1
|
Iyer M, Anand U, Thiruvenkataswamy S, Babu HWS, Narayanasamy A, Prajapati VK, Tiwari CK, Gopalakrishnan AV, Bontempi E, Sonne C, Barceló D, Vellingiri B. A review of chromium (Cr) epigenetic toxicity and health hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163483. [PMID: 37075992 DOI: 10.1016/j.scitotenv.2023.163483] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/13/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Carcinogenic metals affect a variety of cellular processes, causing oxidative stress and cancer. The widespread distribution of these metals caused by industrial, residential, agricultural, medical, and technical activities raises concern for adverse environmental and human health effects. Of these metals, chromium (Cr) and its derivatives, including Cr(VI)-induced, are of a public health concern as they cause DNA epigenetic alterations resulting in heritable changes in gene expression. Here, we review and discuss the role of Cr(VI) in epigenetic changes, including DNA methylation, histone modifications, micro-RNA changes, biomarkers of exposure and toxicity, and highlight prevention and intervention strategies to protect susceptible populations from exposure and adverse occupational health effects. Cr(VI) is a ubiquitous toxin linked to cardiovascular, developmental, neurological, and endocrine diseases as well as immunologic disorders and a high number of cancer types in humans following inhalation and skin contact. Cr alters DNA methylation levels as well as global and gene-specific histone posttranslational modifications, emphasizing the importance of considering epigenetics as a possible mechanism underlying Cr(VI) toxicity and cell-transforming ability. Our review shows that determining the levels of Cr(VI) in occupational workers is a crucial first step in shielding health problems, including cancer and other disorders. More clinical and preventative measures are therefore needed to better understand the toxicity and safeguard employees against cancer.
Collapse
Affiliation(s)
- Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Uttpal Anand
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Saranya Thiruvenkataswamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India; Department of Zoology (PG-SF), PSG college of arts and science, Coimbatore 641014, Tamil Nadu, India
| | - Harysh Winster Suresh Babu
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, India
| | - Chandan Kumar Tiwari
- Research and Development section, Carestream Health Inc., Oakdale, MN 55128, United States of America
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore 632 014, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, via Branze 38, 25123 Brescia, Italy
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H(2)O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, Girona 17003, Spain; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona 08034, Spain
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, North block, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
2
|
Ferreira D, Pinto DCGA, Silva H, Girol AP, de Lourdes Pereira M. Salicornia ramosissima J. Woods seeds affected the normal regenerative function on carbon tetrachloride-induced liver and kidney injury. Biomed Pharmacother 2018; 107:283-291. [PMID: 30098546 DOI: 10.1016/j.biopha.2018.07.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022] Open
Abstract
The growing importance of Salicornia plants as bioactive agents and health promoters associated with the continuous demand for alternative treatments for liver disorders, has stimulated us to evaluate the renal and hepatic effects of S. ramosissima seeds in mice under normal conditions and exposure to toxic products as carbon tetrachloride (CCl4). Thus, histopathological and lipid peroxidation evaluations of the liver and kidneys were performed. Powdered dried seeds of S. ramosissima (SRS) were administered orally for 22 days at a dose of 2000 mg/kg/day to male mice in three different settings: 1) seed effects, 2) protection against CCl4 acute toxicity (0.2 mL/kg) and 3) regeneration after acute exposure to CCl4 (0.2 mL/kg), each study being performed with appropriate control animals. Mice treated with SRS per se had slightly enlarged hepatic sinusoids and noticeable renal inflammation. SRS did not show effective protection against mice exposed to CCl4 and had no positive influence on liver and kidney recovery after CCl4 administration. These results demonstrated that SRS failed to improve hepato- and nephrotoxicity, in addition to the apparent synergism between CCl4 and SRS under these experimental conditions. Although the biological mechanisms of S. ramosissima are not fully understood, the evidence suggests further research to elucidate its adverse biological effects.
Collapse
Affiliation(s)
- Daniela Ferreira
- Department of Biology & CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C G A Pinto
- Department of Chemistry & QOPNA - Organic Chemistry and Natural and Agro-food Products, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Silva
- Department of Biology & CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Paula Girol
- Padre Albino University Centre, Catanduva, São Paulo, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo, Brazil
| | - Maria de Lourdes Pereira
- Department of Medical Sciences & CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Thompson RA, Isin EM, Ogese MO, Mettetal JT, Williams DP. Reactive Metabolites: Current and Emerging Risk and Hazard Assessments. Chem Res Toxicol 2016; 29:505-33. [DOI: 10.1021/acs.chemrestox.5b00410] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Richard A. Thompson
- DMPK, Respiratory, Inflammation & Autoimmunity iMed, AstraZeneca R&D, 431 83 Mölndal, Sweden
| | - Emre M. Isin
- DMPK, Cardiovascular & Metabolic Diseases iMed, AstraZeneca R&D, 431 83 Mölndal, Sweden
| | - Monday O. Ogese
- Translational Safety, Drug Safety and Metabolism, AstraZeneca R&D, Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge CB4 0FZ, United Kingdom
| | - Jerome T. Mettetal
- Translational Safety, Drug Safety and Metabolism, AstraZeneca R&D, 35 Gatehouse Dr, Waltham, Massachusetts 02451, United States
| | - Dominic P. Williams
- Translational Safety, Drug Safety and Metabolism, AstraZeneca R&D, Darwin Building 310, Cambridge Science Park, Milton Rd, Cambridge CB4 0FZ, United Kingdom
| |
Collapse
|
4
|
Geenen S, du Preez FB, Snoep JL, Foster AJ, Sarda S, Kenna JG, Wilson ID, Westerhoff HV. Glutathione metabolism modeling: a mechanism for liver drug-robustness and a new biomarker strategy. Biochim Biophys Acta Gen Subj 2013; 1830:4943-59. [PMID: 23643929 DOI: 10.1016/j.bbagen.2013.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/26/2013] [Accepted: 04/12/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND Glutathione metabolism can determine an individual's ability to detoxify drugs. To increase understanding of the dynamics of cellular glutathione homeostasis, we have developed an experiment-based mathematical model of the kinetics of the glutathione network. This model was used to simulate perturbations observed when human liver derived THLE cells, transfected with human cytochrome P452E1 (THLE-2E1 cells), were exposed to paracetamol (acetaminophen). METHODS Human liver derived cells containing extra human cytochrome P4502E1 were treated with paracetamol at various levels of methionine and in the presence and absence of an inhibitor of glutamyl-cysteine synthetase (GCS). GCS activity was also measured in extracts. Intracellular and extracellular concentrations of substances involved in glutathione metabolism were measured as was damage to mitochondria and proteins. A bottom up mathematical model was made of the metabolic pathways around and including glutathione. RESULTS Our initial model described some, but not all the metabolite-concentration and flux data obtained when THLE-2E1 cells were exposed to paracetamol at concentrations high enough to affect glutathione metabolism. We hypothesized that the lack of correspondence could be due to upregulation of expression of glutamyl cysteine synthetase, one of the enzymes controlling glutathione synthesis, and confirmed this experimentally. A modified model which incorporated this adaptive response adequately described the observed changes in the glutathione pathway. Use of the adaptive model to analyze the functioning of the glutathione network revealed that a threshold input concentration of methionine may be required for effective detoxification of reactive metabolites by glutathione conjugation. The analysis also provided evidence that 5-oxoproline and ophthalmic acid are more useful biomarkers of glutathione status when analyzed together than when analyzed in isolation, especially in a new, model-assisted integrated biomarker strategy. CONCLUSION A robust mathematical model of the dynamics of cellular changes in glutathione homeostasis in cells has been developed and tested in vitro. GENERAL SIGNIFICANCE Mathematical models of the glutathione pathway that help examine mechanisms of cellular protection against xenobiotic toxicity and the monitoring thereof, can now be made.
