1
|
Lemos G, Fernandes CMADS, Watanabe IKM, Delbin MA, Silva FH, Calmasini FB. Trehalose induces bladder smooth muscle hypercontractility in mice: involvement of oxidative stress and cellular senescence. Front Physiol 2025; 16:1572139. [PMID: 40255637 PMCID: PMC12006093 DOI: 10.3389/fphys.2025.1572139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
Autophagy, a conserved catabolic process, is critical for cellular homeostasis and its dysregulation has been implicated in a number of conditions including hypertension, obesity and bladder dysfunctions. The autophagy inducer trehalose has shown promise in treating diseases; however, some studies have reported detrimental effects in vascular tissue under health conditions. In the bladder, the effects of trehalose remain unclear. Therefore, in the present study, male C57BL6/JUnib mice (8 weeks old) were divided into control and trehalose-treated groups (120 mg/mouse/day via gavage) for 4 weeks. After treatment, bladders were harvested for functional, biochemical, and molecular analyses. The trehalose treatment increased the bladder smooth muscle (BSM) contractility to carbachol (CCh), without altering relaxation response to isoproterenol. The CCh-induced BSM hypercontractility was completely abolished by the in vitro incubation of apocynin and diphenyleneiodonium (DPI), implicating NADPH oxidase-derived reactive oxygen species (ROS) on this process. Accordingly, increased levels of superoxide anion (O2-) were found in the urothelial layer, but not in BSM, of trehalose-treated mice. Trehalose also increased senescence-associated β-galactosidase activity in the bladder but failed to upregulate autophagy-related proteins LAMP1 and Beclin-1 in the bladder. Collectively, we show for the first time that trehalose induces BSM hypercontractility in mice, linked to increased levels of O2- and senescent cell, independently of autophagy activation. Therefore, trehalose administration is an effective model for studying BSM hypercontractility in mice, particularly associated with oxidative stress and cellular senescence.
Collapse
Affiliation(s)
- Guilherme Lemos
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Maria Andreia Delbin
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Fábio Henrique Silva
- Laboratory of Multidisciplinary Research, São Francisco University (USF), Sao Paulo, Brazil
| | - Fabiano Beraldi Calmasini
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
He L, Kwon D, Trnka MJ, Liu Y, Yang J, Li K, Totah RA, Johnson EF, Burlingame AL, Correia MA. Liver CYP4A autophagic-lysosomal degradation (ALD): A major role for the autophagic receptor SQSTM1/p62 through an uncommon target interaction site. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618315. [PMID: 39464120 PMCID: PMC11507770 DOI: 10.1101/2024.10.14.618315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The hepatic P450 hemoproteins CYPs 4A are typical N-terminally anchored Type I endoplasmic reticulum (ER)-proteins, that are inducible by hypolipidemic drugs and other "peroxisome proliferators". They are engaged in the ω-/ω-1-oxidation of various fatty acids including arachidonic acid, prostaglandins and leukotrienes and in the biotransformation of some therapeutic drugs. Herein we report that of the mammalian liver CYPs 4A, human CYP4A11 and mouse Cyp4a12a are preferential targets of the ER-lysosome-associated degradation (ERLAD). Consequently, these proteins are stabilized both as 1%Triton X100-soluble and -insoluble species in mouse hepatocytes and HepG2-cells deficient in the autophagic initiation ATG5-gene. Although these proteins exhibit surface LC3-interacting regions (LIRs) that would target them directly to the autophagosome, they nevertheless interact intimately with the autophagic receptor SQSTM1/p62. Through structural deletion analyses and site-directed mutagenesis, we have identified the Cyp4A-interacting p62 subdomain to lie between residues 170 and 233, which include its Traf6-binding and LIM-binding subdomains. Mice carrying a liver-specific genetic deletion of p62 residues 69-251 (p62Mut) that includes the CYP4A-interacting subdomain also exhibit Cyp4a-protein stabilization both as Triton X100-soluble and -insoluble species. Consistently, p62Mut mouse liver microsomes exhibit enhanced ω- and ω-1-hydroxylation of arachidonic acid to its physiologically active metabolites 19- and 20-HETEs relative to the corresponding wild-type mouse liver microsomes. Collectively, our findings suggest that any disruption of CYP4A ERLAD results in functionally active P450 protein and consequent production of proinflammatory metabolites on one hand, and insoluble aggregates on the other, which may contribute to pathological aggregates i.e. Mallory-Denk bodies/inclusions, hallmarks of many liver diseases.
Collapse
|
3
|
Maestri A, Garagnani P, Pedrelli M, Hagberg CE, Parini P, Ehrenborg E. Lipid droplets, autophagy, and ageing: A cell-specific tale. Ageing Res Rev 2024; 94:102194. [PMID: 38218464 DOI: 10.1016/j.arr.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.
Collapse
Affiliation(s)
- Alice Maestri
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Tiniakos DG, Anstee QM, Brunt EM, Burt AD. Fatty Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:330-401. [DOI: 10.1016/b978-0-7020-8228-3.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Qian H, Chao X, Wang S, Li Y, Jiang X, Sun Z, Rülicke T, Zatloukal K, Ni HM, Ding WX. Loss of SQSTM1/p62 Induces Obesity and Exacerbates Alcohol-Induced Liver Injury in Aged Mice. Cell Mol Gastroenterol Hepatol 2023; 15:1027-1049. [PMID: 36754207 PMCID: PMC10036741 DOI: 10.1016/j.jcmgh.2023.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is a worldwide health problem, of which the effective treatment is still lacking. Both detrimental and protective roles of adipose tissue have been implicated in ALD. Although alcohol increases adipose tissue lipolysis to promote alcohol-induced liver injury, alcohol also activates brown adipose tissue (BAT) thermogenesis as an adaptive response in protecting against alcohol-induced liver injury. Moreover, aging and obesity are also risk factors for ALD. In the present study, we investigated the effects of autophagy receptor protein SQSTM1/p62 on adipose tissue and obesity in alcohol-induced liver injury in both young and aged mice. METHODS Young and aged whole-body SQSTM1/p62 knockout (KO) and their age-matched wild-type (WT) mice were subjected to chronic plus binge (Gao-binge) alcohol feeding. Blood, adipose and liver tissues were collected for biochemical and histologic analysis. RESULTS Aged but not young SQSTM1/p62 KO mice had significantly increased body weight and fat mass compared with the matched WT mice. Gao-binge alcohol feeding induced white adipose atrophy and decreased levels of SQSTM1/p62 levels in adipose tissue in aged WT mice. SQSTM1/p62 KO aged mice were resistant to Gao-binge alcohol-induced white adipose atrophy. Alcohol feeding increased the expression of thermogenic genes in WT mouse BAT, which was significantly blunted in SQSTM1/p62 KO aged mice. Alcohol-fed aged SQSTM1/p62 KO mice showed significantly higher levels of serum alanine aminotransferase, hepatic triglyceride, and inflammation compared with young and aged WT mice fed with alcohol. Alcohol-fed SQSTM1/p62 KO mice also increased secretion of proinflammatory and angiogenic adipokines that may promote alcohol-induced liver injury. CONCLUSIONS Loss of SQSTM1/p62 in aged mice leads to obesity and impairs alcohol-induced BAT adaptation, resulting in exacerbated alcohol-induced liver injury in mice.
Collapse
Affiliation(s)
- Hui Qian
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Yuan Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaoxiao Jiang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas; Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
6
|
Somlapura M, Gottschalk B, Lahiri P, Kufferath I, Pabst D, Rülicke T, Graier WF, Denk H, Zatloukal K. Different Roles of p62 (SQSTM1) Isoforms in Keratin-Related Protein Aggregation. Int J Mol Sci 2021; 22:ijms22126227. [PMID: 34207662 PMCID: PMC8227998 DOI: 10.3390/ijms22126227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 12/03/2022] Open
Abstract
p62/Sequestosome-1 (p62) is a multifunctional adaptor protein and is also a constant component of disease-associated protein aggregates, including Mallory–Denk bodies (MDBs), in steatohepatitis and hepatocellular carcinoma. We investigated the interaction of the two human p62 isoforms, p62-H1 (full-length isoform) and p62-H2 (partly devoid of PB1 domain), with keratins 8 and 18, the major components of MDBs. In human liver, p62-H2 is expressed two-fold higher compared to p62-H1 at the mRNA level and is present in slightly but not significantly higher concentrations at the protein level. Co-transfection studies in CHO-K1 cells, PLC/PRF/5 cells as well as p62− total-knockout and wild-type mouse fibroblasts revealed marked differences in the cytoplasmic distribution and aggregation behavior of the two p62 isoforms. Transfection-induced overexpression of p62-H2 generated large cytoplasmic aggregates in PLC/PRF/5 and CHO-K1 cells that mostly co-localized with transfected keratins resembling MDBs or (transfection without keratins) intracytoplasmic hyaline bodies. In fibroblasts, however, transfected p62-H2 was predominantly diffusely distributed in the cytoplasm. Aggregation of p62-H2 and p62ΔSH2 as well as the interaction with K8 (but not with K18) involves acquisition of cross-β-sheet conformation as revealed by staining with luminescent conjugated oligothiophenes. These results indicate the importance of considering p62 isoforms in protein aggregation disease.
Collapse
Affiliation(s)
- Meghana Somlapura
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (M.S.); (I.K.); (D.P.); (H.D.)
| | - Benjamin Gottschalk
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (B.G.); (W.F.G.)
| | - Pooja Lahiri
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Iris Kufferath
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (M.S.); (I.K.); (D.P.); (H.D.)
| | - Daniela Pabst
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (M.S.); (I.K.); (D.P.); (H.D.)
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
| | - Wolfgang F. Graier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (B.G.); (W.F.G.)
| | - Helmut Denk
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (M.S.); (I.K.); (D.P.); (H.D.)
| | - Kurt Zatloukal
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria; (M.S.); (I.K.); (D.P.); (H.D.)
