated regulational control of caspases in the etiology of diseases. In addition to advancing the progress of the current state of understanding of 'redox biochemistry' in the field of medicine and enriching the existing dynamic S-nitrosoproteome, this review stands as a testament to an unprecedented shift in the underpinnings for redundancy and redox relay between the major redoxin/antioxidant systems, fine-tuning of which can command the apoptotic control of caspases at the face of nitro-oxidative stress. These intricate functional overlaps and cellular backups, supported rationally by kinetically favorable reaction mechanisms suggest the physiological relevance of identifying and involving such cognate substrates for cellular S-denitrosylases that can shed light on the bigger picture of extensively proposing targeted therapies and redox-based drug designing to potentially alleviate the side effects of NOx/ROS in disease pathogenesis.
Collapse
Affiliation(s)
- Surupa Chakraborty
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Akansha Mishra
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Ankita Choudhuri
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Tamal Bhaumik
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Rajib Sengupta
- Amity Institute of Biotechnology Kolkata, Amity University Kolkata, Action Area II, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
7
|
Huang D, Chen X, Yun F, Fang H, Wang C, Liao W. Nitric oxide alleviates programmed cell death induced by cadmium in Solanum lycopersicum seedlings through protein S-nitrosylation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172812. [PMID: 38703854 DOI: 10.1016/j.scitotenv.2024.172812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Cadmium (Cd), as a non-essential and toxic heavy metal in plants, has deleterious effects on plant physiological and biochemical processes. Nitric oxide (NO) is one of the most important signaling molecules for plants to response diverse stresses. Here, we found that Cd-induced programmed cell death (PCD) was accompanied by NO bursts, which exacerbated cell death when NO was removed and vice versa. Proteomic analysis of S-nitrosylated proteins showed that the differential proteins in Cd-induced PCD and in NO-alleviated PCD mainly exist together in carbohydrate metabolism and amino acid metabolism, while some of the differential proteins exist alone in metabolism of cofactors and vitamins and lipid metabolism. Meanwhile, S-nitrosylation of proteins in porphyrin and chlorophyll metabolism and starch and sucrose metabolism could explain the leaf chlorosis induced by PCD. Moreover, protein transport protein SEC23, ubiquitinyl hydrolase 1 and pathogenesis-related protein 1 were identified to be S-nitrosylated in vivo, and their expressions were increased in Cd-induced PCD while decreased in NO treatment. Similar results were obtained in tomato seedlings with higher S-nitrosylation. Taken together, our results indicate that NO might be involved in the regulation of Cd-induced PCD through protein S-nitrosylation, especially proteins involved in PCD response.
Collapse
Affiliation(s)
- Dengjing Huang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Xinfang Chen
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Fahong Yun
- Pratacultural College, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Hua Fang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Chunlei Wang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China.
| |
Collapse
|
8
|
Cui Q, Jiang T, Xie X, Wang H, Qian L, Cheng Y, Li Q, Lu T, Yao Q, Liu J, Lai B, Chen C, Xiao L, Wang N. S-nitrosylation attenuates pregnane X receptor hyperactivity and acetaminophen-induced liver injury. JCI Insight 2024; 9:e172632. [PMID: 38032737 PMCID: PMC10906221 DOI: 10.1172/jci.insight.172632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
Drug-induced liver injury (DILI), especially acetaminophen overdose, is the leading cause of acute liver failure. Pregnane X receptor (PXR) is a nuclear receptor and the master regulator of drug metabolism. Aberrant activation of PXR plays a pathogenic role in the acetaminophen hepatotoxicity. Here, we aimed to examine the S-nitrosylation of PXR (SNO-PXR) in response to acetaminophen. We found that PXR was S-nitrosylated in hepatocytes and the mouse livers after exposure to acetaminophen or S-nitrosoglutathione (GSNO). Mass spectrometry and site-directed mutagenesis identified the cysteine 307 as the primary residue for S-nitrosylation (SNO) modification. In hepatocytes, SNO suppressed both agonist-induced (rifampicin and SR12813) and constitutively active PXR (VP-PXR, a human PXR fused to the minimal transactivator domain of the herpes virus transcription factor VP16) activations. Furthermore, in acetaminophen-overdosed mouse livers, PXR protein was decreased at the centrilobular regions overlapping with increased SNO. In PXR-/- mice, replenishing the livers with the SNO-deficient PXR significantly aggravated hepatic necrosis, increased HMGB1 release, and exacerbated liver injury and inflammation. Particularly, we demonstrated that S-nitrosoglutathione reductase (GSNOR) inhibitor N6022 promoted hepatoprotection by increasing the levels of SNO-PXR. In conclusion, PXR is posttranslationally modified by SNO in hepatocytes in response to acetaminophen. This modification mitigated the acetaminophen-induced PXR hyperactivity. It may serve as a target for therapeutical intervention.
Collapse
Affiliation(s)
- Qi Cui
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Tingting Jiang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Xinya Xie
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Haodong Wang
- East China Normal University Health Science Center, Shanghai, China
| | - Lei Qian
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Yanyan Cheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiang Li
- School of Public Health, Xi’an Jiaotong University, Xi’an, China
| | - Tingxu Lu
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Qinyu Yao
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jia Liu
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Baochang Lai
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lei Xiao
- School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Nanping Wang
- East China Normal University Health Science Center, Shanghai, China
| |
Collapse
|
9
|
Li Z, Huang Y, Lv B, Du J, Yang J, Fu L, Jin H. Gasotransmitter-Mediated Cysteinome Oxidative Posttranslational Modifications: Formation, Biological Effects, and Detection. Antioxid Redox Signal 2024; 40:145-167. [PMID: 37548538 DOI: 10.1089/ars.2023.0407] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Significance: Gasotransmitters, including nitric oxide (NO), hydrogen sulfide (H2S) and sulfur dioxide (SO2), participate in various cellular processes via corresponding oxidative posttranslational modifications (oxiPTMs) of specific cysteines. Recent Advances: Accumulating evidence has clarified the mechanisms underlying the formation of oxiPTMs derived from gasotransmitters and their biological functions in multiple signal pathways. Because of the specific existence and functional importance, determining the sites of oxiPTMs in cysteine is crucial in biology. Recent advances in the development of selective probes, together with upgraded mass spectrometry (MS)-based proteomics, have enabled the quantitative analysis of cysteinome. To date, several cysteine residues have been identified as gasotransmitter targets. Critical Issues: To clearly understand the underlying mechanisms for gasotransmitter-mediated biological processes, it is important to identify modified targets. In this review, we summarize the chemical formation and biological effects of gasotransmitter-dependent oxiPTMs and highlight the state-of-the-art detection methods. Future Directions: Future studies in this field should aim to develop the next generation of probes for in situ labeling to improve spatial resolution and determine the dynamic change of oxiPTMs, which can lay the foundation for research on the molecular mechanisms and clinical translation of gasotransmitters. Antioxid. Redox Signal. 40, 145-167.
Collapse
Affiliation(s)
- Zongmin Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
10
|
Panneerselvan P, Vasanthakumar K, Muthuswamy K, Krishnan V, Subramaniam S. Insights on the functional dualism of nitric oxide in the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:189001. [PMID: 37858621 DOI: 10.1016/j.bbcan.2023.189001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Nitric oxide (NO), a gaseous radical, governs a variety of physiological and pathological processes, including cancer, pro-inflammatory signalling, and vasodilation. The family of nitric oxide synthases (NOS), which comprises the constitutive forms, nNOS and eNOS, and the inducible form, iNOS, produces NO enzymatically. Additionally, NO can be generated non-enzymatically from the nitrate-nitrite-NO pathway. The anti- and pro-oxidant properties of NO and its functional dualism in cancer is due to its highly reactive nature. Numerous malignancies have NOS expression, which interferes with the tumour microenvironment to modulate the tumour's growth in both favourable and unfavourable ways. NO regulates a number of mechanisms in the tumour microenvironment, including metabolism, cell cycle, DNA repair, angiogenesis, and apoptosis/necrosis, depending on its concentration and spatiotemporal profile. This review focuses on the bi-modal impact of nitric oxide on the alteration of a few cancer hallmarks.
Collapse
Affiliation(s)
- Prabha Panneerselvan
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Keerthana Vasanthakumar
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Karthi Muthuswamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Vasanth Krishnan
- Molecular Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Selvakumar Subramaniam
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
11
|
Claudio Pieretti J, Moreira Freire B, Marchini Armentano G, de Melo Santana B, Lemos Batista B, Sorelli Carneiro-Ramos M, Barozzi Seabra A. Chronic exposure to nitric oxide sensitizes prostate cancer cells and improved ZnO/CisPt NPs cytotoxicity and selectivity. Int J Pharm 2023; 640:122998. [PMID: 37127139 DOI: 10.1016/j.ijpharm.2023.122998] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
The co-therapy of common chemotherapeutics with nitric oxide (NO), an endogenous signaling molecule, is proposed as an alternative to sensitize cancer cells and enhance treatments' efficacy. Herein, we have synthesized cisplatin-releasing zinc oxide nanoparticles (ZnO/CisPt NPs), which promoted a sustained and pH targeted release, able to release a higher amount of CisPt at tumor microenvironment conditions. This material was combined with a chronic NO treatment, at low concentration, in prostate cancer cells (PC3). NO treatment enhanced the S-NO concentration in PC3 cells, suggesting the nitrosylation or transnitrosylation processes enhancement, which are directly related to S-NO binding to proteins, function alterations and cancer cells death. Indeed, these mechanisms directly impacted the cytotoxic effect of ZnO/CisPt NPs, inducing a 30 % higher viability reduction of PC3 cells after NO treatment, along with a higher selectivity index when compared to normal human fibroblasts (FN1).