Collapse
|
5
|
Stachulski AV, Baillie TA, Kevin Park B, Scott Obach R, Dalvie DK, Williams DP, Srivastava A, Regan SL, Antoine DJ, Goldring CEP, Chia AJL, Kitteringham NR, Randle LE, Callan H, Castrejon JL, Farrell J, Naisbitt DJ, Lennard MS. The Generation, Detection, and Effects of Reactive Drug Metabolites. Med Res Rev 2012; 33:985-1080. [DOI: 10.1002/med.21273] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andrew V. Stachulski
- Department of Chemistry, Robert Robinson Laboratories; University of Liverpool; Liverpool; L69 7ZD; UK
| | - Thomas A. Baillie
- School of Pharmacy; University of Washington; Box 357631; Seattle; Washington; 98195-7631
| | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - R. Scott Obach
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Worldwide Research & Development; Groton; Connecticut 06340
| | - Deepak K. Dalvie
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Worldwide Research & Development; La Jolla; California 94121
| | - Dominic P. Williams
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Abhishek Srivastava
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Sophie L. Regan
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Daniel J. Antoine
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Christopher E. P. Goldring
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Alvin J. L. Chia
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Neil R. Kitteringham
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Laura E. Randle
- School of Pharmacy and Biomolecular Sciences, Faculty of Science; Liverpool John Moores University; James Parsons Building, Byrom Street; Liverpool L3 3AF; UK
| | - Hayley Callan
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - J. Luis Castrejon
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - John Farrell
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Martin S. Lennard
- Academic Unit of Medical Education; University of Sheffield; 85 Wilkinson Street; Sheffield S10 2GJ; UK
| |
Collapse
|
6
|
Modulation of Liver l-γ-Glutamyl-l-cysteinylglycine Homeostasis By N-Acetyl-Glucosamine-thiazolidine-4(R)-carboxylic Acid in Mice. Am J Med Sci 2012; 343:310-5. [DOI: 10.1097/maj.0b013e31822b02f4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Ryan PM, Bourdi M, Korrapati MC, Proctor WR, Vasquez RA, Yee SB, Quinn TD, Chakraborty M, Pohl LR. Endogenous interleukin-4 regulates glutathione synthesis following acetaminophen-induced liver injury in mice. Chem Res Toxicol 2011; 25:83-93. [PMID: 22107450 DOI: 10.1021/tx2003992] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a recent study, we reported that interleukin (IL)-4 had a protective role against acetaminophen (APAP)-induced liver injury (AILI), although the mechanism of protection was unclear. Here, we carried out more detailed investigations and have shown that one way IL-4 may control the severity of AILI is by regulating glutathione (GSH) synthesis. In the present studies, the protective role of IL-4 in AILI was established definitively by showing that C57BL/6J mice made deficient in IL-4 genetically (IL-4(-/-)) or by depletion with an antibody, were more susceptible to AILI than mice not depleted of IL-4. The increased susceptibility of IL-4(-/-) mice was not due to elevated levels of hepatic APAP-protein adducts but was associated with a prolonged reduction in hepatic GSH that was attributed to decreased gene expression of γ-glutamylcysteine ligase (γ-GCL). Moreover, administration of recombinant IL-4 to IL-4(-/-) mice postacetaminophen treatment diminished the severity of liver injury and increased γ-GCL and GSH levels. We also report that the prolonged reduction of GSH in APAP-treated IL-4(-/-) mice appeared to contribute toward increased liver injury by causing a sustained activation of c-Jun-N-terminal kinase (JNK) since levels of phosphorylated JNK remained significantly higher in the IL-4(-/-) mice up to 24 h after APAP treatment. Overall, these results show for the first time that IL-4 has a role in regulating the synthesis of GSH in the liver under conditions of cellular stress. This mechanism appears to be responsible at least in part for the protective role of IL-4 against AILI in mice and may have a similar role not only in AILI in humans but also in pathologies of the liver caused by other drugs and etiologies.
Collapse
Affiliation(s)
- Pauline M Ryan
- Molecular and Cellular Toxicology Section, Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health , 9000 Rockville Pike, Building 10, Room 8N110, Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Paracetamol treatment increases telomerase activity in rat embryonic liver cells. Pharmacol Rep 2011; 63:1435-41. [DOI: 10.1016/s1734-1140(11)70707-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/01/2011] [Indexed: 12/27/2022]
|
9
|
Gould NS, Min E, Gauthier S, Martin RJ, Day BJ. Lung glutathione adaptive responses to cigarette smoke exposure. Respir Res 2011; 12:133. [PMID: 21982222 PMCID: PMC3215650 DOI: 10.1186/1465-9921-12-133] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/07/2011] [Indexed: 01/21/2023] Open
Abstract
Background Smoking tobacco is a leading cause of chronic obstructive pulmonary disease (COPD), but although the majority of COPD cases can be directly related to smoking, only a quarter of smokers actually develop the disease. A potential reason for the disparity between smoking and COPD may involve an individual's ability to mount a protective adaptive response to cigarette smoke (CS). Glutathione (GSH) is highly concentrated in the lung epithelial lining fluid (ELF) and protects against many inhaled oxidants. The changes in GSH that occur with CS are not well investigated; therefore the GSH adaptive response that occurs with a commonly utilized CS exposure was examined in mice. Methods Mice were exposed to CS for 5 h after which they were rested in filtered air for up to 16 h. GSH levels were measured in the ELF, bronchoalveolar lavage cells, plasma, and tissues. GSH synthesis was assessed by measuring γ-glutamylcysteine ligase (GCL) activity in lung and liver tissue. Results GSH levels in the ELF, plasma, and liver were decreased by as much as 50% during the 5 h CS exposure period whereas the lung GSH levels were unchanged. Next, the time course of rebound in GSH levels after the CS exposure was examined. CS exposure initially decreased ELF GSH levels by 50% but within 2 h GSH levels rebound to about 3 times basal levels and peaked at 16 h with a 6-fold increase and over repeat exposures were maintained at a 3-fold elevation for up to 2 months. Similar changes were observed in tissue GCL activity which is the rate limiting step in GSH synthesis. Furthermore, elevation in ELF GSH levels was not arbitrary since the CS induced GSH adaptive response after a 3d exposure period prevented GSH levels from dropping below basal levels. Conclusions CS exposures evoke a powerful GSH adaptive response in the lung and systemically. These data suggests there may be a sensor that sets the ELF GSH adaptive response to prevent GSH levels from dipping below basal levels. Factors that disrupt GSH adaptive responses may contribute to the pathophysiology of COPD.
Collapse
Affiliation(s)
- Neal S Gould
- Department of Pharmaceutical Sciences, University of Colorado, Denver, CO, USA
| | | | | | | | | |
Collapse
|
10
|
Masubuchi Y, Nakayama J, Watanabe Y. Sex difference in susceptibility to acetaminophen hepatotoxicity is reversed by buthionine sulfoximine. Toxicology 2011; 287:54-60. [DOI: 10.1016/j.tox.2011.05.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/25/2011] [Accepted: 05/28/2011] [Indexed: 12/20/2022]
|
11
|
Park BK, Boobis A, Clarke S, Goldring CEP, Jones D, Kenna JG, Lambert C, Laverty HG, Naisbitt DJ, Nelson S, Nicoll-Griffith DA, Obach RS, Routledge P, Smith DA, Tweedie DJ, Vermeulen N, Williams DP, Wilson ID, Baillie TA. Managing the challenge of chemically reactive metabolites in drug development. Nat Rev Drug Discov 2011; 10:292-306. [PMID: 21455238 DOI: 10.1038/nrd3408] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The normal metabolism of drugs can generate metabolites that have intrinsic chemical reactivity towards cellular molecules, and therefore have the potential to alter biological function and initiate serious adverse drug reactions. Here, we present an assessment of the current approaches used for the evaluation of chemically reactive metabolites. We also describe how these approaches are being used within the pharmaceutical industry to assess and minimize the potential of drug candidates to cause toxicity. At early stages of drug discovery, iteration between medicinal chemistry and drug metabolism can eliminate perceived reactive metabolite-mediated chemical liabilities without compromising pharmacological activity or the need for extensive safety evaluation beyond standard practices. In the future, reactive metabolite evaluation may also be useful during clinical development for improving clinical risk assessment and risk management. Currently, there remains a huge gap in our understanding of the basic mechanisms that underlie chemical stress-mediated adverse reactions in humans. This review summarizes our views on this complex topic, and includes insights into practices considered by the pharmaceutical industry.