- Correspondence: ; Tel.: +43-(0)316-385-71731
| |
Collapse
|
7
|
Frietze KK, Brown AM, Das D, Franks RG, Cunningham JL, Hayward M, Nickels JT. Lipotoxicity reduces DDX58/Rig-1 expression and activity leading to impaired autophagy and cell death. Autophagy 2021; 18:142-160. [PMID: 33966599 DOI: 10.1080/15548627.2021.1920818] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease globally. NAFLD is a consequence of fat accumulation in the liver leading to lipotoxicity. Increasing evidence has demonstrated the critical role of autophagy in NAFLD. This study uncovers the unexpected role of immune surveillance protein DDX58/Rig-1 (DExD/H box helicase 58) in activating macroautophagy/autophagy and protecting from lipotoxicity associated with NAFLD. Here we show for the first time that DDX58 protein is significantly reduced in nonalcoholic steatohepatitis (NASH) mouse model, an aggressive form of NAFLD characterized by inflammation and fibrosis of the liver. In addition to decreased expression of DDX58, we found that DDX58 activity can be attenuated by treatments with palmitic acid (PA), a saturated fatty acid. To investigate whether PA inhibition of DDX58 is harmful to the cell, we characterized DDX58 function in hepatocytes when exposed to high doses of PA in the presence and/or absence of DDX58. We show that siRNA knockdown of DDX58 promotes apoptosis. Importantly, we show that stable overexpression of DDX58 is protective against toxic levels of PA and stimulates autophagy. This study begins to demonstrate the regulation of the autophagy receptor protein SQSTM1/p62 through DDX58. DDX58 expression directly influences SQSTM1 mRNA and protein levels. This work proposes a model in which activating DDX58 increases an autophagic response and this aids in clearing toxic lipid inclusion bodies, which leads to inflammation and apoptosis. Activating a DDX58-induced autophagy response may be a strategy for treating NAFLD.Abbreviations:5'pppdsRNA: 5' triphosphate double-stranded RNA; CDAHFD: choline-deficient, L-amino acid defined high-fat diet; CEBPB: CCAAT/enhancer binding protein (C/EBP), beta; CQ: chloroquine; DDX58/retinoic acid inducible gene 1/Rig-1: DExD/H box helicase 58; h: hours; IFIH1/MDA5: interferon induced with helicase C domain 1; IFNB/IFN-β: interferon beta 1, fibroblast; KO: knockout; MAVS: mitochondrial antiviral signaling protein; NAFLD: nonalcoholic fatty liver disease; NASH: nonalcoholic steatohepatitis; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; PA: palmitic acid; poly:IC: polyinosinic:polycytidylic acid; PRR: pattern recognition receptors; PSR: picrosirus red; RAP: rapamycin; RLR: RIG-I-like receptor; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK-binding kinase 1.
Collapse
Affiliation(s)
- Karla K Frietze
- Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Alyssa M Brown
- Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Dividutta Das
- Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Raymond G Franks
- Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, NJ, USA
| | | | | | - Joseph T Nickels
- Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, NJ, USA.,Rutgers Center for Lipid Research, Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
8
|
Liu Y, Trnka MJ, Guan S, Kwon D, Kim DH, Chen JJ, Greer PA, Burlingame AL, Correia MA. A Novel Mechanism for NF-κB-activation via IκB-aggregation: Implications for Hepatic Mallory-Denk-Body Induced Inflammation. Mol Cell Proteomics 2020; 19:1968-1986. [PMID: 32912968 PMCID: PMC7710137 DOI: 10.1074/mcp.ra120.002316] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 11/06/2022] Open
Abstract
Mallory-Denk-bodies (MDBs) are hepatic protein aggregates associated with inflammation both clinically and in MDB-inducing models. Similar protein aggregation in neurodegenerative diseases also triggers inflammation and NF-κB activation. However, the precise mechanism that links protein aggregation to NF-κB-activation and inflammatory response remains unclear. Herein we find that treating primary hepatocytes with MDB-inducing agents (N-methylprotoporphyrin (NMPP), protoporphyrin IX (PPIX), or Zinc-protoporphyrin IX (ZnPP)) elicited an IκBα-loss with consequent NF-κB activation. Four known mechanisms of IκBα-loss i.e. the canonical ubiquitin-dependent proteasomal degradation (UPD), autophagic-lysosomal degradation, calpain degradation and translational inhibition, were all probed and excluded. Immunofluorescence analyses of ZnPP-treated cells coupled with 8 M urea/CHAPS-extraction revealed that this IκBα-loss was due to its sequestration along with IκBβ into insoluble aggregates, thereby releasing NF-κB. Through affinity pulldown, proximity biotinylation by antibody recognition, and other proteomic analyses, we verified that NF-κB subunit p65, which stably interacts with IκBα under normal conditions, no longer binds to it upon ZnPP-treatment. Additionally, we identified 10 proteins that interact with IκBα under baseline conditions, aggregate upon ZnPP-treatment, and maintain the interaction with IκBα after ZnPP-treatment, either by cosequestering into insoluble aggregates or through a different mechanism. Of these 10 proteins, the nucleoporins Nup153 and Nup358/RanBP2 were identified through RNA-interference, as mediators of IκBα-nuclear import. The concurrent aggregation of IκBα, NUP153, and RanBP2 upon ZnPP-treatment, synergistically precluded the nuclear entry of IκBα and its consequent binding and termination of NF-κB activation. This novel mechanism may account for the protein aggregate-induced inflammation observed in liver diseases, thus identifying novel targets for therapeutic intervention. Because of inherent commonalities this MDB cell model is a bona fide protoporphyric model, making these findings equally relevant to the liver inflammation associated with clinical protoporphyria.
Collapse
Affiliation(s)
- Yi Liu
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Michael J Trnka
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shenheng Guan
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Doyoung Kwon
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Do-Hyung Kim
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, USA
| | - J-J Chen
- Institute for Medical Engineering and Science, MIT, Cambridge, Massachusetts, USA
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - A L Burlingame
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Maria Almira Correia
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA; Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA; The Liver Center, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
9
|
Hyun J, Jung Y. DNA Methylation in Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:8138. [PMID: 33143364 PMCID: PMC7662478 DOI: 10.3390/ijms21218138] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a widespread hepatic disorder in the United States and other Westernized countries. Nonalcoholic steatohepatitis (NASH), an advanced stage of NAFLD, can progress to end-stage liver disease, including cirrhosis and liver cancer. Poor understanding of mechanisms underlying NAFLD progression from simple steatosis to NASH has limited the development of effective therapies and biomarkers. An accumulating body of studies has suggested the importance of DNA methylation, which plays pivotal roles in NAFLD pathogenesis. DNA methylation signatures that can affect gene expression are influenced by environmental and lifestyle experiences such as diet, obesity, and physical activity and are reversible. Hence, DNA methylation signatures and modifiers in NAFLD may provide the basis for developing biomarkers indicating the onset and progression of NAFLD and therapeutics for NAFLD. Herein, we review an update on the recent findings in DNA methylation signatures and their roles in the pathogenesis of NAFLD and broaden people's perspectives on potential DNA methylation-related treatments and biomarkers for NAFLD.
Collapse
Affiliation(s)
- Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea;
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Korea
- Cell and Matter Institute, Dankook University, Cheonan 31116, Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, Pusan National University, Pusan 46241, Korea
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
10
|
Jiang M, Wu N, Chen X, Wang W, Chu Y, Liu H, Li W, Chen D, Li X, Xu B. Pathogenesis of and major animal models used for nonalcoholic fatty liver disease. J Int Med Res 2019; 47:1453-1466. [PMID: 30871397 PMCID: PMC6460620 DOI: 10.1177/0300060519833527] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) and its pathologically more severe form, nonalcoholic steatohepatitis (NASH), have become prevalent worldwide and carry an increased risk of developing hepatocellular carcinoma and other metabolic diseases. Diverse animal models have been proposed to replicate particular characteristics of NAFLD and NASH and have provided significant clues to the critical molecular targets of NASH treatment. In this review, we summarize the histopathology, pathogenesis, and molecular basis of NAFLD progression and discuss the benchmark animal models of NAFLD/NASH.
Collapse
Affiliation(s)
- Mingzuo Jiang
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Nan Wu
- 2 Laboratory of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Xi Chen
- 3 Department of Surgical Anesthesiology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Weijie Wang
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Yi Chu
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Hao Liu
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Wenjiao Li
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China
| | - Di Chen
- 1 State Key Laboratory of Cancer Biology & Institute of Digestive Diseases, Xijing Hospital, The Air-Force Military Medical University, Xi'an, Shaanxi, China.,5 Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaowei Li
- 4 Department of Gastroenterology, PLA Navy General Hospital, Beijing, China.,5 Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bing Xu
- 5 Department of Gastroenterology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Lee S, Han D, Kang HG, Jeong SJ, Jo JE, Shin J, Kim DK, Park HW. Intravenous sustained-release nifedipine ameliorates nonalcoholic fatty liver disease by restoring autophagic clearance. Biomaterials 2019; 197:1-11. [PMID: 30623792 DOI: 10.1016/j.biomaterials.2019.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/01/2019] [Accepted: 01/05/2019] [Indexed: 01/16/2023]
Abstract
Obesity and overweight, the most serious health problems, are associated with chronic metabolic complications such as type 2 diabetes, insulin resistance, and nonalcoholic fatty liver disease (NAFLD). However, current pharmacological therapies for obesity are challenged by potential side effects, low effectiveness, and low aqueous solubility, which limit their clinical application. Here, we develop nifedipine-loaded nanoparticles (NFD-NPs) that alleviate obesity-related metabolic dysfunction to be used as instruments for translational medicine. Nanoparticles (NPs) composed of poly (lactic-co-glycolic acid) (PLGA) not only enhance water solubility of hydrophobic nifedipine (NFD), a calcium channel blocker, without modifying the chemical structure of NFD for intravenous administration, but also allow prolonged release of NFD in vivo. NFD-NPs do not show cytotoxicity and reduce palmitate-induced protein inclusions and endoplasmic reticulum stress in human hepatoma HepG2 cells. Importantly, tail-vein injection of NFD-NPs into diet-induced obese mice results in sustained retention of NFD-NPs in the liver and suppression of metabolic derangements associated with NAFLD by enhancing autophagic clearance through Ca2+/calmodulin-dependent kinase II (CaMKII) phosphorylation, consequently decreasing diet-induced insulin resistance and improving glucose tolerance. Our findings offer new clinical tools for NP-mediated pharmaceutical strategies to treat NAFLD and its related metabolic dysfunction.
Collapse
Affiliation(s)
- Solji Lee
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Daewon Han
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Hyun-Goo Kang
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Su Jin Jeong
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Jae-Eun Jo
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Jongdae Shin
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Republic of Korea; Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Do Kyung Kim
- Department of Anatomy, Konyang University College of Medicine, Daejeon 35365, Republic of Korea.
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon 35365, Republic of Korea; Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Republic of Korea.
| |
Collapse
|
12
|
Sánchez-Martín P, Komatsu M. p62/SQSTM1 - steering the cell through health and disease. J Cell Sci 2018; 131:131/21/jcs222836. [PMID: 30397181 DOI: 10.1242/jcs.222836] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SQSTM1 (also known as p62) is a multifunctional stress-inducible scaffold protein involved in diverse cellular processes. Its functions are tightly regulated through an extensive pattern of post-translational modifications, and include the isolation of cargos degraded by autophagy, induction of the antioxidant response by the Keap1-Nrf2 system, as well as the regulation of endosomal trafficking, apoptosis and inflammation. Accordingly, malfunction of SQSTM1 is associated with a wide range of diseases, including bone and muscle disorders, neurodegenerative and metabolic diseases, and multiple forms of cancer. In this Review, we summarize current knowledge regarding regulation, post-translational modifications and functions of SQSTM1, as well as how they are dysregulated in various pathogenic contexts.
