1
|
Chagas PS, Garcia CB, Leopoldino AM. Genomic Insights into Oral Cancer Highlight Mutant SIGMAR1 as a Critical Target to Overcome Chemoresistance. Biochem Genet 2025:10.1007/s10528-025-11108-0. [PMID: 40257692 DOI: 10.1007/s10528-025-11108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/13/2025] [Indexed: 04/22/2025]
Abstract
Oral cancer (OC) is a highly aggressive malignancy characterized by uncontrolled cell proliferation in the oral cavity. Recent studies have highlighted the role of Sigma-1 receptor (SIGMAR1) mutations in cancer progression, disrupting cellular homeostasis, altering gene and protein expression, and promoting drug resistance. However, its role in OC remains scarce. This study investigated SIGMAR1 mutations, expression profiles, and their potential link to drug resistance in OC. Using 2008 OC samples from the TCGA Pan-Cancer Atlas, we identified SIGMAR1 genetic alterations in 4% of cases, including missense mutations, deletions, and amplifications. In the HN13 OC cell line, Sanger sequencing revealed a novel heterozygous Asp-to-Gly (c.585C > G) missense mutation. Quantitative RT-PCR and Western blot analyses showed SIGMAR1 overexpression in HN13 cells compared to non-tumor oral keratinocytes (NOK-SI). Silencing SIGMAR1 increased HN13 cell sensitivity to cisplatin, indicating its role in drug resistance. This study is the first to report the c.585C > G mutation in SIGMAR1 and demonstrate its contribution to cisplatin resistance, a major chemotherapy challenge to OC treatment. These findings highlight SIGMAR1's critical role in OC pathogenesis and its potential as a therapeutic target to overcome chemoresistance. The results also pave the way for future research into RNA-based therapies and precision oncology interventions.
Collapse
Affiliation(s)
- Pablo Shimaoka Chagas
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café S/N, Ribeirão Preto, SP, 14040-903, Brazil.
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Cristiana Bernadelli Garcia
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café S/N, Ribeirão Preto, SP, 14040-903, Brazil
| | - Andréia Machado Leopoldino
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. Do Café S/N, Ribeirão Preto, SP, 14040-903, Brazil
| |
Collapse
|
2
|
Wang T, Sun N, Ma Y, Zhang S. Recent Advances in the Development of Sigma Receptor (Radio)Ligands and Their Application in Tumors. ACS Pharmacol Transl Sci 2025; 8:951-977. [PMID: 40242588 PMCID: PMC11997895 DOI: 10.1021/acsptsci.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 04/18/2025]
Abstract
Cancer ranks among the top triumvirate leading causes of human deaths worldwide. The pathological mechanisms are notably intricate, demonstrating proliferative and metastatic capabilities, which complicate therapeutic interventions. The sigma-1 receptor (σ1R) plays a crucial role in tumor survival and migration, while the sigma-2 receptor (σ2R) is intimately associated with tumor proliferation. This review encapsulated the investigation concerning σ1R and σ2R in neoplasms and rigorously summarized the ligands and radio-ligands development and their tumor applications, such as antitumor cell proliferation and PET/SPECT imaging in tumors. A comprehensive classification discussion was undertaken regarding the chemical structures and emphasized the possibility of dual/multitargeted ligands. Ultimately, we discussed the effects of chiral structures and the pharmacological characteristics of ligands on affinity and pharmacokinetic features in vivo, particularly concerning radiopharmaceuticals. This review functions as a beneficial resource, fostering ligand deployment and stimulating the generation of innovative ideas for developing innovative radiopharmaceuticals.
Collapse
Affiliation(s)
- Tao Wang
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
- School
of Medical Imaging, North Sichuan Medical
College, NanChong 637100, China
- Department
of Nuclear Medicine, Affiliated Hospital
of North Sichuan Medical College, North Sichuan Medical College, NanChong 637000, China
| | - Na Sun
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| | - Yanxi Ma
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| | - Song Zhang
- Department
of Nuclear Medicine, Xinqiao Hospital, Army
Medical University, Chongqing 400037, China
| |
Collapse
|
3
|
Yıldız B, Demirel R, Havadar HB, Yıldız G, Öziç C, Kamiloğlu NN, Özden Ö. Blocking SIG1R Along with Low Cadmium Exposure Display Anti-cancer Qualities in Both MCF7 and MDA-MB-231 Cells. Biol Trace Elem Res 2024; 202:3588-3600. [PMID: 37940833 DOI: 10.1007/s12011-023-03947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/28/2023] [Indexed: 11/10/2023]
Abstract
Sigma-1 receptor (SIG1R) is a chaperone that modulates inositol 1,4,5-trisphosphate receptor type1 (IP3R1) calcium (Ca2+) channels on the endoplasmic reticulum. Therefore, SIG1R functions as an indirect regulator of Ca2+ and acts as an apoptosis modulator. Increased expression of SIG1R is associated with poor prognosis in breast cancers (BC), and SIG1R antagonists like BD1047 induce apoptosis. As a heavy metal, cadmium (Cd2+) is competitive with Ca2+ due to its physicochemical similarities and may trigger apoptosis at low concentrations. Our study investigated the SIG1R protein expression in 74 BC patients and found a significant increase in SIG1R expression in the triple-negative BC subtype. We also examined the apoptotic and anti-cancer effects of BD1047 in combination with CdCl2 in MCF7 and MDA-MB-213 cells. Cells were treated with CdCl2 at doses of 1 μM, 25 μM, and 50 μM, along with BD1047. Higher doses of CdCl2 were cytotoxic on both cancer cells and significantly increased DNA breaks. However, low-dose CdCl2 with BD1047 increased cell death and the apoptotic index in BC cells, although it did not exhibit cytotoxic effects on HUVEC cells. Co-administration of low-dose CdCl2 with BD1047 also reduced the migration and colony-forming ability of BC cells. Moreover, the expression of SIG1R protein in these groups decreased significantly compared to groups treated with BD1047 or low-dose CdCl2 alone. In conclusion, low-dose CdCl2 is thought to increase the apoptotic ability of BD1047 in BC cells by reducing SIG1R expression.
