1
|
Cotino-Nájera S, Herrera LA, Domínguez-Gómez G, Díaz-Chávez J. Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer. Front Pharmacol 2023; 14:1287505. [PMID: 38026933 PMCID: PMC10667487 DOI: 10.3389/fphar.2023.1287505] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
One of the primary diseases that cause death worldwide is cancer. Cancer cells can be intrinsically resistant or acquire resistance to therapies and drugs used for cancer treatment through multiple mechanisms of action that favor cell survival and proliferation, becoming one of the leading causes of treatment failure against cancer. A promising strategy to overcome chemoresistance and radioresistance is the co-administration of anticancer agents and natural compounds with anticancer properties, such as the polyphenolic compound resveratrol (RSV). RSV has been reported to be able to sensitize cancer cells to chemotherapeutic agents and radiotherapy, promoting cancer cell death. This review describes the reported molecular mechanisms by which RSV sensitizes tumor cells to radiotherapy and chemotherapy treatment.
Collapse
Affiliation(s)
- Sandra Cotino-Nájera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Luis A. Herrera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
- Escuela de Medicina y Ciencias de la Salud-Tecnológico de Monterrey, México City, Mexico
| | - Guadalupe Domínguez-Gómez
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCAN), Ciudad de México, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
2
|
Budke B, Zhong A, Sullivan K, Park C, Gittin DI, Kountz TS, Connell PP. Noncanonical NF-κB factor p100/p52 regulates homologous recombination and modulates sensitivity to DNA-damaging therapy. Nucleic Acids Res 2022; 50:6251-6263. [PMID: 35689636 PMCID: PMC9226503 DOI: 10.1093/nar/gkac491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 11/14/2022] Open
Abstract
Homologous recombination (HR) serves multiple roles in DNA repair that are essential for maintaining genomic stability, including double-strand DNA break (DSB) repair. The central HR protein, RAD51, is frequently overexpressed in human malignancies, thereby elevating HR proficiency and promoting resistance to DNA-damaging therapies. Here, we find that the non-canonical NF-κB factors p100/52, but not RelB, control the expression of RAD51 in various human cancer subtypes. While p100/p52 depletion inhibits HR function in human tumor cells, it does not significantly influence the proficiency of non-homologous end joining, the other key mechanism of DSB repair. Clonogenic survival assays were performed using a pair DLD-1 cell lines that differ only in their expression of the key HR protein BRCA2. Targeted silencing of p100/p52 sensitizes the HR-competent cells to camptothecin, while sensitization is absent in HR-deficient control cells. These results suggest that p100/p52-dependent signaling specifically controls HR activity in cancer cells. Since non-canonical NF-κB signaling is known to be activated after various forms of genomic crisis, compensatory HR upregulation may represent a natural consequence of DNA damage. We propose that p100/p52-dependent signaling represents a promising oncologic target in combination with DNA-damaging treatments.
Collapse
Affiliation(s)
- Brian Budke
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Alison Zhong
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Katherine Sullivan
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Chanyoung Park
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - David I Gittin
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Timothy S Kountz
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| | - Philip P Connell
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Biguanides drugs: Past success stories and promising future for drug discovery. Eur J Med Chem 2021; 224:113726. [PMID: 34364161 DOI: 10.1016/j.ejmech.2021.113726] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Biguanides have attracted much attention a century ago and showed resurgent interest in recent years after a long period of dormancy. They constitute an important class of therapeutic agents suitable for the treatment of a wide spectrum of diseases. Therapeutic indications of biguanides include antidiabetic, antimalarial, antiviral, antiplaque, and bactericidal applications. This review presents an extensive overview of the biological activity of biguanides and different mechanisms of action of currently marketed biguanide-containing drugs, as well as their pharmacological properties when applicable. We highlight the recent developments in research on biguanide compounds, with a primary focus on studies on metformin in the field of oncology. We aim to provide a critical overview of all main bioactive biguanide compounds and discuss future perspectives for the design of new drugs based on the biguanide fragment.
Collapse
|
4
|
Wang Z, Wang X, Wang Y, Tang S, Feng C, Pan L, Lu Q, Tao Y, Xie Y, Wang Q, Tang Z. Transcriptomic Analysis of Gene Networks Regulated by U11 Small Nuclear RNA in Bladder Cancer. Front Genet 2021; 12:695597. [PMID: 34276798 PMCID: PMC8283811 DOI: 10.3389/fgene.2021.695597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/11/2021] [Indexed: 01/26/2023] Open
Abstract
Small nuclear RNA is a class of non-coding RNA that widely exist in the nucleus of eukaryotes. Accumulated evidences have shown that small nuclear RNAs are associated with the regulation of gene expression in various tumor types. To explore the gene expression changes and its potential effects mediated by U11 snRNA in bladder cancer cells, U11 snRNA knockout and overexpressed cell lines were constructed and further used to analyze the gene expression changes by RNA sequencing. The differentially expressed genes were found to be mainly enriched in tumor-related pathways both in the U11 knockout and overexpression cell lines, such as NF-kappa B signaling pathway, bladder cancer and PI3K-Akt signaling pathway. Furthermore, alternative splicing events were proposed to participate in the potential regulatory mechanism induced by the U11 knockout or overexpression. In conclusion, U11 may be involved in the regulation of gene expression in bladder cancer cells, which may provide a potentially new biomarker for clinical diagnosis and treatment of bladder cancer.
Collapse
Affiliation(s)
- Zhenxing Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xi Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Yaobang Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Shaomei Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao Feng
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Lixin Pan
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Qinchen Lu
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Yuting Tao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Yuanliang Xie
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Department of Urology, The Affiliated Cancer Hospital of Guangxi Medical University, Nanning, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China
| | - Zhong Tang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,School of Information and Management, Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Kim A, Yonemoto C, Feliciano CP, Shashni B, Nagasaki Y. Antioxidant Nanomedicine Significantly Enhances the Survival Benefit of Radiation Cancer Therapy by Mitigating Oxidative Stress-Induced Side Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008210. [PMID: 33860635 DOI: 10.1002/smll.202008210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Oxidative stress-induced off-target effects limit the therapeutic window of radiation therapy. Although many antioxidants have been evaluated as radioprotective agents, none of them are in widespread clinical use, owing to the side effects of the antioxidants themselves and the lack of apparent benefit. Aiming for a truly effective radioprotective agent in radiation cancer therapy, the performance of a self-assembling antioxidant nanoparticle (herein denoted as redox nanoparticle; RNP) is evaluated in the local irradiation of a subcutaneous tumor-bearing mouse model. Since RNP is covered with a biocompatible shell layer and possesses a core-shell type structure of several tens of nanometers in size, its lifetime in the systemic circulation is prolonged. Moreover, since 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), one of the most potent antioxidants, is covalently encapsulated in the core of RNP, it exerts intense antioxidant activity and induces fewer adverse effects by avoiding leakage of the TEMPO molecules. Preadministration of RNP to the mouse model effectively mitigates side effects in normal tissues and significantly extends the survival benefit of radiation cancer therapy. Moreover, RNP pretreatment noticeably increases the apoptosis/necrosis ratio of radiation-induced cell death, a highly desirable property to reduce the chronic side effects of ionizing irradiation.
Collapse
Affiliation(s)
- Ahram Kim
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Chiaki Yonemoto
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Chitho P Feliciano
- Radiation Research Center (RRC), Philippine Nuclear Research Institute, Department of Science and Technology (DOST-PNRI), Commonwealth Avenue, Diliman, Quezon City, 1101, Philippines
- Health Physics Research Section, Atomic Research Division, Philippine Nuclear Research Institute, Department of Science and Technology (DOST-PNRI), Commonwealth Avenue, Diliman, Quezon City, 1101, Philippines
| | - Babita Shashni
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
6
|
PM014 attenuates radiation-induced pulmonary fibrosis via regulating NF-kB and TGF-b1/NOX4 pathways. Sci Rep 2020; 10:16112. [PMID: 32999298 PMCID: PMC7527517 DOI: 10.1038/s41598-020-72629-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022] Open
Abstract
Radiation therapy is the mainstay in the treatment of lung cancer, and lung fibrosis is a radiotherapy-related major side effect that can seriously reduce patient’s quality of life. Nevertheless, effective strategies for protecting against radiation therapy-induced fibrosis have not been developed. Hence, we investigated the radioprotective effects and the underlying mechanism of the standardized herbal extract PM014 on radiation-induced lung fibrosis. Ablative radiation dose of 75 Gy was focally delivered to the left lung of mice. We evaluated the effects of PM014 on radiation-induced lung fibrosis in vivo and in an in vitro model. Lung volume and functional changes were evaluated using the micro-CT and flexiVent system. Fibrosis-related molecules were evaluated by immunohistochemistry, western blot, and real-time PCR. A orthotopic lung tumour mouse model was established using LLC1 cells. Irradiated mice treated with PM014 showed a significant improvement in collagen deposition, normal lung volume, and functional lung parameters, and these therapeutic effects were better than those of amifostine. PM104 attenuated radiation-induced increases in NF-κB activity and inhibited radiation-induced p65 translocation, ROS production, DNA damage, and epithelial-mesenchymal transition. PM104 effectively alleviated fibrosis in an irradiated orthotopic mouse lung tumour model while not attenuating the efficacy of the radiation therapy by reduction of the tumour. Standardized herbal extract PM014 may be a potential therapeutic agent that is able to increase the efficacy of radiotherapy by alleviating radiation-induced lung fibrosis.
Collapse
|
7
|
Study of the Differentially Expressed Genes in the Pomacea canaliculata Transcriptome after Treatment with Pedunsaponin A. Metabolites 2019; 9:metabo9110268. [PMID: 31698793 PMCID: PMC6918322 DOI: 10.3390/metabo9110268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/29/2022] Open
Abstract
Transcriptomes, genomes, and proteomes have played important roles in the search for drug targets. To determine the molluscicidal mechanism of pedunsaponin A against Pomacea canaliculata, RNA-seq technology was adopted to analyze the differentially expressed genes (DEGs) in the P. canaliculata transcriptome after treatment with pedunsaponin A. As a result, 533 DEGs were identified, among which 255 genes were significantly upregulated and 278 genes were significantly downregulated. According to the analysis of Gene Ontology (GO) functions, we found that the DEGs were significantly enriched in the viral life cycle, UDP-glucose 4-epimerase activity, guanylate cyclase activity, the cyclic guanosine monophosphate (cGMP) biosynthetic process, and the cGMP metabolic process. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway results showed that the DEGs were mainly involved in the hedgehog signaling pathway, phagosome, cytosolic DNA-sensing pathway, retinoic acid-inducible gene I like (RIG-I-like) receptor signaling pathway, bacterial secretion system, and nuclear factor-kappa B (NF-kappa B) signaling pathway. The above results indicated that pedunsaponin A causes a metabolic disorder, anomalous opening of membrane ion channels, and an imbalance in osmotic pressure between the interior and exterior of cells, eventually resulting in the death of cells involved in immune defense and influencing the immune response of P. canaliculata.
Collapse
|
8
|
The Role of the Nuclear Factor κB Pathway in the Cellular Response to Low and High Linear Energy Transfer Radiation. Int J Mol Sci 2018; 19:ijms19082220. [PMID: 30061500 PMCID: PMC6121395 DOI: 10.3390/ijms19082220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
Astronauts are exposed to considerable doses of space radiation during long-term space missions. As complete shielding of the highly energetic particles is impracticable, the cellular response to space-relevant radiation qualities has to be understood in order to develop countermeasures and to reduce radiation risk uncertainties. The transcription factor Nuclear Factor κB (NF-κB) plays a fundamental role in the immune response and in the pathogenesis of many diseases. We have previously shown that heavy ions with a linear energy transfer (LET) of 100–300 keV/µm have a nine times higher potential to activate NF-κB compared to low-LET X-rays. Here, chemical inhibitor studies using human embryonic kidney cells (HEK) showed that the DNA damage sensor Ataxia telangiectasia mutated (ATM) and the proteasome were essential for NF-κB activation in response to X-rays and heavy ions. NF-κB’s role in cellular radiation response was determined by stable knock-down of the NF-κB subunit RelA. Transfection of a RelA short-hairpin RNA plasmid resulted in higher sensitivity towards X-rays, but not towards heavy ions. Reverse Transcriptase real-time quantitative PCR (RT-qPCR) showed that after exposure to X-rays and heavy ions, NF-κB predominantly upregulates genes involved in intercellular communication processes. This process is strictly NF-κB dependent as the response is completely absent in RelA knock-down cells. NF-κB’s role in the cellular radiation response depends on the radiation quality.