Collapse
Affiliation(s)
- Pablo Sánchez-Martín
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan .,Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
13
|
Cho CS, Park HW, Ho A, Semple IA, Kim B, Jang I, Park H, Reilly S, Saltiel AR, Lee JH. Lipotoxicity induces hepatic protein inclusions through TANK binding kinase 1-mediated p62/sequestosome 1 phosphorylation. Hepatology 2018; 68:1331-1346. [PMID: 29251796 PMCID: PMC6005718 DOI: 10.1002/hep.29742] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/07/2017] [Accepted: 12/12/2017] [Indexed: 12/30/2022]
Abstract
UNLABELLED Obesity commonly leads to hepatic steatosis, which often provokes lipotoxic injuries to hepatocytes that cause nonalcoholic steatohepatitis (NASH). NASH, in turn, is associated with the accumulation of insoluble protein aggregates that are composed of ubiquitinated proteins and ubiquitin adaptor p62/sequestosome 1 (SQSTM1). Formation of p62 inclusions in hepatocytes is the critical marker that distinguishes simple fatty liver from NASH and predicts a poor prognostic outcome for subsequent liver carcinogenesis. However, the molecular mechanism by which lipotoxicity induces protein aggregation is currently unknown. Here, we show that, upon saturated fatty acid-induced lipotoxicity, TANK binding kinase 1 (TBK1) is activated and phosphorylates p62. TBK1-mediated p62 phosphorylation is important for lipotoxicity-induced aggregation of ubiquitinated proteins and formation of large protein inclusions in hepatocytes. In addition, cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), upstream regulators of TBK1, are involved in lipotoxic activation of TBK1 and subsequent p62 phosphorylation in hepatocytes. Furthermore, TBK1 inhibition prevented formation of ubiquitin-p62 aggregates not only in cultured hepatocytes, but also in mouse models of obesity and NASH. CONCLUSION These results suggest that lipotoxic activation of TBK1 and subsequent p62 phosphorylation are critical steps in the NASH pathology of protein inclusion accumulation in hepatocytes. This mechanism can provide an explanation for how hypernutrition and obesity promote the development of severe liver pathologies, such as steatohepatitis and liver cancer, by facilitating the formation of p62 inclusions. (Hepatology 2018).
Collapse
Affiliation(s)
- Chun-Seok Cho
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hwan-Woo Park
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA,Department of Cell Biology, Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon 35365, Republic of Korea
| | - Allison Ho
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ian A. Semple
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Boyoung Kim
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Insook Jang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Haeli Park
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shannon Reilly
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA,Institute for Diabetes and Metabolic Health, Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alan R. Saltiel
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA,Institute for Diabetes and Metabolic Health, Departments of Medicine and Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Nikam A, Patankar JV, Somlapura M, Lahiri P, Sachdev V, Kratky D, Denk H, Zatloukal K, Abuja PM. The PPARα Agonist Fenofibrate Prevents Formation of Protein Aggregates (Mallory-Denk bodies) in a Murine Model of Steatohepatitis-like Hepatotoxicity. Sci Rep 2018; 8:12964. [PMID: 30154499 PMCID: PMC6113278 DOI: 10.1038/s41598-018-31389-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 01/07/2023] Open
Abstract
Chronic intoxication of mice with the porphyrinogenic compound 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) leads to morphological and metabolic changes closely resembling steatohepatitis, a severe form of metabolic liver disease in humans. Since human steatohepatitis (both the alcoholic and non-alcoholic type) is characterized by reduced expression of PPARα and disturbed lipid metabolism we investigated the role of this ligand-activated receptor in the development of DDC-induced liver injury. Acute DDC-intoxication was accompanied by early significant downregulation of Pparα mRNA expression along with PPARα-controlled stress-response and lipid metabolism genes that persisted in the chronic stage. Administration of the specific PPARα agonist fenofibrate together with DDC prevented the downregulation of PPARα-associated genes and also improved the stress response of Nrf2-dependent redox-regulating genes. Moreover, oxidative stress and inflammation were strongly reduced by DDC/fenofibrate co-treatment. In addition, fenofibrate prevented the disruption of hepatocyte intermediate filament cytoskeleton and the formation of Mallory-Denk bodies at late stages of DDC intoxication. Our findings show that, like in human steatohepatitis, PPARα is downregulated in the DDC model of steatohepatitis-like hepatocellular damage. Its downregulation and the pathomorphologic features of steatohepatitis are prevented by co-administration of fenofibrate.
Collapse
Affiliation(s)
- Aniket Nikam
- Institute of Pathology, Medical University of Graz, Graz, Austria
- University of Miami, Miller School of Medicine, Department of Surgery, Miami, Florida, USA
| | - Jay V Patankar
- Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
- Department of Medicine 1, Friedrich-Alexander-University, D-91054, Erlangen, Germany
| | | | - Pooja Lahiri
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Vinay Sachdev
- Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
| | - Helmut Denk
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Peter M Abuja
- Institute of Pathology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
15
|
Younossi ZM, Loomba R, Rinella ME, Bugianesi E, Marchesini G, Neuschwander-Tetri BA, Serfaty L, Negro F, Caldwell SH, Ratziu V, Corey KE, Friedman SL, Abdelmalek MF, Harrison SA, Sanyal AJ, Lavine JE, Mathurin P, Charlton MR, Chalasani NP, Anstee QM, Kowdley KV, George J, Goodman ZD, Lindor K. Current and future therapeutic regimens for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 2018; 68:361-371. [PMID: 29222911 PMCID: PMC6508084 DOI: 10.1002/hep.29724] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/17/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022]
Abstract
UNLABELLED Nonalcoholic fatty liver disease (NAFLD) and its progressive form non-alcoholic steatohepatitis (NASH), are rapidly becoming among the top causes of cirrhosis, hepatocellular carcinoma, and indications for liver transplantation. Other than lifestyle modification through diet and exercise, there are currently no other approved treatments for NASH/NAFLD. Although weight loss can be effective, it is difficult to achieve and sustain. In contrast, bariatric surgery can improve metabolic conditions associated with NAFLD, and has been shown to improve liver histology. To have approved regimens for the treatment of NASH/NAFLD, several issues must be addressed. First, all stakeholders must agree on the most appropriate clinical trial endpoints for NASH. Currently, resolution of NASH (without worsening fibrosis) or reduction of fibrosis stage (without worsening NASH) are the accepted endpoints by the regulatory authorities. It is important to recognize the prognostic implication of histologic features of NASH. In this context, although histologic NASH has been associated with advanced fibrosis, it is not an independent predictor of long-term mortality. In contrast, there are significant data to suggest that fibrosis stage is the only robust and independent predictor of liver-related mortality. In addition to the primary endpoints, several important secondary endpoints, including noninvasive biomarkers, long-term outcomes, and patient-reported outcomes must be considered. In 2018, a few phase 3 clinical trials for the treatment of NASH have been initiated. Additionally, a number of phase 2a and 2b clinical trials targeting different pathogenic pathways in NASH are in the pipeline of emerging therapies. CONCLUSION Over the next 5 years, some of these regimens are expected to provide potential new treatment options for patients with NASH/NAFLD. (Hepatology 2018;68:361-371).
Collapse
Affiliation(s)
- Zobair M. Younossi
- Department of Medicine and Betty and Guy Beatty Center for Integrated Research, Claude Moore, Inova Health Systems, Falls Church, VA
| | - Rohit Loomba
- Department of Gastroenterology, University of California at San Diego, La Jolla, CA
| | - Mary E. Rinella
- Department of Gastroenterology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | | | - Francesco Negro
- Department of Gastroenterology, University Hospitals of Geneva, Geneva, Switzerland
| | - Stephen H. Caldwell
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA
| | - Vlad Ratziu
- Institute of Cardiometabolism and Nutrition and Hospital Pitié Salpêtrière, de L’Hopital, Paris, France
| | - Kathleen E. Corey
- Division of Gastroenterology, Massachusetts General Hospital, Cambridge, MA
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Arun J. Sanyal
- Division of Gastroenterology, Virginia Commonwealth University, Richmond, VA
| | - Joel E. Lavine
- Department of Pediatrics, Columbia College of Physicians and Surgeons, New York, NY
| | | | | | - Naga P. Chalasani
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN
| | - Quentin M. Anstee
- Institute of Cellular Medicine, Newcastle University, New Castle, UK
| | - Kris V. Kowdley
- Liver Care Network and Organ Care Research, Swedish Medical Center, Seattle, WA
| | - Jacob George
- Department of Gastroenterology & Hepatology, Westmead Hospital and Sydney West Local Health District, Sydney, Australia
| | - Zachary D. Goodman
- Department of Medicine and Betty and Guy Beatty Center for Integrated Research, Claude Moore, Inova Health Systems, Falls Church, VA
| | - Keith Lindor
- College of Health Solutions, Arizona State University, Phoenix, AZ
| |
Collapse
|
16
|
Younossi ZM, Loomba R, Anstee QM, Rinella ME, Bugianesi E, Marchesini G, Neuschwander-Tetri BA, Serfaty L, Negro F, Caldwell SH, Ratziu V, Corey KE, Friedman SL, Abdelmalek MF, Harrison SA, Sanyal AJ, Lavine JE, Mathurin P, Charlton MR, Goodman ZD, Chalasani NP, Kowdley KV, George J, Lindor K. Diagnostic modalities for nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and associated fibrosis. Hepatology 2018. [PMID: 29222917 DOI: 10.1002/hep.29721 10.1002/hep.29721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum comprised of isolated steatosis, nonalcoholic steatohepatitis (NASH), advanced fibrosis, and cirrhosis. The majority of NAFLD subjects do not have NASH and do not carry a significant risk for liver-related adverse outcomes (cirrhosis and mortality). Globally, the prevalence of NAFLD is approximately 25%. In Asia, a gradient of high to low prevalence rates is noted from urban to rural areas. Given the prevalence of NAFLD, the clinical and economic burden of NAFLD and NASH can be substantial. With increasing recognition of NASH as an important liver disease, the diagnosis of NASH still requires a liver biopsy that is suboptimal. Although liver biopsy is the most accurate modality to diagnose and stage the severity of NASH, this method suffers from being invasive, costly, associated with potential complications, and plagued with interobserver variability of individual pathological features. A number of noninvasive modalities to diagnose NASH and stage liver fibrosis are being developed. These modalities include predictive models (NAFLD fibrosis score) and serum biomarkers such as enhanced liver fibrosis (ELF). Other tests are based on radiological techniques, such as transient elastography (TE) or magnetic resonance elastography (MRE), which are used to estimate liver stiffness as a potential surrogate of hepatic fibrosis. Although a dynamic field of research, most of these diagnostic modalities have area under the curve ranging between 0.76 and 0.90%, with MRE having the best predictive performance. In summary, developing safe and easily accessible noninvasive modalities to accurately diagnose and monitor NASH and associated fibrosis is of utmost importance in clinical practice and clinical research. These tests are not only important to risk stratify subjects at the greatest risk for progressive liver disease, but also to serve as appropriate surrogate endpoints for therapeutic clinical trials of NASH. (Hepatology 2018;68:349-360).