Collapse
Affiliation(s)
- Joana Claudio Pieretti
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Bruna Moreira Freire
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Giovana Marchini Armentano
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Bianca de Melo Santana
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Bruno Lemos Batista
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | | | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, SP, Brazil.
| |
Collapse
|
12
|
Wang P, Qian H, Xiao M, Lv J. Role of signal transduction pathways in IL-1β-induced apoptosis: Pathological and therapeutic aspects. Immun Inflamm Dis 2023; 11:e762. [PMID: 36705417 PMCID: PMC9837938 DOI: 10.1002/iid3.762] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Interleukin-1β (IL-1β) is a pro-inflammatory cytokine mainly produced by monocytes and macrophages with a wide range of biological effects. Evidence has shown that IL-1β plays a vital role in the process of apoptosis; however, the specific mechanisms, by which IL-1β induces apoptosis, vary due to different cellular and experimental conditions. Therefore, this present reviewstudy aimed to systematically review the association between the molecular mechanisms of IL-1β-induced apoptosis in pathological processes and the role of signaling pathways. This article also sought to briefly investigate the potential of signaling pathway-targeted therapy in the prevention and treatment of disease. METHODS This is a literature review article. The present discourse aim is first to scrutinize and assess the available literature on IL-1β and apoptosis. The relevant studies using the keywords of "IL-1β-induced apoptosis" and "signaling pathways" were searched in the databases of PubMed, Scopus, Google Scholar, and Web of Science. Gathered relevant material, and extracted information was then assessed. RESULTS IL-1β can induce apoptosis in various types of cells under different external stimuli via the mitochondrial pathway, death receptor pathway and endoplasmic reticulum pathway, and that the different pathways are often interconnected. The NF-kB signaling pathway, p38MAPK, and JNK signaling pathways mainly play a proapoptotic part, and the ERK1/2 pathway has a bidirectional role in regulating apoptosis, while activation of the PI3K-Akt signaling pathway can inhibit apoptosis. CONCLUSION This review indicates that IL-1β-induced apoptosis plays an important role in pathogenesis and development of pathology of many inflammatory diseases. Elucidating the role of the signaling pathways will aid the development of targeted therapeutic treatments.
Collapse
Affiliation(s)
- Peixuan Wang
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Hong Qian
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Manxue Xiao
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Jingwen Lv
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
13
|
NO news: S-(de)nitrosylation of cathepsins and their relationship with cancer. Anal Biochem 2022; 655:114872. [PMID: 36027970 DOI: 10.1016/j.ab.2022.114872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Tumor formation and progression have been much of a study over the last two centuries. Recent studies have seen different developments for the early diagnosis and treatment of the disease; some of which even promise survival of the patient. Cysteine proteases, mainly cathepsins have been unequivocally identified as putative worthy players of redox imbalance that contribute to the premonition and further progression of cancer by interfering in the normal extracellular and intracellular proteolysis and initiating a proteolytic cascade. The present review article focuses on the study of cancer so far, while establishing facts on how future studies focused on the cellular interrelation between nitric oxide (NO) and cancer, can direct their focus on cathepsins. For a tumor cell to thrive and synergize a cancerous environment, different mutations in the proteolytic and signaling pathways and the proto-oncogenes, oncogenes, and the tumor suppressor genes are made possible through cellular biochemistry and some cancer-stimulating environmental factors. The accumulated findings show that S-nitrosylation of cathepsins under the influence of NO-donors can prevent the invasion of cancer and cause cancer cell death by blocking the activity of cathepsins as well as the major denitrosylase systems using a multi-way approach. Faced with a conundrum of how to fill the gap between the dodging of established cancer hallmarks with cathepsin activity and gaining appropriate research/clinical accreditation using our hypothesis, the scope of this review also explores the interplay and crosstalk between S-nitrosylation and S-(de)nitrosylation of this protease and highlights the utility of charging thioredoxin (Trx) reductase inhibitors, low-molecular-weight dithiols, and Trx mimetics using efficient drug delivery system to prevent the denitrosylation or regaining of cathepsin activity in vivo. In foresight, this raises the prospect that drugs or novel compounds that target cathepsins taking all these factors into consideration could be deployed as alternative or even better treatments for cancer, though further research is needed to ascertain the safety, efficiency and effectiveness of this approach.
Collapse
|
14
|
Duncan-Lewis C, Hartenian E, King V, Glaunsinger BA. Cytoplasmic mRNA decay represses RNA polymerase II transcription during early apoptosis. eLife 2021; 10:e58342. [PMID: 34085923 PMCID: PMC8192121 DOI: 10.7554/elife.58342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/03/2021] [Indexed: 12/22/2022] Open
Abstract
RNA abundance is generally sensitive to perturbations in decay and synthesis rates, but crosstalk between RNA polymerase II transcription and cytoplasmic mRNA degradation often leads to compensatory changes in gene expression. Here, we reveal that widespread mRNA decay during early apoptosis represses RNAPII transcription, indicative of positive (rather than compensatory) feedback. This repression requires active cytoplasmic mRNA degradation, which leads to impaired recruitment of components of the transcription preinitiation complex to promoter DNA. Importin α/β-mediated nuclear import is critical for this feedback signaling, suggesting that proteins translocating between the cytoplasm and nucleus connect mRNA decay to transcription. We also show that an analogous pathway activated by viral nucleases similarly depends on nuclear protein import. Collectively, these data demonstrate that accelerated mRNA decay leads to the repression of mRNA transcription, thereby amplifying the shutdown of gene expression. This highlights a conserved gene regulatory mechanism by which cells respond to threats.
Collapse
Affiliation(s)
- Christopher Duncan-Lewis
- Department of Molecular and Cell Biology; University of California, BerkeleyBerkeleyUnited States
| | - Ella Hartenian
- Department of Molecular and Cell Biology; University of California, BerkeleyBerkeleyUnited States
| | - Valeria King
- Department of Molecular and Cell Biology; University of California, BerkeleyBerkeleyUnited States
| | - Britt A Glaunsinger
- Department of Molecular and Cell Biology; University of California, BerkeleyBerkeleyUnited States
- Department of Plant and Microbial Biology; University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, BerkeleyBerkeleyUnited States
| |
Collapse
|
15
|
Exploiting S-nitrosylation for cancer therapy: facts and perspectives. Biochem J 2021; 477:3649-3672. [PMID: 33017470 DOI: 10.1042/bcj20200064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
S-nitrosylation, the post-translational modification of cysteines by nitric oxide, has been implicated in several cellular processes and tissue homeostasis. As a result, alterations in the mechanisms controlling the levels of S-nitrosylated proteins have been found in pathological states. In the last few years, a role in cancer has been proposed, supported by the evidence that various oncoproteins undergo gain- or loss-of-function modifications upon S-nitrosylation. Here, we aim at providing insight into the current knowledge about the role of S-nitrosylation in different aspects of cancer biology and report the main anticancer strategies based on: (i) reducing S-nitrosylation-mediated oncogenic effects, (ii) boosting S-nitrosylation to stimulate cell death, (iii) exploiting S-nitrosylation through synthetic lethality.
Collapse
|
16
|
Liu Y, Qi X, Zhao Z, Song D, Wang L, Zhai Q, Zhang X, Zhao P, Xiang X. TIPE1-mediated autophagy suppression promotes nasopharyngeal carcinoma cell proliferation via the AMPK/mTOR signalling pathway. J Cell Mol Med 2020; 24:9135-9144. [PMID: 32588529 PMCID: PMC7417699 DOI: 10.1111/jcmm.15550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/09/2020] [Accepted: 06/07/2020] [Indexed: 12/24/2022] Open
Abstract
Recent studies have shown that tumour necrosis factor-α-induced protein 8 like-1(TIPE1) plays distinct roles in different cancers. TIPE1 inhibits tumour proliferation and metastasis in a variety of tumours but acts as an oncogene in cervical cancer. The role of TIPE1 in nasopharyngeal carcinoma (NPC) remains unknown. Interestingly, TIPE1 expression was remarkably increased in NPC tissue samples compared to adjacent normal nasopharyngeal epithelial tissue samples in our study. TIPE1 expression was positively correlated with that of the proliferation marker Ki67 and negatively correlated with patient lifespan. In vitro, TIPE1 inhibited autophagy and induced cell proliferation in TIPE1-overexpressing CNE-1 and CNE-2Z cells. In addition, knocking down TIPE1 expression promoted autophagy and decreased proliferation, whereas overexpressing TIPE1 increased the levels of pmTOR, pS6 and P62 and decreased the level of pAMPK and the LC3B. Furthermore, the decrease in autophagy was remarkably rescued in TIPE1-overexpressing CNE-1 and CNE-2Z cells treated with the AMPK activator AICAR. In addition, TIPE1 promoted tumour growth in BALB/c nude mice. Taken together, results indicate that TIPE1 promotes NPC progression by inhibiting autophagy and inducing cell proliferation via the AMPK/mTOR signalling pathway. Thus, TIPE1 could potentially be used as a valuable diagnostic and prognostic biomarker for NPC.