Collapse
|
9
|
Conti S, Vexler A, Edry-Botzer L, Kalich-Philosoph L, Corn BW, Shtraus N, Meir Y, Hagoel L, Shtabsky A, Marmor S, Earon G, Lev-Ari S. Combined acetyl-11-keto-β-boswellic acid and radiation treatment inhibited glioblastoma tumor cells. PLoS One 2018; 13:e0198627. [PMID: 29969452 PMCID: PMC6029770 DOI: 10.1371/journal.pone.0198627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/22/2018] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and most aggressive subtype of malignant gliomas. The current standard of care for newly diagnosed GBM patients involves maximal surgical debulking, followed by radiation therapy and temozolomide chemotherapy. Despite the advances in GBM therapy, its outcome remains poor with a median survival of less than two years. This poor outcome is partly due to the ability of GBM tumors to acquire adaptive resistance to therapy and in particular to radiation. One of the mechanisms contributing to GBM tumor progression and resistance is an aberrant activation of NF-ĸB, a family of inducible transcription factors that play a pivotal role in regulation of many immune, inflammatory and carcinogenic responses. Acetyl-11-keto-β-boswellic acid (AKBA) is a pentacyclic terpenoid extracted from the gum Ayurvedic therapeutic plant Boswellia serrata. AKBA is anti-inflammatory agent that exhibits potent cytotoxic activities against various types of tumors including GBM. One of the mechanisms underlying AKBA anti-tumor activity is its ability to modulate the NF-ĸB signaling pathway. The present study investigated in vitro and in vivo the effect of combining AKBA with ionizing radiation in the treatment of GBM and assessed AKBA anti-tumor activity and radio-enhancing potential. The effect of AKBA and/or radiation on the survival of cultured glioblastoma cancer cells was evaluated by XTT assay. The mode of interaction of treatments tested was calculated using CalcuSyn software. Inducing of apoptosis following AKBA treatment was evaluated using flow cytometry. The effect of combined treatment on the expression of PARP protein was analysed by Western blot assay. Ectopic (subcutaneous) GBM model in nude mice was used for the evaluation of the effect of combined treatment on tumor growth. Immunohistochemical analysis of formalin-fixed paraffin-embedded tumor sections was used to assess treatment-related changes in Ki-67, CD31, p53, Bcl-2 and NF-ĸB-inhibitor IĸB-α. AKBA treatment was found to inhibit the survival of all four tested cell lines in a dose dependent manner. The combined treatment resulted in a more significant inhibitory effect compared to the effect of treatment with radiation alone. A synergistic effect was detected in some of the tested cell lines. Flow cytometric analysis with Annexin V-FITC/PI double staining of AKBA treated cells indicated induction of apoptosis. AKBA apoptotic activity was also confirmed by PARP cleavage detected by Western blot analysis. The combined treatment suppressed tumor growth in vivo compared to no treatment and each treatment alone. Immunohistochemical analysis showed anti-angiogenic and anti-proliferative activity of AKBA in vivo. It also demonstrated a decrease in p53 nuclear staining and in Bcl-2 staining and an increase in IĸB-α staining following AKBA treatment both alone and in combination with radiotherapy. In this study, we demonstrated that AKBA exerts potent anti-proliferative and apoptotic activity, and significantly inhibits both the survival of glioblastoma cells in vitro and the growth of tumors generated by these cells. Combination of AKBA with radiotherapy was found to inhibit factors which involved in cell death regulation, tumor progression and radioresistence, therefore it may serve as a novel approach for GBM patients.
Collapse
Affiliation(s)
- Sefora Conti
- Laboratory of Herbal Medicine and Cancer Research, Institute of Oncology, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Akiva Vexler
- Laboratory of Herbal Medicine and Cancer Research, Institute of Oncology, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Liat Edry-Botzer
- Laboratory of Herbal Medicine and Cancer Research, Institute of Oncology, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Lital Kalich-Philosoph
- Laboratory of Herbal Medicine and Cancer Research, Institute of Oncology, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Benjamin W. Corn
- Institute of Radiotherapy, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Natan Shtraus
- Institute of Radiotherapy, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yaron Meir
- Institute of Radiotherapy, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Lior Hagoel
- Laboratory of Herbal Medicine and Cancer Research, Institute of Oncology, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Alexander Shtabsky
- Pathology Department, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sylvia Marmor
- Pathology Department, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gideon Earon
- Laboratory of Herbal Medicine and Cancer Research, Institute of Oncology, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Shahar Lev-Ari
- Laboratory of Herbal Medicine and Cancer Research, Institute of Oncology, Tel-Aviv Medical Center affiliated to the Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
10
|
Deraska PV, O'Leary C, Reavis HD, Labe S, Dinh TK, Lazaro JB, Sweeney C, D'Andrea AD, Kozono D. NF-κB inhibition by dimethylaminoparthenolide radiosensitizes non-small-cell lung carcinoma by blocking DNA double-strand break repair. Cell Death Discov 2018. [PMID: 29531807 PMCID: PMC5841323 DOI: 10.1038/s41420-017-0008-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite optimal chemotherapy, radiotherapy (RT), and/or surgery, non-small-cell lung carcinoma (NSCLC) remains the leading cause of cancer-related death in the US and worldwide. Thoracic RT, a mainstay in the treatment of locally advanced NSCLC, is often restricted in efficacy by a therapeutic index limited by sensitivity of tissues surrounding the malignancy. Therefore, radiosensitizers that can improve the therapeutic index are a vital unmet need. Inhibition of the NF-κB pathway is a proposed mechanism of radiosensitization. Here we demonstrate that inhibition of the canonical NF-κB pathway by dimethylaminoparthenolide (DMAPT) radiosensitizes NSCLC by blocking DNA double-strand break (DSB) repair. NF-κB inhibition results in significant impairment of both homologous recombination (HR) and non-homologous end joining (NHEJ), as well as reductions in ionizing radiation (IR)-induced DNA repair biomarkers. NF-κB inhibition by DMAPT shows preclinical potential for further investigation as a NSCLC radiosensitizer.
Collapse
Affiliation(s)
- Peter V Deraska
- 1Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Colin O'Leary
- 1Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Hunter D Reavis
- 1Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Shelby Labe
- 1Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Tru-Khang Dinh
- 1Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Jean-Bernard Lazaro
- 1Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA.,2Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA USA
| | - Christopher Sweeney
- 3Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Alan D D'Andrea
- 1Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA.,2Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA USA.,4Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - David Kozono
- 1Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| |
Collapse
|
11
|
Mendonca MS, Turchan WT, Alpuche ME, Watson CN, Estabrook NC, Chin-Sinex H, Shapiro JB, Imasuen-Williams IE, Rangel G, Gilley DP, Huda N, Crooks PA, Shapiro RH. DMAPT inhibits NF-κB activity and increases sensitivity of prostate cancer cells to X-rays in vitro and in tumor xenografts in vivo. Free Radic Biol Med 2017; 112:318-326. [PMID: 28782644 PMCID: PMC6322835 DOI: 10.1016/j.freeradbiomed.2017.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 01/22/2023]
Abstract
Constitutive activation of the pro-survival transcription factor NF-κB has been associated with resistance to both chemotherapy and radiation therapy in many human cancers, including prostate cancer. Our lab and others have demonstrated that the natural product parthenolide can inhibit NF-κB activity and sensitize PC-3 prostate cancers cells to X-rays in vitro; however, parthenolide has poor bioavailability in vivo and therefore has little clinical utility in this regard. We show here that treatment of PC-3 and DU145 human prostate cancer cells with dimethylaminoparthenolide (DMAPT), a parthenolide derivative with increased bioavailability, inhibits constitutive and radiation-induced NF-κB binding activity and slows prostate cancer cell growth. We also show that DMAPT increases single and fractionated X-ray-induced killing of prostate cancer cells through inhibition of DNA double strand break repair and also that DMAPT-induced radiosensitization is, at least partially, dependent upon the alteration of intracellular thiol reduction-oxidation chemistry. Finally, we demonstrate that the treatment of PC-3 prostate tumor xenografts with oral DMAPT in addition to radiation therapy significantly decreases tumor growth and results in significantly smaller tumor volumes compared to xenografts treated with either DMAPT or radiation therapy alone, suggesting that DMAPT might have a potential clinical role as a radiosensitizing agent in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Marc S Mendonca
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA; Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA.
| | - William T Turchan
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA; Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Melanie E Alpuche
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Christopher N Watson
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA; Richard L. Roudebush, VA Medical Center, Indianapolis, IN 46202 USA
| | - Neil C Estabrook
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Helen Chin-Sinex
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Jeremy B Shapiro
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Imade E Imasuen-Williams
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Gabriel Rangel
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - David P Gilley
- Department of Chemistry and Applied Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701 USA
| | - Nazmul Huda
- Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Peter A Crooks
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ronald H Shapiro
- Departments of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202 USA; Richard L. Roudebush, VA Medical Center, Indianapolis, IN 46202 USA
| |
Collapse
|
12
|
He L, Zhang X, Huang Y, Yang H, Wang Y, Zhang Z. The characterization of RHEB gene and its responses to hypoxia and thermal stresses in the small abalone Haliotis diversicolor. Comp Biochem Physiol B Biochem Mol Biol 2017. [DOI: 10.1016/j.cbpb.2017.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Lei Y, Yi Y, Liu Y, Liu X, Keller ET, Qian CN, Zhang J, Lu Y. Metformin targets multiple signaling pathways in cancer. CHINESE JOURNAL OF CANCER 2017; 36:17. [PMID: 28126011 PMCID: PMC5270304 DOI: 10.1186/s40880-017-0184-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/21/2016] [Indexed: 12/20/2022]
Abstract
Metformin, an inexpensive and well-tolerated oral agent commonly used in the first-line treatment of type 2 diabetes, has become the focus of intense research as a candidate anticancer agent. Here, we discuss the potential of metformin in cancer therapeutics, particularly its functions in multiple signaling pathways, including AMP-activated protein kinase, mammalian target of rapamycin, insulin-like growth factor, c-Jun N-terminal kinase/mitogen-activated protein kinase (p38 MAPK), human epidermal growth factor receptor-2, and nuclear factor kappaB pathways. In addition, cutting-edge targeting of cancer stem cells by metformin is summarized.