Collapse
Affiliation(s)
- Zobair M Younossi
- Department of Medicine and Betty and Guy Beatty Center for Integrated Research, Claude Moore, Inova Health Systems, Falls Church, VA
| | - Rohit Loomba
- NAFLD Research Center, University of California at San Diego, La Jolla, CA
| | - Quentin M Anstee
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Mary E Rinella
- University of Torino, Department of Medical Sciences, Torino, Italy
| | | | - Giulio Marchesini
- Division of Gastroenterology and Hepatology, Saint Louis University, St. Louis, MO
| | | | | | - Francesco Negro
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA
| | - Stephen H Caldwell
- Institute of Cardiometabolim and Nutrition (ICAN) and Hospital Pitié Salpêtrière, de L'Hopital, Paris, France
| | - Vlad Ratziu
- Massachusetts General Hospital, Cambridge, MA
| | - Kathleen E Corey
- Icahn School of Medicine at Mount Sinai, Division of Liver Diseases, New York, NY
| | - Scott L Friedman
- Division of Gastroenterology and Hepatology, Duke University, Durham, NC
| | | | - Stephen A Harrison
- Division of Gastroenterology, Virginia Commonwealth University, Richmond, VA
| | - Arun J Sanyal
- Department of Pediatrics, Columbia College of Physicians and Surgeons, New York, NY
| | - Joel E Lavine
- Hôpital Claude Huriez Rue Michel Polonowski, Lille, France
| | | | - Michael R Charlton
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN
| | - Zachary D Goodman
- Department of Medicine and Betty and Guy Beatty Center for Integrated Research, Claude Moore, Inova Health Systems, Falls Church, VA
| | - Naga P Chalasani
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia
| | | |
Collapse
|
17
|
Younossi ZM, Loomba R, Anstee QM, Rinella ME, Bugianesi E, Marchesini G, Neuschwander-Tetri BA, Serfaty L, Negro F, Caldwell SH, Ratziu V, Corey KE, Friedman SL, Abdelmalek MF, Harrison SA, Sanyal AJ, Lavine JE, Mathurin P, Charlton MR, Goodman ZD, Chalasani NP, Kowdley KV, George J, Lindor K. Diagnostic modalities for nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and associated fibrosis. Hepatology 2018; 68:349-360. [PMID: 29222917 PMCID: PMC6511364 DOI: 10.1002/hep.29721] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/16/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum comprised of isolated steatosis, nonalcoholic steatohepatitis (NASH), advanced fibrosis, and cirrhosis. The majority of NAFLD subjects do not have NASH and do not carry a significant risk for liver-related adverse outcomes (cirrhosis and mortality). Globally, the prevalence of NAFLD is approximately 25%. In Asia, a gradient of high to low prevalence rates is noted from urban to rural areas. Given the prevalence of NAFLD, the clinical and economic burden of NAFLD and NASH can be substantial. With increasing recognition of NASH as an important liver disease, the diagnosis of NASH still requires a liver biopsy that is suboptimal. Although liver biopsy is the most accurate modality to diagnose and stage the severity of NASH, this method suffers from being invasive, costly, associated with potential complications, and plagued with interobserver variability of individual pathological features. A number of noninvasive modalities to diagnose NASH and stage liver fibrosis are being developed. These modalities include predictive models (NAFLD fibrosis score) and serum biomarkers such as enhanced liver fibrosis (ELF). Other tests are based on radiological techniques, such as transient elastography (TE) or magnetic resonance elastography (MRE), which are used to estimate liver stiffness as a potential surrogate of hepatic fibrosis. Although a dynamic field of research, most of these diagnostic modalities have area under the curve ranging between 0.76 and 0.90%, with MRE having the best predictive performance. In summary, developing safe and easily accessible noninvasive modalities to accurately diagnose and monitor NASH and associated fibrosis is of utmost importance in clinical practice and clinical research. These tests are not only important to risk stratify subjects at the greatest risk for progressive liver disease, but also to serve as appropriate surrogate endpoints for therapeutic clinical trials of NASH. (Hepatology 2018;68:349-360).
Collapse
Affiliation(s)
- Zobair M. Younossi
- Department of Medicine and Betty and Guy Beatty Center for Integrated Research, Claude Moore, Inova Health Systems, Falls Church, VA
| | - Rohit Loomba
- NAFLD Research Center, University of California at San Diego, La Jolla, CA
| | | | - Mary E. Rinella
- University of Torino, Department of Medical Sciences, Torino, Italy
| | | | - Giulio Marchesini
- Division of Gastroenterology and Hepatology, Saint Louis University, St. Louis, MO
| | | | | | - Francesco Negro
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA
| | - Stephen H. Caldwell
- Institute of Cardiometabolim and Nutrition (ICAN) and Hospital Pitié Salpêtrière, de L’Hopital, Paris, France
| | - Vlad Ratziu
- Massachusetts General Hospital, Cambridge, MA
| | - Kathleen E. Corey
- Icahn School of Medicine at Mount Sinai, Division of Liver Diseases, New York, NY
| | - Scott L. Friedman
- Division of Gastroenterology and Hepatology, Duke University, Durham, NC
| | | | - Stephen A. Harrison
- Division of Gastroenterology, Virginia Commonwealth University, Richmond, VA
| | - Arun J. Sanyal
- Department of Pediatrics, Columbia College of Physicians and Surgeons, New York, NY
| | - Joel E. Lavine
- Hôpital Claude Huriez Rue Michel Polonowski, Lille, France
| | | | - Michael R. Charlton
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN
| | - Zachary D. Goodman
- Department of Medicine and Betty and Guy Beatty Center for Integrated Research, Claude Moore, Inova Health Systems, Falls Church, VA
| | - Naga P. Chalasani
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia
| | | |
Collapse
|
18
|
Ibrahim SH, Hirsova P, Gores GJ. Non-alcoholic steatohepatitis pathogenesis: sublethal hepatocyte injury as a driver of liver inflammation. Gut 2018; 67:963-972. [PMID: 29367207 PMCID: PMC5889737 DOI: 10.1136/gutjnl-2017-315691] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023]
Abstract
A subset of patients with non-alcoholic fatty liver disease develop an inflammatory condition, termed non-alcoholic steatohepatitis (NASH). NASH is characterised by hepatocellular injury, innate immune cell-mediated inflammation and progressive liver fibrosis. The mechanisms whereby hepatic inflammation occurs in NASH remain incompletely understood, but appear to be linked to the proinflammatory microenvironment created by toxic lipid-induced hepatocyte injury, termed lipotoxicity. In this review, we discuss the signalling pathways induced by sublethal hepatocyte lipid overload that contribute to the pathogenesis of NASH. Furthermore, we will review the role of proinflammatory, proangiogenic and profibrotic hepatocyte-derived extracellular vesicles as disease biomarkers and pathogenic mediators during lipotoxicity. We also review the potential therapeutic strategies to block the feed-forward loop between sublethal hepatocyte injury and liver inflammation.
Collapse
Affiliation(s)
- Samar H Ibrahim
- Division of Pediatrics Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Petra Hirsova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic,Department of Pharmacology, Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
19
|
Muralimanoharan S, Gao X, Weintraub S, Myatt L, Maloyan A. Sexual dimorphism in activation of placental autophagy in obese women with evidence for fetal programming from a placenta-specific mouse model. Autophagy 2018; 12:752-69. [PMID: 26986453 DOI: 10.1080/15548627.2016.1156822] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The incidence of maternal obesity and its co-morbidities (diabetes, cardiovascular disease) continues to increase at an alarming rate, with major public health implications. In utero exposure to maternal obesity has been associated with development of cardiovascular and metabolic diseases in the offspring as a result of developmental programming. The placenta regulates maternal-fetal metabolism and shows significant changes in its function with maternal obesity. Autophagy is a cell-survival process, which is responsible for the degradation of damaged organelles and misfolded proteins. Here we show an activation of autophagosomal formation and autophagosome-lysosome fusion in placentas of males but not females from overweight (OW) and obese (OB) women vs. normal weight (NW) women. However, total autophagic activity in these placentas appeared to be decreased as it showed an increase in SQSTM1/p62 and a decrease in lysosomal biogenesis. A mouse model with a targeted deletion of the essential autophagy gene Atg7 in placental tissue showed significant placental abnormalities comparable to those seen in human placenta with maternal obesity. These included a decrease in expression of mitochondrial genes and antioxidants, and decreased lysosomal biogenesis. Strikingly, the knockout mice were developmentally programmed as they showed an increased sensitivity to high-fat diet-induced obesity, hyperglycemia, hyperinsulinemia, increased adiposity, and cardiac remodeling. In summary, our results indicate a sexual dimorphism in placental autophagy in response to maternal obesity. We also show that autophagy plays an important role in placental function and that inhibition of placental autophagy programs the offspring to obesity, and to metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Sribalasubashini Muralimanoharan
- a Center for Pregnancy and Newborn Research , Department of Obstetrics and Gynecology , University of Texas Health Science Center , San Antonio , TX , USA
| | - Xiaoli Gao
- b The Metabolomics Core Facility, Institutional Mass Spectrometry Laboratory, University of Texas Health Science Center , San Antonio , TX , USA
| | - Susan Weintraub
- b The Metabolomics Core Facility, Institutional Mass Spectrometry Laboratory, University of Texas Health Science Center , San Antonio , TX , USA
| | - Leslie Myatt
- a Center for Pregnancy and Newborn Research , Department of Obstetrics and Gynecology , University of Texas Health Science Center , San Antonio , TX , USA.,c Department of Ob/Gyn , Oregon Health and Science University , Portland , OR , USA
| | - Alina Maloyan
- a Center for Pregnancy and Newborn Research , Department of Obstetrics and Gynecology , University of Texas Health Science Center , San Antonio , TX , USA.,d Knight Cardiovascular Institute, Oregon Health and Science University , Portland , OR , USA
| |
Collapse
|
20
|
|
21
|
Younossi ZM, Loomba R, Anstee QM, Rinella ME, Bugianesi E, Marchesini G, Neuschwander-Tetri BA, Serfaty L, Negro F, Caldwell SH, Ratziu V, Corey KE, Friedman SL, Abdelmalek MF, Harrison SA, Sanyal AJ, Lavine JE, Mathurin P, Charlton MR, Goodman ZD, Chalasani NP, Kowdley KV, George J, Lindor K. Diagnostic modalities for nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and associated fibrosis. HEPATOLOGY (BALTIMORE, MD.) 2017. [PMID: 29222917 DOI: 10.1002/hep.29721+10.1002/hep.29721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum comprised of isolated steatosis, nonalcoholic steatohepatitis (NASH), advanced fibrosis, and cirrhosis. The majority of NAFLD subjects do not have NASH and do not carry a significant risk for liver-related adverse outcomes (cirrhosis and mortality). Globally, the prevalence of NAFLD is approximately 25%. In Asia, a gradient of high to low prevalence rates is noted from urban to rural areas. Given the prevalence of NAFLD, the clinical and economic burden of NAFLD and NASH can be substantial. With increasing recognition of NASH as an important liver disease, the diagnosis of NASH still requires a liver biopsy that is suboptimal. Although liver biopsy is the most accurate modality to diagnose and stage the severity of NASH, this method suffers from being invasive, costly, associated with potential complications, and plagued with interobserver variability of individual pathological features. A number of noninvasive modalities to diagnose NASH and stage liver fibrosis are being developed. These modalities include predictive models (NAFLD fibrosis score) and serum biomarkers such as enhanced liver fibrosis (ELF). Other tests are based on radiological techniques, such as transient elastography (TE) or magnetic resonance elastography (MRE), which are used to estimate liver stiffness as a potential surrogate of hepatic fibrosis. Although a dynamic field of research, most of these diagnostic modalities have area under the curve ranging between 0.76 and 0.90%, with MRE having the best predictive performance. In summary, developing safe and easily accessible noninvasive modalities to accurately diagnose and monitor NASH and associated fibrosis is of utmost importance in clinical practice and clinical research. These tests are not only important to risk stratify subjects at the greatest risk for progressive liver disease, but also to serve as appropriate surrogate endpoints for therapeutic clinical trials of NASH. (Hepatology 2018;68:349-360).