Collapse
Affiliation(s)
- Yongliang Liu
- Department of OtolaryngolgogyZibo Central HospitalShandong UniversityZiboChina
| | - Xiangqin Qi
- Department of UltrasoundZibo Central HospitalShandong UniversityZiboChina
| | - Zhenan Zhao
- Department of OtolaryngolgogyZibo Central HospitalShandong UniversityZiboChina
| | - Daoliang Song
- Department of OtolaryngolgogyZibo Central HospitalShandong UniversityZiboChina
| | - Lianqing Wang
- Central of Translation MedicineZibo Central HospitalShandong UniversityZiboChina
| | - Qiaoli Zhai
- Central of Translation MedicineZibo Central HospitalShandong UniversityZiboChina
| | - Xiaoning Zhang
- Central of Translation MedicineZibo Central HospitalShandong UniversityZiboChina
| | - Peiqing Zhao
- Central of Translation MedicineZibo Central HospitalShandong UniversityZiboChina
| | - Xinxin Xiang
- Central of Translation MedicineZibo Central HospitalShandong UniversityZiboChina
| |
Collapse
|
17
|
The Double-Faced Role of Nitric Oxide and Reactive Oxygen Species in Solid Tumors. Antioxidants (Basel) 2020; 9:antiox9050374. [PMID: 32365852 PMCID: PMC7278755 DOI: 10.3390/antiox9050374] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023] Open
Abstract
Disturbed redox homeostasis represents a hallmark of cancer phenotypes, affecting cellular metabolism and redox signaling. Since reactive oxygen and nitrogen species (ROS/RNS) are involved in regulation of proliferation and apoptosis, they may play a double-faced role in cancer, entailing protumorigenic and tumor-suppressing effects in early and later stages, respectively. In addition, ROS and RNS impact the activity and communication of all tumor constituents, mediating their reprogramming from anti- to protumorigenic phenotypes, and vice versa. An important role in this dichotomic action is played by the variable amounts of O2 in the tumor microenvironment, which dictates the ultimate outcome of the influence of ROS/RNS on carcinogenesis. Moreover, ROS/RNS levels remarkably influence the cancer response to therapy. The relevance of ROS/RNS signaling in solid tumors is witnessed by the emergence of novel targeted treatments of solid tumors with compounds that target ROS/RNS action and production, such as tyrosine kinase inhibitors and monoclonal antibodies, which might contribute to the complexity of redox regulation in cancer. Prospectively, the dual role of ROS/RNS in the different stages of tumorigenesis through different impact on oxidation and nitrosylation may also allow development of tailored diagnostic and therapeutic approaches.
Collapse
|
18
|
Petushkova AI, Zamyatnin AA. Redox-Mediated Post-Translational Modifications of Proteolytic Enzymes and Their Role in Protease Functioning. Biomolecules 2020; 10:biom10040650. [PMID: 32340246 PMCID: PMC7226053 DOI: 10.3390/biom10040650] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
Proteolytic enzymes play a crucial role in metabolic processes, providing the cell with amino acids through the hydrolysis of multiple endogenous and exogenous proteins. In addition to this function, proteases are involved in numerous protein cascades to maintain cellular and extracellular homeostasis. The redox regulation of proteolysis provides a flexible dose-dependent mechanism for proteolytic activity control. The excessive reactive oxygen species (ROS) and reactive nitrogen species (RNS) in living organisms indicate pathological conditions, so redox-sensitive proteases can swiftly induce pro-survival responses or regulated cell death (RCD). At the same time, severe protein oxidation can lead to the dysregulation of proteolysis, which induces either protein aggregation or superfluous protein hydrolysis. Therefore, oxidative stress contributes to the onset of age-related dysfunction. In the present review, we consider the post-translational modifications (PTMs) of proteolytic enzymes and their impact on homeostasis.
Collapse
Affiliation(s)
- Anastasiia I. Petushkova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence:
| |
Collapse
|
19
|
Seyrek K, Ivanisenko NV, Richter M, Hillert LK, König C, Lavrik IN. Controlling Cell Death through Post-translational Modifications of DED Proteins. Trends Cell Biol 2020; 30:354-369. [PMID: 32302548 DOI: 10.1016/j.tcb.2020.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/12/2020] [Accepted: 02/19/2020] [Indexed: 01/15/2023]
Abstract
Apoptosis is a form of programmed cell death, deregulation of which occurs in multiple disorders, including neurodegenerative and autoimmune diseases as well as cancer. The formation of a death-inducing signaling complex (DISC) and death effector domain (DED) filaments are critical for initiation of the extrinsic apoptotic pathway. Post-translational modifications (PTMs) of DED-containing DISC components such as FADD, procaspase-8, and c-FLIP comprise an additional level of apoptosis regulation, which is necessary to overcome the threshold for apoptosis induction. In this review we discuss the influence of PTMs of FADD, procaspase-8, and c-FLIP on DED filament assembly and cell death induction, with a focus on the 3D organization of the DED filament.
Collapse
Affiliation(s)
- Kamil Seyrek
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Max Richter
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Laura K Hillert
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Corinna König
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany; The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
| |
Collapse
|
20
|
Rat multicellular 3D liver microtissues to explore TGF-β1 induced effects. J Pharmacol Toxicol Methods 2019; 101:106650. [PMID: 31730938 DOI: 10.1016/j.vascn.2019.106650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Chronic liver damage can lead to fibrosis, encompassing hepatocellular injury, activation of Kupffer cells (KC), and activation of hepatic stellate cells (HSC). Inflammation and TGF-β1 are known mediators in the liver fibrosis adverse outcome pathway (AOP). The aim of this project was to develop a suitable rodent cell culture model for the investigation of key events involved in the development of liver fibrosis, specifically the responses to pathophysiological stimuli such as TGF-β1 and LPS-triggered inflammation. We optimized a single step protocol to purify rat primary hepatocytes (Hep), HSC and KC cells to generate 3D co-cultures based on the hanging drop method. This primary multicellular model responded to the profibrotic cytokine TGF-β1 (1 ng/mL) with signs of hepatocellular damage, inflammation and ultimately HSC activation (increase in αSMA expression). LPS elicited an inflammatory response characterized by increased expression of cytokines. 3D-monocultures comprising only Hep displayed different responses, underlying that parenchymal and non-parenchymal cells need to be present in the system to recapitulate fibrosis. The data also suggest that pre-activated HSC may reverse to a quiescent phenotype in 3D, probably due to the more physiological conditions.
Collapse
|
21
|
Dhuriya YK, Sharma D, Naik AA. Cellular demolition: Proteins as molecular players of programmed cell death. Int J Biol Macromol 2019; 138:492-503. [PMID: 31330212 DOI: 10.1016/j.ijbiomac.2019.07.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
Abstract
Apoptosis, a well-characterized and regulated cell death programme in eukaryotes plays a fundamental role in developing or later-life periods to dispose of unwanted cells to maintain typical tissue architecture, homeostasis in a spatiotemporal manner. This silent cellular death occurs without affecting any neighboring cells/tissue and avoids triggering of immunological response. Furthermore, diminished forms of apoptosis result in cancer and autoimmune diseases, whereas unregulated apoptosis may also lead to the development of a myriad of neurodegenerative diseases. Unraveling the mechanistic events in depth will provide new insights into understanding physiological control of apoptosis, pathological consequences of abnormal apoptosis and development of novel therapeutics for diseases. Here we provide a brief overview of molecular players of programmed cell death with discussion on the role of caspases, modifications, ubiquitylation in apoptosis, removal of the apoptotic body and its relevance to diseases.