Collapse
Affiliation(s)
- Yong Lei
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, 530021, Guangxi, P. R. China.,Center for Translational Medicine, Guangxi Medical University, 14th Floor, Pharmacology and Biomedical Sciences Building, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, P. R. China
| | - Yanhua Yi
- School for International Education, Guangxi Medical University, Nanning, 530021, Guangxi, P. R. China
| | - Yang Liu
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, 530021, Guangxi, P. R. China.,Center for Translational Medicine, Guangxi Medical University, 14th Floor, Pharmacology and Biomedical Sciences Building, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, P. R. China
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, 530021, Guangxi, P. R. China.,Center for Translational Medicine, Guangxi Medical University, 14th Floor, Pharmacology and Biomedical Sciences Building, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, P. R. China
| | - Evan T Keller
- Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chao-Nan Qian
- Department of Nasopharyngeal Carcinoma, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China
| | - Jian Zhang
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, 530021, Guangxi, P. R. China. .,Center for Translational Medicine, Guangxi Medical University, 14th Floor, Pharmacology and Biomedical Sciences Building, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, P. R. China. .,Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Yi Lu
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, 530021, Guangxi, P. R. China. .,Center for Translational Medicine, Guangxi Medical University, 14th Floor, Pharmacology and Biomedical Sciences Building, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, P. R. China.
| |
Collapse
|
14
|
Kamran MZ, Ranjan A, Kaur N, Sur S, Tandon V. Radioprotective Agents: Strategies and Translational Advances. Med Res Rev 2016; 36:461-93. [PMID: 26807693 DOI: 10.1002/med.21386] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/15/2015] [Accepted: 01/01/2016] [Indexed: 01/08/2023]
Abstract
Radioprotectors are agents required to protect biological system exposed to radiation, either naturally or through radiation leakage, and they protect normal cells from radiation injury in cancer patients undergoing radiotherapy. It is imperative to study radioprotectors and their mechanism of action comprehensively, looking at their potential therapeutic applications. This review intimately chronicles the rich intellectual, pharmacological story of natural and synthetic radioprotectors. A continuous effort is going on by researchers to develop clinically promising radioprotective agents. In this article, for the first time we have discussed the impact of radioprotectors on different signaling pathways in cells, which will create a basis for scientific community working in this area to develop novel molecules with better therapeutic efficacy. The bright future of exceptionally noncytotoxic derivatives of bisbenzimidazoles is also described as radiomodulators. Amifostine, an effective radioprotectant, has been approved by the FDA for limited clinical use. However, due to its adverse side effects, it is not routinely used clinically. Recently, CBLB502 and several analog of a peptide are under clinical trial and showed high success against radiotherapy in cancer. This article reviews the different types of radioprotective agents with emphasis on the strategies for the development of novel radioprotectors for drug development. In addition, direction for future strategies relevant to the development of radioprotectors is also addressed.
Collapse
Affiliation(s)
- Mohammad Zahid Kamran
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Atul Ranjan
- Kansas University of Medical Center, Kansas City, KS, 66160
| | - Navrinder Kaur
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Souvik Sur
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.,Department of Chemistry, University of Delhi, Delhi, 110007, India
| |
Collapse
|
15
|
Liu R, Fan M, Candas D, Qin L, Zhang X, Eldridge A, Zou JX, Zhang T, Juma S, Jin C, Li RF, Perks J, Sun LQ, Vaughan ATM, Hai CX, Gius DR, Li JJ. CDK1-Mediated SIRT3 Activation Enhances Mitochondrial Function and Tumor Radioresistance. Mol Cancer Ther 2015; 14:2090-102. [PMID: 26141949 DOI: 10.1158/1535-7163.mct-15-0017] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/19/2015] [Indexed: 01/05/2023]
Abstract
Tumor adaptive resistance to therapeutic radiation remains a barrier for further improvement of local cancer control. SIRT3, a member of the sirtuin family of NAD(+)-dependent protein deacetylases in mitochondria, promotes metabolic homeostasis through regulation of mitochondrial protein deacetylation and plays a key role in prevention of cell aging. Here, we demonstrate that SIRT3 expression is induced in an array of radiation-treated human tumor cells and their corresponding xenograft tumors, including colon cancer HCT-116, glioblastoma U87, and breast cancer MDA-MB231 cells. SIRT3 transcriptional activation is due to SIRT3 promoter activation controlled by the stress transcription factor NF-κB. Posttranscriptionally, SIRT3 enzymatic activity is further enhanced via Thr150/Ser159 phosphorylation by cyclin B1-CDK1, which is also induced by radiation and relocated to mitochondria together with SIRT3. Cells expressing Thr150Ala/Ser159Ala-mutant SIRT3 show a reduction in mitochondrial protein lysine deacetylation, Δψm, MnSOD activity, and mitochondrial ATP generation. The clonogenicity of Thr150Ala/Ser159Ala-mutant transfectants is lower and significantly decreased under radiation. Tumors harboring Thr150Ala/Ser159Ala-mutant SIRT3 show inhibited growth and increased sensitivity to in vivo local irradiation. These results demonstrate that enhanced SIRT3 transcription and posttranslational modifications in mitochondria contribute to adaptive radioresistance in tumor cells. CDK1-mediated SIRT3 phosphorylation is a potential effective target to sensitize tumor cells to radiotherapy.
Collapse
Affiliation(s)
- Rui Liu
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Ming Fan
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Demet Candas
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Lili Qin
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Xiaodi Zhang
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Angela Eldridge
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - June X Zou
- Department of Internal Medicine, University of California Davis School of Medicine, Sacramento, California
| | - Tieqiao Zhang
- Center for Biophotonics Science and Technology, University of California Davis School of Medicine, Sacramento, California
| | - Shuaib Juma
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Cuihong Jin
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Robert F Li
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California
| | - Julian Perks
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California. NCI-designated Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, California
| | - Lun-Quan Sun
- Center for Molecular Imaging, Central South University, Changsha, Hunan, China
| | - Andrew T M Vaughan
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California. NCI-designated Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, California
| | - Chun-Xu Hai
- Department of Toxicology, Fourth Military Medical University, Xian, Shaanxi, China
| | - David R Gius
- Department of Radiation Oncology, Robert Lurie Cancer Center, Northwestern University, Chicago, Illinois
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis School of Medicine, Sacramento, California. NCI-designated Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, California.
| |
Collapse
|
16
|
Singh V, Gupta D, Arora R. NF-kB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries (Craiova) 2015; 3:e35. [PMID: 32309561 PMCID: PMC7159829 DOI: 10.15190/d.2015.27] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor (NF)-κB is a transcription factor that plays significant role in immunity, cellular survival and inhibition of apoptosis, through the induction of genetic networks. Depending on the stimulus and the cell type, the members of NF-κB related family (RelA, c-Rel, RelB, p50, and p52), forms different combinations of homo and hetero-dimers. The activated complexes (Es) translocate into the nucleus and bind to the 10bp κB site of promoter region of target genes in stimulus specific manner. In response to radiation, NF-κB is known to reduce cell death by promoting the expression of anti-apoptotic proteins and activation of cellular antioxidant defense system. Constitutive activation of NF-κB associated genes in tumour cells are known to enhance radiation resistance, whereas deletion in mice results in hypersensitivity to IR-induced GI damage. NF-κB is also known to regulate the production of a wide variety of cytokines and chemokines, which contribute in enhancing cell proliferation and tissue regeneration in various organs, such as the GI crypts stem cells, bone marrow etc., following exposure to IR. Several other cytokines are also known to exert potent pro-inflammatory effects that may contribute to the increase of tissue damage following exposure to ionizing radiation. Till date there are a series of molecules or group of compounds that have been evaluated for their radio-protective potential, and very few have reached clinical trials. The failure or less success of identified agents in humans could be due to their reduced radiation protection efficacy.
In this review we have considered activation of NF-κB as a potential marker in screening of radiation countermeasure agents (RCAs) and cellular radiation responses. Moreover, we have also focused on associated mechanisms of activation of NF-κB signaling and their specified family member activation with respect to stimuli. Furthermore, we have categorized their regulated gene expressions and their function in radiation response or modulation. In addition, we have discussed some recently developed radiation countermeasures in relation to NF-κB activation
Collapse
Affiliation(s)
- Vijay Singh
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Damodar Gupta
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Rajesh Arora
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| |
Collapse
|
17
|
Yang N, Wang P, Wang WJ, Song YZ, Liang ZQ. Inhibition of cathepsin L sensitizes human glioma cells to ionizing radiation in vitro through NF-κB signaling pathway. Acta Pharmacol Sin 2015; 36:400-10. [PMID: 25661319 DOI: 10.1038/aps.2014.148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/16/2014] [Indexed: 12/14/2022]
Abstract
AIM Cathepsin L, a lysosomal cysteine proteinase, is exclusively elevated in a variety of malignancies, including gliomas. In this study we investigated the relationship between cathepsin L and NF-κB, two radiation-responsive elements, in regulating the sensitivity of human glioma cells ionizing radiation (IR) in vitro. METHODS Human glioma U251 cells were exposed to IR (10 Gy), and the expression of cathepsin L and NF-κB was measured using Western blotting. The nuclear translocation of NF-κB p65 and p50 was analyzed with immunofluorescence assays. Cell apoptosis was examined with clonogenic assays. NF-κB transcription and NF-κB-dependent cyclin D1 and ATM transactivation were monitored using luciferase reporter and ChIP assays, respectively. DNA damage repair was investigated using the comet assay. RESULTS IR significantly increased expression of cathepsin L and NF-κB p65 and p50 in the cells. Furthermore, IR significantly increased the nuclear translocation of NF-κB, and NF-κB-dependent cyclin D1 and ATM transactivation in the cells. Knockdown of p65 did not change the expression of cathepsin L in IR-treated cells. Pretreatment with Z-FY-CHO (a selective cathepsin L inhibitor), or knockdown of cathepsin L significantly attenuated IR-induced nuclear translocation of NF-κB and cyclin D1 and ATM transactivation, and sensitized the cells to IR. Pretreatment with Z-FY-CHO, or knockdown of p65 also decreased IR-induced DNA damage repair and clonogenic cell survival, and sensitized the cells to IR. CONCLUSION Cathepsin L acts as an upstream regulator of NF-κB activation in human glioma cells and contributes to their sensitivity to IR in vitro. Inhibition of cathepsin L can sensitize the cells to IR.
Collapse
|
18
|
Ramachandiran S, Adon A, Guo X, Wang Y, Wang H, Chen Z, Kowalski J, Sunay UR, Young AN, Brown T, Mar JC, Du Y, Fu H, Mann KP, Natkunam Y, Boise LH, Saavedra HI, Lossos IS, Bernal-Mizrachi L. Chromosome instability in diffuse large B cell lymphomas is suppressed by activation of the noncanonical NF-κB pathway. Int J Cancer 2014; 136:2341-51. [PMID: 25359525 DOI: 10.1002/ijc.29301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/16/2014] [Indexed: 12/12/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common form of lymphoma in the United States. DLBCL comprises biologically distinct subtypes including germinal center-like (GCB) and activated-B-cell-like DLBCL (ABC). The most aggressive type, ABC-DLBCL, displays dysregulation of both canonical and noncanonical NF-κB pathway as well as genomic instability. Although, much is known about the tumorigenic roles of the canonical NF-kB pathway, the precise role of the noncanonical NF-kB pathway remains unknown. Here we show that activation of the noncanonical NF-κB pathway regulates chromosome stability, DNA damage response and centrosome duplication in DLBCL. Analysis of 92 DLBCL samples revealed that activation of the noncanonical NF-κB pathway is associated with low levels of DNA damage and centrosome amplification. Inhibiting the noncanonical pathway in lymphoma cells uncovered baseline DNA damage and prevented doxorubicin-induced DNA damage repair. In addition, it triggered centrosome amplification and chromosome instability, indicated by anaphase bridges, multipolar spindles and chromosome missegregation. We determined that the noncanonical NF-κB pathway execute these functions through the regulation of GADD45α and REDD1 in a p53-independent manner, while it collaborates with p53 to regulate cyclin G2 expression. Furthermore, this pathway regulates GADD45α, REDD1 and cyclin G2 through direct binding of NF-κB sites to their promoter region. Overall, these results indicate that the noncanonical NF-κB pathway plays a central role in maintaining genome integrity in DLBCL. Our data suggests that inhibition of the noncanonical NF-kB pathway should be considered as an important component in DLBCL therapeutic approach.