Collapse
Affiliation(s)
- Zobair M Younossi
- Department of Medicine and Betty and Guy Beatty Center for Integrated Research, Claude Moore, Inova Health Systems, Falls Church, VA
| | - Rohit Loomba
- NAFLD Research Center, University of California at San Diego, La Jolla, CA
| | - Quentin M Anstee
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Mary E Rinella
- University of Torino, Department of Medical Sciences, Torino, Italy
| | | | - Giulio Marchesini
- Division of Gastroenterology and Hepatology, Saint Louis University, St. Louis, MO
| | | | | | - Francesco Negro
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA
| | - Stephen H Caldwell
- Institute of Cardiometabolim and Nutrition (ICAN) and Hospital Pitié Salpêtrière, de L'Hopital, Paris, France
| | - Vlad Ratziu
- Massachusetts General Hospital, Cambridge, MA
| | - Kathleen E Corey
- Icahn School of Medicine at Mount Sinai, Division of Liver Diseases, New York, NY
| | - Scott L Friedman
- Division of Gastroenterology and Hepatology, Duke University, Durham, NC
| | | | - Stephen A Harrison
- Division of Gastroenterology, Virginia Commonwealth University, Richmond, VA
| | - Arun J Sanyal
- Department of Pediatrics, Columbia College of Physicians and Surgeons, New York, NY
| | - Joel E Lavine
- Hôpital Claude Huriez Rue Michel Polonowski, Lille, France
| | | | - Michael R Charlton
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN
| | - Zachary D Goodman
- Department of Medicine and Betty and Guy Beatty Center for Integrated Research, Claude Moore, Inova Health Systems, Falls Church, VA
| | - Naga P Chalasani
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia
| | | |
Collapse
|
22
|
Lin Q, Dai Q, Meng H, Sun A, Wei J, Peng K, Childress C, Chen M, Shao G, Yang W. The HECT E3 ubiquitin ligase NEDD4 interacts with and ubiquitylates SQSTM1 for inclusion body autophagy. J Cell Sci 2017; 130:3839-3850. [PMID: 29021346 DOI: 10.1242/jcs.207068] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/27/2017] [Indexed: 12/29/2022] Open
Abstract
Our previous studies have shown that the HECT E3 ubiquitin ligase NEDD4 interacts with LC3 and is required for starvation and rapamycin-induced activation of autophagy. Here, we report that NEDD4 directly binds to SQSTM1 via its HECT domain and polyubiquitylates SQSTM1. This ubiquitylation is through K63 conjugation and is not involved in proteasomal degradation. Mutational analysis indicates that NEDD4 interacts with and ubiquitylates the PB1 domain of SQSTM1. Depletion of NEDD4 or overexpression of the ligase-defective mutant of NEDD4 induced accumulation of aberrant enlarged SQSTM1-positive inclusion bodies that are co-localized with the endoplasmic reticulum (ER) marker CANX, suggesting that the ubiquitylation functions in the SQSTM1-mediated biogenic process in inclusion body autophagosomes. Taken together, our studies show that NEDD4 is an autophagic E3 ubiquitin ligase that ubiquitylates SQSTM1, facilitating SQSTM1-mediated inclusion body autophagy.
Collapse
Affiliation(s)
- Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Qian Dai
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hongxia Meng
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Aiqin Sun
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jing Wei
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ke Peng
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Chandra Childress
- Department of Biology, Susquehanna University, 514 University Ave, Selinsgrove, PA 17870, USA
| | - Miao Chen
- Department of Pathology, Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China
| | - Genbao Shao
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wannian Yang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
23
|
Impaired autophagic flux and p62-mediated EMT are involved in arsenite-induced transformation of L-02 cells. Toxicol Appl Pharmacol 2017; 334:75-87. [PMID: 28888487 DOI: 10.1016/j.taap.2017.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022]
Abstract
Autophagy is a catabolic process essential for preserving cellular homeostasis, and the epithelial-to-mesenchymal transition (EMT) is involved during tissue development and cancer progression. In arsenite-treated human hepatic epithelial (L-02) cells, arsenite reduced the autophagic flux, which caused accumulation of p62, an adaptor and receptor of autophagy. Further, in arsenite-transformed L-02 cells, the levels of E-cadherin were attenuated, but the levels of vimentin, which is expressed in mesenchymal cells, and Snail, a transcription regulator of the EMT, were up-regulated. Thus, after chronic exposure of L-02 cells to arsenite, the impaired autophagic flux induced the accumulation of p62, which up-regulated the expression of Snail, a protein involved in arsenite-induced EMT of these cells. Knockdown of p62 by siRNA reversed the arsenite-induced EMT and decreased the capacities of arsenite-transformed L-02 cells for colony formation and invasion and migration. Therefore, in arsenite-induced transformation of L-02 cells, the accumulation of p62, by impairing autophagic flux, mediates the EMT via Snail. These results provide a previously unknown mechanism underlying arsenic toxicity and carcinogenicity.
Collapse
|
24
|
Autophagy is essential for hearing in mice. Cell Death Dis 2017; 8:e2780. [PMID: 28492547 PMCID: PMC5520715 DOI: 10.1038/cddis.2017.194] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 12/26/2022]
Abstract
Hearing loss is the most frequent sensory disorder in humans. Auditory hair cells (HCs) are postmitotic at late-embryonic differentiation and postnatal stages, and their damage is the major cause of hearing loss. There is no measurable HC regeneration in the mammalian cochlea, and the maintenance of cell function is crucial for preservation of hearing. Here we generated mice deficient in autophagy-related 5 (Atg5), a gene essential for autophagy, in the HCs to investigate the effect of basal autophagy on hearing acuity. Deletion of Atg5 resulted in HC degeneration and profound congenital hearing loss. In autophagy-deficient HCs, polyubiquitinated proteins and p62/SQSTM1, an autophagy substrate, accumulated as inclusion bodies during the first postnatal week, and these aggregates increased in number. These findings revealed that basal autophagy has an important role in maintenance of HC morphology and hearing acuity.
Collapse
|
25
|
Katsuragi Y, Ichimura Y, Komatsu M. Regulation of the Keap1–Nrf2 pathway by p62/SQSTM1. CURRENT OPINION IN TOXICOLOGY 2016. [DOI: 10.1016/j.cotox.2016.09.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
26
|
Bettermann K, Mehta AK, Hofer EM, Wohlrab C, Golob-Schwarzl N, Svendova V, Schimek MG, Stumptner C, Thüringer A, Speicher MR, Lackner C, Zatloukal K, Denk H, Haybaeck J. Keratin 18-deficiency results in steatohepatitis and liver tumors in old mice: A model of steatohepatitis-associated liver carcinogenesis. Oncotarget 2016; 7:73309-73322. [PMID: 27689336 PMCID: PMC5341981 DOI: 10.18632/oncotarget.12325] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023] Open
Abstract
Backround: Steatohepatitis (SH)-associated liver carcinogenesis is an increasingly important issue in clinical medicine. SH is morphologically characterized by steatosis, hepatocyte injury, ballooning, hepatocytic cytoplasmic inclusions termed Mallory-Denk bodies (MDBs), inflammation and fibrosis. RESULTS 17-20-months-old Krt18-/- and Krt18+/- mice in contrast to wt mice spontaneously developed liver lesions closely resembling the morphological spectrum of human SH as well as liver tumors. The pathologic alterations were more pronounced in Krt18-/- than in Krt18+/- mice. The frequency of liver tumors with male predominance was significantly higher in Krt18-/- compared to age-matched Krt18+/- and wt mice. Krt18-deficient tumors in contrast to wt animals displayed SH features and often pleomorphic morphology. aCGH analysis of tumors revealed chromosomal aberrations in Krt18-/- liver tumors, affecting loci of oncogenes and tumor suppressor genes. MATERIALS AND METHODS Livers of 3-, 6-, 12- and 17-20-months-old aged wild type (wt), Krt18+/- and Krt18-/- (129P2/OlaHsd background) mice were analyzed by light and immunofluorescence microscopy as well as immunohistochemistry. Liver tumors arising in aged mice were analyzed by array comparative genomic hybridization (aCGH). CONCLUSIONS Our findings show that K18 deficiency of hepatocytes leads to steatosis, increasing with age, and finally to SH. K18 deficiency and age promote liver tumor development in mice, frequently on the basis of chromosomal instability, resembling human HCC with stemness features.
Collapse
Affiliation(s)
- Kira Bettermann
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | | | - Eva M. Hofer
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | - Christina Wohlrab
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | | | - Vendula Svendova
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz 8036, Austria
| | - Michael G. Schimek
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz 8036, Austria
| | | | - Andrea Thüringer
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | | | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | - Helmut Denk
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Medical University of Graz, Graz 8036, Austria
| |
Collapse
|
27
|
Lahiri P, Schmidt V, Smole C, Kufferath I, Denk H, Strnad P, Rülicke T, Fröhlich LF, Zatloukal K. p62/Sequestosome-1 Is Indispensable for Maturation and Stabilization of Mallory-Denk Bodies. PLoS One 2016; 11:e0161083. [PMID: 27526095 PMCID: PMC4985067 DOI: 10.1371/journal.pone.0161083] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/31/2016] [Indexed: 11/19/2022] Open
Abstract
Mallory-Denk bodies (MDBs) are hepatocytic protein aggregates found in steatohepatitis and several other chronic liver diseases as well as hepatocellular carcinoma. MDBs are mainly composed of phosphorylated keratins and stress protein p62/Sequestosome-1 (p62), which is a common component of cytoplasmic aggregates in a variety of protein aggregation diseases. In contrast to the well-established role of keratins, the role of p62 in MDB pathogenesis is still elusive. We have generated total and hepatocyte-specific p62 knockout mice, fed them with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) to induce MDBs and allowed the mice to recover from DDC intoxication on a standard diet to investigate the role of p62 in MDB formation and elimination. In the absence of p62, smaller, granular and less distinct MDBs appeared, which failed to mature to larger and compact inclusions. Moreover, p62 deficiency impaired the binding of other proteins such as NBR1 and Hsp25 to MDBs and altered the cellular defense mechanism by downregulation of Nrf2 target genes. Upon recovery from DDC intoxication on a standard diet, there was an enhanced reduction of p62-deficient MDBs, which was accompanied by a pronounced decrease in ubiquitinated proteins. Our data provide strong evidence that keratin aggregation is the initial step in MDB formation in steatohepatitis-related mouse models. Interaction of p62 with keratin aggregates then leads to maturation i.e., enlargement and stabilization of the MDBs as well as recruitment of other MDB-associated proteins.