Collapse
Affiliation(s)
- Yogesh Kumar Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India; Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | - Aijaz A Naik
- Neurology, School of Medicine, University of Virginia, Charlottesville 22908, United States of America
| |
Collapse
|
22
|
Liang H, Ding X, Yu Y, Zhang H, Wang L, Kan Q, Ma S, Guan F, Sun T. Adipose-derived mesenchymal stem cells ameliorate acute liver injury in rat model of CLP induced-sepsis via sTNFR1. Exp Cell Res 2019; 383:111465. [DOI: 10.1016/j.yexcr.2019.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
|
23
|
Román-Anguiano NG, Correa F, Cano-Martínez A, de la Peña-Díaz A, Zazueta C. Cardioprotective effects of Prolame and SNAP are related with nitric oxide production and with diminution of caspases and calpain-1 activities in reperfused rat hearts. PeerJ 2019; 7:e7348. [PMID: 31392096 PMCID: PMC6673759 DOI: 10.7717/peerj.7348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/25/2019] [Indexed: 01/26/2023] Open
Abstract
Cardiac tissue undergoes changes during ischemia-reperfusion (I-R) that compromise its normal function. Cell death is one of the consequences of such damage, as well as diminution in nitric oxide (NO) content. This signaling molecule regulates the function of the cardiovascular system through dependent and independent effects of cyclic guanosine monophosphate (cGMP). The independent cGMP pathway involves post-translational modification of proteins by S-nitrosylation. Studies in vitro have shown that NO inhibits the activity of caspases and calpains through S-nitrosylation of a cysteine located in their catalytic site, so we propose to elucidate if the regulatory mechanisms of NO are related with changes in S-nitrosylation of cell death proteins in the ischemic-reperfused myocardium. We used two compounds that increase the levels of NO by different mechanisms: Prolame, an amino-estrogenic compound with antiplatelet and anticoagulant effects that induces the increase of NO levels in vivo by activating the endothelial nitric oxide synthase (eNOS) and that has not been tested as a potential inhibitor of apoptosis. On the other hand, S-Nitroso-N-acetylpenicillamine (SNAP), a synthetic NO donor that has been shown to decrease cell death after inducing hypoxia-reoxygenation in cell cultures. Main experimental groups were Control, I-R, I-R+Prolame and I-R+SNAP. Additional groups were used to evaluate the NO action pathways. Contractile function represented as heart rate and ventricular pressure was evaluated in a Langendorff system. Infarct size was measured with 2,3,5-triphenyltetrazolium chloride stain. NO content was determined indirectly by measuring nitrite levels with the Griess reaction and cGMP content was measured by Enzyme-Linked ImmunoSorbent Assay. DNA integrity was evaluated by DNA laddering visualized on an agarose gel and by Terminal deoxynucleotidyl transferase dUTP Nick-End Labeling assay. Activities of caspase-3, caspase-8, caspase-9 and calpain-1 were evaluated spectrophotometrically and the content of caspase-3 and calpain-1 by western blot. S-nitrosylation of caspase-3 and calpain-1 was evaluated by labeling S-nitrosylated cysteines. Our results show that both Prolame and SNAP increased NO content and improved functional recovery in post-ischemic hearts. cGMP-dependent and S-nitrosylation pathways were activated in both groups, but the cGMP-independent pathway was preferentially activated by SNAP, which induced higher levels of NO than Prolame. Although SNAP effectively diminished the activity of all the proteases, a correlative link between the activity of these proteases and S-nitrosylation was not fully established.
Collapse
Affiliation(s)
| | - Francisco Correa
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiologia Ignacio Chávez, México, México
| | - Agustina Cano-Martínez
- Departamento de Fisiología, Instituto Nacional de Cardiologia Ignacio Chávez, México, México
| | - Aurora de la Peña-Díaz
- Departamento de Biología Molecular, Instituto Nacional de Cardiologia Ignacio Chávez, México, México.,Departamento de Farmacología, Universidad Nacional Autónoma de México, México, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiologia Ignacio Chávez, México, México
| |
Collapse
|
24
|
Chen YJ, Liu YC, Liu YW, Lee YB, Huang HC, Chen YY, Shih YH, Lee YC, Cheng CF, Meng TC. Nitrite Protects Neurons Against Hypoxic Damage Through S-nitrosylation of Caspase-6. Antioxid Redox Signal 2019; 31:109-126. [PMID: 30417658 DOI: 10.1089/ars.2018.7522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Aims: The coordination of neurons to execute brain functions requires plenty of oxygen. Thus, it is not surprising that the chronic hypoxia resulting from chronic obstructive pulmonary diseases (COPD) can cause neuronal damage. Injury in the cortex can give rise to anxiety and cognitive dysfunction. This study investigated what causes hypoxia-induced neuronal injury and what strategies might be used to protect neurons against such damage. Results: This study found that hypoxia in primary cortical neurons caused neurite retraction, a caspase-6-dependent process. The hypoxic stress activated caspase-6 within the neurite, leading to microtubule disassembly and neurite retraction. The effect of hypoxia on caspase-6 activation, microtubule disassembly, and neurite retraction was alleviated by nitrite treatment. The protective role of nitrite was further supported by the observation that the active-site Cys146 of caspase-6 was S-nitrosylated in hypoxic neuro-2a cells treated with nitrite. We further validated the beneficial effect of nitrite on neuronal function against hypoxic stress in vivo. Using the wild-type or Apo E-/- mice exposed to chronic hypoxia as a model, we demonstrated that supplementing drinking water with nitrite suppressed active caspase-6 in the cortex of the brain, concomitant with the prevention of hypoxia-induced anxiety in the animals. Innovation: These results are the first evidence of a new pathway for the activation of caspase-6 and the first to indicate that nitrite can protect neurons against chronic hypoxic insult. Conclusion: Our findings suggest that nitrite holds great potential for the treatment of diseases such as COPD associated with hypoxia-induced neuronal injury.
Collapse
Affiliation(s)
- Yen-Jung Chen
- 1 Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.,2 Institutes of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yun-Chung Liu
- 1 Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.,2 Institutes of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Wen Liu
- 2 Institutes of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Bin Lee
- 2 Institutes of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsin-Chieh Huang
- 2 Institutes of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Yun Chen
- 2 Institutes of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Ying-Chu Lee
- 2 Institutes of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ching-Feng Cheng
- 4 Department of Medical Research, Tzu Chi University, Hualien, Taiwan.,5 Department of Pediatrics, Tzu Chi General Hospital, Hualien, Taiwan.,6 Institutes of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tzu-Ching Meng
- 1 Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.,2 Institutes of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
25
|
Kolachala VL, Palle SK, Shen M, Shenoi A, Shayakhmetov DM, Gupta NA. Influence of Fat on Differential Receptor Interacting Serine/Threonine Protein Kinase 1 Activity Leading to Apoptotic Cell Death in Murine Liver Ischemia Reperfusion Injury Through Caspase 8. Hepatol Commun 2019; 3:925-942. [PMID: 31334443 PMCID: PMC6601319 DOI: 10.1002/hep4.1352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
Current understanding is that receptor interacting serine/threonine protein kinase 1 (RIPK1) can lead to two distinct forms of cell death: RIPK3‐mediated necroptosis or caspase 8 (Casp8)‐mediated apoptosis. Here, we report that RIPK1 signaling is indispensable for protection from hepatocellular injury in a steatotic liver undergoing ischemia reperfusion injury (IRI) but not in the lean liver. In lean liver IRI, RIPK1‐mediated cell death is operational, leading to protection in RIP1 kinase‐dead knock‐in (RIPK1K45A) mice and necrostatin‐1s (Nec1s)‐treated lean wild‐type (WT) mice. However, when fed a high‐fat diet (HFD), RIPK1K45A‐treated and Nec1s‐treated WT mice undergoing IRI demonstrate exacerbated hepatocellular injury along with decreased RIPK1 ubiquitylation. Furthermore, we demonstrate that HFD‐fed RIPK3–/–/Casp8–/– mice show protection from IRI, but HFD‐fed RIPK3–/–/Casp8–/+ mice do not. We also show that blockade of RIPK1 leads to increased Casp8 activity and decreases mitochondrial viability. Conclusion: Although more studies are required, we provide important proof of concept for RIPK1 inhibition leading to distinctive outcomes in lean and steatotic liver undergoing IRI. Considering the rising incidence of nonalcoholic fatty liver disease (NAFLD) in the general population, it will be imperative to address this critical difference when treating patients with RIPK1 inhibitors. This study also presents a new target for drug therapy to prevent hepatocellular injury in NAFLD.
Collapse
Affiliation(s)
| | - Sirish K Palle
- Department of Pediatrics Emory University School of Medicine Atlanta GA
| | - Ming Shen
- Department of Pediatrics Emory University School of Medicine Atlanta GA
| | - Asha Shenoi
- Department of Pediatrics Emory University School of Medicine Atlanta GA
| | | | - Nitika A Gupta
- Department of Pediatrics Emory University School of Medicine Atlanta GA.,Transplant Services Children's Healthcare of Atlanta Atlanta GA
| |
Collapse
|
26
|
Caspase-8 function, and phosphorylation, in cell migration. Semin Cell Dev Biol 2018; 82:105-117. [PMID: 29410361 DOI: 10.1016/j.semcdb.2018.01.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 11/22/2022]
Abstract
Caspase-8 is involved in a number of cellular functions, with the most well established being the control of cell death. Yet caspase-8 is unique among the caspases in that it acts as an environmental sensor, transducing a range of signals to cells, modulating responses that extend far beyond simple survival. Ranging from the control of apoptosis and necroptosis and gene regulation to cell adhesion and migration, caspase-8 uses proteolytic and non-proteolytic functions to alter cell behavior. Novel interacting partners provide mechanisms for caspase-8 to position itself at signaling nodes that affect a variety of signaling pathways. Here, we examine the catalytic and noncatalytic modes of action by which caspase-8 influences cell adhesion and migration. The mechanisms vary from post-cleavage remodeling of the cytoskeleton to signaling elements that control focal adhesion turnover. This is facilitated by caspase-8 interaction with a host of cell proteins ranging from the proteases caspase-3 and calpain-2 to adaptor proteins such as p85 and Crk, to the Src family of tyrosine kinases.