Collapse
Affiliation(s)
- Sampath Ramachandiran
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chishti AA, Baumstark-Khan C, Hellweg CE, Reitz G. Imaging of nuclear factor κB activation induced by ionizing radiation in human embryonic kidney (HEK) cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:599-610. [PMID: 24880906 DOI: 10.1007/s00411-014-0541-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
Ionizing radiation modulates several signaling pathways resulting in transcription factor activation. Nuclear factor kappa B (NF-κB) is one of the most important transcription factors that respond to changes in the environment of a mammalian cell. NF-κB plays a key role not only in inflammation and immune regulation but also in cellular radiation response. In response to DNA damage, NF-κB might inhibit apoptosis and promote carcinogenesis. Our previous studies showed that ionizing radiation is very effective in inducing biological damages. Therefore, it is important to understand the radiation-induced NF-κB signaling cascade. The current study aims to improve existing mammalian cell-based reporter assays for NF-κB activation by the use of DD-tdTomato which is a destabilized variant of red fluorescent protein tdTomato. It is demonstrated that exposure of recombinant human embryonic kidney cells (HEK/293 transfected with a reporter constructs containing NF-κB binding sites in its promoter) to ionizing radiation induces NF-κB-dependent DD-tdTomato expression. Using this reporter assays, NF-κB signaling in mammalian cells was monitored by flow cytometry and fluorescence microscopy. Activation of NF-κB by the canonical pathway was found to be quicker than by the genotoxin- and stress-induced pathway. X-rays activate NF-κB in HEK cells in a dose-dependent manner, and the extent of NF-κB activation is higher as compared to camptothecin.
Collapse
Affiliation(s)
- Arif Ali Chishti
- Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Linder Höhe, 51147, Köln, Germany,
| | | | | | | |
Collapse
|
20
|
Breast cancer adaptive resistance: HER2 and cancer stem cell repopulation in a heterogeneous tumor society. J Cancer Res Clin Oncol 2013; 140:1-14. [PMID: 23990015 PMCID: PMC3889683 DOI: 10.1007/s00432-013-1494-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/09/2013] [Indexed: 02/07/2023]
Abstract
Purpose The lethal effects of cancer are associated with the enhanced tumor aggressiveness in recurrent and metastatic lesions that show resistant phenotype to anti-cancer therapy, a major barrier to improving overall survival of cancer patients. The presence of heterogeneous populations of cancer cells within a specific tumor including the tumor-initiating cells or so-called cancer stem cells (CSCs) has linked the acquired resistance (AR, or adaptive resistance). Herein, we discuss the CSC-mediated tumor repopulation in AR of breast cancer in this review. Methods We emphasize a dynamic feature of gene induction in tumor cells that undergo long-term treatment, and describe a specific HER2-NF-κB-HER2 pro-survival pathway that can be initiated in breast CSCs upon radiation therapy. Results Elucidation of HER2-induced pro-survival networks, specifically the force driving tumor repopulation due to radioresistant CSCs during anticancer therapies, will have a significant impact on the generation of new diagnostic and therapeutic targets to control of recurrent and metastatic breast tumors.
Collapse
|
21
|
Lee W, Ahn G, Lee BJ, Wijesinghe WAJP, Kim D, Yang H, Kim YM, Park SJ, Jee Y, Jeon YJ. Radio-protective effect of polysaccharides isolated from Lactobacillus brevis-fermented Ecklonia cava. Int J Biol Macromol 2013; 52:260-6. [PMID: 23068138 DOI: 10.1016/j.ijbiomac.2012.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/20/2012] [Accepted: 10/06/2012] [Indexed: 10/27/2022]
Abstract
We investigated the radioprotective effects of a polysaccharide isolated from enzymatic extracts of Ecklonia cava (E. cava) fermented by fungi and bacteria. We identified that the aqueous extract of the Lactobacillus brevis-fermented E. cava especially showed the highest proliferation effect. In addition, the enzymatic extract prepared by enzyme-assisted extraction using Viscozyme (VLFE) significantly increased cell proliferation. Further study indicated that the polysaccharides isolated from the >30 kDa fraction of VLFE (VLFEP) significantly enhanced survival and proliferation effects in γ-ray-irradiated cells. Also, VLFEP markedly reduced the DNA damage, production of reactive oxygen species, and the percentage of Sub-G(1) DNA contents caused by γ-ray-irradiation. Moreover, VLFEP modulated the expression levels of p53, Bax, and Bcl-2 via inhibition of IκBα degradation and phosphorylation and NFκB p65 translocation into nuclei. These results demonstrate that VLFEP has radioprotective properties including the modulation of apoptosis via the inhibition of the NFκB signaling pathway.
Collapse
Affiliation(s)
- WonWoo Lee
- Department of Marine Life Science, Jeju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hunter JE, Willmore E, Irving JAE, Hostomsky Z, Veuger SJ, Durkacz BW. NF-κB mediates radio-sensitization by the PARP-1 inhibitor, AG-014699. Oncogene 2012; 31:251-64. [PMID: 21706052 PMCID: PMC3191117 DOI: 10.1038/onc.2011.229] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 04/19/2011] [Accepted: 05/11/2011] [Indexed: 12/17/2022]
Abstract
The stress-inducible transcription factor, nuclear factor (NF)-κB induces genes involved in proliferation and apoptosis. Aberrant NF-κB activity is common in cancer and contributes to therapeutic-resistance. Poly(ADP-ribose) polymerase-1 (PARP-1) is activated during DNA strand break repair and is a known transcriptional co-regulator. Here, we investigated the role of PARP-1 function during NF-κB activation using p65 small interfering RNA (siRNA), PARP siRNA or the potent PARP-1 inhibitor, AG-014699. Survival and apoptosis assays showed that NF-κB p65(-/-) cells were more sensitive to ionizing radiation (IR) than p65(+/+) cells. Co-incubation with p65 siRNA, PARP siRNA or AG-014699 radio-sensitized p65(+/+), but not p65(-/-) cells, demonstrating that PARP-1 mediates its effects on survival via NF-κB. Single-strand break (SSB) repair kinetics, and the effect SSB repair inhibition by AG-014699 were similar in p65(+/+) and p65(-/-) cells. As preventing SSB repair did not radio-sensitize p65(-/-) cells, we conclude that radio-sensitization by AG-014699 is due to downstream inhibition of NF-κB activation, and independent of SSB repair inhibition. PARP-1 catalytic activity was essential for IR-induced p65 DNA binding and NF-κB-dependent gene transcription, whereas for tumor necrosis factor (TNF)-α-treated cells, PARP-1 protein alone was sufficient. We hypothesize that this stimulus-dependent differential is mediated via stimulation of the poly(ADP-ribose) polymer, which was induced following IR, not TNF-α. Targeting DNA damage-activated NF-κB using AG-014699 may therefore overcome toxicity observed with classical NF-κB inhibitors without compromising other vital inflammatory functions. These data highlight the potential of PARP-1 inhibitors to overcome NF-κB-mediated therapeutic resistance and widens the spectrum of cancers in which these agents may be utilized.
Collapse
Affiliation(s)
- J E Hunter
- Newcastle Cancer Centre at the Northern Institute for Cancer Research, Newcastle University, Tyneside, UK
| | | | | | | | | | | |
Collapse
|
23
|
Estabrook NC, Chin-Sinex H, Borgmann AJ, Dhaemers RM, Shapiro RH, Gilley D, Huda N, Crooks P, Sweeney C, Mendonca MS. Inhibition of NF-κB and DNA double-strand break repair by DMAPT sensitizes non-small-cell lung cancers to X-rays. Free Radic Biol Med 2011; 51:2249-58. [PMID: 22019440 DOI: 10.1016/j.freeradbiomed.2011.09.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 09/23/2011] [Accepted: 09/23/2011] [Indexed: 12/25/2022]
Abstract
We investigated the efficacy and mechanism of dimethylaminoparthenolide (DMAPT), an NF-κB inhibitor, to sensitize human lung cancer cells to X-ray killing in vitro and in vivo. We tested whether DMAPT increased the effectiveness of single and fractionated X-ray treatment through inhibition of NF-κB and/or DNA double-strand break (DSB) repair. Treatment with DMAPT decreased plating efficiency, inhibited constitutive and radiation-induced NF-κB binding activity, and enhanced radiation-induced cell killing by dose modification factors of 1.8 and 1.4 in vitro. X-ray fractionation demonstrated that DMAPT inhibited split-dose recovery/repair, and neutral DNA comet assays confirmed that DMAPT altered the fast and slow components of X-ray-induced DNA DSB repair. Knockdown of the NF-κB family member p65 by siRNA increased radiation sensitivity and completely inhibited split-dose recovery in a manner very similar to DMAPT treatment. The data suggest a link between inhibition of NF-κB and inhibition of DSB repair by DMAPT that leads to enhancement of X-ray-induced cell killing in vitro in non-small-cell lung cancer cells. Studies of A549 tumor xenografts in nude mice demonstrated that DMAPT enhanced X-ray-induced tumor growth delay in vivo.
Collapse
Affiliation(s)
- Neil C Estabrook
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
McCarty MF. Metformin may antagonize Lin28 and/or Lin28B activity, thereby boosting let-7 levels and antagonizing cancer progression. Med Hypotheses 2011; 78:262-9. [PMID: 22129484 DOI: 10.1016/j.mehy.2011.10.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/26/2011] [Indexed: 12/15/2022]
Abstract
Cancer cells with stem cell characteristics are harbored by most tumors, and are characterized by epithelial-mesenchymal transition (EMT) - which promotes invasive growth and metastasis - chemoresistance, and the capacity to reconstitute new tumors. Hence, the control or destruction of cancer stem cells should be a major goal of cancer management. The let-7 family of microRNAs has cancer suppressor activity, and recent evidence suggests that markedly reduced levels of let-7 are not only a typical feature of cancer stem cells, but may be largely responsible for cancer stemness. It is therefore particularly intriguing that metformin, a diabetes drug thought to have potential in the prevention and treatment of cancer, has recently been found to oppose cancer cell stemness, to markedly potentiate chemotherapeutic control of cancer in mouse xenograft models, and to notably boost let-7a levels in cancer stem cells. It is proposed that this latter effect of metformin may reflect AMPK-mediated inhibition of the expression or activity of Lin28/Lin28A, proteins which act post-transcriptionally to decrease the levels of all let-7 family members. The transcription of Lin28B is promoted by NF-kappaB and by Myc; hence, practical measures which antagonize NF-kappaB or Myc activity may complement the utility of metformin for boosting let-7 expression and controlling cancer stemness; salsalate, antioxidants, tyrosine kinase and cox-2 inhibitors, ribavirin, vitamin D, gamma-secretase inhibitors (when available), and parenteral curcumin may have some utility in this regard. Although the impact of histone deacetylase inhibitors on let-7 expression has not been assessed, there is reason to suspect that these drugs might complement let-7's impact on chemoresistance, EMT, and stemness. Multifocal strategies centering on metformin may have considerable potential for reversing cancer stemness and rendering advanced cancers more susceptible to long term control.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, USA.
| |
Collapse
|
25
|
Ju JH, Jang K, Lee KM, Kim M, Kim J, Yi JY, Noh DY, Shin I. CD24 enhances DNA damage-induced apoptosis by modulating NF-κB signaling in CD44-expressing breast cancer cells. Carcinogenesis 2011; 32:1474-83. [PMID: 21798852 DOI: 10.1093/carcin/bgr173] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cluster of differentiation 24 (CD24) is a small glycosylphosphatidylinositol-linked cell surface molecule that is expressed in a variety of human carcinomas, including breast cancer. To determine the role of CD24 in breast cancer cells, we expressed CD24 in CD24-negative/low and cluster of differentiation 44 (CD44)-positive MDA-MB-231 metastatic breast cancer cells. Forced expression of CD24 resulted in a decrease in c-Raf/mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)/mitogen-activated protein kinase signaling and reduced cell proliferation. Apoptosis induced by DNA damage was greatly enhanced in MDA-MB-231 CD24 cells as compared with MDA-MB-231 vec cells. CD24 expression efficiently attenuated DNA damage-induced nuclear factor-kappaB (NF-κB) signaling in MDA-MB-231 cells. However, in CD24-positive and CD44-negative/low MCF-7 cells, knockdown of CD24 did not significantly affect DNA damage-induced apoptosis nor NF-κB signaling. Silencing of CD24 in CD24/CD44-double-positive MDA-MB-468 cells partially rescued DNA damage-induced apoptosis. Transient transfection studies with 293T cells also revealed that CD24 attenuated cell viability and NF-κB signaling only when CD44 was cotransfected. These data indicate that CD24 expression potentiated DNA-induced apoptosis by suppressing antiapoptotic NF-κB signaling in CD44-expressing cells.