Collapse
Affiliation(s)
- Barış Yıldız
- Institute of Health Sciences, Department of Physiology, Kafkas University, 36100, Kars, Turkey
| | - Ramazan Demirel
- Department of Bioengineering, Institute of Natural and Applied Sciences, Kafkas University, 36100, Kars, Turkey
| | - Hatice Beşeren Havadar
- Deparment of Medical Pathology, Centre of Health Research and Training Hospital, Kafkas University, 36100, Kars, Turkey
| | - Gülden Yıldız
- Deparment of Medical Pathology, Centre of Health Research and Training Hospital, Kafkas University, 36100, Kars, Turkey
| | - Cem Öziç
- Department of Medical Biology, School of Medicine, Kafkas University, 36100, Kars, Turkey
| | - Nadide Nabil Kamiloğlu
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, 36100, Kars, Turkey
| | - Özkan Özden
- Department of Bioengineering, Faculty of Engineering and Architecture, Kafkas University, 36100, Kars, Turkey.
| |
Collapse
|
4
|
An investigation of Sigma-1 receptor expression and ligand-induced endoplasmic reticulum stress in breast cancer. Cancer Gene Ther 2023; 30:368-374. [PMID: 36352093 DOI: 10.1038/s41417-022-00552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/19/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022]
Abstract
Targeted therapeutic options and prognostic biomarkers for hormone receptor- or Her2 receptor-negative breast cancers are severely limited. The sigma-1 receptor, a stress-activated chaperone, is frequently dysregulated in disease. However, its significance in breast cancer (BCa) has not been adequately explored. Here, we report that the sigma-1 receptor gene (SIGMAR1) is elevated in BCa, particularly in the aggressive triple-negative (TNBC) subtype. By examining several patient datasets, we found that high expression at both the gene (SIGMAR1) and protein (Sig1R) levels associated with poor survival outcomes, specifically in ER-Her2- groups. Our data further show that high SIGMAR1 was predictive of shorter survival times in patients treated with adjuvant chemotherapy (ChT). Interestingly, in a separate cohort who received neoadjuvant taxane + anthracycline treatment, elevated SIGMAR1 associated with higher rates of pathologic complete response (pCR). Treatment with a Sig1R antagonist, 1-(4-iodophenyl)-3-(2-adamantyl)guanidine (IPAG), activated the unfolded protein response (UPR) in TNBC (high-Sig1R expressing) and ER + (low-Sig1R expressing) BCa cell lines. In tamoxifen-resistant LY2 cells, IPAG caused Sig1R to aggregate and co-localise with the stress marker BiP. These findings showcase the potential of Sig1R as a novel biomarker in TNBC as well as highlight its ligand-induced interference with the stress-coping mechanisms of BCa cells.
Collapse
|
5
|
Wei X, Zheng Z, Feng Z, Zheng L, Tao S, Zheng B, Huang B, Zhang X, Liu J, Chen Y, Zong W, Shan Z, Fan S, Chen J, Zhao F. Sigma-1 receptor attenuates osteoclastogenesis by promoting ER-associated degradation of SERCA2. EMBO Mol Med 2022; 14:e15373. [PMID: 35611810 PMCID: PMC9260208 DOI: 10.15252/emmm.202115373] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Sigma-1 receptor (Sigmar1) is a specific chaperone located in the mitochondria-associated endoplasmic reticulum membrane (MAM) and plays a role in several physiological processes. However, the role of Sigmar1 in bone homeostasis remains unknown. Here, we show that mice lacking Sigmar1 exhibited severe osteoporosis in an ovariectomized model. In contrast, overexpression of Sigmar1 locally alleviated the osteoporosis phenotype. Treatment with Sigmar1 agonists impaired both human and mice osteoclast formation in vitro. Mechanistically, SERCA2 was identified to interact with Sigmar1 based on the immunoprecipitation-mass spectrum (IP-MS) and co-immunoprecipitation (co-IP) assays, and Q615 of SERCA2 was confirmed to be the critical residue for their binding. Furthermore, Sigmar1 promoted SERCA2 degradation through Hrd1/Sel1L-dependent ER-associated degradation (ERAD). Ubiquitination of SERCA2 at K460 and K541 was responsible for its proteasomal degradation. Consequently, inhibition of SERCA2 impeded Sigmar1 deficiency enhanced osteoclastogenesis. Moreover, we found that dimemorfan, an FDA-approved Sigmar1 agonist, effectively rescued bone mass in various established bone-loss models. In conclusion, Sigmar1 is a negative regulator of osteoclastogenesis, and activation of Sigmar1 by dimemorfan may be a potential treatment for osteoporosis in clinical practice.