Collapse
Affiliation(s)
- Pooja Lahiri
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Volker Schmidt
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claudia Smole
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Iris Kufferath
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Helmut Denk
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Pavel Strnad
- IZKF and Department of Internal Medicine III, Aachen, Germany
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
28
|
Wang Y, Zhang N, Zhang L, Li R, Fu W, Ma K, Li X, Wang L, Wang J, Zhang H, Gu W, Zhu WG, Zhao Y. Autophagy Regulates Chromatin Ubiquitination in DNA Damage Response through Elimination of SQSTM1/p62. Mol Cell 2016; 63:34-48. [PMID: 27345151 DOI: 10.1016/j.molcel.2016.05.027] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/31/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022]
Abstract
Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome, and loss of autophagy has been linked to increased genome instability. Here, we report that loss of autophagy is coupled to reduced histone H2A ubiquitination after DNA damage. p62/SQSTM1, which accumulates in autophagy-defective cells, directly binds to and inhibits nuclear RNF168, an E3 ligase essential for histone H2A ubiquitination and DNA damage responses. As a result, DNA repair proteins such as BRCA1, RAP80, and Rad51 cannot be recruited to the sites of DNA double-strand breaks (DSBs), which impairs DSB repair. Moreover, nuclear-localized p62 increased the sensitivity of tumor cells to radiation both in vitro and in vivo, and this required its interaction with RNF168. Our findings indicate that autophagy-deficiency-induced p62 accumulation results in inhibition of histone ubiquitination and highlight the complex relationship between autophagy and the DNA damage response.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Nan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Luyao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ran Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wan Fu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ke Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xue Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lina Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiadong Wang
- Institute of Systems Biomedicine and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hongquan Zhang
- Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
| | - Wei Gu
- Institute for Cancer Genetics and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Center for Life Sciences, Peking-Tsinghua University, Beijing 100871, China; Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China.
| | - Ying Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
29
|
Mwangi SM, Peng S, Nezami BG, Thorn N, Farris AB, Jain S, Laroui H, Merlin D, Anania F, Srinivasan S. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced hepatic steatosis by suppressing hepatic PPAR-γ expression. Am J Physiol Gastrointest Liver Physiol 2016; 310:G103-16. [PMID: 26564715 PMCID: PMC4719063 DOI: 10.1152/ajpgi.00196.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/02/2015] [Indexed: 01/31/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) protects against high-fat diet (HFD)-induced hepatic steatosis in mice, however, the mechanisms involved are not known. In this study we investigated the effects of GDNF overexpression and nanoparticle delivery of GDNF in mice on hepatic steatosis and fibrosis and the expression of genes involved in the regulation of hepatic lipid uptake and de novo lipogenesis. Transgenic overexpression of GDNF in liver and other metabolically active tissues was protective against HFD-induced hepatic steatosis. Mice overexpressing GDNF had significantly reduced P62/sequestosome 1 protein levels suggestive of accelerated autophagic clearance. They also had significantly reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) and CD36 gene expression and protein levels, and lower expression of mRNA coding for enzymes involved in de novo lipogenesis. GDNF-loaded nanoparticles were protective against short-term HFD-induced hepatic steatosis and attenuated liver fibrosis in mice with long-standing HFD-induced hepatic steatosis. They also suppressed the liver expression of steatosis-associated genes. In vitro, GDNF suppressed triglyceride accumulation in Hep G2 cells through enhanced p38 mitogen-activated protein kinase-dependent signaling and inhibition of PPAR-γ gene promoter activity. These results show that GDNF acts directly in the liver to protect against HFD-induced cellular stress and that GDNF may have a role in the treatment of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Simon Musyoka Mwangi
- 1Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia; ,2Atlanta Veterans Affairs Medical Center, Decatur, Georgia;
| | - Sophia Peng
- 1Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia;
| | - Behtash Ghazi Nezami
- 1Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia; ,2Atlanta Veterans Affairs Medical Center, Decatur, Georgia;
| | - Natalie Thorn
- 1Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia; ,2Atlanta Veterans Affairs Medical Center, Decatur, Georgia;
| | - Alton B. Farris
- 3Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia;
| | - Sanjay Jain
- 5Internal Medicine (Renal Division), Washington University School of Medicine, St. Louis, Missouri
| | - Hamed Laroui
- 4Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia; and
| | - Didier Merlin
- 2Atlanta Veterans Affairs Medical Center, Decatur, Georgia; ,4Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia; and
| | - Frank Anania
- 1Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia; ,2Atlanta Veterans Affairs Medical Center, Decatur, Georgia;
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia; Atlanta Veterans Affairs Medical Center, Decatur, Georgia;
| |
Collapse
|
30
|
Stumptner C, Gogg-Kamerer M, Viertler C, Denk H, Zatloukal K. Immunofluorescence and Immunohistochemical Detection of Keratins. Methods Enzymol 2016; 568:139-62. [DOI: 10.1016/bs.mie.2015.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
|
32
|
Yeh MM, Brunt EM. Pathological features of fatty liver disease. Gastroenterology 2014; 147:754-64. [PMID: 25109884 DOI: 10.1053/j.gastro.2014.07.056] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022]
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are significant causes of chronic liver disease worldwide. Both are characterized by histological lesions that can include steatosis, and each can lead to cirrhosis. It might be possible for pathologists to identify lesions and patterns of ALD and NAFLD; we review these lesions and propose methods to distinguish between the disorders. Any form of ALD can lead to end-stage liver disease, according to long-term studies of biopsy specimens and patient outcomes. Although steatosis can be a significant cofactor in progression of established chronic liver disease, or even development of hepatocellular carcinoma, only steatohepatitis indicates the presence of progressive liver disease in patients with NAFLD. Pediatric and adolescent NAFLD differ from adult nonalcoholic steatohepatitis and should be recognized as distinct conditions. Benign and malignant liver tumors have been more frequently reported with the increasing prevalence of obesity and diabetes. Histological scoring systems for ALD and NAFLD have been proposed to monitor efficacy in clinical trials and serve as prognostic factors. We review what we have learned from pathological analyses about the development of these disorders and how this information might be used to detect and treat them.
Collapse
Affiliation(s)
- Matthew M Yeh
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Elizabeth M Brunt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
33
|
Park HW, Park H, Semple IA, Jang I, Ro SH, Kim M, Cazares VA, Stuenkel EL, Kim JJ, Kim JS, Lee JH. Pharmacological correction of obesity-induced autophagy arrest using calcium channel blockers. Nat Commun 2014; 5:4834. [PMID: 25189398 PMCID: PMC4157315 DOI: 10.1038/ncomms5834] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/29/2014] [Indexed: 12/16/2022] Open
Abstract
Autophagy deregulation during obesity contributes to the pathogenesis of diverse metabolic disorders. However, without understanding the molecular mechanism of obesity interference in autophagy, development of therapeutic strategies for correcting such defects in obese individuals is challenging. Here we show that chronic increase of cytosolic calcium concentration in hepatocytes upon obesity and lipotoxicity attenuates autophagic flux by preventing the fusion between autophagosomes and lysosomes. As a pharmacological approach to restore cytosolic calcium homeostasis in vivo, we administered the clinically approved calcium channel blocker verapamil to obese mice. Such treatment successfully increases autophagosome-lysosome fusion in liver, preventing accumulation of protein inclusions and lipid droplets and suppressing inflammation and insulin resistance. As calcium channel blockers have been safely used in clinics for the treatment of hypertension for more than thirty years, our results suggest they may be a safe therapeutic option for restoring autophagic flux and treating metabolic pathologies in obese patients.
Collapse
Affiliation(s)
- Hwan-Woo Park
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Haeli Park
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ian A Semple
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Insook Jang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Seung-Hyun Ro
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Myungjin Kim
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Victor A Cazares
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Edward L Stuenkel
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jung-Jae Kim
- School of Computer Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jeong Sig Kim
- 1] Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA [2] Department of Obstetrics and Gynecology, Soonchunhyang University Seoul Hospital, Seoul 140-743, Republic of Korea
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
34
|
Kucukoglu O, Guldiken N, Chen Y, Usachov V, El-Heliebi A, Haybaeck J, Denk H, Trautwein C, Strnad P. High-fat diet triggers Mallory-Denk body formation through misfolding and crosslinking of excess keratin 8. Hepatology 2014; 60:169-78. [PMID: 24519272 DOI: 10.1002/hep.27068] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 02/06/2014] [Indexed: 01/11/2023]
Abstract
UNLABELLED Mallory-Denk bodies (MDBs) are protein aggregates consisting of ubiquitinated keratins 8/18 (K8/K18). MDBs are characteristic of alcoholic and nonalcoholic steatohepatitis (NASH) and discriminate between the relatively benign simple steatosis and the more aggressive NASH. Given the emerging evidence for a genetic predisposition to MDB formation and NASH development in general, we studied whether high-fat (HF) diet triggers MDB formation and liver injury in susceptible animals. Mice were fed a high-fat (HF) or low-fat (LF) diet plus a cofactor for MDB development, 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). Additionally, we fed nontransgenic and K8 overexpressing mice (K8tg) with the HF diet. The presence of MDB and extent of liver injury was evaluated using biochemical markers, histological staining, and immunofluorescence microscopy. In DDC-fed animals, an HF diet resulted in greater liver injury and up-regulation of inflammation-related genes. As a potential mechanism, K8/K18 accumulation and increased ecto-5'-nucleotidase (CD73) levels were noted. In the genetically susceptible K8tg mice, HF diet triggered hepatocellular injury, ballooning, apoptosis, inflammation, and MDB development by way of 1) decreased expression of the major stress-inducible chaperone Hsp72 with appearance of misfolded keratins; 2) elevated levels of the transglutaminase 2 (TG2); 3) increased K8 phosphorylation at S74 with subsequent TG2-mediated crosslinking of phosphorylated K8; and 4) higher production of the MDB-modifier gene CD73. CONCLUSION Our data demonstrate that HF diet triggers aggregate formation and development of liver injury in susceptible individuals through misfolding and crosslinking of excess K8.