Collapse
Affiliation(s)
- Ji-hyun Ju
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Sugiyasu K, Nanno K, Tamai N, Hashimoto N, Kishida Y, Yoshikawa H, Myoui A. Radio-sensitization of the murine osteosarcoma cell line LM8 with parthenolide, a natural inhibitor of NF-κB. Oncol Lett 2011; 2:407-412. [PMID: 22866095 DOI: 10.3892/ol.2011.277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/24/2011] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor (NF)-κB has been shown to be associated with cancer resistance to radiotherapy (RT), and is constitutively active in the murine osteosarcoma cell line, LM8. Parthenolide has been reported to show antitumor activity through inhibition of the NF-κB pathway. In this study, we investigated the radio-sensitizing activity of parthenolide. We established Luc-LM8, a stable transfectant reporter construct of NF-κB transcriptional activity into LM8. Luc-LM8 maintained the malignancy observed with LM8. In vitro, Luc-LM8 cells were cultured with or without parthenolide treatment, irradiated, and subjected to cell viability and apoptosis assays. In vivo, to investigate whether parthenolide enhances radio-sensitivity of tumors, a tumor growth assay was conducted. Parthenolide enhanced the growth inhibitory effect of RT and induced the apoptosis of Luc-LM8 cells with RT in vitro. The in vivo tumor growth was significantly suppressed in the mice treated with parthenolide and RT. The present study suggests that parthenolide sensitizes Luc-LM8 cells to irradiation. Thus, parthenolide is a potential candidate for use as a potent radio-sensitizing drug for use in cancer RT.
Collapse
Affiliation(s)
- Kenjiro Sugiyasu
- Department of Orthopaedics, Osaka University Graduate School of Medicine, Osaka University Hospital, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Gravina GL, Festuccia C, Marampon F, Popov VM, Pestell RG, Zani BM, Tombolini V. Biological rationale for the use of DNA methyltransferase inhibitors as new strategy for modulation of tumor response to chemotherapy and radiation. Mol Cancer 2010; 9:305. [PMID: 21108789 PMCID: PMC3001713 DOI: 10.1186/1476-4598-9-305] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 11/25/2010] [Indexed: 12/31/2022] Open
Abstract
Epigenetic modifications play a key role in the patho-physiology of many tumors and the current use of agents targeting epigenetic changes has become a topic of intense interest in cancer research. DNA methyltransferase (DNMT) inhibitors represent a promising class of epigenetic modulators. Research performed yielded promising anti-tumorigenic activity for these agents in vitro and in vivo against a variety of hematologic and solid tumors. These epigenetic modulators cause cell cycle and growth arrest, differentiation and apoptosis. Rationale for combining these agents with cytotoxic therapy or radiation is straightforward since the use of DNMT inhibitor offers greatly improved access for cytotoxic agents or radiation for targeting DNA-protein complex. The positive results obtained with these combined approaches in preclinical cancer models demonstrate the potential impact DNMT inhibitors may have in treatments of different cancer types. Therefore, as the emerging interest in use of DNMT inhibitors as a potential chemo- or radiation sensitizers is constantly increasing, further clinical investigations are inevitable in order to finalize and confirm the consistency of current observations.The present article will provide a brief review of the biological significance and rationale for the clinical potential of DNMT inhibitors in combination with other chemotherapeutics or ionizing radiation. The molecular basis and mechanisms of action for these combined treatments will be discussed herein.
Collapse
Affiliation(s)
- Giovanni L Gravina
- Department of Experimental Medicine, Division of Radiation Oncology, S, Salvatore Hospital, L'Aquila, University of L'Aquila, Medical School, L'Aquila 67100, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
Yuan D, Pan Y, Zhang J, Shao C. Role of nuclear factor-kappaB and P53 in radioadaptive response in Chang live cells. Mutat Res 2010; 688:66-71. [PMID: 20307555 DOI: 10.1016/j.mrfmmm.2010.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/26/2010] [Accepted: 03/14/2010] [Indexed: 10/19/2022]
Abstract
Understanding the mechanism governing radioadaptive response (RAR) has important implication for cancer risk assessment of a low-dose radiation (LDR). However the related knowledge especially the key gene of RAR is still limited. In this study, Chang liver cells were irradiated with a priming dose of 0.016 Gy, 0.08 Gy, or 0.16 Gy of gamma-rays, and with 4 h interval, they were irradiated again with a challenging dose of 2 Gy or 3 Gy. It was found that only 0.08 Gy, but not 0.016 Gy or 0.16 Gy, induced RAR of micronuclei induction to the challenging irradiation. This RAR could be slightly reduced by pifithrin-alpha, an inhibitor of P53, however it was completely suppressed by BAY11-7082, an inhibitor of nuclear factor-kappaB (NF-kappaB). Further assays using western blotting and luciferase reporter gene found that nuclear NF-kappaB and its activity could be triggered by the priming irradiation of 0.08 Gy so that the expressions of them in the primed cells were higher than those in the cells exposed to the challenging dose alone. In contrast, LDR neither influenced the expressions of both P53 and phospho-P53 (ser15) nor enhanced P53 activity; the expression of phospho-P53 and the activity of P53 in the primed cells were lower than that in the non-primly challenged cells. Our results demonstrate that the induction of RAR relays on an optimum priming irradiation dose and it is NF-kappaB rather than P53 that contributes to RAR.
Collapse
Affiliation(s)
- Dexiao Yuan
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | | | | | | |
Collapse
|
29
|
Sagar SM. Can the therapeutic gain of radiotherapy be increased by concurrent administration of Asian botanicals? Integr Cancer Ther 2009; 9:5-13. [PMID: 20042406 DOI: 10.1177/1534735409356981] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Therapeutic gain by radiotherapy can be achieved through improved targeting, selectively sensitizing malignant cells, or protecting normal tissue. The majority of synthetic chemical radiation sensitizers and normal tissue protectors have proved to be too toxic at effective clinical doses. However, Asian botanicals (from both Chinese and Ayurvedic medicine) are being evaluated for their ability to improve therapeutic gain through the modulation of reactive oxygen species. An increase in the efficacy of radiotherapy on tumor tissue allows a reduction in the dose applied to normal tissues. In addition, some botanicals may selectively protect normal tissue or increase its repair following radiation therapy. The results are promising enough to consider clinical trials.
Collapse
Affiliation(s)
- Stephen M Sagar
- McMaster University and Juravinski Cancer Centre, Hamilton, ON, Canada.
| |
Collapse
|
30
|
Thaker NG, Zhang F, McDonald PR, Shun TY, Lewen MD, Pollack IF, Lazo JS. Identification of survival genes in human glioblastoma cells by small interfering RNA screening. Mol Pharmacol 2009; 76:1246-55. [PMID: 19783622 PMCID: PMC2784725 DOI: 10.1124/mol.109.058024] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 09/24/2009] [Indexed: 11/22/2022] Open
Abstract
Target identification and validation remain difficult steps in the drug discovery process, and uncovering the core genes and pathways that are fundamental for cancer cell survival may facilitate this process. Glioblastoma represents a challenging form of cancer for chemotherapy. Therefore, we assayed 16,560 short interfering RNA (siRNA) aimed at identifying which of the 5520 unique therapeutically targetable gene products were important for the survival of human glioblastoma. We analyzed the viability of T98G glioma cells 96 h after siRNA transfection with two orthogonal statistical methods and identified 55 survival genes that encoded proteases, kinases, and transferases. It is noteworthy that 22% (12/55) of the survival genes were constituents of the 20S and 26S proteasome subunits. An expression survey of a panel of glioma cell lines demonstrated expression of the proteasome component PSMB4, and the validity of the proteasome complex as a target for survival inhibition was confirmed in a series of glioma and nonglioma cell lines by pharmacological inhibition and RNA interference. Biological networks were built with the other survival genes using a protein-protein interaction network, which identified clusters of cellular processes, including protein ubiquitination, purine and pyrimidine metabolism, nucleotide excision repair, and NF-kappaB signaling. The results of this study should broaden our understanding of the core genes and pathways that regulate cell survival; through either small molecule inhibition or RNA interference, we highlight the potential significance of proteasome inhibition.
Collapse
Affiliation(s)
- Nikhil G Thaker
- Department of Pharmacology and Chemical Biology, Biomedical Science Tower 3, 3501 Fifth Avenue, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Mokim Ahmed K, Nantajit D, Fan M, Murley JS, Grdina DJ, Li JJ. Coactivation of ATM/ERK/NF-kappaB in the low-dose radiation-induced radioadaptive response in human skin keratinocytes. Free Radic Biol Med 2009; 46:1543-50. [PMID: 19324081 PMCID: PMC6759050 DOI: 10.1016/j.freeradbiomed.2009.03.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/21/2009] [Accepted: 03/11/2009] [Indexed: 12/18/2022]
Abstract
Elucidating the molecular mechanism of the low-dose radiation (LDR)-mediated radioadaptive response is crucial for inventing potential therapeutic approaches to improving normal tissue protection in radiation therapy. ATM, a DNA-damage sensor, is known to activate the stress-sensitive transcription factor NF-kappaB upon exposure to ionizing radiation. This study provides evidence of the cooperative functions of ATM, ERK, and NF-kappaB in inducing a survival advantage through a radioadaptive response as a result of LDR treatment (10 cGy X-rays). By using p53-inhibited human skin keratinocytes, we show that phosphorylation of ATM, MEK, and ERK (but not JNK or p38) is enhanced along with a twofold increase in NF-kappaB luciferase activity at 24 h post-LDR. However, NF-kappaB reporter gene transactivation without a significant enhancement of p65 or p50 protein level suggests that NF-kappaB is activated as a rapid protein response via ATM without involving the transcriptional activation of NF-kappaB subunit genes. A direct interaction between ATM and NF-kappaB p65 is detected in the resting cells and this interaction is significantly increased with LDR treatment. Inhibition of ATM with caffeine, KU-55933, or siRNA or inhibition of the MEK/ERK pathway can block the LDR-induced NF-kappaB activation and eliminate the LDR-induced survival advantage. Altogether, these results suggest a p53-independent prosurvival network involving the coactivation of the ATM, MEK/ERK, and NF-kappaB pathways in LDR-treated human skin keratinocytes, which is absent from mutant IkappaB cells (HK18/mIkappaB), which fail to express NF-kappaB activity.