Collapse
Affiliation(s)
- Xiaoan Wei
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Zeyu Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Zhenhua Feng
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Lin Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Siyue Tao
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Bingjie Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Bao Huang
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Xuyang Zhang
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Junhui Liu
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Yilei Chen
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Wentian Zong
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Zhi Shan
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Shunwu Fan
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Jian Chen
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| | - Fengdong Zhao
- Department of Orthopaedic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Musculoskeletal System Degeneration and RegenerationTranslational Research of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
6
|
Aishwarya R, Abdullah CS, Morshed M, Remex NS, Bhuiyan MS. Sigmar1's Molecular, Cellular, and Biological Functions in Regulating Cellular Pathophysiology. Front Physiol 2021; 12:705575. [PMID: 34305655 PMCID: PMC8293995 DOI: 10.3389/fphys.2021.705575] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
The Sigma 1 receptor (Sigmar1) is a ubiquitously expressed multifunctional inter-organelle signaling chaperone protein playing a diverse role in cellular survival. Recessive mutation in Sigmar1 have been identified as a causative gene for neuronal and neuromuscular disorder. Since the discovery over 40 years ago, Sigmar1 has been shown to contribute to numerous cellular functions, including ion channel regulation, protein quality control, endoplasmic reticulum-mitochondrial communication, lipid metabolism, mitochondrial function, autophagy activation, and involved in cellular survival. Alterations in Sigmar1’s subcellular localization, expression, and signaling has been implicated in the progression of a wide range of diseases, such as neurodegenerative diseases, ischemic brain injury, cardiovascular diseases, diabetic retinopathy, cancer, and drug addiction. The goal of this review is to summarize the current knowledge of Sigmar1 biology focusing the recent discoveries on Sigmar1’s molecular, cellular, pathophysiological, and biological functions.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Mahboob Morshed
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Md Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States.,Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
7
|
Abatematteo FS, Niso M, Lacivita E, Abate C. σ 2 Receptor and Its Role in Cancer with Focus on a MultiTarget Directed Ligand (MTDL) Approach. Molecules 2021; 26:3743. [PMID: 34205334 PMCID: PMC8235595 DOI: 10.3390/molecules26123743] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Sigma-2 (σ2) is an endoplasmic receptor identified as the Endoplasmic Reticulum (ER) transmembrane protein TMEM97. Despite its controversial identity, which was only recently solved, this protein has gained scientific interest because of its role in the proliferative status of cells; many tumor cells from different organs overexpress the σ2 receptor, and many σ2 ligands display cytotoxic actions in (resistant) cancer cells. These properties have shed light on the σ2 receptor as a potential druggable target to be bound/activated for the diagnosis or therapy of tumors. Additionally, diverse groups have shown how the σ2 receptor can be exploited for the targeted delivery of the anticancer drugs to tumors. As the cancer disease is a multifactorial pathology with multiple cell populations, a polypharmacological approach is very often needed. Instead of the simultaneous administration of different classes of drugs, the use of one molecule that interacts with diverse pharmacological targets, namely MultiTarget Directed Ligand (MTDL), is a promising and currently pursued strategy, that may overcome the pharmacokinetic problems associated with the administration of multiple molecules. This review aims to point out the progress regarding the σ2 ligands in the oncology field, with a focus on MTDLs directed towards σ2 receptors as promising weapons against (resistant) cancer diseases.
Collapse
Affiliation(s)
| | | | | | - Carmen Abate
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy; (F.S.A.); (M.N.); (E.L.)
| |
Collapse
|
8
|
Li YK, Hsu HM, Lin MC, Chang CW, Chu CM, Chang YJ, Yu JC, Chen CT, Jian CE, Sun CA, Chen KH, Kuo MH, Cheng CS, Chang YT, Wu YS, Wu HY, Yang YT, Lin C, Lin HC, Hu JM, Chang YT. Genetic co-expression networks contribute to creating predictive model and exploring novel biomarkers for the prognosis of breast cancer. Sci Rep 2021; 11:7268. [PMID: 33790307 PMCID: PMC8012617 DOI: 10.1038/s41598-021-84995-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Genetic co-expression network (GCN) analysis augments the understanding of breast cancer (BC). We aimed to propose GCN-based modeling for BC relapse-free survival (RFS) prediction and to discover novel biomarkers. We used GCN and Cox proportional hazard regression to create various prediction models using mRNA microarray of 920 tumors and conduct external validation using independent data of 1056 tumors. GCNs of 34 identified candidate genes were plotted in various sizes. Compared to the reference model, the genetic predictors selected from bigger GCNs composed better prediction models. The prediction accuracy and AUC of 3 ~ 15-year RFS are 71.0-81.4% and 74.6-78% respectively (rfm, ACC 63.2-65.5%, AUC 61.9-74.9%). The hazard ratios of risk scores of developing relapse ranged from 1.89 ~ 3.32 (p < 10-8) over all models under the control of the node status. External validation showed the consistent finding. We found top 12 co-expressed genes are relative new or novel biomarkers that have not been explored in BC prognosis or other cancers until this decade. GCN-based modeling creates better prediction models and facilitates novel genes exploration on BC prognosis.
Collapse
Affiliation(s)
- Yuan-Kuei Li
- Division of Colorectal Surgery, Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan.,Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan
| | - Huan-Ming Hsu
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Surgery, Songshan Branch of Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Meng-Chiung Lin
- Division of Gastroenterology, Department of Medicine, Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Chi-Wen Chang
- School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Nursing, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Chi-Ming Chu
- Division of Medical Informatics, Department of Epidemiology, School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Big Data Research Center, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.,Department of Public Health, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.,Department of Public Health, China Medical University, Taichung City, Taiwan.,Department of Healthcare Administration and Medical Informatics College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jyh-Cherng Yu
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Ting Chen
- Division of Medical Informatics, Department of Epidemiology, School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chen-En Jian
- Division of Medical Informatics, Department of Epidemiology, School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chien-An Sun
- Big Data Research Center, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Kang-Hua Chen
- School of Nursing, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Nursing, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Ming-Hao Kuo
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Shiang Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Ting Chang
- Division of Medical Informatics, Department of Epidemiology, School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Syuan Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hao-Yi Wu
- Division of Medical Informatics, Department of Epidemiology, School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Ting Yang
- Division of Medical Informatics, Department of Epidemiology, School of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Chen Lin
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan.,Center for Biotechnology and Biomedical Engineering, National Central University, Taoyuan, Taiwan
| | - Hung-Che Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Hualien Armed Forces General Hospital, Xincheng, Hualien, 97144, Taiwan
| | - Je-Ming Hu
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Colorectal Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan.,School of Medicine, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Tien Chang
- Division of Medical Informatics, Department of Epidemiology, School of Public Health, National Defense Medical Center, Taipei, Taiwan. .,Big Data Research Center, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
9
|
Pontisso I, Combettes L. Role of Sigma-1 Receptor in Calcium Modulation: Possible Involvement in Cancer. Genes (Basel) 2021; 12:139. [PMID: 33499031 PMCID: PMC7911422 DOI: 10.3390/genes12020139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Ca2+ signaling plays a pivotal role in the control of cellular homeostasis and aberrant regulation of Ca2+ fluxes have a strong impact on cellular functioning. As a consequence of this ubiquitous role, Ca2+ signaling dysregulation is involved in the pathophysiology of multiple diseases including cancer. Indeed, multiple studies have highlighted the role of Ca2+ fluxes in all the steps of cancer progression. In particular, the transfer of Ca2+ at the ER-mitochondrial contact sites, also known as mitochondrial associated membranes (MAMs), has been shown to be crucial for cancer cell survival. One of the proteins enriched at this site is the sigma-1 receptor (S1R), a protein that has been described as a Ca2+-sensitive chaperone that exerts a protective function in cells in various ways, including the modulation of Ca2+ signaling. Interestingly, S1R is overexpressed in many types of cancer even though the exact mechanisms by which it promotes cell survival are not fully elucidated. This review summarizes the findings describing the roles of S1R in the control of Ca2+ signaling and its involvement in cancer progression.