Collapse
|
27
|
Kus E, Jasiński K, Skórka T, Czyzynska-Cichon I, Chlopicki S. Short-term treatment with hepatoselective NO donor V-PYRRO/NO improves blood flow in hepatic microcirculation in liver steatosis in mice. Pharmacol Rep 2017; 70:463-469. [PMID: 29631249 DOI: 10.1016/j.pharep.2017.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 09/28/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND The impairment of liver sinusoidal endothelial cells (LSECs) function and diminished nitric oxide (NO) production has been regarded as an important pathogenic factor in liver steatosis. Restoring NO-dependent function was shown to counteract liver steatosis, obesity, and insulin resistance. However, it is not known whether restored liver perfusion and improvement in hepatic blood flow contributes to the anti-steatotic effects of NO. Taking advantage of in vivo MRI, we have examined the effects of short-term treatment with the hepatoselective NO donor V-PYRRO/NO on hepatic microcirculation in advanced liver steatosis. METHODS Male C57BL/6 mice fed for six months a high fat diet (HFD; 60 kcal% of fat) were treated for 3 weeks with V-PYRRO/NO (twice a day 5mg/kg b.w. ip). An MRI assessment of liver perfusion using the FAIR-EPI method and a portal vein blood flow using the FLASH method were performed. Blood biochemistry, glucose tolerance tests, a histological evaluation of the liver, and liver NO concentrations were also examined. RESULTS Short-term treatment with V-PYRRO/NO releasing NO selectively in the liver improved liver perfusion and portal vein blood flow. This effect was associated with a slight improvement in glucose tolerance but there was no effect on liver steatosis, body weight, white adipose tissue mass, plasma lipid profile, or aminotransferase activity. CONCLUSION Short-term treatment with V-PYRRO/NO-derived NO improves perfusion in hepatic microcirculation and this effect may also contribute to the anti-steatotic effects of hepatoselective NO donors linked previously to the modulation of glucose and lipid metabolism in the liver.
Collapse
Affiliation(s)
- Edyta Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland.
| | - Krzysztof Jasiński
- Department of MRI, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland.
| | - Tomasz Skórka
- Department of MRI, Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland.
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland.
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland; Chair of Pharmacology, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
28
|
The Role of Nitric Oxide from Neurological Disease to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:71-88. [PMID: 28840553 DOI: 10.1007/978-3-319-60733-7_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Characterization of NO-Induced Nitrosative Status in Human Placenta from Pregnant Women with Gestational Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5629341. [PMID: 28400911 PMCID: PMC5376459 DOI: 10.1155/2017/5629341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 01/24/2023]
Abstract
Dysregulation of NO production is implicated in pregnancy-related diseases, including gestational diabetes mellitus (GDM). The role of NO and its placental targets in GDM pregnancies has yet to be determined. S-Nitrosylation is the NO-derived posttranslational protein modification that can modulate biological functions by forming NO-derived complexes with longer half-life, termed S-nitrosothiol (SNO). Our aim was to examine the presence of endogenous S-nitrosylated proteins in cysteine residues in relation to antioxidant defense, apoptosis, and cellular signal transduction in placental tissue from control (n = 8) and GDM (n = 8) pregnancies. S-Nitrosylation was measured using the biotin-switch assay, while the expression and protein activity were assessed by immunoblotting and colorimetric methods, respectively. Results indicated that catalase and peroxiredoxin nitrosylation levels were greater in GDM placentas, and that was accompanied by reduced catalase activity. S-Nitrosylation of ERK1/2 and AKT was increased in GDM placentas, and their activities were inhibited. Activities of caspase-3 and caspase-9 were increased, with the latter also showing diminished nitrosylation levels. These findings suggest that S-nitrosylation is a little-known, but critical, mechanism by which NO directly modulates key placental proteins in women with GDM and, as a consequence, maternal and fetal anomalies during pregnancy can occur.
Collapse
|
30
|
Zamaraev AV, Kopeina GS, Prokhorova EA, Zhivotovsky B, Lavrik IN. Post-translational Modification of Caspases: The Other Side of Apoptosis Regulation. Trends Cell Biol 2017; 27:322-339. [PMID: 28188028 DOI: 10.1016/j.tcb.2017.01.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/21/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022]
Abstract
Apoptosis is a crucial program of cell death that controls development and homeostasis of multicellular organisms. The main initiators and executors of this process are the Cysteine-dependent ASPartate proteASES - caspases. A number of regulatory circuits tightly control caspase processing and activity. One of the most important, yet, at the same time still poorly understood control mechanisms of activation of caspases involves their post-translational modifications. The addition and/or removal of chemical groups drastically alters the catalytic activity of caspases or stimulates their nonapoptotic functions. In this review, we will describe and discuss the roles of key caspase modifications such as phosphorylation, ubiquitination, nitrosylation, glutathionylation, SUMOylation, and acetylation in the regulation of apoptotic cell death and cell survival.
Collapse
Affiliation(s)
- Alexey V Zamaraev
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Gelina S Kopeina
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeniia A Prokhorova
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden.
| | - Inna N Lavrik
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Department of Translational Inflammation, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
31
|
Loughran P, Xu L, Billiar T. Nitric Oxide and the Liver. LIVER PATHOPHYSIOLOGY 2017:799-816. [DOI: 10.1016/b978-0-12-804274-8.00058-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Quintero Quinchia YC, Cardona Maya WD. Óxido nítrico y fertilidad masculina: relación directa con los parámetros seminales. Rev Urol 2017. [DOI: 10.1016/j.uroco.2016.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Ramaiah S, Rivera C, Arteel G. Early-Phase Alcoholic Liver Disease: An Update on Animal Models, Pathology, and Pathogenesis. Int J Toxicol 2016; 23:217-31. [PMID: 15371166 DOI: 10.1080/10915810490502069] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) remains to be one of the most common etiology of liver disease and is a major cause of morbidity and mortality worldwide. The pathologic stages of ALD comprises of steatosis, steatohepatitis, and fibrosis/cirrhosis. Steatosis and steatohepatitis represents the early phase of ALD and are precursor stages for fibrosis/cirrhosis. Numerous research efforts have been directed at recognizing cofactors interacting with alcohol in the pathogenesis of steatosis and steatohepatitis. This review will elucidate the constellation of complex pathogenesis, available animal models, and microscopic pathologic findings mostly in the early-phase of ALD. The role of endotoxin, reactive oxygen species, alcohol metabolism, and cytokines are discussed. Understanding the mechanisms of early-phase ALD should provide insight into the development of therapeutic strategies and thereby decrease the morbidity and mortality associated with ALD.
Collapse
Affiliation(s)
- Shashi Ramaiah
- Department of Pathobiology, Texas Veterinary Medical Center, College of Veterinary Medicine, Texas A and M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
34
|
Hojo T, Siemieniuch MJ, Lukasik K, Piotrowska-Tomala KK, Jonczyk AW, Okuda K, Skarzynski DJ. Programmed necrosis - a new mechanism of steroidogenic luteal cell death and elimination during luteolysis in cows. Sci Rep 2016; 6:38211. [PMID: 27901113 PMCID: PMC5128806 DOI: 10.1038/srep38211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
Programmed necrosis (necroptosis) is an alternative form of programmed cell death that is regulated by receptor-interacting protein kinase (RIPK) 1 and 3-dependent, but is a caspase (CASP)-independent pathway. In the present study, to determine if necroptosis participates in bovine structural luteolysis, we investigated RIPK1 and RIPK3 expression throughout the estrous cycle, during prostaglandin F2α (PGF)-induced luteolysis in the bovine corpus luteum (CL), and in cultured luteal steroidogenic cells (LSCs) after treatment with selected luteolytic factors. In addition, effects of a RIPK1 inhibitor (necrostatin-1, Nec-1; 50 μM) on cell viability, progesterone secretion, apoptosis related factors and RIPKs expression, were evaluated. Expression of RIPK1 and RIPK3 increased in the CL tissue during both spontaneous and PGF-induced luteolysis (P < 0.05). In cultured LSCs, tumor necrosis factor α (TNF; 2.3 nM) in combination with interferon γ (IFNG; 2.5 nM) up-regulated RIPK1 mRNA and protein expression (P < 0.05). TNF + IFNG also up-regulated RIPK3 mRNA expression (P < 0.05), but not RIPK3 protein. Although Nec-1 prevented TNF + IFNG-induced cell death (P < 0.05), it did not affect CASP3 and CASP8 expression. Nec-1 decreased both RIPK1 and RIPK3 protein expression (P < 0.05). These findings suggest that RIPKs-dependent necroptosis is a potent mechanism responsible for bovine structural luteolysis induced by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Takuo Hojo
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
| | - Marta J Siemieniuch
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
| | - Karolina Lukasik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
| | | | - Agnieszka W Jonczyk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
| | - Kiyoshi Okuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.,Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, 080-8555, Japan
| | - Dariusz J Skarzynski
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-748, Poland
| |
Collapse
|
35
|
Plenchette S, Romagny S, Laurens V, Bettaieb A. [NO and cancer: itinerary of a double agent]. Med Sci (Paris) 2016; 32:625-33. [PMID: 27406774 DOI: 10.1051/medsci/20163206027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Protein S-nitrosylation is now recognized as a ubiquitous regulatory mechanism. Like any post-translational modifications, S-nitrosylation is critical for the control of numerous cellular processes. It is now clear that S-nitrosylation is playing a double game, enhancing or inhibiting the tumor growth or the induction of cell death. Thanks to research aimed at demonstrating NO cytotoxic effects, new therapeutic strategies based on NO donor drugs have emerged. Although therapeutic NO donors can target a large number of proteins, the cellular mechanism is still not fully understood. This review reflects the current state of knowledge on S-nitrosylated proteins that take part of the oncogenic and apoptotic signaling, putting forward proteins with potential interest in cancer therapy.