Collapse
Affiliation(s)
- Kazi Mokim Ahmed
- Graduate Program of Radiation and Cancer Biology, Purdue University School of Health Sciences, West Lafayette, IN 47907,USA
| | - Danupon Nantajit
- Graduate Program of Radiation and Cancer Biology, Purdue University School of Health Sciences, West Lafayette, IN 47907,USA
| | - Ming Fan
- Graduate Program of Radiation and Cancer Biology, Purdue University School of Health Sciences, West Lafayette, IN 47907,USA
| | - Jeffrey S. Murley
- Department of Radiation and Cellular Oncology, University of Chicago, IL 60637, USA
| | - David J. Grdina
- Department of Radiation and Cellular Oncology, University of Chicago, IL 60637, USA
| | - Jian Jian Li
- Graduate Program of Radiation and Cancer Biology, Purdue University School of Health Sciences, West Lafayette, IN 47907,USA
- Cancer Research Center, Purdue University, West Lafayette, IN 47907,USA
- Corresponding author. Graduate Program of Radiation and Cancer Biology, Purdue University School of Health Sciences, West Lafayette, IN 47907,USA. Fax: +1765 4961377., (J.J. Li)
| |
Collapse
|
32
|
Watson C, Miller DA, Chin-Sinex H, Losch A, Hughes W, Sweeney C, Mendonca MS. Suppression of NF-kappaB activity by parthenolide induces X-ray sensitivity through inhibition of split-dose repair in TP53 null prostate cancer cells. Radiat Res 2009; 171:389-96. [PMID: 19397439 DOI: 10.1667/rr1394.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have shown that parthenolide, a sesquiterpene lactone, is a radiation sensitizer for human CGL1 hybrid cells that have constitutively activated NF-kappaB and wild-type p53. Since many malignant cells have nonfunctional p53, we investigated whether parthenolide could alter the X-ray sensitivity of PC-3 prostate cancer cells, a p53 null cell line with constitutively activated NF-kappaB. The addition of 5 microM parthenolide induced non-apoptotic cell death, inhibited PC-3 proliferation, and increased the population doubling time from 23+/-1 h to 49+/-4 h. Parthenolide also inhibited constitutive and radiation-induced NF-kappaB binding activity and enhanced the X-ray sensitivity of these p53 null PC-3 cells by a dose modification factor of 1.7. Cell cycle analysis of PC-3 cells treated with parthenolide showed only small alterations in G1 and G2/M cells, and these appeared to be insufficient to explain the observed radiosensitization. Split-dose studies using clinically relevant 2- and 4-Gy fractions demonstrated that parthenolide completely inhibited split-dose repair in PC-3 cells. We hypothesized that inhibition of NF-kappaB activity by parthenolide was responsible for the observed X-ray sensitization and inhibition of split-dose repair. To test this hypothesis, we knocked down the expression of NF-kappaB p65 protein, an active component of NF-kappaB in both PC-3 and CGL1 cells, by siRNA. Inhibition of NF-kappaB activity by knockdown of p65 increased radiation sensitivity and completely inhibited split-dose repair in both cell lines in a nearly identical manner as parthenolide treatment alone. Treating p65-depleted PC-3 cells with 5 microM parthenolide did not further increase their radiation sensitivity or the inhibition of split-dose repair. We propose that the suppression of radiation-induced NF-kappaB activity by parthenolide leads to X-ray sensitization through inhibition of split-dose repair in p53 null PC-3 prostate cancer cells.
Collapse
Affiliation(s)
- Christopher Watson
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Veuger SJ, Hunter JE, Durkacz BW. Ionizing radiation-induced NF-kappaB activation requires PARP-1 function to confer radioresistance. Oncogene 2009; 28:832-42. [PMID: 19060926 PMCID: PMC2642763 DOI: 10.1038/onc.2008.439] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 01/28/2023]
Abstract
Recent reports implicate poly(ADP-ribose) polymerase-1 (PARP-1) in the activation of nuclear factor kappaB (NF-kappaB). We investigated the role of PARP-1 in the NF-kappaB signalling cascade induced by ionizing radiation (IR). AG14361, a potent PARP-1 inhibitor, was used in two breast cancer cell lines expressing different levels of constitutively activated NF-kappaB, as well as mouse embryonic fibroblasts (MEFs) proficient or deficient for PARP-1 or NF-kappaB p65. In the breast cancer cell lines, AG14361 had no effect on IR-induced degradation of IkappaBalpha or nuclear translocation of p50 or p65. However, AG14361 inhibited IR-induced NF-kappaB-dependent transcription of a luciferase reporter gene. Similarly, in PARP-1(-/-) MEFs, IR-induced nuclear translocation of p50 and p65 was normal, but kappaB binding and transcriptional activation did not occur. AG14361 sensitized both breast cancer cell lines to IR-induced cell killing, inhibited IR-induced XIAP expression and increased caspase-3 activity. However, AG14361 failed to increase IR-induced caspase activity when p65 was knocked down by siRNA. Consistent with this, AG14361 sensitized p65(+/+) but not p65(-/-) MEFs to IR. We conclude that PARP-1 activity is essential in the upstream regulation of IR-induced NF-kappaB activation. These data indicate that potentiation of IR-induced cytotoxicity by AG14361 is mediated solely by inhibition of NF-kappaB activation.
Collapse
Affiliation(s)
- S J Veuger
- Northern Institute for Cancer Research, Medical School, University of Newcastle, Newcastle upon Tyne, Tyne and Wear, UK
| | | | | |
Collapse
|
34
|
Dai Y, Liu M, Tang W, DeSano J, Burstein E, Davis M, Pienta K, Lawrence T, Xu L. Molecularly targeted radiosensitization of human prostate cancer by modulating inhibitor of apoptosis. Clin Cancer Res 2008; 14:7701-10. [PMID: 19047096 PMCID: PMC2605643 DOI: 10.1158/1078-0432.ccr-08-0188] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE The inhibitor of apoptosis proteins (IAP) are overexpressed in hormone-refractory prostate cancer, rendering the cancer cells resistant to radiation. This study aims to investigate the radiosensitizing effect of small-molecule IAP inhibitor both in vitro and in vivo in androgen-independent prostate cancer and the possible mechanism of radiosensitization. EXPERIMENTAL DESIGN Radiosensitization of SH-130 in human prostate cancer DU-145 cells was determined by clonogenic survival assay. Combination effect of SH-130 and ionizing radiation was evaluated by apoptosis assays. Pull-down and immunoprecipitation assays were employed to investigate the interaction between SH-130 and IAPs. DU-145 xenografts in nude mice were treated with SH-130, radiation, or combination, and tumor suppression effect was determined by caliper measurement or bioluminescence imaging. Nuclear factor-kappaB activation was detected by luciferase reporter assay and quantitative real-time PCR. RESULTS SH-130 potently enhanced radiation-induced caspase activation and apoptosis in DU-145 cells. Both X-linked IAP and cIAP-1 can be pulled down by SH-130 but not by inactive SH-123. Moreover, SH-130 interrupted interaction between X-linked IAP/cIAP-1 and Smac. In a nude mouse xenograft model, SH-130 potently sensitized the DU-145 tumors to X-ray radiation without increasing systemic toxicity. The combination therapy suppressed tumor growth more significantly than either treatment alone, with over 80% of complete tumor regression. Furthermore, SH-130 partially blocked tumor necrosis factor-alpha- and radiation-induced nuclear factor-kappaB activation in DU-145 cells. CONCLUSIONS Our results show that small-molecule inhibitors of IAPs can overcome apoptosis resistance and radiosensitize human prostate cancer with high levels of IAPs. Molecular modulation of IAPs may improve the outcome of prostate cancer radiotherapy.
Collapse
Affiliation(s)
- Yao Dai
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109-0582, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kunigal S, Lakka SS, Joseph P, Estes N, Rao JS. Matrix metalloproteinase-9 inhibition down-regulates radiation-induced nuclear factor-kappa B activity leading to apoptosis in breast tumors. Clin Cancer Res 2008; 14:3617-26. [PMID: 18519796 PMCID: PMC2410036 DOI: 10.1158/1078-0432.ccr-07-2060] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE Novel strategies are needed to prevent the high mortality rates of several types of cancer. These high rates stem from tumor resistance to radiation therapy, which is thought to result from the induction of matrix metalloproteinases (MMP) and plasminogen activators. In the present study, we show that the modulation of MMP-9 expression, using adenoviral-mediated transfer of the antisense MMP-9 gene (MMP-9 adenoviral construct, Ad-MMP-9), affects breast cancer sensitivity to radiation. EXPERIMENTAL DESIGN In the present study, we used antisense Ad-MMP-9 to down-regulate the expression of MMP-9 in MDA MB 231 breast cancer cell lines in vitro before irradiation and subsequently incubated cells in hypoxic condition. In vivo studies were done with orthotopic breast tumors, and radiosensitivity was evaluated both in vitro and in vivo. RESULTS Ad-MMP-9 infection resulted in down-regulation of radiation-induced levels of hypoxia-inducible factor 1 alpha and MMP-9 under hypoxic conditions in MDA MB 231 breast cancer cells. In addition, Ad-MMP-9, in combination with radiation, decreased levels of the transcription factors nuclear factor-kappaB and activator protein 1, both of which contribute to the radioresistance of breast tumors. Finally, the triggering of the Fas-Fas ligand apoptotic cascade, which resulted in the cleavage of PARP-1 and caspase-10, caspase-3, and caspase-7, signifies the efficiency of combined treatment of Ad-MMP-9 and radiation. Treatment with Ad-MMP-9 plus radiation completely regressed tumor growth in orthotopic breast cancer model. CONCLUSIONS In summary, integrating gene therapy (adenovirus-mediated inhibition of MMP-9) with radiotherapy could have a synergistic effect, thereby improving the survival of patients with breast cancer.
Collapse
Affiliation(s)
- Sateesh Kunigal
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL, 61605
| | - Sajani S. Lakka
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL, 61605
| | - Pushpa Joseph
- Department of Pathology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL, 61605
| | - Norman Estes
- Department of Surgery, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL, 61605
| | - Jasti S. Rao
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL, 61605
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL, 61605
| |
Collapse
|
36
|
Wang Z, Cao N, Nantajit D, Fan M, Liu Y, Li JJ. Mitogen-activated protein kinase phosphatase-1 represses c-Jun NH2-terminal kinase-mediated apoptosis via NF-kappaB regulation. J Biol Chem 2008; 283:21011-23. [PMID: 18508759 PMCID: PMC2475689 DOI: 10.1074/jbc.m802229200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The mechanism regulating radiation-induced anti-apoptotic response, a
limiting factor in improving cell radiosensitivity, remains elusive.
Mitogen-activated protein kinase (MAPK) phosphatase (MKP)-1 is the major
member of MKPs that dephosphorylates and inactivates MAPK. Here we provide the
evidence that MKP-1 was negatively bridging between NF-κB-mediated
prosurvival pathway and c-Jun N-terminal kinase (JNK)-mediated proapoptotic
response. MKP-1 was induced by γ-radiation and repressed
radiation-induced pro-apoptotic status. NF-κB RelA/p50 heterodimer was
recruited to MKP-1 gene promoter to induce MKP-1 transcription. Deletion of
the NF-κB-binding site or inactivation of NF-κB by its small
interfering RNA significantly decreased the radiation-induced MKP-1 promoter
activity. In addition, MKP-1-deficient mouse embryonic fibroblasts exhibited a
prolonged activation of JNK but not p38 or extracellular signal-regulated
kinase subfamilies of MAPKs. The prolonged activation of JNK was not induced
by treatment with tumor necrosis factor α or interleukin-6, and
inactivation of JNK but not p38 or ERK abolished radiation-induced
proapoptotic status, indicating that JNK is specifically inhibited by
radiation-induced MKP-1. Three MKP-1 wild type human tumor cell lines treated
with MKP-1 small interfering RNA showed an increased proapoptotic response
that can be rescued by overexpression of wild type mouse MKP-1. Together,
these results suggest that MKP-1 is a NF-κB-mediated prosurvival
effector in attenuating JNK-mediated pro-apoptotic response;
NF-κB/MKP-1-mediated negative JNK regulation represents a potential
therapeutic target for adjusting cell radiosensitivity.
Collapse
Affiliation(s)
- Zhaoqing Wang
- Division of Molecular Radiobiology, Purdue University School of Health Sciences, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
37
|
Hu ZZ, Huang H, Cheema A, Jung M, Dritschilo A, Wu CH. Integrated Bioinformatics for Radiation-Induced Pathway Analysis from Proteomics and Microarray Data. JOURNAL OF PROTEOMICS & BIOINFORMATICS 2008; 1:47-60. [PMID: 19088860 PMCID: PMC2603135 DOI: 10.4172/jpb.1000009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functional analysis and interpretation of large-scale proteomics and gene expression data require effective use of bioinformatics tools and public knowledge resources coupled with expert-guided examination. An integrated bioinformatics approach was used to analyze cellular pathways in response to ionizing radiation. ATM, or ataxia-telangiectasia mutated , a serine-threonine protein kinase, plays critical roles in radiation responses, including cell cycle arrest and DNA repair. We analyzed radiation responsive pathways based on 2D-gel/MS proteomics and microarray gene expression data from fibroblasts expressing wild type or mutant ATM gene. The analysis showed that metabolism was significantly affected by radiation in an ATM dependent manner. In particular, purine metabolic pathways were differentially changed in the two cell lines. The expression of ribonucleoside-diphosphate reductase subunit M2 (RRM2) was increased in ATM-wild type cells at both mRNA and protein levels, but no changes were detected in ATM-mutated cells. Increased expression of p53 was observed 30min after irradiation of the ATM-wild type cells. These results suggest that RRM2 is a downstream target of the ATM-p53 pathway that mediates radiation-induced DNA repair. We demonstrated that the integrated bioinformatics approach facilitated pathway analysis, hypothesis generation and target gene/protein identification.