Collapse
Affiliation(s)
- Ilaria Pontisso
- UMR 1282, INSERM, Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, 91190 Gif Sur Yvette, France;
- Faculté des Sciences, Université Paris-Saclay, 91405 Orsay, France
| | - Laurent Combettes
- UMR 1282, INSERM, Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris Saclay, 91190 Gif Sur Yvette, France;
- Faculté des Sciences, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
10
|
Villemain L, Prigent S, Abou-Lovergne A, Pelletier L, Chiral M, Pontoglio M, Foufelle F, Caruso S, Pineau R, Rebouissou S, Chevet E, Zucman-Rossi J, Combettes L. Sigma 1 Receptor is Overexpressed in Hepatocellular Adenoma: Involvement of ERα and HNF1α. Cancers (Basel) 2020; 12:cancers12082213. [PMID: 32784704 PMCID: PMC7464972 DOI: 10.3390/cancers12082213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Sigma receptor 1 (SigR1) is an endoplasmic reticulum resident integral membrane protein whose functions remain unclear. Although the liver shows the highest expression of SigR1, its role in this organ is unknown. SigR1 is overexpressed in many cancers and its expression is correlated to hormonal status in hormone-dependent cancers. To better understand the role of SigR1 in hepatocytes we focused our work on the regulation of its expression in tumoral liver. In this context, hepatocellular adenomas, benign hepatic tumors associated with estrogen intake are of particular interest. The expression of SigR1 mRNA was assessed in hepatocellular adenoma (HCA) patients using qPCR. The impact of estrogen on the expression of SigR1 was studied in vivo (mice) and in vitro (HepG2 and Huh7 cells). The effect of HNF1α on the expression of SigR1 was studied in vivo by comparing wild type mice to HNF1 knockout mice. Estrogen enhanced SigR1 expression through its nuclear receptor ERα. HNF1α mutated HCA (H-HCA) significantly overexpressed SigR1 compared to all other HCA subtypes. HNF1 knockout mice showed an increase in SigR1 expression. Overexpressing SigR1 in cellular models increases proliferation rate and storage of lipid droplets, which phenocopies the H-HCA phenotype. SigR1 is involved in hepatocyte proliferation and steatosis and may play an important role in the control of the H-HCA phenotype.
Collapse
Affiliation(s)
- Laure Villemain
- UMRs 1174, University Paris-Saclay, Inserm, 91405 Orsay, France; (L.V.); (S.P.); (A.A.-L.)
| | - Sylvie Prigent
- UMRs 1174, University Paris-Saclay, Inserm, 91405 Orsay, France; (L.V.); (S.P.); (A.A.-L.)
| | - Aurélie Abou-Lovergne
- UMRs 1174, University Paris-Saclay, Inserm, 91405 Orsay, France; (L.V.); (S.P.); (A.A.-L.)
| | - Laura Pelletier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Université Sorbonne Paris Nord, Functional Genomics of Solid Tumors laboratory, F-75006 Paris, France; (L.P.); (S.C.); (S.R.); (J.Z.-R.)
| | - Magali Chiral
- Institut Necker - Enfants Malades (INEM), 14, rue Maria Héléna Vieira da Silva Bâtiment Leriche, 75014 Paris, France; (M.C.); (M.P.)
| | - Marco Pontoglio
- Institut Necker - Enfants Malades (INEM), 14, rue Maria Héléna Vieira da Silva Bâtiment Leriche, 75014 Paris, France; (M.C.); (M.P.)
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, Sorbonne University, Inserm, U1138” Metabolic diseases, diabetes and co-morbidities” F-75006 Paris, France;
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Université Sorbonne Paris Nord, Functional Genomics of Solid Tumors laboratory, F-75006 Paris, France; (L.P.); (S.C.); (S.R.); (J.Z.-R.)
| | - Raphael Pineau
- UMRs 1242 “Chemistry, Oncogenesis, stress, Signaling” (COSS), University de Rennes-1, 35042 Rennes, France; (R.P.); (E.C.)
- Centre de Lutte Contre le Cancer Eugène Marquis, 35042 Rennes, France
| | - Sandra Rebouissou
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Université Sorbonne Paris Nord, Functional Genomics of Solid Tumors laboratory, F-75006 Paris, France; (L.P.); (S.C.); (S.R.); (J.Z.-R.)
| | - Eric Chevet
- UMRs 1242 “Chemistry, Oncogenesis, stress, Signaling” (COSS), University de Rennes-1, 35042 Rennes, France; (R.P.); (E.C.)
- Centre de Lutte Contre le Cancer Eugène Marquis, 35042 Rennes, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Université Sorbonne Paris Nord, Functional Genomics of Solid Tumors laboratory, F-75006 Paris, France; (L.P.); (S.C.); (S.R.); (J.Z.-R.)
- Hôpital Européen Georges Pompidou, AP-HP, F-75015 Paris, France
| | - Laurent Combettes
- UMRs 1174, University Paris-Saclay, Inserm, 91405 Orsay, France; (L.V.); (S.P.); (A.A.-L.)