Collapse
Affiliation(s)
- B Kevin Park
- MRC Centre for Drug Safety Science, Division of Molecular & Clinical Pharmacology, The Institute of Translational Medicine, University of Liverpool, Liverpool L693GE, UK. B.K.Park@liverpool. ac.uk
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Koriem KMM, Arbid MS, El-Gendy NFI. The protective role of Tropaeolum majus on blood and liver toxicity induced by diethyl maleate in rats. Toxicol Mech Methods 2011; 20:579-86. [PMID: 20883155 DOI: 10.3109/15376516.2010.518171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The protective role of Tropaelum majus (T.majus) methyl alcohol extract and vitamin E in the case of toxic effect induced by diethyl maleate was evaluated. Forty-two male albino rats were divided into seven groups of six rats each for 15 days. Group 1: normal control group. Group 2: taken daily oral dose of paraffin oil (0.25ml/100g b.wt rat). Group 3: received daily oral dose of vitamin E (100mg/kg b.wt rat). Group 4: taken daily oral dose of 10% of the LD50 of T.majus methyl alcohol extract. Groups 5–7: injected intra-peritoneally with diethyl maleate (5 μl/100g b.wt rat) but groups 6 and 7 received a daily oral dose of either vitamin E or 10% of the LD50 of T.majus methyl alcohol extract 1h prior to diethyl maleate injection. The present results revealed that diethyl maleate induced serum aspartate and alanine aminotransferases enzymes activities decreased in serum, but their activities in the hepatic tissue showed an increase. Glutathione and glucose-6-phosphate dehydrogenase levels showed a decrease, but thiobarbituric acid reactive substances level showed an increase in both serum and liver tissue. Serum and liver proteins decreased in serum and liver tissue. A significant decrease in blood parameters (hemoglobin, hematocrit, as well as red and white blood cells) and serum glucose occurred. Histopathological results showed that diethyl maleate induced a hoop of edema in the hepatic periportal area; while T.majus methyl alcohol extract or vitamin E prior to diethyl maleate injection shift blood and liver toxicity induced by diethyl maleate towards normal values and preserved hepatic lobular architecture. In conclusion, pre-treatment with either T.majus methyl alcohol extract or vitamin E provide protection against blood and liver toxicity induced by diethyl maleate in rats, these results were confirmed by histological examinations.
Collapse
Affiliation(s)
- Khaled M M Koriem
- Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia (USM), Malaysia.
| | | | | |
Collapse
|
13
|
Kitteringham NR, Abdullah A, Walsh J, Randle L, Jenkins RE, Sison R, Goldring CEP, Powell H, Sanderson C, Williams S, Higgins L, Yamamoto M, Hayes J, Park BK. Proteomic analysis of Nrf2 deficient transgenic mice reveals cellular defence and lipid metabolism as primary Nrf2-dependent pathways in the liver. J Proteomics 2010; 73:1612-31. [PMID: 20399915 PMCID: PMC2891861 DOI: 10.1016/j.jprot.2010.03.018] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/16/2010] [Accepted: 03/31/2010] [Indexed: 02/07/2023]
Abstract
The transcription factor Nrf2 regulates expression of multiple cellular defence proteins through the antioxidant response element (ARE). Nrf2-deficient mice (Nrf2(-/-)) are highly susceptible to xenobiotic-mediated toxicity, but the precise molecular basis of enhanced toxicity is unknown. Oligonucleotide array studies suggest that a wide range of gene products is altered constitutively, however no equivalent proteomics analyses have been conducted. To define the range of Nrf2-regulated proteins at the constitutive level, protein expression profiling of livers from Nrf2(-/-) and wild type mice was conducted using both stable isotope labelling (iTRAQ) and gel electrophoresis methods. To establish a robust reproducible list of Nrf2-dependent proteins, three independent groups of mice were analysed. Correlative network analysis (MetaCore) identified two predominant groups of Nrf2-regulated proteins. As expected, one group comprised proteins involved in phase II drug metabolism, which were down-regulated in the absence of Nrf2. Surprisingly, the most profound changes were observed amongst proteins involved in the synthesis and metabolism of fatty acids and other lipids. Importantly, we show here for the first time, that the enzyme ATP-citrate lyase, responsible for acetyl-CoA production, is negatively regulated by Nrf2. This latter finding suggests that Nrf2 is a major regulator of cellular lipid disposition in the liver.
Collapse
Affiliation(s)
- Neil R Kitteringham
- MRC Centre for Drug Safety Science, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Drugs are generally converted to biologically inactive forms and eliminated from the body, principally by hepatic metabolism. However, certain drugs undergo biotransformation to metabolites that can interfere with cellular functions through their intrinsic chemical reactivity towards glutathione, leading to thiol depletion, and functionally critical macromolecules, resulting in reversible modification, irreversible adduct formation, and irreversible loss of activity. There is now a great deal of evidence which shows that reactive metabolites are formed from drugs known to cause hepatotoxicity, such as acetaminophen, tamoxifen, isoniazid, and amodiaquine. The main theme of this article is to review the evidence for chemically reactive metabolites being initiating factors for the multiple downstream biological events culminating in toxicity. The major objectives are to understand those idiosyncratic hepatotoxicities thought to be caused by chemically reactive metabolites and to define the role of toxic metabolites.
Collapse
|
15
|
Wang CC, Fang KM, Yang CS, Tzeng SF. Reactive oxygen species-induced cell death of rat primary astrocytes through mitochondria-mediated mechanism. J Cell Biochem 2009; 107:933-43. [DOI: 10.1002/jcb.22196] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Wu H, McBride TJ, Isanhart JP, Cox SB, Hooper MJ. Responses of glutamate cysteine ligase and glutathione to oxidants in deer mice (Peromyscus maniculatus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:1572-1578. [PMID: 19328550 DOI: 10.1016/j.ecoenv.2009.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 02/22/2009] [Accepted: 02/26/2009] [Indexed: 05/27/2023]
Abstract
Sensitivities of a wildlife species, deer mice, to oxidants were evaluated. A single dose (1589 mg/kg body weight by intraperitoneal injection) of carbon tetrachloride, a typical hepatotoxicant, caused changes in GCL activity and GSH content in multiple organs of deer mice. Hepatic GCL activity and GSH content were depleted substantially (P<0.01), renal GCL activity increased (P<0.05). Blood, brain and heart GCL activities increased (P<0.05), whereas GSH contents decreased significantly. Deer mice were exposed to Pb, or Pb together with Cu and Zn via drinking water for 4 weeks. GCL activities were not significantly affected by treatments. GSH contents were increased significantly by Pb alone, Pb with medium and high concentrations of Cu and Zn. Effects of multi-metal-contaminated soil were investigated via lactational, juvenile and lifelong exposure to feed supplemented with soils. Metal-contaminated soils did not lead to significant effects in pups via lactation, 50-day exposure altered GSH content marginally, while 100-day exposure resulted in marked GCL activity depletion. After 100-day exposure, GCL activities of the medium soil-, high soil- and Pb-treated deer mice were only 53%, 40% and 46% of the control, respectively (P<0.0001).
Collapse
Affiliation(s)
- Hongmei Wu
- The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79409, USA.
| | | | | | | | | |
Collapse
|
17
|
Raghunathan VK, Tettey JNA, Ellis EM, Grant MH. Comparative chronicin vitrotoxicity of hexavalent chromium to osteoblasts and monocytes. J Biomed Mater Res A 2009; 88:543-50. [DOI: 10.1002/jbm.a.31893] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Antoine DJ, Williams DP, Park BK. Understanding the role of reactive metabolites in drug-induced hepatotoxicity: state of the science. Expert Opin Drug Metab Toxicol 2009; 4:1415-27. [PMID: 18950283 DOI: 10.1517/17425255.4.11.1415] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Drug-induced liver injury (DILI) represents a major impediment to the development of new drugs and is a leading cause of drug withdrawal. The occurrence of hepatotoxicity has been closely associated with the formation of chemically reactive metabolites. Huge investment has focused on the screening of chemically reactive metabolites to offer a pragmatic approach to produce safer drugs and also reduce drug attrition and prevent market place withdrawal. However, questions surrounding the importance of chemically reactive metabolites still remain. Increasing evidence now exists for the multi-factorial nature of DILI, in particular the role played by the host immune system or disease state in the pathogenesis of DILI. This review aims to evaluate the current measures for the prediction and diagnosis of DILI and to highlight investigations being made to understand the multidimensional nature. Some of the steps being made to generate improved physiological systems to identify more sensitive, reflective mechanism-based biomarkers to aid the earlier identification of DILI and develop safer medicines are also discussed.