Collapse
Affiliation(s)
- Zhang-Zhi Hu
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Hongzhan Huang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Amrita Cheema
- Proteomics and Metabolomics Shared Resource, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Mira Jung
- Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Anatoly Dritschilo
- Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Cathy H. Wu
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
38
|
Mendonca MS, Chin-Sinex H, Gomez-Millan J, Datzman N, Hardacre M, Comerford K, Nakshatri H, Nye M, Benjamin L, Mehta S, Patino F, Sweeney C. Parthenolide sensitizes cells to X-ray-induced cell killing through inhibition of NF-kappaB and split-dose repair. Radiat Res 2008; 168:689-97. [PMID: 18088190 DOI: 10.1667/rr1128.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 08/24/2007] [Indexed: 11/03/2022]
Abstract
Human cancers have multiple alterations in cell signaling pathways that promote resistance to cytotoxic therapy such as X rays. Parthenolide is a sesquiterpene lactone that has been shown to inhibit several pro-survival cell signaling pathways, induce apoptosis, and enhance chemotherapy-induced cell killing. We investigated whether parthenolide would enhance X-ray-induced cell killing in radiation resistant, NF-kappaB-activated CGL1 cells. Treatment with 5 microM parthenolide for 48 to 72 h inhibited constitutive NF-kappaB binding and cell growth, reduced plating efficiency, and induced apoptosis through stabilization of p53 (TP53), induction of the pro-apoptosis protein BAX, and phosphorylation of BID. Parthenolide also enhanced radiation-induced cell killing, increasing the X-ray sensitivity of CGL1 cells by a dose modification factor of 1.6. Flow cytometry revealed that parthenolide reduced the percentage of X-ray-resistant S-phase cells due to induction of p21 waf1/cip1 (CDKN1A) and the onset of G1/S and G2/M blocks, but depletion of radioresistant S-phase cells does not explain the observed X-ray sensitization. Further studies demonstrated that the enhancement of X-ray-induced cell killing by parthenolide is due to inhibition of split-dose repair.
Collapse
Affiliation(s)
- Marc S Mendonca
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ahmed KM, Li JJ. NF-kappa B-mediated adaptive resistance to ionizing radiation. Free Radic Biol Med 2008; 44:1-13. [PMID: 17967430 PMCID: PMC2266095 DOI: 10.1016/j.freeradbiomed.2007.09.022] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 09/22/2007] [Accepted: 09/25/2007] [Indexed: 01/05/2023]
Abstract
Ionizing radiation (IR) began to be a powerful medical modality soon after Wilhelm Röntgen's discovery of X-rays in 1895. Today, more than 50% of cancer patients receive radiotherapy at some time during the course of their disease. Recent technical developments have significantly increased the precision of dose delivery to the target tumor, making radiotherapy more efficient in cancer treatment. However, tumor cells have been shown to acquire a radioresistance that has been linked to increased recurrence and failure in many patients. The exact mechanisms by which tumor cells develop an adaptive resistance to therapeutic fractional irradiation are unknown, although low-dose IR has been well defined for radioadaptive protection of normal cells. This review will address the radioadaptive response, emphasizing recent studies of molecular-level reactions. A prosurvival signaling network initiated by the transcription factor NF-kappa B, DNA-damage sensor ATM, oncoprotein HER-2, cell cyclin elements (cyclin B1), and mitochondrial functions in radioadaptive resistance is discussed. Further elucidation of the key elements in this prosurvival network may generate novel targets for resensitizing the radioresistant tumor cells.
Collapse
Affiliation(s)
- Kazi Mokim Ahmed
- Division of Molecular Radiobiology and Graduate Program of Radiation and Cancer Biology, Purdue University School of Health Sciences, West Lafayette, IN 47907, USA
| | - Jian Jian Li
- Division of Molecular Radiobiology and Graduate Program of Radiation and Cancer Biology, Purdue University School of Health Sciences, West Lafayette, IN 47907, USA
| |
Collapse
|
40
|
|
41
|
Fujita T, Doihara H, Washio K, Ino H, Murakami M, Naito M, Shimizu N. Antitumor effects and drug interactions of the proteasome inhibitor bortezomib (PS341) in gastric cancer cells. Anticancer Drugs 2007; 18:677-86. [PMID: 17762396 DOI: 10.1097/cad.0b013e32808bf9d8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The proteasome inhibitor bortezomib (PS341) inhibits the function of the 26S proteasome and has been extensively investigated in the clinical setting of hematologic malignancies. Remarkable efficacy has been reported in the treatment of multiple myeloma, but there have been few studies of its use in the treatment of gastrointestinal malignancy, especially gastric cancer. Here, we demonstrate its efficacy, both alone and in combination with other cytotoxic agents, in gastric cancer cell lines. The human gastric cancer cell lines AZ521, MKN45 and NUGC3 were used as experimental models. Bortezomib produced significant growth inhibition in these cells (mean IC50 values: 1.26, 9.44 and 8.63 micromol/l, respectively) and was also observed to decrease the activity of the extracellular signal-regulated kinase 1/2 and Akt signal pathways, increasing the accumulation of p21. Cell-cycle analysis revealed that a low concentration of bortezomib (10-100 nmol/l) increased accumulation in the G1 phase. Moreover, bortezomib showed synergistic growth inhibition in combination with the conventional cytotoxic agents 5-fluorouracil, paclitaxel, doxorubicin and SN-38, and also downregulates the activity of nuclear factor -kappaB, which is induced by these agents. Our results demonstrate that bortezomib could be an effective antitumor agent in the treatment of gastric cancer, both as single-agent therapy and in combination with conventional chemotherapeutic agents.
Collapse
Affiliation(s)
- Takeo Fujita
- Department of Cancer and Thoracic Surgery, Okayama University School of Medicine, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Rodriguez-Mora O, LaHair MM, Howe CJ, McCubrey JA, Franklin RA. Calcium/calmodulin-dependent protein kinases as potential targets in cancer therapy. Expert Opin Ther Targets 2007; 9:791-808. [PMID: 16083343 DOI: 10.1517/14728222.9.4.791] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this review the authors discuss the expression and activation of a family of protein kinases known as the calcium/calmodulin-dependent kinases (CaM-kinase) and the role that these kinases have in the activation of antiapoptotic signalling pathways. In addition, the authors outline a novel mechanism of activation of these kinases by oxidative stress. Founded on this novel mechanism of activation and the role that these kinases have in activating antiapoptotic signalling pathways, the authors propose that the CaM-kinases would make very good targets for sensitising cancer cells to certain therapeutic treatments. Furthermore, the authors discuss the role that these kinases have in cell transformation and in the regulation of the cell cycle. Based on these roles the authors suggest that inhibition of the CaM-kinases not only has the potential to sensitise cancer cells, but also has the potential to induce cytostasis in these cells.
Collapse
Affiliation(s)
- Oswaldo Rodriguez-Mora
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | | | | | | | | |
Collapse
|
43
|
McCarty MF, Block KI. Preadministration of high-dose salicylates, suppressors of NF-kappaB activation, may increase the chemosensitivity of many cancers: an example of proapoptotic signal modulation therapy. Integr Cancer Ther 2006; 5:252-68. [PMID: 16880431 DOI: 10.1177/1534735406291499] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
NF-kappaB activity is elevated in a high proportion of cancers, particularly advanced cancers that have been treated previously. Cytotoxic treatment selects for such up-regulation inasmuch as NF-kappaB promotes transcription of a large number of proteins that inhibit both the intrinsic and extrinsic pathways of apoptosis; NF-kappaB also boosts expression of mdr1, which expels many drugs from cells. Indeed, high NF-kappaB activity appears to be largely responsible for the chemo- and radioresistance of many cancers. Thus, agents that suppress NF-kappaB activity should be useful as adjuvants to cytotoxic cancer therapy. Of the compounds that are known to be NF-kappaB antagonists, the most practical for current use may be the nonsteroidal anti-inflammatory drugs aspirin, salicylic acid, and sulindac, each of which binds to and inhibits Ikappa kinase- beta, a central mediator of NF-kappa activation; the low millimolar plasma concentrations of salicylate required for effective inhibition of this kinase in vivo can be achieved with high-dose regimens traditionally used to manage rheumatic disorders. The gastrointestinal toxicity of such regimens could be minimized by using salsalate or enteric-coated sodium salicy-late or by administering misoprostol in conjunction with aspirin therapy. Presumably, best results would be seen if these agents were administered for several days prior to a course of chemo- or radiotherapy, continuing throughout the course. This concept should first be tested in nude mice bearing xenografts of chemoresistant human tumors known to have elevated NF-kappa activity. Ultimately, more complex adjuvant regimens can be envisioned in which salicylates are used in conjunction with other NF-kappa antagonists and/or agents that target other mediators of down-regulated apoptosis in cancer, such as Stat3; coadministration of salicylate and organic selenium may have intriguing potential in this regard. These strategies may also have potential as adjuvants to metronomic chemotherapy, which seeks to suppress angio-genesis by targeting cycling endothelial cells in tumors.
Collapse
Affiliation(s)
- Mark F McCarty
- Block Center for Integrative Cancer Care, Evanston, Illinois 60201, USA
| | | |
Collapse
|
44
|
Magné N, Toillon RA, Bottero V, Didelot C, Houtte PV, Gérard JP, Peyron JF. NF-kappaB modulation and ionizing radiation: mechanisms and future directions for cancer treatment. Cancer Lett 2006; 231:158-68. [PMID: 16399220 DOI: 10.1016/j.canlet.2005.01.022] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 01/19/2005] [Indexed: 01/04/2023]
Abstract
NF-kappaB transcription factor regulates important cellular processes ranging from establishment of the immune and inflammatory responses to regulation of cell proliferation or apoptosis, through the induction of a large array of target genes. NF-kappaB is now considered as an important actor in the tumorigenic process mainly because it exerts strong anti-apoptotic functions in cancer cells. NF-kappaB is triggered by chimio- and radio-therapeutic strategies that are intended to eliminate cancerous cells through induction of apoptosis. Numerous studies have demonstrated that inhibition of NF-kappaB by different means increased sensitivity of cancer cells to the apoptotic action of diverses effectors such as TNFalpha or chemo- or radio-therapies. From these studies as emerged the concept that NF-kappaB blockade could be associated to conventional therapies in order to increase their efficiency. This review focuses on the current knowledge on NF-kappaB regulation and discusses the therapeutic potential of targeting NF-kappaB in cancer in particular during radiotherapy.