Collapse
Affiliation(s)
- Stéphanie Plenchette
- Université de Bourgogne Franche-Comté, LIIC EA7269, 7, boulevard Jeanne d'Arc, F-21000 Dijon, France - EPHE, PSL Research University, F-75014 Paris, France
| | - Sabrina Romagny
- Université de Bourgogne Franche-Comté, LIIC EA7269, 7, boulevard Jeanne d'Arc, F-21000 Dijon, France - EPHE, PSL Research University, F-75014 Paris, France
| | - Véronique Laurens
- Université de Bourgogne Franche-Comté, LIIC EA7269, 7, boulevard Jeanne d'Arc, F-21000 Dijon, France - EPHE, PSL Research University, F-75014 Paris, France
| | - Ali Bettaieb
- Université de Bourgogne Franche-Comté, LIIC EA7269, 7, boulevard Jeanne d'Arc, F-21000 Dijon, France - EPHE, PSL Research University, F-75014 Paris, France
| |
Collapse
|
36
|
Teixeira-Gomes A, Costa VM, Feio-Azevedo R, Duarte JA, Duarte-Araújo M, Fernandes E, Bastos MDL, Carvalho F, Capela JP. "Ecstasy" toxicity to adolescent rats following an acute low binge dose. BMC Pharmacol Toxicol 2016; 17:28. [PMID: 27349892 PMCID: PMC4924304 DOI: 10.1186/s40360-016-0070-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/03/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND 3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy") is a worldwide drug of abuse commonly used by adolescents. Most reports focus on MDMA's neurotoxicity and use high doses in adult animals, meanwhile studies in adolescents are scarce. We aimed to assess in rats the acute MDMA toxicity to the brain and peripheral organs using a binge dose scheme that tries to simulate human adolescent abuse. METHODS Adolescent rats (postnatal day 40) received three 5 mg/kg doses of MDMA (estimated equivalent to two/three pills in a 50 kg adolescent), intraperitoneally, every 2 h, while controls received saline. After 24 h animal sacrifice took place and collection of brain areas (cerebellum, hippocampus, frontal cortex and striatum) and peripheral organs (liver, heart and kidneys) occurred. RESULTS Significant hyperthermia was observed after the second and third MDMA doses, with mean increases of 1 °C as it occurs in the human scenario. MDMA promoted ATP levels fall in the frontal cortex. No brain oxidative stress-related changes were observed after MDMA. MDMA-treated rat organs revealed significant histological tissue alterations including vascular congestion, but no signs of apoptosis or necrosis were found, which was corroborated by the lack of changes in plasma biomarkers and tissue caspases. In peripheral organs, MDMA did not affect significantly protein carbonylation, glutathione, or ATP levels, but liver presented a higher vulnerability as MDMA promoted an increase in quinoprotein levels. CONCLUSIONS Adolescent rats exposed to a moderate MDMA dose, presented hyperthermia and acute tissue damage to peripheral organs without signs of brain oxidative stress.
Collapse
Affiliation(s)
- Armanda Teixeira-Gomes
- UCIBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Vera Marisa Costa
- UCIBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Rita Feio-Azevedo
- UCIBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | | | - Margarida Duarte-Araújo
- Biotério do Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Eduarda Fernandes
- UCIBIO-REQUIMTE, Laboratório de Química Aplicada, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - João Paulo Capela
- UCIBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- FP-ENAS (Unidade de Investigação UFP em Energia, Ambiente e Saúde), CEBIMED (Centro de Estudos em Biomedicina), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal.
| |
Collapse
|
37
|
Plenchette S, Romagny S, Laurens V, Bettaieb A. S-Nitrosylation in TNF superfamily signaling pathway: Implication in cancer. Redox Biol 2015; 6:507-515. [PMID: 26448396 PMCID: PMC4600855 DOI: 10.1016/j.redox.2015.08.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/08/2023] Open
Abstract
One of the key features of tumor cells is the acquisition of resistance to apoptosis. Thus, novel therapeutic strategies that circumvent apoptotic resistance and result in tumor elimination are needed. One strategy to induce apoptosis is to activate death receptor signaling pathways. In the tumor microenvironment, stimulation of Fas, Death receptor 4 (DR4) and tumor necrosis factor receptor 1 (TNFR1) can initiate multiple signaling pathways driving either tumor promotion or elimination. Nitric oxide (NO) is an important signaling molecule now understood to play a dual role in cancer biology. More and more attention is directed toward the role displayed by S-nitrosylation, the incorporation of an NO moiety to a cysteine thiol group, in promoting cell death in tumor cells. Protein post-translation modification by S-nitrosylation has decisive roles in regulating signal-transduction pathways. In this review, we summarize several examples of protein modification by S-nitrosylation that regulate signaling pathways engaged by members of the TNF superfamily (Fas ligand (FasL), Tumor-necrosis-factor-related apoptosis inducing ligand (TRAIL) and TNFalpha (TNFα)) and the way it influences cell fate decisions. An overview of NO in regulating signaling pathways engaged by FasL, TRAIL and TNFα. S-nitrosylation regulates protein activity and cancer cell death. Exploiting NO for cancer therapy.
Collapse
Affiliation(s)
- Stéphanie Plenchette
- Univ. Bourgogne Franche-Comté, LIIC EA7269, F-21000 Dijon, France; Ecole Pratique des Hautes Etudes, LIIC EA7269, F-21000 Dijon, France.
| | - Sabrina Romagny
- Univ. Bourgogne Franche-Comté, LIIC EA7269, F-21000 Dijon, France; Ecole Pratique des Hautes Etudes, LIIC EA7269, F-21000 Dijon, France
| | - Véronique Laurens
- Univ. Bourgogne Franche-Comté, LIIC EA7269, F-21000 Dijon, France; Ecole Pratique des Hautes Etudes, LIIC EA7269, F-21000 Dijon, France
| | - Ali Bettaieb
- Univ. Bourgogne Franche-Comté, LIIC EA7269, F-21000 Dijon, France; Ecole Pratique des Hautes Etudes, LIIC EA7269, F-21000 Dijon, France
| |
Collapse
|
38
|
Bourouba M, Zergoun AA, Maffei JS, Chila D, Djennaoui D, Asselah F, Amir-Tidadini ZC, Touil-Boukoffa C, Zaman MH. TNFα antagonization alters NOS2 dependent nasopharyngeal carcinoma tumor growth. Cytokine 2015; 74:157-63. [DOI: 10.1016/j.cyto.2015.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/11/2015] [Accepted: 04/02/2015] [Indexed: 12/18/2022]
|
39
|
Kus K, Walczak M, Maslak E, Zakrzewska A, Gonciarz-Dytman A, Zabielski P, Sitek B, Wandzel K, Kij A, Chabowski A, Holland RJ, Saavedra JE, Keefer LK, Chlopicki S. Hepatoselective Nitric Oxide (NO) Donors, V-PYRRO/NO and V-PROLI/NO, in Nonalcoholic Fatty Liver Disease: A Comparison of Antisteatotic Effects with the Biotransformation and Pharmacokinetics. Drug Metab Dispos 2015; 43:1028-36. [PMID: 25870102 PMCID: PMC11024901 DOI: 10.1124/dmd.115.063388] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/09/2015] [Indexed: 04/20/2024] Open
Abstract
V-PYRRO/NO [O(2)-vinyl-1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate] and V-PROLI/NO (O2-vinyl-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate), two structurally similar diazeniumdiolate derivatives, were designed as liver-selective prodrugs that are metabolized by cytochrome P450 isoenzymes, with subsequent release of nitric oxide (NO). Yet, their efficacy in the treatment of nonalcoholic fatty liver disease (NAFLD) and their comparative pharmacokinetic and metabolic profiles have not been characterized. The aim of the present work was to compare the effects of V-PYRRO/NO and V-PROLI/NO on liver steatosis, glucose tolerance, and liver fatty acid composition in C57BL/6J mice fed a high-fat diet, as well as to comprehensively characterize the ADME (absorption, distribution, metabolism and excretion) profiles of both NO donors. Despite their similar structure, V-PYRRO/NO and V-PROLI/NO showed differences in pharmacological efficacy in the murine model of NAFLD. V-PYRRO/NO, but not V-PROLI/NO, attenuated liver steatosis, improved glucose tolerance, and favorably modified fatty acid composition in the liver. Both compounds were characterized by rapid absorption following i.p. administration, rapid elimination from the body, and incomplete bioavailability. However, V-PYRRO/NO was eliminated mainly by the liver, whereas V-PROLI/NO was excreted mostly in unchanged form by the kidney. V-PYRRO/NO was metabolized by CYP2E1, CYP2C9, CYP1A2, and CYP3A4, whereas V-PROLI/NO was metabolized mainly by CYP1A2. Importantly, V-PYRRO/NO was a better NO releaser in vivo and in the isolated, perfused liver than V-PROLI/NO, an effect compatible with the superior antisteatotic activity of V-PYRRO/NO. In conclusion, V-PYRRO/NO displayed a pronounced antisteatotic effect associated with liver-targeted NO release, whereas V-PROLI/NO showed low effectiveness, was not taken up by the liver, and was eliminated mostly in unchanged form by the kidney.