Collapse
Affiliation(s)
- Daniel J Antoine
- University of Liverpool, MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, L69 3GE, UK.
| | | | | |
Collapse
|
19
|
Botta D, White CC, Vliet-Gregg P, Mohar I, Shi S, McGrath MB, McConnachie LA, Kavanagh TJ. Modulating GSH Synthesis Using Glutamate Cysteine Ligase Transgenic and Gene-Targeted Mice. Drug Metab Rev 2008; 40:465-77. [DOI: 10.1080/03602530802186587] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Jenkins RE, Kitteringham NR, Goldring CEP, Dowdall SMJ, Hamlett J, Lane CS, Boerma JS, Vermeulen NPE, Park BK. Glutathione-S-transferase pi as a model protein for the characterisation of chemically reactive metabolites. Proteomics 2008; 8:301-15. [PMID: 18203258 DOI: 10.1002/pmic.200700843] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Indexed: 05/30/2025]
Abstract
Chemically reactive metabolites (CRMs) are thought to be responsible for a number of adverse drug reactions through modification of critical proteins. Methods that defined the chemistry of protein modification at an early stage would provide invaluable tools for drug safety assessment. Here, human GST pi (GSTP) was exploited as a model target protein to determine the chemical, biochemical and functional consequences of exposure to the hepatotoxic CRM of paracetamol (APAP), N-acetyl-p-benzoquinoneimine (NAPQI). Site-specific, dose-dependent modification of Cys47 in native and His-tagged GSTP was revealed by MS, and correlated with inhibition of glutathione (GSH) conjugating activity. In addition, the adaptation of iTRAQ labelling technology to define precisely the quantitative relationship between covalent modification and protein function is described. Multiple reaction monitoring (MRM)-MS of GSTP allowed high sensitivity detection of modified peptides at physiological levels of exposure. Finally, a bioengineered mutant cytochrome P450 with a broad spectrum of substrate specificities was used in an in vitro reaction system to bioactivate APAP: in this model, GSTP trapped the CRM and exhibited both reduced enzyme activity and site-specific modification of the protein. These studies provide the foundation for the development of novel test systems to predict the toxicological potential of CRMs produced by new therapeutic agents.
Collapse
Affiliation(s)
- Rosalind E Jenkins
- Department of Pharmacology and Therapeutics, School of Biomedical Sciences, University of Liverpool, Liverpool, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
alpha(1)-Adrenoceptor antagonists prevent paracetamol-induced hepatotoxicity in mice. Br J Pharmacol 2007; 153:820-30. [PMID: 18071297 DOI: 10.1038/sj.bjp.0707620] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Paracetamol, a major cause of acute liver failure (ALF) represents a significant clinical problem. Adrenoceptor stimulation or antagonism can modulate chemical-induced hepatotoxicity. We investigated the role of endogenous catecholamines and alpha(1)-adrenoceptors in the development of paracetamol- induced hepatotoxicity. EXPERIMENTAL APPROACH Paracetamol (3.5 mmol kg(-1)) was administered to male CD-1 mice, with and without alpha(1)-adrenoceptor antagonists (prazosin, doxazosin, terazosin and tamsulosin; 35.7 micromol kg(-1)). Serum transaminases and hepatic glutathione (GSH) levels were assessed as markers of hepatic damage. Paracetamol bioactivation was assessed by covalent binding, hepatic and urinary conjugate formation and uridine glucuronosyltransferase activity. Plasma catecholamines levels and hepatic congestion were also analysed. KEY RESULTS Plasma catecholamine levels were significantly elevated 5 h post paracetamol administration. Prazosin prevented hepatotoxicity when administered 1 h before a toxic paracetamol insult and importantly, when administered up to 1 h post paracetamol injection. Prazosin had no effect on paracetamol-induced depletion of hepatic GSH, paracetamol bioactivation or paracetamol-induced transcription of defence genes. Paracetamol toxicity is associated with marked accumulation of erythrocytes within hepatic sinusoids and prazosin completely prevented this accumulation. CONCLUSION AND IMPLICATIONS Paracetamol-induced hepatocellular damage is associated with increased circulating catecholamines. alpha(1)-Adrenoceptor antagonists conferred complete protection from paracetamol -induced hepatotoxicity. Protection was associated with absence of hepatic erythrocyte accumulation. Increased catecholamine levels may contribute to the pathophysiology of paracetamol-induced hepatotoxicity by compromising hepatic perfusion. Protection against paracetamol toxicity by alpha(1) antagonists in mice has implications for therapeutic management of patients presenting with paracetamol overdose and ALF.
Collapse
|
22
|
Randle LE, Goldring CEP, Benson CA, Metcalfe PN, Kitteringham NR, Park BK, Williams DP. Investigation of the effect of a panel of model hepatotoxins on the Nrf2-Keap1 defence response pathway in CD-1 mice. Toxicology 2007; 243:249-60. [PMID: 18078705 DOI: 10.1016/j.tox.2007.10.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/04/2007] [Accepted: 10/04/2007] [Indexed: 01/27/2023]
Abstract
The Keap1-Nrf2-ARE signalling pathway has emerged as an important regulator of the mammalian defence system to enable detoxification and clearance of foreign chemicals. Recent studies by our group using paracetamol (APAP), diethylmaleate and buthionine sulphoximine have shown that for a given xenobiotic molecule, Nrf2 induction in the murine liver is associated with protein reactivity and glutathione depletion. Here, we have investigated, in vivo, whether the ability of four murine hepatotoxins, paracetamol, bromobenzene (BB), carbon tetrachloride (CCl4) and furosemide (FS) to deplete hepatic glutathione (GSH) is related to induction of hepatic Nrf2 nuclear translocation and Nrf2-dependent gene expression. Additionally, we studied whether hepatic Nrf2 nuclear translocation is a general response during the early stages of acute hepatic chemical stress in vivo. Male CD-1 mice were administered APAP (3.5 mmol/kg), FS (1.21 mmol/kg), BB (4.8 mmol/kg) and CCl4 (1 mmol/kg) for 1, 5 and 24h. Each compound elicited significant serum ALT increases after 24h (ALT U/L: APAP, 3036+/-1462; BB, 5308+/-2210; CCl4, 5089+/-1665; FS, 2301+/-1053), accompanied by centrilobular damage as assessed by histopathology. Treatment with APAP also elicited toxicity at a much earlier time point (5h) than the other hepatotoxins (ALT U/L: APAP, 1780+/-661; BB, 161+/-15; CCl4, 90+/-23; FS, 136+/-27). Significant GSH depletion was seen with APAP (9.6+/-1.7% of control levels) and BB (52.8+/-6.2% of control levels) 1h after administration, but not with FS and CCl4. Western Blot analysis revealed an increase in nuclear Nrf2, 1h after administration of BB (209+/-10% control), CCl4 (146+/-3% control) and FS (254+/-41% control), however this was significantly lower than the levels observed in the APAP-treated mice (462+/-36% control). The levels of Nrf2-dependent gene induction were also analysed by quantitative real-time PCR and Western blotting. Treatment with APAP for 1h caused a significant increase in the levels of haem oxygenase-1 (HO-1; 2.85-fold) and glutamate cysteine ligase (GCLC; 1.62-fold) mRNA. BB and FS did not affect the mRNA levels of either gene after 1h of treatment; however CCl4 significantly increased HO-1 mRNA at this time point. After 24h treatment with the hepatotoxins, there was evidence for the initiation of a late defence response. BB significantly increased both HO-1 and GCLC protein at this time point, CCl4 increased GCLC protein alone, although FS did not alter either of these proteins. In summary, we have demonstrated that the hepatotoxins BB, CCl4 and FS can induce a small but significant increase in Nrf2 accumulation in hepatic nuclei. However, this was associated with modest changes in hepatic GSH, a delayed development of toxicity and was insufficient to activate an early functional adaptive response to these hepatotoxins.