Collapse
Affiliation(s)
- Nicolas Magné
- Département de Radiothérapie, Institut Jules Bordet, 121 Boulevard de Waterloo, 1000 Bruxelles, Belgique.
| | | | | | | | | | | | | |
Collapse
|
45
|
Wang T, Tamae D, LeBon T, Shively JE, Yen Y, Li JJ. The role of peroxiredoxin II in radiation-resistant MCF-7 breast cancer cells. Cancer Res 2006; 65:10338-46. [PMID: 16288023 DOI: 10.1158/0008-5472.can-04-4614] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although several signaling pathways have been suggested to be involved in the cellular response to ionizing radiation, the molecular basis of tumor resistance to radiation remains elusive. We have developed a unique model system based upon the MCF-7 human breast cancer cell line that became resistant to radiation treatment (MCF+FIR30) after exposure to chronic ionizing radiation. By proteomics analysis, we found that peroxiredoxin II (PrxII), a member of a family of peroxidases, is up-regulated in the radiation-derived MCF+FIR3 cells but not in the MCF+FIS4 cells that are relatively sensitive to radiation. Both MCF+FIR3 and MCF+FIS4 cell lines are from MCF+FIR30 populations. Furthermore, the resistance to ionizing radiation can be partially reversed by silencing the expression of PrxII by PrxII/small interfering RNA treatment of MCF+FIR3 resistant cells, suggesting that PrxII is not the sole factor responsible for the resistant phenotype. The relevance of this mechanism was further confirmed by the increased radioresistance in PrxII-overexpressing MCF+FIS4 cells when compared with vector control cells. The up-regulation of the PrxII protein in radioresistant cancer cells suggested that human peroxiredoxin plays an important role in eliminating the generation of reactive oxygen species by ionizing radiation. The present finding, together with the observation that PrxII is also up-regulated in response to ionizing radiation in other cell systems, strengthens the hypothesis that the PrxII antioxidant protein is involved in the cellular response to ionizing radiation and functions to reduce the intracellular reactive oxygen species levels, resulting in increased resistance of breast cancer cells to ionizing radiation.
Collapse
Affiliation(s)
- Tieli Wang
- Department of Chemistry, California State University, Carson, California 90072, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Fujita T, Washio K, Takabatake D, Takahashi H, Yoshitomi S, Tsukuda K, Ishibe Y, Ogasawara Y, Doihara H, Shimizu N. Proteasome inhibitors can alter the signaling pathways and attenuate the P-glycoprotein-mediated multidrug resistance. Int J Cancer 2005; 117:670-82. [PMID: 15945097 DOI: 10.1002/ijc.21063] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Numerous signaling pathways were reported to be involved in the resistance for conventional cytotoxic drugs, although one of the main reasons is the overexpression of P-glycoprotein (P-gp) in multidrug resistant cancer cells. The overexpression of P-gp has been associated with the resistance to a wide range of anticancer drugs. Doxorubicin and paclitaxel are substrates of this transporter system and have an important role for the various human malignancies. In the present study, drug-sensitive MCF7 and multidrug resistant MCF7/ADR (characterized by overexpression of P-gp) human breast cancer cell lines were used as an experimental model. We have found that PS341 and MG132, proteasome inhibitors, reduced the degree of the multidrug resistance (MDR) in MCF7/ADR cells. This phenomenon was accompanied by a decrease in the IC50 value of doxorubicin and paclitaxel from 55.9 +/- 3.46 to 0.60 +/- 0.08 microM, and from 17.61 +/- 1.77 to 0.59 +/- 0.12 microM, respectively. The IC50 values of sensitive cells for doxorubicin and paclitaxel were about 0.42 and 0.83 microM, respectively. The effect of PS341 and MG132 on MCF7/ADR cells was associated with a significant decrease in both protein and gene levels of P-gp expression. Moreover, with regard to the expression of possible signal transduction pathways of mitogen-activated protein kinase (MAPK) related to the activation of mdr1, proteasome inhibitors did significantly influence the activation of these proteins. Western blot analysis revealed that 24 hr exposure of multidrug resistant MCF7/ADR cells with proteasome inhibitors did change the levels of DNA binding activity of nuclear factor-kappaB (NF-kappaB), pERK1/2, c-Jun, and p-c-Jun. In conclusion, we could remark that proteasome inhibitors (especially PS341) attenuate the resistance of MCF7/ADR cells for P-gp substrate drugs of doxorubicin and paclitaxel. Several proteins are supposed to be associated with the resensitization of the cells to conventional cytotoxic drugs, although decreased activity of P-gp is at least involved in the proteasome inhibitor-related resensitization. And influence with MAPK pathways, which have been reported to be associated with the regulation of P-gp, might be contributed to the resensitization brought by proteasome inhibitors.
Collapse
Affiliation(s)
- Takeo Fujita
- Department of Cancer and Thoracic Surgery, Okayama University Graduate School of Medicine and Dentistry, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Garg AK, Buchholz TA, Aggarwal BB. Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid Redox Signal 2005; 7:1630-47. [PMID: 16356126 DOI: 10.1089/ars.2005.7.1630] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The treatment of cancer with chemotherapeutic agents and radiation has two major problems: time-dependent development of tumor resistance to therapy (chemoresistance and radioresistance) and nonspecific toxicity toward normal cells. Many plant-derived polyphenols have been studied intently for their potential chemopreventive properties and are pharmacologically safe. These compounds include genistein, curcumin, resveratrol, silymarin, caffeic acid phenethyl ester, flavopiridol, emodin, green tea polyphenols, piperine, oleandrin, ursolic acid, and betulinic acid. Recent research has suggested that these plant polyphenols might be used to sensitize tumor cells to chemotherapeutic agents and radiation therapy by inhibiting pathways that lead to treatment resistance. These agents have also been found to be protective from therapy-associated toxicities. How these polyphenols protect normal cells and sensitize tumor cells to treatment is discussed in this review.
Collapse
Affiliation(s)
- Amit K Garg
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
48
|
Abdel-Latif MMM, O'Riordan JM, Ravi N, Kelleher D, Reynolds JV. Activated nuclear factor-kappa B and cytokine profiles in the esophagus parallel tumor regression following neoadjuvant chemoradiotherapy. Dis Esophagus 2005; 18:246-52. [PMID: 16128781 DOI: 10.1111/j.1442-2050.2005.00497.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Esophageal adenocarcinoma is increasing in incidence; it relates to chronic gastroesophageal reflux, it is difficult to cure, and treatment modalities increasingly use chemotherapy and radiation therapy prior to resectional surgery. Nuclear factor-kappa B (NF-kappaB) is a pleiotropic transcription factor that regulates several genes for cytokines and enzymes involved in inflammation and immunity, and we have previously described sequential expression of NF-kappaB from the normal esophagus through Barrett's metaplasia to adenocarcinoma. The aim of this exploratory study was to assess the NF-kappaB status and cytokine profiles pre- and post-chemoradiotherapy for esophageal adenocarcinoma. Fresh biopsy specimens obtained from 20 patients with esophageal adenocarcinoma and normal adjacent squamous epithelium were obtained pre-, during and post-chemoradiotherapy, and NF-kappaB expression was analyzed by electrophoretic mobility shift assay. The cytokine protein content of interleukin-1 beta (IL-1beta) and interleukin-8 (IL-8) of tissue homogenates was measured using the ELISA technique. NF-kappaB was constitutively activated in tumor tissues from esophageal adenocarcinoma but was not detected in adjacent normal esophageal mucosa. Elevated levels of IL-1beta and IL-8 were significantly (P < 0.05) higher in tumor tissues compared to control tissues. Patients with a major or complete pathological response (responders) were associated with absence of activated NF-kappaB from nuclear extracts after treatment. Moreover, IL-1beta and IL-8 levels were significantly (P < 0.05) down-regulated in tumor tissues from patients who demonstrated a complete pathological response. No differences in NF-kappaB, IL-1beta and IL-8 levels were detected pre- and post-treatment in patients who did not have a major or complete pathological response (non-responders). The study suggests that monitoring of molecular and cytokine patterns in patients undergoing this neoadjuvant regimen may help subselect the cohort that derives most benefit from the multimodal approach.
Collapse
Affiliation(s)
- M M M Abdel-Latif
- Department of Clinical Surgery, Trinity Centre for Health Sciences, St. James's Hospital, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
49
|
Merrick A, Errington F, Milward K, O'Donnell D, Harrington K, Bateman A, Pandha H, Vile R, Morrison E, Selby P, Melcher A. Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naive T-cell priming. Br J Cancer 2005; 92:1450-8. [PMID: 15812550 PMCID: PMC2362011 DOI: 10.1038/sj.bjc.6602518] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DC) are professional antigen-presenting cells (APC) of the immune system, uniquely able to prime naive T-cell responses. They are the focus of a range of novel strategies for the immunotherapy of cancer, a proportion of which include treating DC with ionising radiation to high dose. The effects of radiation on DC have not, however, been fully characterised. We therefore cultured human myeloid DC from CD14+ precursors, and studied the effects of ionising radiation on their phenotype and function. Dendritic cells were remarkably resistant against radiation-induced apoptosis, showed limited changes in surface phenotype, and mostly maintained their endocytic, phagocytic and migratory capacity. However, irradiated DC were less effective in a mixed lymphocyte reaction, and on maturation produced significantly less IL-12 than unirradiated controls, while IL-10 secretion was maintained. Furthermore, peptide-pulsed irradiated mature DC were less effective at naive T-cell priming, stimulating fewer effector cells with lower cytotoxicity against antigen-specific targets. Hence irradiation of DC in vitro, and potentially in vivo, has a significant impact on their function, and may shift the balance between T-cell activation and tolerization in DC-mediated immune responses.
Collapse
Affiliation(s)
- A Merrick
- Cancer Research UK Clinical Center, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - F Errington
- Cancer Research UK Clinical Center, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - K Milward
- Cancer Research UK Clinical Center, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - D O'Donnell
- Cancer Research UK Clinical Center, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - K Harrington
- Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, UK
| | - A Bateman
- Somers Cancer Research Building, Southampton General Hospital, Southampton SO16 6YD, UK
| | - H Pandha
- Department of Oncology, St George's Hospital Medical School, London SW17 0RE, UK
| | - R Vile
- Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905, USA
| | - E Morrison
- Cancer Research UK Clinical Center, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - P Selby
- Cancer Research UK Clinical Center, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - A Melcher
- Cancer Research UK Clinical Center, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
- Cancer Research UK Clinical Center, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK. E-mail:
| |
Collapse
|
50
|
Takada Y, Bhardwaj A, Potdar P, Aggarwal BB. Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-kappaB activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation. Oncogene 2005; 23:9247-58. [PMID: 15489888 DOI: 10.1038/sj.onc.1208169] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin have been shown to suppress transcription factor NF-kappaB, which controls the expression of genes such as cyclooxygenase (COX)-2 and cyclin D1, leading to inhibition of proliferation of tumor cells. There is no systematic study as to how these drugs differ in their ability to suppress NF-kappaB activation and NF-kappaB-regulated gene expression or cell proliferation. In the present study, we investigated the effect of almost a dozen different commonly used NSAIDs on tumor necrosis factor (TNF)-induced NF-kappaB activation and NF-kappaB-regulated gene products, and on cell proliferation. Dexamethasone, an anti-inflammatory steroid, was included for comparison with NSAIDs. As indicated by DNA binding, none of the drugs alone activated NF-kappaB. All compounds inhibited TNF-induced NF-kappaB activation, but with highly variable efficacy. The 50% inhibitory concentration required was 5.67, 3.49, 3.03, 1.25, 0.94, 0.60, 0.38, 0.084, 0.043, 0.027, 0.024, and 0.010 mM for aspirin, ibuprofen, sulindac, phenylbutazone, naproxen, indomethacin, diclofenac, resveratrol, curcumin, dexamethasone, celecoxib, and tamoxifen, respectively. All drugs inhibited IkappaBalpha kinase and suppressed IkappaBalpha degradation and NF-kappaB-regulated reporter gene expression. They also suppressed NF-kappaB-regulated COX-2 and cyclin D1 protein expression in a dose-dependent manner. All compounds inhibited the proliferation of tumor cells, with 50% inhibitory concentrations of 6.09, 1.12, 0.65, 0.49, 1.01, 0.19, 0.36, 0.012, 0.016, 0.047, 0.013, and 0.008 mM for aspirin, ibuprofen, sulindac, phenylbutazone, naproxen, indomethacin, diclofenac, resveratrol, curcumin, dexamethasone, celecoxib, and tamoxifen, respectively. Overall these results indicate that aspirin and ibuprofen are least potent, while resveratrol, curcumin, celecoxib, and tamoxifen are the most potent anti-inflammatory and antiproliferative agents of those we studied.
Collapse
Affiliation(s)
- Yasunari Takada
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Box 143, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|