Collapse
Affiliation(s)
- Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Maria Walczak
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Edyta Maslak
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Agnieszka Zakrzewska
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Anna Gonciarz-Dytman
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Piotr Zabielski
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Barbara Sitek
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Krystyna Wandzel
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Adrian Chabowski
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Ryan J Holland
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Joseph E Saavedra
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Larry K Keefer
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (K.K., M.W., E.M., A.Z., A.G.-D., B.S., K.W., A.K., S.Ch.), Department of Pharmacokinetics and Physical Pharmacy, Medical College (K.K., M.W., A.G.-D., A.K.), and Department of Experimental Pharmacology, Chair of Pharmacology, Medical College (S.Ch.), Jagiellonian University, Krakow, Poland; Department of Physiology, Medical University of Bialystok, Bialystok, Poland (P.Z., A.Ch.); Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland (J.E.S.); and Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland (R.J.H., L.K.K.)
| |
Collapse
|
40
|
Maslak E, Gregorius A, Chlopicki S. Liver sinusoidal endothelial cells (LSECs) function and NAFLD; NO-based therapy targeted to the liver. Pharmacol Rep 2015; 67:689-94. [PMID: 26321269 DOI: 10.1016/j.pharep.2015.04.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/13/2015] [Accepted: 04/17/2015] [Indexed: 12/13/2022]
Abstract
Liver sinusoidal endothelial cells (LSECs) present unique, highly specialised endothelial cells in the body. Unlike the structure and function of typical, vascular endothelial cells, LSECs are comprised of fenestrations, display high endocytic capacity and play a prominent role in maintaining overall liver homeostasis. LSEC dysfunction has been regarded as a key event in multiple liver disorders; however, its role and diagnostic, prognostic and therapeutic significance in nonalcoholic fatty liver disease (NAFLD) is still neglected. The purpose of this review is to provide an overview of the importance of LSECs in NAFLD. Attention is focused on the LSECs-mediated NO-dependent mechanisms in NAFLD development. We briefly describe the unique, highly specialised phenotype of LSECs and consequences of LSEC dysfunction on function of hepatic stellate cells (HSC) and hepatocytes. The potential efficacy of liver selective NO donors against liver steatosis and novel treatment approaches to modulate LSECs-driven liver pathology including NAFLD are also highlighted.
Collapse
Affiliation(s)
- Edyta Maslak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Aleksandra Gregorius
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Kraków, Poland; Department of Experimental Pharmacology, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
41
|
Yin L, Xie Y, Yin S, Lv X, Zhang J, Gu Z, Sun H, Liu S. The S-nitrosylation status of PCNA localized in cytosol impacts the apoptotic pathway in a Parkinson's disease paradigm. PLoS One 2015; 10:e0117546. [PMID: 25675097 PMCID: PMC4326459 DOI: 10.1371/journal.pone.0117546] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/27/2014] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that nitric oxide (NO) or its derivatives, reactive nitrogen species (RNS), are involved in the development of Parkinson's disease (PD). Recently, emerging evidence in the study of PD has indicated that protein S-nitrosylation triggers the signaling changes in neurons. In this study, SH-SY5Y cells treated with rotenone were used as a model of neuronal death in PD. The treated cells underwent significant apoptosis, which was accompanied by an increase in intracellular NO in a rotenone dose-dependent manner. The CyDye switch approach was employed to screen for changes in S-nitrosylated (SNO) proteins in response to the rotenone treatment. Seven proteins with increased S-nitrosylation were identified in the treated SH-SY5Y cells, which included proliferating cell nuclear antigen (PCNA). Although PCNA is generally located in the nucleus and participates in DNA replication and repair, significant PCNA was identified in the SH-SY5Y cytosol. Using immunoprecipitation and pull-down approaches, PCNA was found to interact with caspase-9; using mass spectrometry, the two cysteine residues PCNA-Cys81 and -Cys162 were identified as candidate S-nitrosylated residues. In addition, the evidence obtained from in vitro and the cell model studies indicated that the S-nitrosylation of PCNA-Cys81 affected the interaction between PCNA and caspase-9. Furthermore, the interaction of PCNA and caspase-9 partially blocked caspase-9 activation, indicating that the S-nitrosylation of cytosolic PCNA may be a mediator of the apoptotic pathway.
Collapse
Affiliation(s)
- Liang Yin
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Xie
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Songyue Yin
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xiaolei Lv
- Beijing Protein Innovation, Beijing, China
| | - Jia Zhang
- Beijing Protein Innovation, Beijing, China
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Haidan Sun
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Siqi Liu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Protein Innovation, Beijing, China
| |
Collapse
|
42
|
Maslak E, Zabielski P, Kochan K, Kus K, Jasztal A, Sitek B, Proniewski B, Wojcik T, Gula K, Kij A, Walczak M, Baranska M, Chabowski A, Holland RJ, Saavedra JE, Keefer LK, Chlopicki S. The liver-selective NO donor, V-PYRRO/NO, protects against liver steatosis and improves postprandial glucose tolerance in mice fed high fat diet. Biochem Pharmacol 2015; 93:389-400. [PMID: 25534988 DOI: 10.1016/j.bcp.2014.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Edyta Maslak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Piotr Zabielski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland.
| | - Kamila Kochan
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Barbara Sitek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Tomasz Wojcik
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Katarzyna Gula
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland.
| | - Maria Walczak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Małgorzata Baranska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland.
| | - Ryan J Holland
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States.
| | - Joseph E Saavedra
- Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States.
| | - Larry K Keefer
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States.
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; Department of Experimental Pharmacology (Chair of Pharmacology), Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland.
| |
Collapse
|
43
|
Deng M, Loughran PA, Zhang L, Scott MJ, Billiar TR. Shedding of the tumor necrosis factor (TNF) receptor from the surface of hepatocytes during sepsis limits inflammation through cGMP signaling. Sci Signal 2015; 8:ra11. [PMID: 25628461 DOI: 10.1126/scisignal.2005548] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proteolytic cleavage of the tumor necrosis factor (TNF) receptor (TNFR) from the cell surface contributes to anti-inflammatory responses and may be beneficial in reducing the excessive inflammation associated with multiple organ failure and mortality during sepsis. Using a clinically relevant mouse model of polymicrobial abdominal sepsis, we found that the production of inducible nitric oxide synthase (iNOS) in hepatocytes led to the cyclic guanosine monophosphate (cGMP)-dependent activation of the protease TACE (TNF-converting enzyme) and the shedding of TNFR. Furthermore, treating mice with a cGMP analog after the induction of sepsis increased TNFR shedding and decreased systemic inflammation. Similarly, increasing the abundance of cGMP with a clinically approved phosphodiesterase 5 inhibitor (sildenafil) also decreased markers of systemic inflammation, protected against organ injury, and increased circulating amounts of TNFR1 in mice with sepsis. We further confirmed that a similar iNOS-cGMP-TACE pathway was required for TNFR1 shedding by human hepatocytes in response to the bacterial product lipopolysaccharide. Our data suggest that increasing the bioavailability of cGMP might be beneficial in ameliorating the inflammation associated with sepsis.
Collapse
Affiliation(s)
- Meihong Deng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patricia A Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA. Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Liyong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
44
|
Iyer AKV, Rojanasakul Y, Azad N. Nitrosothiol signaling and protein nitrosation in cell death. Nitric Oxide 2014; 42:9-18. [PMID: 25064181 DOI: 10.1016/j.niox.2014.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 06/01/2014] [Accepted: 07/10/2014] [Indexed: 10/25/2022]
Abstract
Nitric oxide, a reactive free radical, is an important signaling molecule that can lead to a plethora of cellular effects affecting homeostasis. A well-established mechanism by which NO manifests its effect on cellular functions is the post-translational chemical modification of cysteine thiols in substrate proteins by a process known as S-nitrosation. Studies that investigate regulation of cellular functions through NO have increasingly established S-nitrosation as the primary modulatory mechanism in their respective systems. There has been a substantial increase in the number of reports citing various candidate proteins undergoing S-nitrosation, which affects cell-death and -survival pathways in a number of tissues including heart, lung, brain and blood. With an exponentially growing list of proteins being identified as substrates for S-nitrosation, it is important to assimilate this information in different cell/tissue systems in order to gain an overall view of protein regulation of both individual proteins and a class of protein substrates. This will allow for broad mapping of proteins as a function of S-nitrosation, and help delineate their global effects on pathophysiological responses including cell death and survival. This information will not only provide a much better understanding of overall functional relevance of NO in the context of various disease states, it will also facilitate the generation of novel therapeutics to combat specific diseases that are driven by NO-mediated S-nitrosation.