Collapse
Affiliation(s)
- Laura E Randle
- Drug Safety Research Group, Department of Pharmacology & Therapeutics, The University of Liverpool, Sherrington Buildings, Ashton Street, Liverpool L69 3GE, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
23
|
Upregulation of AP1 by tertiary butyl hydroperoxide induced oxidative stress and subsequent effect on spermatogenesis in mice testis. Mol Cell Biochem 2007; 308:177-81. [DOI: 10.1007/s11010-007-9626-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 10/03/2007] [Indexed: 12/19/2022]
|
24
|
Beyer RP, Fry RC, Lasarev MR, McConnachie LA, Meira LB, Palmer VS, Powell CL, Ross PK, Bammler TK, Bradford BU, Cranson AB, Cunningham ML, Fannin RD, Higgins GM, Hurban P, Kayton RJ, Kerr KF, Kosyk O, Lobenhofer EK, Sieber SO, Vliet PA, Weis BK, Wolfinger R, Woods CG, Freedman JH, Linney E, Kaufmann WK, Kavanagh TJ, Paules RS, Rusyn I, Samson LD, Spencer PS, Suk W, Tennant RJ, Zarbl H. Multicenter Study of Acetaminophen Hepatotoxicity Reveals the Importance of Biological Endpoints in Genomic Analyses. Toxicol Sci 2007; 99:326-37. [PMID: 17562736 DOI: 10.1093/toxsci/kfm150] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene expression profiling is a widely used technique with data from the majority of published microarray studies being publicly available. These data are being used for meta-analyses and in silico discovery; however, the comparability of toxicogenomic data generated in multiple laboratories has not been critically evaluated. Using the power of prospective multilaboratory investigations, seven centers individually conducted a common toxicogenomics experiment designed to advance understanding of molecular pathways perturbed in liver by an acute toxic dose of N-acetyl-p-aminophenol (APAP) and to uncover reproducible genomic signatures of APAP-induced toxicity. The nonhepatotoxic APAP isomer N-acetyl-m-aminophenol was used to identify gene expression changes unique to APAP. Our data show that c-Myc is induced by APAP and that c-Myc-centered interactomes are the most significant networks of proteins associated with liver injury. Furthermore, sources of error and data variability among Centers and methods to accommodate this variability were identified by coupling gene expression with extensive toxicological evaluation of the toxic responses. We show that phenotypic anchoring of gene expression data is required for biologically meaningful analysis of toxicogenomic experiments.
Collapse
Affiliation(s)
- Richard P Beyer
- University of Washington, and Fred Hutchinson Cancer Research Center, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Owen A, Goldring C, Morgan P, Park BK, Pirmohamed M. Induction of P-glycoprotein in lymphocytes by carbamazepine and rifampicin: the role of nuclear hormone response elements. Br J Clin Pharmacol 2007; 62:237-42. [PMID: 16842400 PMCID: PMC1885083 DOI: 10.1111/j.1365-2125.2006.02587.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AIMS Carbamazepine (CBZ) is an inducer of cytochrome P450 enzymes, which have been implicated in many drug interactions. However, for immunosuppressant and anti-HIV drugs, whose main site of action is the lymphocyte, induction of P-glycoprotein (Pgp) may also be important. In this study, we have investigated whether CBZ acts as an inducer of Pgp in lymphocytes. METHODS Pgp expression was assessed by flow cytometry and real-time reverse transcriptase-polymerase chain reaction using lymphocytes from four healthy subjects after incubation with therapeutic concentrations of CBZ, using rifampicin as a positive control. Binding to DR-4 elements in the MDR1 promoter was assessed by electrophoretic mobility shift assay (EMSA) and a luciferase-reporter construct. RESULTS CBZ increased MDR1 mRNA expression at 6 h by 3.7-fold [95% confidence interval (CI) 0, 7.6) when compared with controls. CBZ increased lymphocyte Pgp expression at 72 h by 7.6-fold (95% CI 2.1, 13.2) over control values. EMSA revealed a 2.1-fold (95% CI 1.5, 2.7) increased binding to the DR-4 element of CBZ when compared with control values. Activation of the DR-4 element was confirmed using reporter constructs. Rifampicin also had similar effects in all experiments. CONCLUSIONS Carbamazepine induces Pgp in a manner comparable to rifampicin, by increasing binding to the DR4 element. This has implications for interactions involving drugs whose site of action is the lymphocyte.
Collapse
Affiliation(s)
- Andrew Owen
- Department of Pharmacology and Therapeutics, The University of Liverpool, Liverpool, UK
| | | | | | | | | |
Collapse
|
26
|
Kaur P, Kalia S, Bansal MP. Effect of diethyl maleate induced oxidative stress on male reproductive activity in mice: redox active enzymes and transcription factors expression. Mol Cell Biochem 2006; 291:55-61. [PMID: 16941228 DOI: 10.1007/s11010-006-9195-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 03/15/2006] [Indexed: 01/24/2023]
Abstract
Free radicals and reactive oxygen species (ROS) associated with oxidative stress are likely to play a number of significant roles in male reproduction. Present study was carried out to evaluate the effect of diethyl maleate (DEM) induced oxidative stress on male fertility in mice. Intraperitoneal injection of DEM for two weeks resulted in decrease in reduced glutathione and increase in the oxidized glutathione levels in the testis. Effect on the reproductive ability in term of sperm concentration, motility and fertility status was studied. Sperm concentration and motility were found to be significantly reduced along with a significant reduction in the litter size. Expression of redox sensitive transcription factor, cjun and cfos genes, along with gamma-glutamyl cysteine synthetase (GCS) and manganese superoxide dismutase (MnSOD) expression were also studied using RT-PCR after DEM treatment. RT-PCR analysis revealed decrease in the testicular mRNA expression for cjun and cfos whereas the expression for GCS and MnSOD increased. Enzyme activity of SOD also increased. The study reflects the effect of DEM induced oxidative stress on the reproductive ability of male mice and interplay of the various components of the antioxidant defense system and redox regulated transcription factors at the transcriptional level.
Collapse
Affiliation(s)
- Parminder Kaur
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | | | | |
Collapse
|
27
|
Botta D, Shi S, White CC, Dabrowski MJ, Keener CL, Srinouanprachanh SL, Farin FM, Ware CB, Ladiges WC, Pierce RH, Fausto N, Kavanagh TJ. Acetaminophen-induced liver injury is attenuated in male glutamate-cysteine ligase transgenic mice. J Biol Chem 2006; 281:28865-75. [PMID: 16840778 DOI: 10.1074/jbc.m605143200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acetaminophen overdose is a leading cause of drug-related acute liver failure in the United States. Glutathione, a tripeptide antioxidant protects cells against oxidative damage from reactive oxygen species and plays a crucial role in the detoxification of xenobiotics, including acetaminophen. Glutathione is synthesized in a two-step enzymatic reaction. Glutamate-cysteine ligase carries out the rate-limiting and first step in glutathione synthesis. We have generated C57Bl/6 mice that conditionally overexpress glutamate-cysteine ligase, and report here their resistance to acetaminophen-induced liver injury. Indices of liver injury included histopathology and serum alanine aminotransferase activity. Male transgenic mice induced to overexpress glutamate-cysteine ligase exhibited resistance to acetaminophen-induced liver injury when compared with acetaminophen-treated male mice carrying, but not expressing glutamate-cysteine ligase transgenes, or to female glutamate-cysteine ligase transgenic mice. We conclude that glutamate-cysteine ligase activity is an important factor in determining acetaminophen-induced liver injury in C57Bl/6 male mice. Because people are known to vary in their glutamate-cysteine ligase activity, this enzyme may also be an important determinant of sensitivity to acetaminophen-induced liver injury in humans.