Collapse
Affiliation(s)
- Ozlem Kucukoglu
- Department of Internal Medicine I, Center for Internal Medicine, University Medical Center Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zatloukal B, Kufferath I, Thueringer A, Landegren U, Zatloukal K, Haybaeck J. Sensitivity and specificity of in situ proximity ligation for protein interaction analysis in a model of steatohepatitis with Mallory-Denk bodies. PLoS One 2014; 9:e96690. [PMID: 24798445 PMCID: PMC4010503 DOI: 10.1371/journal.pone.0096690] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/10/2014] [Indexed: 12/14/2022] Open
Abstract
The in situ proximity ligation assay (isPLA) is an increasingly used technology for in situ detection of protein interactions, post-translational modifications, and spatial relationships of antigens in cells and tissues, in general. In order to test its performance we compared isPLA with immunofluorescence microscopy by analyzing protein interactions in cytoplasmic protein aggregates, so-called Mallory Denk bodies (MDBs). These structures represent protein inclusions in hepatocytes typically found in human steatohepatitis and they can be generated in mice by feeding of 3,5-diethoxy-carbonyl-1,4-dihydrocollidine (DDC). We investigated the colocalization of all three key MDB components, namely keratin 8 (K8), keratin 18 (K18), and p62 (sequestosome 1) by isPLA and immunofluorescence microscopy. Sensitivity and specificity of isPLA was assessed by using Krt8−/− and Krt18−/− mice as biological controls, along with a series of technical controls. isPLA signal visualization is a robust technology with excellent sensitivity and specificity. The biological relevance of signals generated critically depends on the performance of antibodies used, which requires careful testing of antibodies like in immunofluorescence microscopy. There is a clear advantage of isPLA in visualizing protein co-localization, particularly when antigens are present at markedly different concentrations. Furthermore, isPLA is superior to confocal microscopy with respect to spatial resolution of colocalizing antigens. Disadvantages compared to immunofluorescence are increased costs and longer duration of the laboratory protocol.
Collapse
Affiliation(s)
| | - Iris Kufferath
- Institute of Pathology, Medical University Graz, Graz, Austria
| | | | - Ulf Landegren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kurt Zatloukal
- Institute of Pathology, Medical University Graz, Graz, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Medical University Graz, Graz, Austria
- * E-mail:
| |
Collapse
|
36
|
Kato M, Ospelt C, Gay RE, Gay S, Klein K. Dual Role of Autophagy in Stress-Induced Cell Death in Rheumatoid Arthritis Synovial Fibroblasts. Arthritis Rheumatol 2013; 66:40-8. [DOI: 10.1002/art.38190] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 09/03/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Masaru Kato
- Center of Experimental Rheumatology, University Hospital Zurich; Zurich Switzerland
| | - Caroline Ospelt
- Center of Experimental Rheumatology, University Hospital Zurich; Zurich Switzerland
| | - Renate E. Gay
- Center of Experimental Rheumatology, University Hospital Zurich; Zurich Switzerland
| | - Steffen Gay
- Center of Experimental Rheumatology, University Hospital Zurich; Zurich Switzerland
| | - Kerstin Klein
- Center of Experimental Rheumatology, University Hospital Zurich; Zurich Switzerland
| |
Collapse
|
37
|
Gao W, Chen Z, Wang W, Stang MT. E1-like activating enzyme Atg7 is preferentially sequestered into p62 aggregates via its interaction with LC3-I. PLoS One 2013; 8:e73229. [PMID: 24023838 PMCID: PMC3762827 DOI: 10.1371/journal.pone.0073229] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/18/2013] [Indexed: 01/07/2023] Open
Abstract
p62 is constitutively degraded by autophagy via its interaction with LC3. However, the interaction of p62 with LC3 species in the context of the LC3 lipidation process is not specified. Further, the p62-mediated protein aggregation's effect on autophagy is unclear. We systemically analyzed the interactions of p62 with all known Atg proteins involved in LC3 lipidation. We find that p62 does not interact with LC3 at the stages when it is being processed by Atg4B or when it is complexed or conjugated with Atg3. p62 does interact with LC3-I and LC3-I:Atg7 complex and is preferentially recruited by LC3-II species under autophagic stimulation. Given that Atg4B, Atg3 and LC3-Atg3 are indispensable for LC3-II conversion, our study reveals a protective mechanism for Atg4B, Atg3 and LC3-Atg3 conjugate from being inappropriately sequestered into p62 aggregates. Our findings imply that p62 could potentially impair autophagy by negatively affecting LC3 lipidation and contribute to the development of protein aggregate diseases.
Collapse
Affiliation(s)
- Wentao Gao
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Zhixia Chen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Wei Wang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Michael T. Stang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
38
|
Rea SL, Walsh JP, Layfield R, Ratajczak T, Xu J. New insights into the role of sequestosome 1/p62 mutant proteins in the pathogenesis of Paget's disease of bone. Endocr Rev 2013; 34:501-24. [PMID: 23612225 DOI: 10.1210/er.2012-1034] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Paget's disease of bone (PDB) is characterized by focal areas of aberrant and excessive bone turnover, specifically increased bone resorption and disorganized bone formation. Germline mutations in the sequestosome 1/p62 (SQSTM1/p62) gene are common in PDB patients, with most mutations affecting the ubiquitin-associated domain of the protein. In vitro, osteoclast precursor cells expressing PDB-mutant SQSTM1/p62 protein are associated with increases in nuclear factor κB activation, osteoclast differentiation, and bone resorption. Although the precise mechanisms by which SQSTM1/p62 mutations contribute to disease pathogenesis and progression are not well defined, it is apparent that as well as affecting nuclear factor κB signaling, SQSTM1/p62 is a master regulator of ubiquitinated protein turnover via autophagy and the ubiquitin-proteasome system. Additional roles for SQSTM1/p62 in the oxidative stress-induced Keap1/Nrf2 pathway and in caspase-mediated apoptosis that were recently reported are potentially relevant to the pathogenesis of PDB. Thus, SQSTM1/p62 may serve as a molecular link or switch between autophagy, apoptosis, and cell survival signaling. The purpose of this review is to outline recent advances in understanding of the multiple pathophysiological roles of SQSTM1/p62 protein, with particular emphasis on their relationship to PDB, including challenges associated with translating SQSTM1/p62 research into clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Sarah L Rea
- Department of Endocrinology and Diabetes, Level 1, C Block, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009, Australia.
| | | | | | | | | |
Collapse
|
39
|
Li N, Wu X, Holzer RG, Lee JH, Todoric J, Park EJ, Ogata H, Gukovskaya AS, Gukovsky I, Pizzo DP, VandenBerg S, Tarin D, Atay C, Arkan MC, Deerinck TJ, Moscat J, Diaz-Meco M, Dawson D, Erkan M, Kleeff J, Karin M. Loss of acinar cell IKKα triggers spontaneous pancreatitis in mice. J Clin Invest 2013; 123:2231-43. [PMID: 23563314 DOI: 10.1172/jci64498] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 02/14/2013] [Indexed: 12/16/2022] Open
Abstract
Chronic pancreatitis is an inflammatory disease that causes progressive destruction of pancreatic acinar cells and, ultimately, loss of pancreatic function. We investigated the role of IκB kinase α (IKKα) in pancreatic homeostasis. Pancreas-specific ablation of IKKα (Ikkα(Δpan)) caused spontaneous and progressive acinar cell vacuolization and death, interstitial fibrosis, inflammation, and circulatory release of pancreatic enzymes, clinical signs resembling those of human chronic pancreatitis. Loss of pancreatic IKKα causes defective autophagic protein degradation, leading to accumulation of p62-mediated protein aggregates and enhanced oxidative and ER stress in acinar cells, but none of these effects is related to NF-κB. Pancreas-specific p62 ablation prevented ER and oxidative stresses and attenuated pancreatitis in Ikkα(Δpan) mice, suggesting that cellular stress induced by p62 aggregates promotes development of pancreatitis. Importantly, downregulation of IKKα and accumulation of p62 aggregates were also observed in chronic human pancreatitis. Our studies demonstrate that IKKα, which may control autophagic protein degradation through its interaction with ATG16L2, plays a critical role in maintaining pancreatic acinar cell homeostasis, whose dysregulation promotes pancreatitis through p62 aggregate accumulation.
Collapse
Affiliation(s)
- Ning Li
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, UCSD, La Jolla, California 92093-0723, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Genetic background effects of keratin 8 and 18 in a DDC-induced hepatotoxicity and Mallory-Denk body formation mouse model. J Transl Med 2012; 92:857-67. [PMID: 22449798 DOI: 10.1038/labinvest.2012.49] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Keratin 8 (K8) and keratin 18 (K18) form the major hepatocyte cytoskeleton. We investigated the impact of genetic loss of either K8 or K18 on liver homeostasis under toxic stress with the hypothesis that K8 and K18 exert different functions. krt8⁻/⁻ and krt18⁻/⁻ mice crossed into the same 129-ola genetic background were treated by acute and chronic administration of 3,5-diethoxy-carbonyl-1,4-dihydrocollidine (DDC). In acutely DDC-intoxicated mice, macrovesicular steatosis was more pronounced in krt8⁻/⁻ and krt18⁻/⁻ compared with wild-type (wt) animals. Mallory-Denk bodies (MDBs) appeared in krt18⁻/⁻ mice already at an early stage of intoxication in contrast to krt8⁻/⁻ mice that did not display MDB formation when fed with DDC. Keratin-deficient mice displayed significantly lower numbers of apoptotic hepatocytes than wt animals. krt8⁻/⁻, krt18⁻/⁻ and control mice displayed comparable cell proliferation rates. Chronically DDC-intoxicated krt18⁻/⁻ and wt mice showed a similarly increased degree of steatohepatitis with hepatocyte ballooning and MDB formation. In krt8⁻/⁻ mice, steatosis was less, ballooning, and MDBs were absent. krt18⁻/⁻ mice developed MDBs whereas krt8⁻/⁻ mice on the same genetic background did not, highlighting the significance of different structural properties of keratins. They are independent of the genetic background as an intrinsic factor. By contrast, toxicity effects may depend on the genetic background. krt8⁻/⁻ and krt18⁻/⁻ mice on the same genetic background show similar sensitivity to DDC intoxication and almost resemble wt animals regarding survival, degree of porphyria, liver-to-body weight ratio, serum bilirubin and liver enzyme levels. This stands in contrast to previous work where krt8⁻/⁻ and krt18⁻/⁻ mice on different genetic backgrounds were investigated.
Collapse
|
41
|
Hanada S, Harada M, Abe M, Akiba J, Sakata M, Kwan R, Taniguchi E, Kawaguchi T, Koga H, Nagata E, Ueno T, Sata M. Aging modulates susceptibility to mouse liver Mallory-Denk body formation. J Histochem Cytochem 2012; 60:475-83. [PMID: 22473941 DOI: 10.1369/0022155412441478] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mallory-Denk bodies (MDBs) are hepatocyte cytoplasmic inclusions found in several liver diseases and consist primarily of the cytoskeletal proteins, keratins 8 and 18 (K8/K18). Recent evidence indicates that the extent of stress-induced protein misfolding, a K8>K18 overexpression state, and transglutaminase-2 activation promote MDB formation. In addition, the genetic background and gender play an important role in mouse MDB formation, but the effect of aging on this process is unknown. Given that oxidative stress increases with aging, the authors hypothesized that aging predisposes to MDB formation. They used an established mouse MDB model-namely, feeding non-transgenic male FVB/N mice (1, 3, and 8 months old) with 3,5 diethoxycarbonyl-1,4-dihydrocollidine for 2 months. MDB formation was assessed using immunofluorescence staining and biochemically by demonstrating keratin and ubiquitin-containing crosslinks generated by transglutaminase-2. Immunofluorescence staining showed that old mice had a significant increase in MDB formation compared with young mice. MDB formation paralleled the generation of high molecular weight ubiquitinated keratin-containing complexes and induction of p62. Old mouse livers had increased oxidative stress. In addition, 20S proteasome activity and autophagy were decreased, and endoplasmic reticulum stress was increased in older livers. Therefore, aging predisposes to experimental MDB formation, possibly by decreased activity of protein degradation machinery.