Collapse
Affiliation(s)
| | - Yon Rojanasakul
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26505, USA
| | - Neelam Azad
- Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, USA
| |
Collapse
|
45
|
Popescu T, Lupu AR, Feder M, Tarabasanu-Mihaila D, Teodorescu VS, Vlaicu AM, Diamandescu L. In vitro toxicity evaluation of Ti(4+)-stabilized γ-Bi2O3 sillenites. Toxicol In Vitro 2014; 28:1523-30. [PMID: 25025181 DOI: 10.1016/j.tiv.2014.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 06/23/2014] [Accepted: 07/03/2014] [Indexed: 12/12/2022]
Abstract
We report results regarding the in vitro toxicology of γ-Bi2O3 represented by its isomorphous phase Bi12TiO20 (γ-BTO). The γ-BTO microparticles were synthesized by two methods: coprecipitation from a bismuth nitrate-tetrabutyl titanate solution and solid state reaction of Bi2O3 and TiO2 oxides. The structural and morphological characteristics of the obtained materials were determined using X-ray diffraction (XRD), selected area electron diffraction (SAED), transmission (TEM) and scanning (SEM) electron microscopy. The elemental composition was investigated using energy dispersive spectrometry (EDS). The cytotoxicity and oxidative/nitrosative stress (intracellular reactive oxygen species (ROS) and nitric oxide (NO) release) induced by the studied microparticles in HepG2, SH-SY5Y and 3T3-L1 cell cultures were determined using the MTT, DCF-DA (2',7'-dichlorfluorescein-diacetate) and Griess methods respectively. Depending on the cell type and γ-BTO concentration, results showed only weak cytotoxic effects after 24h of γ-BTO exposure and cell proliferation effects for longer treatment times. Only reduced NO release increases (corresponding to high γ-BTO concentrations) were detected in case of SH-SY5Y and 3T3-L1 cells. The intracellular ROS production (higher for HepG2 cells) appeared inversely proportional to the γ-BTO concentration. The obtained results indicated a promising in vitro biocompatibility of γ-BTO and encourage further studies regarding its potential for biomedical applications.
Collapse
Affiliation(s)
- T Popescu
- National Institute of Materials Physics, P.O. Box MG-7, Bucharest, Romania; University of Bucharest, Faculty of Physics, Bucharest, Romania.
| | - A R Lupu
- Cantacuzino National Institute of Research and Development for Microbiology and Immunology, Bucharest, Romania
| | - M Feder
- National Institute of Materials Physics, P.O. Box MG-7, Bucharest, Romania
| | | | - V S Teodorescu
- National Institute of Materials Physics, P.O. Box MG-7, Bucharest, Romania
| | - A M Vlaicu
- National Institute of Materials Physics, P.O. Box MG-7, Bucharest, Romania
| | - L Diamandescu
- National Institute of Materials Physics, P.O. Box MG-7, Bucharest, Romania
| |
Collapse
|
46
|
Inducible nitric oxide synthase is a major intermediate in signaling pathways for the survival of plasma cells. Nat Immunol 2014; 15:275-82. [DOI: 10.1038/ni.2806] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/06/2013] [Indexed: 12/31/2022]
|
47
|
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) remain major causes of morbidity and mortality in critical care medicine despite advances in therapeutic modalities. ALI can be associated with sepsis, trauma, pharmaceutical or xenobiotic exposures, high oxygen therapy (hyperoxia), and mechanical ventilation. Of the small gas molecules (NO, CO, H₂S) that arise in human beings from endogenous enzymatic activities, the physiological significance of NO is well established, whereas that of CO or H₂S remains controversial. Recent studies have explored the potential efficacy of inhalation therapies using these small gas molecules in animal models of ALI. NO has vasoregulatory and redox-active properties and can function as a selective pulmonary vasodilator. Inhaled NO (iNO) has shown promise as a therapy in animal models of ALI including endotoxin challenge, ischemia/reperfusion (I/R) injury, and lung transplantation. CO, another diatomic gas, can exert cellular tissue protection through antiapoptotic, anti-inflammatory, and antiproliferative effects. CO has shown therapeutic potential in animal models of endotoxin challenge, oxidative lung injury, I/R injury, pulmonary fibrosis, ventilator-induced lung injury, and lung transplantation. H₂S, a third potential therapeutic gas, can induce hypometabolic states in mice and can confer both pro- and anti-inflammatory effects in rodent models of ALI and sepsis. Clinical studies have shown variable results for the efficacy of iNO in lung transplantation and failure for this therapy to improve mortality in ARDS patients. No clinical studies have been conducted with H₂S. The clinical efficacy of CO remains unclear and awaits further controlled clinical studies in transplantation and sepsis.
Collapse
Affiliation(s)
- Stefan W Ryter
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
48
|
Feng X, Sun T, Bei Y, Ding S, Zheng W, Lu Y, Shen P. S-nitrosylation of ERK inhibits ERK phosphorylation and induces apoptosis. Sci Rep 2013; 3:1814. [PMID: 23657295 PMCID: PMC3648801 DOI: 10.1038/srep01814] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/23/2013] [Indexed: 01/10/2023] Open
Abstract
Extracellular signal-regulated kinase (ERK) belongs to the mitogen-activated protein kinases (MAPK) superfamily. Aberrant upregulation and activation of ERK cascades may often lead to tumor cell development. However, how ERK is involved in tumor progression is yet to be defined. In current study, we described that ERK undergoes S-nitrosylation by nitric oxide (NO). ERK S-nitrosylation inhibits its phosphorylation and triggers apoptotic program as verified by massive apoptosis in fluorescence staining. The proapoptotic effect of NO induced S-nitrosylation is reversed by NO scavenger Haemoglobin (HB). Furthermore, an S-nitrosylation dead ERK mutant C183A also demolishes the proapoptotic potential of NO and favors cell survival. Therefore, Cys183 might be a potential S-nitrosylation site in ERK. In addition, S-nitrosylation is a general phenomenon that regulates ERK activity. These findings identify a novel link between NO-mediated S-nitrosylation and ERK regulation, which provide critical insights into the control of apoptosis and tumor development.
Collapse
Affiliation(s)
- Xiujing Feng
- State Key Laboratory of Pharmaceutical Biotechnology and Model Animal Research Center (MARC), Nanjing University, Nanjing 210093, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Parrish AB, Freel CD, Kornbluth S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol 2013; 5:5/6/a008672. [PMID: 23732469 DOI: 10.1101/cshperspect.a008672] [Citation(s) in RCA: 445] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Caspases are the primary drivers of apoptotic cell death, cleaving cellular proteins that are critical for dismantling the dying cell. Initially translated as inactive zymogenic precursors, caspases are activated in response to a variety of cell death stimuli. In addition to factors required for their direct activation (e.g., dimerizing adaptor proteins in the case of initiator caspases that lie at the apex of apoptotic signaling cascades), caspases are regulated by a variety of cellular factors in a myriad of physiological and pathological settings. For example, caspases may be modified posttranslationally (e.g., by phosphorylation or ubiquitylation) or through interaction of modulatory factors with either the zymogenic or active form of a caspase, altering its activation and/or activity. These regulatory events may inhibit or enhance enzymatic activity or may affect activity toward particular cellular substrates. Finally, there is emerging literature to suggest that caspases can participate in a variety of cellular processes unrelated to apoptotic cell death. In these settings, it is particularly important that caspases are maintained under stringent control to avoid inadvertent cell death. It is likely that continued examination of these processes will reveal new mechanisms of caspase regulation with implications well beyond control of apoptotic cell death.
Collapse
Affiliation(s)
- Amanda B Parrish
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
50
|
Seo OW, Kim JH, Lee KS, Lee KS, Kim JH, Won MH, Ha KS, Kwon YG, Kim YM. Kurarinone promotes TRAIL-induced apoptosis by inhibiting NF-κB-dependent cFLIP expression in HeLa cells. Exp Mol Med 2013; 44:653-64. [PMID: 22932446 PMCID: PMC3509182 DOI: 10.3858/emm.2012.44.11.074] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study was designed to investigate the effects of the prenylated flavonoid kurarinone on TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis and its underlying mechanism. A low dose of kurarinone had no significant effect on apoptosis, but this compound markedly promoted tumor cell death through elevation of Bid cleavage, cytochrome c release and caspase activation in HeLa cells treated with TRAIL. Caspase inhibitors inhibited kurarinone-mediated cell death, which indicates that the cytotoxic effect of this compound is mediated by caspase-dependent apoptosis. The cytotoxic effect of kurarinone was not associated with expression levels of Bcl-2 and IAP family proteins, such as Bcl-2, Bcl-xL, Bid, Bad, Bax, XIAP, cIAP-1 and cIAP-2. In addition, this compound did not regulate the death-inducing receptors DR4 and DR5. On the other hand, kurarinone significantly inhibited TRAIL-induced IKK activation, IκB degradation and nuclear translocation of NF-κB, as well as effectively suppressed cellular FLICE-inhibitory protein long form (cFLIPL) expression. The synergistic effects of kurarinone on TRAIL-induced apoptosis were mimicked when kurarinone was replaced by the NF-κB inhibitor withaferin A or following siRNA-mediated knockdown of cFLIPL. Moreover, cFLIP overexpression effectively antagonized kurarinone-mediated TRAIL sensitization. These data suggest that kurarinone sensitizes TRAIL-induced tumor cell apoptosis via suppression of NF-κB-dependent cFLIP expression, indicating that this compound can be used as an anti-tumor agent in combination with TRAIL.
Collapse
Affiliation(s)
- Ok Won Seo
- Vascular Homeostasis Laboratory, Departments of Molecular and Cellular Biochemistry and Institute of Medical Sciences School of Medicine Kangwon National University
| | | | | | | | | | | | | | | | | |
Collapse
|