Collapse
Affiliation(s)
- Dianne Botta
- Department of Environmental and Occupational Health Sciences, Comparative Medicine, and Pathology, and UW/NIEHS Center for Ecogenetics and Environmental Health, University of Washington, Seattle, Washington 68105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hoang YD, Avakian AP, Luderer U. Minimal ovarian upregulation of glutamate cysteine ligase expression in response to suppression of glutathione by buthionine sulfoximine. Reprod Toxicol 2006; 21:186-96. [PMID: 16183247 DOI: 10.1016/j.reprotox.2005.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Revised: 07/18/2005] [Accepted: 07/26/2005] [Indexed: 11/26/2022]
Abstract
The antioxidant tripeptide glutathione (GSH) protects ovarian follicles against oxidative damage that may lead to apoptotic death. The rate-limiting step in synthesis of GSH is catalyzed by glutamate cysteine ligase (GCL), a heterodimer composed of a catalytic subunit (GCLC), and a modifier subunit (GCLM). We hypothesized that GSH depletion in vivo or in vitro with buthionine sulfoximine (BSO), a specific inhibitor of GCL activity, would increase ovarian and granulosa cell GCL subunit expression. Ovarian glutathione levels are lowest on proestrous morning and increase to their highest levels on estrus and metestrus. Therefore, we treated rats on proestrous morning or on proestrous morning and again 12h later to prevent the normal increase in ovarian glutathione between proestrus and estrus. Ovarian Gclc and Gclm mRNA levels and GCLC protein levels increased transiently by 1.4-1.5-fold at 8 h, but not at 12 or 24 h, after a single dose of BSO administered to adult rats on the morning of proestrus. GCLC protein levels were also modestly increased 1.4-fold at 12 h after a second dose of BSO. GCLM protein levels increased 1.4-fold at 24 h after a single dose of BSO, but not at other time points. BSO treatment did not significantly alter ovarian GCL enzymatic activity or the intraovarian localization of either GCL subunit mRNA. Treatment of a human granulosa cell line or primary rat granulosa cells with BSO suppressed intracellular GSH; however, there was no compensatory upregulation of GCL subunit protein or mRNA levels. These results demonstrate that ovarian follicles and granulosa cells are minimally able to respond to acute GSH depletion by upregulating expression of GCL.
Collapse
Affiliation(s)
- Yvonne D Hoang
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California at Irvine, 5201 California Avenue, Suite 100, 92617, USA
| | | | | |
Collapse
|
29
|
Owen A, Goldring C, Morgan P, Chadwick D, Park BK, Pirmohamed M. Relationship between the C3435T and G2677T(A) polymorphisms in the ABCB1 gene and P-glycoprotein expression in human liver. Br J Clin Pharmacol 2005; 59:365-70. [PMID: 15752383 PMCID: PMC1884787 DOI: 10.1111/j.1365-2125.2005.02229.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIMS The aim of the study was to determine whether a correlation exists between MDR1 (ABCB1) gene polymorphisms at positions 3435 (C3435T) and 2677 (G2677T(A)) and the expression of human hepatic P-glycoprotein (P-gp). METHODS P-gp protein expression in 26 human livers was assessed by Western blotting and ABCB1 mRNA expression was determined by real time RT-PCR. The C3435T and G2677T(A) polymorphisms were identified by RFLP and direct sequence analysis, respectively. RESULTS The C and G allele frequencies for the C3435T and G2677T(A) polymorphisms were 0.48 and 0.79, respectively, and the genotypes were in Hardy-Weinberg equilibrium. There was a 200- and 20-fold variation in the expression of ABCB1 mRNA and Pgp protein expression, respectively. There were no differences in mRNA and protein expression identified amongst the different genotypes attributable to the C3435T and G2677T(A) polymorphisms in the ABCB1 gene. Exposure to a PXR ligand prior to death did not influence mRNA or protein expression. CONCLUSIONS There is substantial variability in the expression of Pgp in human liver, but this is not due to the presence of C3435T and G2677T(A) polymorphisms in the ABCB1 gene, although our study is limited by a small sample size.
Collapse
Affiliation(s)
- Andrew Owen
- Department of Pharmacology and Therapeutics, The University of Liverpool, Ashton Street, Liverpool, L69 3GE, U.K
| | | | | | | | | | | |
Collapse
|
30
|
Williams DP, Garcia-Allan C, Hanton G, LeNet JL, Provost JP, Brain P, Walsh R, Johnston GI, Smith DA, Park BK. Time course toxicogenomic profiles in CD-1 mice after nontoxic and nonlethal hepatotoxic paracetamol administration. Chem Res Toxicol 2005; 17:1551-61. [PMID: 15606129 DOI: 10.1021/tx049846x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adverse drug reactions are a major clinical problem. Drug-induced hepatotoxicity constitutes a large percentage of these reactions. A thorough understanding of the genetic events, specifically, the early "decision-making" processes underlying biological changes caused by drugs and metabolites, is required. To assist in the understanding of these events, we have employed the model hepatotoxin, paracetamol (APAP), and GeneChip technology to investigate global genetic events seen after nontoxic and toxic doses in the mouse. Mice were dosed [vehicle, nontoxic APAP (1 mmol/kg), and toxic APAP (3.5 mmol/kg)], and individual hepatic RNA samples were hybridized to separate chips to determine interanimal variation. Statistical analysis detected 175 CD-1 mouse genes that were significantly regulated (P < 4.1 x 10(-6)), and nonsignificant genes were discarded. For clarity, the significantly regulated genes were then binned into categories according to their major function-antioxidant, glutathione, metabolism, transcription, immune, and apoptosis. There was no hepatic stress observed after dosing 1 mmol/kg APAP, when measured by serum alanine aminotransferase levels. Hepatic toxicity was observed at both 4 and 24 h after a 3.5 mmol/kg dose of APAP. Time course expression profiles for selected genes have been created. These results demonstrate that most active gene expression occurs around 4 h after a toxic dose of APAP. Down-regulation of these genes is observed over 24 h, coinciding with the development of overt toxicity. These data provide a deeper understanding of the in vivo time course of physiological responses of the liver to chemical stress and provide a logical step forward for the investigation of new chemical entities demonstrated positive in chemically reactive metabolite screens. The complete data set can be viewed at http://www.ebi.ac.uk/arrayexpress/. The accession number is E-MEXP-82.
Collapse
Affiliation(s)
- D P Williams
- Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Building, Ashton Street, P.O. Box 147, Liverpool, Merseyside L69 3GE, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Park BK, Kitteringham NR, Maggs JL, Pirmohamed M, Williams DP. The role of metabolic activation in drug-induced hepatotoxicity. Annu Rev Pharmacol Toxicol 2005; 45:177-202. [PMID: 15822174 DOI: 10.1146/annurev.pharmtox.45.120403.100058] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The importance of reactive metabolites in the pathogenesis of drug-induced toxicity has been a focus of research interest since pioneering investigations in the 1950s revealed the link between toxic metabolites and chemical carcinogenesis. There is now a great deal of evidence that shows that reactive metabolites are formed from drugs known to cause hepatotoxicity, but how these toxic species initiate and propagate tissue damage is still poorly understood. This review summarizes the evidence for reactive metabolite formation from hepatotoxic drugs, such as acetaminophen, tamoxifen, diclofenac, and troglitazone, and the current hypotheses of how this leads to liver injury. Several hepatic proteins can be modified by reactive metabolites, but this in general equates poorly with the extent of toxicity. Much more important may be the identification of the critical proteins modified by these toxic species and how this alters their function. It is also important to note that the toxicity of reactive metabolites may be mediated by noncovalent binding mechanisms, which may also have profound effects on normal liver physiology. Technological developments in the wake of the genomic revolution now provide unprecedented power to characterize and quantify covalent modification of individual target proteins and their functional consequences; such information should dramatically improve our understanding of drug-induced hepatotoxic reactions.
Collapse
Affiliation(s)
- B Kevin Park
- Department of Pharmacology and Therapeutics, University of Liverpool, Sherrington Buildings, Liverpool, Merseyside L69 3GE, United Kingdom.
| | | | | | | | | |
Collapse
|
32
|
Aliya S, Reddanna P, Thyagaraju K. Does glutathione S-transferase Pi (GST-Pi) a marker protein for cancer? Mol Cell Biochem 2004; 253:319-27. [PMID: 14619983 DOI: 10.1023/a:1026036521852] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutathione S-transferases (GSTs, EC 2.5.1.18) are multifunctional and multigene products. They are versatile enzymes and participate in the nucleophilic attack of the sulphur atom of glutathione on the electrophilic centers of various endogenous and xenobiotic compounds. Out of the five, alpha, micro, pi, sigma and theta, major classes of GSTs, GST-pi has significance in the diagnosis of cancers as it is expressed abundantly in tumor cells. This protein is a single gene product, coded by seven exons, that is having 24 kDa mass and pI value of 7.0. Four upstream elements such as two enhancers, and one of each of AP-1 site and GC box regulate pi gene. During chemical carcinogenesis because of jun/fos oncogenes (AP-1) regulatory elements, specifically GST-pi is expressed in liver. Therefore this gene product could be used as marker protein for the detection of chemical toxicity and carcinogenesis.