- Correspondence: ; Tel.: +01-6915-6396
| |
Collapse
|
11
|
Alshabi AM, Shaikh IA, Vastrad C. Exploring the Molecular Mechanism of the Drug-Treated Breast Cancer Based on Gene Expression Microarray. Biomolecules 2019; 9:biom9070282. [PMID: 31311202 PMCID: PMC6681318 DOI: 10.3390/biom9070282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
: Breast cancer (BRCA) remains the leading cause of cancer morbidity and mortality worldwide. In the present study, we identified novel biomarkers expressed during estradiol and tamoxifen treatment of BRCA. The microarray dataset of E-MTAB-4975 from Array Express database was downloaded, and the differential expressed genes (DEGs) between estradiol-treated BRCA sample and tamoxifen-treated BRCA sample were identified by limma package. The pathway and gene ontology (GO) enrichment analysis, construction of protein-protein interaction (PPI) network, module analysis, construction of target genes-miRNA interaction network and target genes-transcription factor (TF) interaction network were performed using bioinformatics tools. The expression, prognostic values, and mutation of hub genes were validated by SurvExpress database, cBioPortal, and human protein atlas (HPA) database. A total of 856 genes (421 up-regulated genes and 435 down-regulated genes) were identified in T47D (overexpressing Split Ends (SPEN) + estradiol) samples compared to T47D (overexpressing Split Ends (SPEN) + tamoxifen) samples. Pathway and GO enrichment analysis revealed that the DEGs were mainly enriched in response to lysine degradation II (pipecolate pathway), cholesterol biosynthesis pathway, cell cycle pathway, and response to cytokine pathway. DEGs (MCM2, TCF4, OLR1, HSPA5, MAP1LC3B, SQSTM1, NEU1, HIST1H1B, RAD51, RFC3, MCM10, ISG15, TNFRSF10B, GBP2, IGFBP5, SOD2, DHF and MT1H) , which were significantly up- and down-regulated in estradiol and tamoxifen-treated BRCA samples, were selected as hub genes according to the results of protein-protein interaction (PPI) network, module analysis, target genes-miRNA interaction network and target genes-TF interaction network analysis. The SurvExpress database, cBioPortal, and Human Protein Atlas (HPA) database further confirmed that patients with higher expression levels of these hub genes experienced a shorter overall survival. A comprehensive bioinformatics analysis was performed, and potential therapeutic applications of estradiol and tamoxifen were predicted in BRCA samples. The data may unravel the future molecular mechanisms of BRCA.
Collapse
Affiliation(s)
- Ali Mohamed Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 66237, Saudi Arabia
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, 66237, Saudi Arabia
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, ChanabasavaNilaya, Bharthinagar, Dharwad 580001, Karnataka, India.
| |
Collapse
|
12
|
Dasargyri A, Kümin CD, Leroux JC. Targeting Nanocarriers with Anisamide: Fact or Artifact? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603451. [PMID: 27885719 DOI: 10.1002/adma.201603451] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/08/2016] [Indexed: 05/19/2023]
Abstract
Encapsulating chemotherapeutics in nanoparticles can reduce the side effects of intravenous administration and improve their antitumor efficacy. Additionally, surface decoration of the nanocarriers with tumor-targeting ligands may enhance their specificity for cancer cells overexpressing the corresponding ligand-binding counterpart. The focus here is on anisamide, a low-molecular-weight benzamide derivative used as a tumor-directing moiety in functionalized nanosystems, based on its alleged interaction with Sigma receptors. The scintigraphic agents that initially inspired the use of anisamide for tumor targeting are described, and the published anisamide-tethered nanocarrier formulations are reviewed, together with a critical overview of the ligand's tumor-targeting properties. Moreover, anisamide's putative but dubious cellular target, the Sigma-1 receptor, is discussed with regard to its subcellular localization and implications in cancer. Data from in vivo studies reveal that the effect of anisamide on the antitumor efficacy of the decorated nanosystems varies considerably among the published reports. Together with the evidence questioning the interaction of anisamide with the Sigma receptors, the variability of anisamide's effect on the tumor deposition and the antitumor efficacy of the decorated drug carriers calls into question the extent of the ligand's tumor-targeting effect. Further research is necessary to elucidate the ligand's utility in tumor targeting.
Collapse
Affiliation(s)
- Athanasia Dasargyri
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, 8093, Switzerland
| | - Carole D Kümin
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, 8093, Switzerland
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, 8093, Switzerland
| |
Collapse
|
13
|
Abstract
Sigma1 (also known as sigma-1 receptor, Sig1R, σ1 receptor) is a unique pharmacologically regulated integral membrane chaperone or scaffolding protein. The majority of publications on the subject have focused on the neuropharmacology of Sigma1. However, a number of publications have also suggested a role for Sigma1 in cancer. Although there is currently no clinically used anti-cancer drug that targets Sigma1, a growing body of evidence supports the potential of Sigma1 ligands as therapeutic agents to treat cancer. In preclinical models, compounds with affinity for Sigma1 have been reported to inhibit cancer cell proliferation and survival, cell adhesion and migration, tumor growth, to alleviate cancer-associated pain, and to have immunomodulatory properties. This review will highlight that although the literature supports a role for Sigma1 in cancer, several fundamental questions regarding drug mechanism of action and the physiological relevance of aberrant SIGMAR1 transcript and Sigma1 protein expression in certain cancers remain unanswered or only partially answered. However, emerging lines of evidence suggest that Sigma1 is a component of the cancer cell support machinery, that it facilitates protein interaction networks, that it allosterically modulates the activity of its associated proteins, and that Sigma1 is a selectively multifunctional drug target.