Collapse
Affiliation(s)
- Shinichiro Hanada
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sasaki M, Miyakoshi M, Sato Y, Nakanuma Y. A possible involvement of p62/sequestosome-1 in the process of biliary epithelial autophagy and senescence in primary biliary cirrhosis. Liver Int 2012; 32:487-99. [PMID: 22098537 DOI: 10.1111/j.1478-3231.2011.02656.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 09/02/2011] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS Given autophagy is involved in the pathogenesis in primary biliary cirrhosis (PBC), we examined an involvement of p62 sequestosome-1 (p62), a specific cargo for autophagy, in the process of autophagy and cellular senescence in PBC. METHODS We examined immunohistochemically the expression of p62 in livers taken from patients with PBC (n = 46) and control livers (n = 78) and its colocalization with microtubule-associated proteins-light chain 3β (LC3), lysosome-associated membrane protein-1 (LAMP-1) and senescent markers (p16(INK) (4a) and p21(WAF) (1/Cip1) ). We examined the expression of p62 and LC3 in cultured biliary epithelial cells (BECs) treated with various stress. The effect of p62 knockdown with siRNA on stress-induced autophagy and cellular senescence was also assessed. RESULTS The expression of p62 was specifically seen in cytoplasmic aggregates in BECs in the inflamed and damaged small bile ducts (SBDs) in PBC, when compared with non-inflamed ones in PBC and in control livers (P < 0.01). The co-expression of p62 with LC3, LAMP-1 and senescent markers was seen in the inflamed SBDs in PBC, but the intracytoplasmic localization was different. The expression of p62 and LC3 was significantly upregulated in BECs treated with various stress (P < 0.01) and pretreatment with bafilomycin A1 enhanced the accumulation of p62-positive aggregates in BECs with serum deprivation. The knockdown of p62 decreased stress-induced autophagy and cellular senescence. CONCLUSION The aggregation of p62 is specifically increased in the damage bile ducts in PBC and may reflect dysfunctional autophagy, followed by cellular senescence in the pathogenesis of bile duct lesions in PBC.
Collapse
Affiliation(s)
- Motoko Sasaki
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | | | | | | |
Collapse
|
43
|
Abstract
Liver and pancreatic cancers are both highly lethal diseases with limited to no therapeutic options for patients. Recent studies suggest that deregulated autophagy plays a role in the pathogenesis of these diseases by perturbing cellular homeostasis and laying the foundation for disease development. While accumulation of p62 upon impaired autophagy has been implicated in hepatocellular carcinoma, its role in pancreatic ductal adenocarcinoma remains less clear. This review will focus on recent studies illustrating the role of autophagy in liver and pancreatic cancers. The relationships between autophagy, nuclear factor-κB signaling and obesity in hepatocellular carcinoma will be discussed, as well as the dual role of autophagy in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Mariam Aghajan
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, California 92093, USA
| | | | | |
Collapse
|
44
|
Abstract
Sequestosome 1/p62 is a signal modulator or adaptor protein involved in receptor-mediated signal transduction. Sequestosome 1/p62 is gaining attention as it is involved in several diseases including Parkinson disease, Alzheimer disease, liver and breast cancer, Paget's disease of bone, obesity and insulin resistance. In this review, we will focus on the most recent advances on the physiological function of p62 relevant to human diseases.
Collapse
Affiliation(s)
- Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | | | | | | |
Collapse
|
45
|
Brunt EM, Neuschwander-Tetri BA, Burt AD. Fatty liver disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2012:293-359. [DOI: 10.1016/b978-0-7020-3398-8.00006-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Rezzani R, Stacchiotti A, Rodella LF. Morphological and biochemical studies on aging and autophagy. Ageing Res Rev 2012; 11:10-31. [PMID: 21939784 DOI: 10.1016/j.arr.2011.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/05/2011] [Accepted: 09/08/2011] [Indexed: 12/11/2022]
Abstract
To maintain health in the elderly is a crucial objective for modern medicine that involves both basic and clinical researches. Autophagy is a fundamental auto-cannibalizing process that preserves cellular homeostasis and, if altered, either by excess or defect, greatly changes cell fate and can result in incapacitating human diseases. Efficient autophagy may prolong lifespan, but unfortunately this process becomes less efficient with age. The present review is focused on the close relationship between autophagy and age-related disorders in different tissues/organs and in transgenic animal models. In particular, it comments on the up to date literature on mechanisms responsible for age-related impairment of autophagy. Moreover, before discussing about these mechanisms, it is necessary to describe the metabolic autophagic regulation of autophagy and the proteins involved in this process. At the end, these data would summarize the autophagic link with aging process, as important tools in the future biogerontology scenario.
Collapse
|
47
|
Ichimura Y, Komatsu M. Pathophysiological role of autophagy: lesson from autophagy-deficient mouse models. Exp Anim 2011; 60:329-45. [PMID: 21791873 DOI: 10.1538/expanim.60.329] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Autophagy is a cellular degradation system in which cytoplasmic components including organelles are sequestered by double membrane structures called autophagosomes and sequestered materials are degraded by lysosomal hydrolases for supply of amino acids and for cellular homeostasis. The autophagy induced in response to nutrient deprivation is executed in a nonselective fashion, and adaptation to nutrient-poor conditions is the main purpose of autophagy. On the other hand, recent studies have shed light on another indispensable role for starvation-independent or constitutive autophagy in cellular homeostasis, which is mediated by selective degradation of a specific substrate(s). Herein, we introduce pathophysiological roles of starvation-induced, constitutive, and selective autophagy (in particular, selective turnover of p62 through autophagy) disclosed by autophagy-deficient mouse models.
Collapse
Affiliation(s)
- Yoshinobu Ichimura
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical ScienceSetagaya-ku, Tokyo 156-8501, Japan
| | | |
Collapse
|
48
|
Delavalle PY, Alsaleh K, Pillez A, Cocquerel L, Allet C, Dumont P, Loyens A, Leteurtre E, Omary MB, Dubuisson J, Rouillé Y, Wychowski C. Hepatocyte-derived cultured cells with unusual cytoplasmic keratin-rich spheroid bodies. Exp Cell Res 2011; 317:2683-94. [PMID: 21907707 DOI: 10.1016/j.yexcr.2011.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/22/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
Abstract
Cytoplasmic inclusions are found in a variety of diseases that are characteristic morphological features of several hepatic, muscular and neurodegenerative disorders. They display a predominantly filamentous ultrastructure that is also observed in malignant rhabdoid tumor (MRT). A cellular clone containing an intracytoplasmic body was isolated from hepatocyte cell culture, and in the present study we examined whether this body might be related or not to Mallory-Denk body (MDB), a well characterized intracytoplasmic inclusion, or whether this cellular clone was constituted by malignant rhabdoid tumor cells. The intracytoplasmic body was observed in electron microscopy (EM), confocal immunofluorescence microscopy and several proteins involved in the formation of its structure were identified. Using light microscopy, a spheroid body (SB) described as a single regular-shaped cytoplasmic body was observed in cells. During cytokinesis, the SB was disassembled and reassembled in a way to reconstitute a unique SB in each progeny cell. EM examination revealed that the SB was not surrounded by a limiting membrane. However, cytoplasmic filaments were concentrated in a whorled array. These proteins were identified as keratins 8 and 18 (K8/K18), which formed the central core of the SB surrounded by a vimentin cage-like structure. This structure was not related to Mallory-Denk body or aggresome since no aggregated proteins were located in SB. Moreover, the structure of SB was not due to mutations in the primary sequence of K8/K18 and vimentin since no difference was observed in the mRNA sequence of their genes, isolated from Huh-7 and Huh-7w7.3 cells. These data suggested that cellular factor(s) could be responsible for the SB formation process. Aggregates of K18 were relocated in the SB when a mutant of K18 inducing disruption of K8/K18 IF network was expressed in the cellular clone. Furthermore, the INI1 protein, a remodeling-chromatin factor deficient in rhabdoid cells, which contain a spheroid perinuclear inclusion body, was found in our cellular clone. In conclusion, our data suggest that Huh-7w7.3 cells constitute an excellent model for determining the cellular factor(s) involved in the process of spheroid perinuclear body formation.
Collapse
|
49
|
Lackner C. Hepatocellular ballooning in nonalcoholic steatohepatitis: the pathologist's perspective. Expert Rev Gastroenterol Hepatol 2011; 5:223-31. [PMID: 21476917 DOI: 10.1586/egh.11.8] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an important complication of the metabolic syndrome. The increasing prevalence of the metabolic syndrome is paralleled by an increasing prevalence of NAFLD, which has become one of the most common chronic liver diseases. NAFLD comprises a morphological spectrum ranging from nonalcoholic fatty liver (NAFL), characterized by accumulation of fat in hepatocytes, to nonalcoholic steatohepatitis (NASH). The key histological features of NASH accepted by most pathologists include steatosis, hepatocellular ballooning and lobular inflammation, whereas, like in other chronic liver diseases, the presence of fibrosis is not considered a requirement for the diagnosis. The diagnosis of NASH and the distinction from NAFL carries important prognostic and therapeutic implications because NASH, in contrast to NAFL, is associated with an increased risk of progression to cirrhosis and hepatocellular carcinoma. Hepatocellular ballooning is a key feature required for the diagnosis of NASH and a component of currently used histological grading and staging systems of NAFLD. However, it represents an ill-defined form of liver cell injury associated with cell swelling and rounding of the cytoplasm, the detection of which is prone to intra- as well as inter-observer variation. Some of the factors that may contribute to ballooning are the rearrangement of the intermediate filament cytoskeleton, accumulation of small-droplet fat in the cytoplasm and dilation of the endoplasmic reticulum. The rearrangement of the intermediate filament cytoskeleton can be demonstrated by the loss of keratin 8/18 immunostaining of the cytoplasm, and may thus be evaluated in the future as a marker for the more objective detection of hepatocellular ballooning in NASH.
Collapse
Affiliation(s)
- Carolin Lackner
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8010 Graz, Austria.
| |
Collapse
|
50
|
Jayakumar S, Guillot S, Argo C, Redick J, Caldwell S. Ultrastructural findings in human nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol 2011; 5:141-5. [PMID: 21476907 DOI: 10.1586/egh.11.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|