Collapse
Affiliation(s)
- S Aliya
- Department of Biochemistry, S. V. University, Tirupathi, India
| | | | | |
Collapse
|
33
|
Abstract
Choline kinase (CK) catalyzes the first phosphorylation reaction in the CDP-choline pathway for the biosynthesis of phosphatidylcholine (PC), yielding phosphocholine (P-Cho) from choline and ATP in the presence of Mg(2+). This enzyme exists in mammalian cells as at least three isoforms that are encoded by two separate genes termed ck-alpha and ck-beta. Each isoform is not active in its monomeric form. The active enzyme consists of either their homo- or hetero-dimeric (or oligomeric) forms. In recent years, the roles of CK in cell growth and cell stress/defense mechanisms have been intensely investigated. These functions of CK do not seem to be directly related to the net PC biosynthesis but predict another important role of this enzyme in certain cell physiology. This review summarizes briefly the recent progress of mammalian CK study which will include the gene structure of each isoform and its possible transcriptional regulation, the active configuration of the enzyme, induction of the particular isoform in chemically induced cell stress, and the possible role of this enzyme as well as of its reaction product, P-Cho, in cell growth and other cellular physiology.
Collapse
Affiliation(s)
- Chieko Aoyama
- Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyodaku, Tokyo 101-0062, Japan
| | | | | |
Collapse
|
34
|
Goldring CEP, Kitteringham NR, Elsby R, Randle LE, Clement YN, Williams DP, McMahon M, Hayes JD, Itoh K, Yamamoto M, Park BK. Activation of hepatic Nrf2 in vivo by acetaminophen in CD-1 mice. Hepatology 2004; 39:1267-76. [PMID: 15122755 DOI: 10.1002/hep.20183] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The transcription factor NF-E2-related factor 2 (Nrf2) plays an essential role in the mammalian response to chemical and oxidative stress through induction of hepatic phase II detoxification enzymes and regulation of glutathione (GSH). Enhanced liver damage in Nrf2-deficient mice treated with acetaminophen suggests a critical role for Nrf2; however, direct evidence for Nrf2 activation following acetaminophen exposure was previously lacking. We show that acetaminophen can initiate nuclear translocation of Nrf2 in vivo, with maximum levels reached after 1 hour, in a dose dependent manner, at doses below those causing overt liver damage. Furthermore, Nrf2 was shown to be functionally active, as assessed by the induction of epoxide hydrolase, heme oxygenase-1, and glutamate cysteine ligase gene expression. Increased nuclear Nrf2 was found to be associated with depletion of hepatic GSH. Activation of Nrf2 is considered to involve dissociation from a cytoplasmic inhibitor, Kelch-like ECH-associated protein 1 (Keap1), through a redox-sensitive mechanism involving either GSH depletion or direct chemical interaction through Michael addition. To investigate acetaminophen-induced Nrf2 activation we compared the actions of 2 other GSH depleters, diethyl maleate (DEM) and buthionine sulphoximine (BSO), only 1 of which (DEM) can function as a Michael acceptor. For each compound, greater than 60% depletion of GSH was achieved; however, in the case of BSO, this depletion did not cause nuclear translocation of Nrf2. In conclusion, GSH depletion alone is insufficient for Nrf2 activation: a more direct interaction is required, possibly involving chemical modification of Nrf2 or Keap1, which is facilitated by the prior loss of GSH.
Collapse
|
35
|
Dieter MZ, Freshwater SL, Miller ML, Shertzer HG, Dalton TP, Nebert DW. Pharmacological rescue of the 14CoS/14CoS mouse: hepatocyte apoptosis is likely caused by endogenous oxidative stress. Free Radic Biol Med 2003; 35:351-67. [PMID: 12899938 DOI: 10.1016/s0891-5849(03)00273-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Whereas ch/ch wild-type mice and ch/14CoS heterozygotes are viable, 14CoS/14CoS mice homozygous for a 3800 kb deletion on chromosome 7 die during the first day postpartum. Death is caused by disruption of the fumarylacetoacetate hydrolase (Fah) gene; absence of FAH, final enzyme in the tyrosine catabolism pathway, leads to accumulation of reactive electrophilic intermediates. In this study, we kept 14CoS/14CoS mice alive for 60 d with oral 2-(2-nitro-4-trifluoromethyl-benzyol)-1,3-cyclohexanedione (NTBC), an inhibitor of p-hydroxyphenylpyruvate dioxygenase, second enzyme in the tyrosine catabolic pathway. The 70% of NTBC-treated 14CoS/14CoS mice that survived 60 d showed poor growth and developed corneal opacities, compared with ch/14CoS littermates; NTBC-rescued Fah(-/-) knockout mice did not show growth retardation or ocular toxicity. NTBC-rescued 14CoS/14CoS mice also exhibited a striking oxidative stress response in liver and kidney, as measured by lower GSH levels and mRNA induction of four genes: glutamate cysteine ligase catalytic (Gclc) and modifier (Gclm) subunits, NAD(P)H:quinone oxidoreductase (Nqo1), and heme oxygenase-1 (Hmox1). Withdrawal of NTBC for 24-48 h from rescued adult 14CoS/14CoS mice resulted in severe apoptosis of the liver, detected histologically and by cytochrome c release from the mitochondria, increased caspase 3-like activity, and further decreases in GSH content. In kidney, proximal tubular epithelial cells were abnormal. Human hereditary tyrosinemia type I (HT1), caused by mutations in the FAH gene, is an autosomal recessive disorder in which the patient usually dies of liver fibrosis and cirrhosis during early childhood; NTBC treatment is known to prolong HT1 children's lives-although liver fibrosis, cirrhosis, hepatocarcinoma, and corneal opacities sometimes occur. The mouse data in the present study are consistent with the possibility that endogenous oxidative stress-induced apoptosis may be the underlying cause of liver pathology seen in NTBC-treated HT1 patients.
Collapse
Affiliation(s)
- Matthew Z Dieter
- Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | |
Collapse
|
36
|
Waring JF. Overview of microarrays in drug discovery and development. CURRENT PROTOCOLS IN PHARMACOLOGY 2003; Chapter 9:Unit9.6. [PMID: 21956809 DOI: 10.1002/0471141755.ph0906s21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
With the sequencing of the human genome, new tools and technologies have been developed to identify and quantify global gene-expression changes occurring in the cell. One of the main tools being utilized is microarray technology, which allows one to quantitate expression changes of thousands of genes in a single experiment. Microarrays allow researchers to gain an unprecedented understanding of the function and regulation of genes, and are transforming virtually all areas of biological research. In the drug-discovery process, microarrays have the potential to play a role in all stages, from new target discovery through compound profiling and safety assessment. This overview highlights some of these studies and discusses how this technology is transforming the field of drug discovery and development.
Collapse
|
37
|
Elsby R, Kitteringham NR, Goldring CE, Lovatt CA, Chamberlain M, Henderson CJ, Wolf CR, Park BK. Increased constitutive c-Jun N-terminal kinase signaling in mice lacking glutathione S-transferase Pi. J Biol Chem 2003; 278:22243-9. [PMID: 12646564 DOI: 10.1074/jbc.m301211200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutathione S-transferase Pi (GSTP) detoxifies electrophiles by catalyzing their conjugation with reduced glutathione. A second function of this protein in cell defense has recently been proposed that is related to its ability to interact with c-Jun N-terminal kinase (JNK). The present study aimed to determine whether this interaction results in increased constitutive JNK activity in the absence of GSTP in GstP1/P2(-/-) mice and whether such a phenomenon leads to the up-regulation of genes that are relevant to cell defense. We found a significant increase in constitutive JNK activity in the liver and lung of GstP1/P2-/- compared with GstP1/P2(+/+) mice. The greatest increase in constitutive JNK activity was observed in null liver and was accompanied by a significant increase in activator protein-1 DNA binding activity (8-fold) and in the mRNA levels for the antioxidant protein heme oxygenase-1 compared with wild type. Furthermore UDP-glucuronosyltransferase 1A6 mRNA levels were significantly higher in the livers of GstP1/P2(-/-) compared with GstP1/P2(+/+) mice, which correlated to a 2-fold increase in constitutive activity both in vitro and in vivo. There was no difference in the gene expression of other UDP-glucuronosyltransferase isoforms, manganese superoxide dismutase, microsomal epoxide hydrolase, or GSTA1 between GstP1/P2(-/-) and GstP1/P2(+/+) mice. Additionally there was no phenotypic difference in the induction of heme oxygenase-1 mRNA after acetaminophen administration. This study not only demonstrates the role of GSTP as a direct inhibitor of JNK in vivo but also its role in regulating the constitutive expression of specific downstream molecular targets of the JNK signaling pathway.