Collapse
Affiliation(s)
- Felix J Kim
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Philadelphia, PA, USA.
| | - Christina M Maher
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, USA
| |
Collapse
|
14
|
Weber F, Brune S, Börgel F, Lange C, Korpis K, Bednarski PJ, Laurini E, Fermeglia M, Pricl S, Schepmann D, Wünsch B. Rigidity versus Flexibility: Is This an Issue in σ1 Receptor Ligand Affinity and Activity? J Med Chem 2016; 59:5505-19. [PMID: 27156565 DOI: 10.1021/acs.jmedchem.6b00585] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stereoisomeric 2,5-diazabicyclo[2.2.2]octanes 14 and 15 were prepared in a chiral-pool synthesis starting from (S)- or (R)-aspartate. The key step in the synthesis was a Dieckmann-analogous cyclization of (dioxopiperazinyl)acetates 8, which involved trapping of the intermediate hemiketal anion with Me3SiCl. The σ1 affinity was tested using membrane preparations from animal (guinea pig) and human origin. The binding of bicyclic compounds was analyzed by molecular dynamics simulations based on a 3D homology model of the σ1 receptor. The good correlation between Ki values observed in the σ1 assays and calculated free binding energy, coupled with the identification of four crucial ligand/receptor interactions, allowed the formulation of structure-affinity relationships. In an in vitro antitumor assay with seven human tumor cell lines, the bicyclic compounds inhibited selectively the growth of the cell line A427, which is due to induction of apoptosis. In this assay, the compounds behave like the known σ1 receptor antagonist haloperidol.
Collapse
Affiliation(s)
- Frauke Weber
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster , Corrensstraße 48, D-48149 Münster, Germany
| | - Stefanie Brune
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster , Corrensstraße 48, D-48149 Münster, Germany
| | - Frederik Börgel
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster , Corrensstraße 48, D-48149 Münster, Germany
| | - Carsten Lange
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald , Friedrich-Ludwig-Jahn-Straße 17, 17487 Greifswald, Germany
| | - Katharina Korpis
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald , Friedrich-Ludwig-Jahn-Straße 17, 17487 Greifswald, Germany
| | - Patrick J Bednarski
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald , Friedrich-Ludwig-Jahn-Straße 17, 17487 Greifswald, Germany
| | - Erik Laurini
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste , Via Valerio 6, 34127 Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste , Via Valerio 6, 34127 Trieste, Italy
| | - Sabrina Pricl
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Engineering and Architecture (DEA), University of Trieste , Via Valerio 6, 34127 Trieste, Italy.,National Interuniversity Consortium for Material Science and Technology (INSTM), Research Unit MOSE-DEA, University of Trieste , Via Valerio 6, 32127 Trieste, Italy
| | - Dirk Schepmann
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster , Corrensstraße 48, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster , Corrensstraße 48, D-48149 Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, 48149 Münster, Germany
| |
Collapse
|
15
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
16
|
Chen YY, Wang X, Zhang JM, Deuther-Conrad W, Zhang XJ, Huang Y, Li Y, Ye JJ, Cui MC, Steinbach J, Brust P, Liu BL, Jia HM. Synthesis and evaluation of a 18F-labeled spirocyclic piperidine derivative as promising σ1 receptor imaging agent. Bioorg Med Chem 2014; 22:5270-8. [DOI: 10.1016/j.bmc.2014.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/18/2014] [Accepted: 08/05/2014] [Indexed: 12/16/2022]
|
17
|
Ashford ME, Nguyen VH, Greguric I, Pham TQ, Keller PA, Katsifis A. Synthesis and in vitro evaluation of tetrahydroisoquinolines with pendent aromatics as sigma-2 (σ2) selective ligands. Org Biomol Chem 2014; 12:783-94. [DOI: 10.1039/c3ob42254b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sigma-2 selective ligands – a SAR study showing increased potency and selectivity with derivatives showing the potential to be converted into radiolabelled ligands.
Collapse
Affiliation(s)
- Mark E. Ashford
- ANSTO Life Sciences Division
- ANSTO
- Kirrawee DC, Australia
- Centre for Medicinal Chemistry
- School of Chemistry
| | - Vu H. Nguyen
- ANSTO Life Sciences Division
- ANSTO
- Kirrawee DC, Australia
| | - Ivan Greguric
- ANSTO Life Sciences Division
- ANSTO
- Kirrawee DC, Australia
| | - Tien Q. Pham
- ANSTO Life Sciences Division
- ANSTO
- Kirrawee DC, Australia
| | - Paul A. Keller
- Centre for Medicinal Chemistry
- School of Chemistry
- University of Wollongong
- , Australia
| | - Andrew Katsifis
- Department of PET and Nuclear Medicine
- Royal Prince Alfred Hospital
- Sydney, Australia
| |
Collapse
|
18
|
Ramakrishnan NK, Rybczynska AA, Visser AKD, Marosi K, Nyakas CJ, Kwizera C, Sijbesma JWA, Elsinga PH, Ishiwata K, Pruim J, Dierckx RAJO, van Waarde A. Small-animal PET with a σ-ligand, 11C-SA4503, detects spontaneous pituitary tumors in aged rats. J Nucl Med 2013; 54:1377-83. [PMID: 23785170 DOI: 10.2967/jnumed.112.115931] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Pituitary tumors are often detected only after death or at late stages of the disease when they are macroadenomas with a low surgical cure rate. Spontaneous pituitary tumors occur in rats over 1 y of age. In an ongoing study of changes in σ-1 agonist binding related to aging, several of our rats developed such tumors. The aim of the current study was to assess the kinetics of (11)C-SA4503 ((11)C-labeled 1-[2-(3,4-dimethoxyphenthyl)]-4-(3-phenylpropyl)-piperazine dihydrochloride) in tumor and brain and to evaluate the utility of this tracer in the detection of pituitary tumors. METHODS Small-animal PET scans of the brain region of male Wistar Hannover rats (age, 18-32 mo) were acquired using the σ-1 agonist tracer (11)C-SA4503. The time-dependent uptake of (11)C in the entire brain, tumor or normal pituitary, and thyroid was measured. A 2-tissue-compartment model was fitted to the PET data, using metabolite-corrected plasma radioactivity as the input function. RESULTS Pituitary tumors showed up as bright hot spots in the scans. The total distribution volume (VT) of the tracer was significantly higher in the tumor than in the normal pituitary. Surprisingly, a higher VT was also seen in the brain and thyroid tissue of animals with pituitary tumors than in healthy rats. The increase in VT in the brain and thyroid was not related to a change in nondisplaceable binding potential (BPND) but rather to an increase in the partition coefficient (K1/k2) of (11)C-SA4503. The increase in VT in the tumor on the other hand was accompanied by a significant increase in BPND. Western blotting analysis indicated that pituitary tumors overexpressed σ-1 receptors. CONCLUSION The overexpression of σ-1 receptors in spontaneous pituitary tumors is detected as an increase in uptake and BPND of (11)C-SA4503. Therefore, this tracer may have promise for the detection of pituitary adenomas, using PET.