Collapse
Affiliation(s)
- Robert Elsby
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Dichloromethane (DCM) elimination and carboxyhemoglobin (COHb) generation were examined in adult female SD rats pretreated with a glutathione (GSH) depletor(s). Rats were treated with either buthionine sulfoximine (BSO; 2 mmol/kg, i.p.), diethylmaleate (DEM; 3 mmol/kg, i.p.), phorone (PHO; 1 mmol/kg, i.p.) or BSO plus PHO (BSO; 2 mmol/kg +PHO; 0.5 mmol/kg, i.p.). The hepatic GSH concentration was significantly reduced by each treatment. Decrease in hepatic GSH was maintained at least for 10 h after BSO treatment but recovered rapidly in rats treated with DEM or PHO. The hepatic p-nitrophenol hydroxylase activity was not affected by the GSH depletors at the dose used in this study. Rats were treated with an i.p. injection of DCM (3 mmol/kg) and the concentrations of DCM and the COHb levels in blood were monitored. In rats pretreated with a GSH depletor, the peak COHb level was significantly greater than that of rats treated with DCM only. The peak COHb level attained in each group of rats appeared to be inversely related to the magnitude of reduction in hepatic GSH levels. The half-life of DCM in blood was also increased in rats pretreated with the GSH depletor(s). The results indicate that the GSH-dependent metabolic reaction has an important role in the overall elimination of DCM as well as in the metabolic generation of carbon monoxide (CO) from this solvent.
Collapse
Affiliation(s)
- Soo J Oh
- College of Pharmacy, Seoul National University, San 56-1 Shinrim-Dong, Kwanak-Ku, Seoul, South Korea
| | | | | |
Collapse
|
39
|
Cuevas MJ, Almar M, González-Gallego J. Effects of epomediol on ethinyloestradiol-induced changes in glutathione homeostasis in the rat. PHARMACOLOGY & TOXICOLOGY 2002; 90:121-6. [PMID: 12071332 DOI: 10.1034/j.1600-0773.2002.900302.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Epomediol is a synthetic terpenoid compound that has been reported to reduce ethinyloestradiol-induced cholestasis. The choleretic action of epomediol is related to an increase in both the bile acid-dependent and independent fractions of bile flow, but the role of glutathione metabolism and transport is still unknown. This study was aimed to evaluate if changes in glutathione homeostasis could contribute to the beneficial effects of epomediol in rats with ethinyloestradiol-induced cholestasis. When compared to control animals, ethinyloestradiol treatment resulted in a significant decrease in the liver concentration of reduced (GSH) and oxidized glutathione. Both GSH and oxidized glutathione concentrations returned to normal in animals receiving ethinyloestradiol plus epomediol. Ethinyloestradiol administration induced a significant decrease in plasma and renal GSH and the tripeptide was almost absent from bile. Combined treatment with epomediol plus ethinyloestradiol normalised renal GSH and both biliary and liver cysteine were significantly increased. Liver and kidney gamma-glutamyltranspeptidase activities were higher in rats receiving ethinyloestradiol and still remained elevated in animals with the combined treatment. Liver gamma-glutamylcysteine synthetase activity rose significantly by administration of ethinyloestradiol plus epomediol but the corresponding mRNA levels were not modified. Changes in glutathione homeostasis and higher biliary levels of GSH amino acid constituents could contribute to the beneficial effects of epomediol in rats with ethinyloestradiol-induced cholestasis.
Collapse
|
40
|
Park BK, Kitteringham NR, Kenny JR, Pirmohamed M. Drug metabolism and drug toxicity. Inflammopharmacology 2001. [DOI: 10.1163/156856001300248461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Reilly TP, Bourdi M, Brady JN, Pise-Masison CA, Radonovich MF, George JW, Pohl LR. Expression profiling of acetaminophen liver toxicity in mice using microarray technology. Biochem Biophys Res Commun 2001; 282:321-8. [PMID: 11264010 DOI: 10.1006/bbrc.2001.4576] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Drug-induced hepatotoxicity causes significant morbidity and mortality and is a major concern in drug development. This is due, in large part, to insufficient knowledge of the mechanism(s) of drug-induced liver injury. In order to address this problem, we have evaluated the modulation of gene expression within the livers of mice treated with a hepatotoxic dose of acetaminophen (APAP) using high-density oligonucleotide microarrays capable of determining the expression profile of >11,000 genes and expressed sequence tags (ESTs). Significant alterations in gene expression, both positive and negative, were noted within the livers of APAP-treated mice. APAP-induced toxicity affected numerous aspects of liver physiology causing, for instance, >twofold increased expression of genes that encode for growth arrest and cell cycle regulatory proteins, stress-induced proteins, the transcription factor LRG-21, suppressor of cytokine signaling (SOCS)-2-protein, and plasminogen activator inhibitor-1 (PAI-1). A number of these and other genes and ESTs were detectable within the liver only after APAP treatment suggesting their potential importance in propagating or preventing further toxicity. These data provide new directions for mechanistic studies that may lead to a better understanding of the molecular basis of drug-induced liver injury and, ultimately, to a more rational design of safer drugs.
Collapse
Affiliation(s)
- T P Reilly
- Molecular and Cellular Toxicology Section, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Henderson CJ, Wolf CR, Kitteringham N, Powell H, Otto D, Park BK. Increased resistance to acetaminophen hepatotoxicity in mice lacking glutathione S-transferase Pi. Proc Natl Acad Sci U S A 2000; 97:12741-5. [PMID: 11058152 PMCID: PMC18834 DOI: 10.1073/pnas.220176997] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Overdose of acetaminophen, a widely used analgesic drug, can result in severe hepatotoxicity and is often fatal. This toxic reaction is associated with metabolic activation by the P450 system to form a quinoneimine metabolite, N-acetyl-p-benzoquinoneimine (NAPQI), which covalently binds to proteins and other macromolecules to cause cellular damage. At low doses, NAPQI is efficiently detoxified, principally by conjugation with glutathione, a reaction catalyzed in part by the glutathione S-transferases (GST), such as GST Pi. To assess the role of GST in acetaminophen hepatotoxicity, we examined acetaminophen metabolism and liver damage in mice nulled for GstP (GstP1/P2((-/-))). Contrary to our expectations, instead of being more sensitive, GstP null mice were highly resistant to the hepatotoxic effects of this compound. No significant differences between wild-type (GstP1/P2((+/+))) mice and GstP1/P2((-/-)) nulls in either the rate or route of metabolism, particularly to glutathione conjugates, or in the levels of covalent binding of acetaminophen-reactive metabolites to cellular protein were observed. However, although a similar rapid depletion of hepatic reduced glutathione (GSH) was found in both GstP1/P2((+/+)) and GstP1/P2((-/-)) mice, GSH levels only recovered in the GstP1/P2((-/-)) mice. These data demonstrate that GstP does not contribute in vivo to the formation of glutathione conjugates of acetaminophen but plays a novel and unexpected role in the toxicity of this compound. This study identifies new ways in which GST can modulate cellular sensitivity to toxic effects and suggests that the level of GST Pi may be an important and contributing factor in the sensitivity of patients with acetaminophen-induced hepatotoxicity.
Collapse
Affiliation(s)
- C J Henderson
- Imperial Cancer Research Fund Molecular Pharmacology Unit, Biomedical Research Centre, Level 5, Ninewells Hospital and Medical School, Dundee, DD1 9SY, United Kingdom.
| | | | | | | | | | | |
Collapse
|