Collapse
Affiliation(s)
- Nisha K Ramakrishnan
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wiedemeyer K, Wünsch B. From mannose to morphan analogues: methyl α-d-mannoside as chiral building block for the synthesis of mono- and bicyclic σ receptor ligands. Carbohydr Res 2012; 359:24-9. [DOI: 10.1016/j.carres.2012.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/03/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
|
20
|
Sarkar S, Schepmann D, Köhler J, Fröhlich R, Wünsch B. Asymmetric Synthesis of Potent and Selective σ1Receptor Ligands with Tetrahydro-3-benzazepine Scaffold. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Microwave assisted synthesis of spirocyclic pyrrolidines – σ1 receptor ligands with modified benzene-N-distance. Eur J Med Chem 2012; 53:327-36. [DOI: 10.1016/j.ejmech.2012.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/12/2012] [Accepted: 04/13/2012] [Indexed: 11/23/2022]
|
22
|
Holl R, Schepmann D, Wünsch B. Homologous piperazine-alcanols: chiral pool synthesis and pharmacological evaluation. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20070h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Rack E, Fröhlich R, Schepmann D, Wünsch B. Design, synthesis and pharmacological evaluation of spirocyclic σ(1) receptor ligands with exocyclic amino moiety (increased distance 1). Bioorg Med Chem 2011; 19:3141-51. [PMID: 21531141 DOI: 10.1016/j.bmc.2011.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022]
Abstract
Various pharmacophore models for potent σ(1) ligands specify a basic amino group flanked by two different hydrophobic regions in defined distances to the basic amine (distance 1 and distance 2, respectively). According to these models distance 1 of the potent spirocyclic σ(1) ligand 1 is too short. In order to find a new class of more potent σ(1) ligands and to verify the distance hypothesis of the pharmacophore models spirocyclic compounds 2 with an exocyclic amino group were designed and synthesized. The secondary amines 8 and 9 with N-benzyl residues are >100-fold less potent than the spirocyclic piperidine 1. However, the tertiary methylamines trans-11 and cis-11 represent potent σ(1) ligands with K(i)-values of 43 and 24 nM, respectively. Whereas one large benzyl moiety is required for high σ(1) receptor binding, a second large N-substituent is not tolerated by the σ(1) receptor protein. As a rule, cis-configured diastereomers with a longer distance 1 (predominantly 7.16-7.23 Å) show higher σ(1) affinities than their trans-configured counterparts (distance 1 is predominantly 5.88-6.26 Å).
Collapse
Affiliation(s)
- Elisabeth Rack
- Institut für Pharmazeutische und Medizinische Chemie der Universität Münster, Germany
| | | | | | | |
Collapse
|
24
|
Abstract
Originally considered an enigmatic protein, the sigma-1 receptor has recently been identified as a unique ligand-regulated molecular chaperone in the endoplasmic reticulum of cells. This discovery causes us to look back at the many proposed roles of this receptor, even before its molecular function was identified, in many diseases such as methamphetamine or cocaine addiction, amnesia, pain, depression, Alzheimer's disease, stroke, retinal neuroprotection, HIV infection, and cancer. In this review, we examine the reports that have clearly shown an agonist-antagonist relationship regarding sigma-1 receptors in models of those diseases and also review the relatively known mechanisms of action of sigma-1 receptors in an attempt to spur the speculation of readers on how the sigma-1 receptor at the endoplasmic reticulum might relate to so many diseases. We found that the most prominent action of sigma-1 receptors in biological systems including cell lines, primary cultures, and animals is the regulation and modulation of voltage-regulated and ligand-gated ion channels, including Ca(2+)-, K(+)-, Na(+), Cl(-), and SK channels, and NMDA and IP3 receptors. We found that the final output of the action of sigma-1 receptor agonists is to inhibit all above-mentioned voltage-gated ion channels, while they potentiate ligand-gated channels. The inhibition or potentiation induced by agonists is blocked by sigma-1 receptor antagonists. Other mechanisms of action of sigma-1 receptors, and to some extent those of sigma-2 receptors, were also considered. We conclude that the sigma-1 and sigma-2 receptors represent potential fruitful targets for therapeutic developments in combating many human diseases.
Collapse
Affiliation(s)
- Tangui Maurice
- Team II Endogenous Neuroprotection in Neurodegenerative Diseases, INSERM U. 710, 34095 Montpellier Cedex 5, France
- University of Montpellier II, EPHE, CC 105, Place Eugene Bataillon, 34095 Montpellier Cedex 5, France
- EPHE, 75017 Paris, France
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Cellular Neurobiology Research Branch, IRP, NIDA-NIH, Suite 3304, 333 Cassell Drive, Baltimore, MD 21224
| |
Collapse
|
25
|
Berardi F, Abate C, Ferorelli S, de Robertis AF, Leopoldo M, Colabufo NA, Niso M, Perrone R. Novel 4-(4-aryl)cyclohexyl-1-(2-pyridyl)piperazines as Delta(8)-Delta(7) sterol isomerase (emopamil binding protein) selective ligands with antiproliferative activity. J Med Chem 2009; 51:7523-31. [PMID: 19053780 DOI: 10.1021/jm800965b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To find Delta(8)-Delta(7) sterol isomerase (EBP) selective ligands, various arylpiperazines previously studied and structurally related to some sigma receptors ligands were preliminarily screened. Consequently, a novel series of 2- or 2,6-disubstituted (CH(3), CH(3)O, Cl, F) cis- and trans-4-(4-aryl)cyclohexyl-1-(2-pyridyl)piperazines was developed. Radioreceptor binding assays evidenced cis-19, cis-30 and cis-33 as new ligands with nanomolar affinity toward EBP site and a good selectivity relative to EBP-related sigma receptors. The most selective 2,6-dimethoxy derivative (cis-33) demonstrated the highest potency (EC(50) = 12.9 microM) and efficacy (70%) in inhibiting proliferation of human prostate cancer PC-3 cell line. Among the reference compounds, sigma(2) agonist 36 (PB28) reached the maximum efficacy (100%), suggesting the contribution of the sigma(2) receptor to the antiproliferative activity. This novel class of EBP inhibitors represents a valuable tool for investigating the last steps of cholesterol biosynthesis and related pathologies, as well as a starting point for developing new anticancer drugs.
Collapse
Affiliation(s)
- Francesco Berardi
- Dipartimento Farmacochimico, Universita degli Studi di Bari, Via Orabona, 4, I-70125 Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Gellersen B, Fernandes MS, Brosens JJ. Non-genomic progesterone actions in female reproduction. Hum Reprod Update 2008; 15:119-38. [PMID: 18936037 DOI: 10.1093/humupd/dmn044] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The steroid hormone progesterone is indispensable for mammalian procreation by controlling key female reproductive events that range from ovulation to implantation, maintenance of pregnancy and breast development. In addition to activating the progesterone receptors (PRs)-B and -A, members of the superfamily of ligand-dependent transcription factors, progesterone also elicits a variety of rapid signalling events independently of transcriptional or genomic regulation. This review covers our current knowledge on the mechanisms and relevance of non-genomic progesterone signalling in female reproduction. METHODS PubMed was searched up to August 2008 for papers on progesterone actions in ovary/breast/endometrium/myometrium/brain, focusing primarily on non-genomic signalling mechanisms. RESULTS Convergence and intertwining of rapid non-genomic events and the slower transcriptional actions critically determine the functional response to progesterone in the female reproductive system in a cell-type- and environment-specific manner. Several putative progesterone-binding moieties have been implicated in rapid signalling events, including the 'classical' PR and its variants, progesterone receptor membrane component 1, and the novel family of membrane progestin receptors. Progesterone and its metabolites have also been implicated in the allosteric regulation of several unrelated receptors, such as gamma-aminobutyric acid type A, oxytocin and sigma(1) receptors. CONCLUSIONS Identification of the mechanisms and receptors that relay rapid progesterone signalling is an area of research fraught with difficulties and controversy. More in-depth characterization of the putative receptors is required before the non-genomic progesterone pathway in normal and pathological reproductive function can be targeted for pharmacological intervention.
Collapse
|
27
|
Renaudo A, L'Hoste S, Guizouarn H, Borgèse F, Soriani O. Cancer cell cycle modulated by a functional coupling between sigma-1 receptors and Cl- channels. J Biol Chem 2007; 282:2259-67. [PMID: 17121836 DOI: 10.1074/jbc.m607915200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sigma-1 receptor is an intracellular protein characterized as a tumor biomarker whose function remains mysterious. We demonstrate herein for the first time that highly selective sigma ligands inhibit volume-regulated chloride channels (VRCC) in small cell lung cancer and T-leukemia cells. Sigma ligands and VRCC blockers provoked a cell cycle arrest underlined by p27 accumulation. In stably sigma-1 receptor-transfected HEK cells, the proliferation rate was significantly lowered by sigma ligands when compared with control cells. Sigma ligands produced a strong inhibition of VRCC in HEK-transfected cells but not in control HEK. Surprisingly, the activation rate of VRCC was dramatically delayed in HEK-transfected cells in the absence of ligands, indicating that sigma-1 receptors per se modulate cell regulating volume processes in physiological conditions. Volume measurements in hypotonic conditions revealed indeed that the regulatory volume decrease was delayed in HEK-transfected cells and virtually abolished in the presence of igmesine in both HEK-transfected and T-leukemic cells. Moreover, HEK-transfected cells showed a significant resistance to staurosporine-induced apoptosis volume decrease, indicating that sigma-1 receptors protect cancer cells from apoptosis. Altogether, our results show for the first time that sigma-1 receptors modulate "cell destiny" through VRCC and cell volume regulation.
Collapse
Affiliation(s)
- Adrien Renaudo
- UNSA CNRS UMR 6548, Laboratoire de Physiologie Cellulaire & Moléculaire des Systèmes Intégrés, Université de Nice Sophia-Antipolis, 06108 Nice Cedex 2, France
| | | | | | | | | |
Collapse
|
28
|
Monnet FP, Maurice T. The Sigma1 Protein as a Target for the Non-genomic Effects of Neuro(active)steroids: Molecular, Physiological, and Behavioral Aspects. J Pharmacol Sci 2006; 100:93-118. [PMID: 16474209 DOI: 10.1254/jphs.cr0050032] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Steroids synthesized in the periphery or de novo in the brain, so called 'neurosteroids', exert both genomic and nongenomic actions on neurotransmission systems. Through rapid modulatory effects on neurotransmitter receptors, they influence inhibitory and excitatory neurotransmission. In particular, progesterone derivatives like 3alpha-hydroxy-5alpha-pregnan-20-one (allopregnanolone) are positive allosteric modulators of the gamma-aminobutyric acid type A (GABA(A)) receptor and therefore act as inhibitory steroids, while pregnenolone sulphate (PREGS) and dehydroepiandrosterone sulphate (DHEAS) are negative modulators of the GABA(A) receptor and positive modulators of the N-methyl-D-aspartate (NMDA) receptor, therefore acting as excitatory neurosteroids. Some steroids also interact with atypical proteins, the sigma (sigma) receptors. Recent studies particularly demonstrated that the sigma1 receptor contributes effectively to their pharmacological actions. The present article will review the data demonstrating that the sigma1 receptor binds neurosteroids in physiological conditions. The physiological relevance of this interaction will be analyzed and the impact on physiopathological outcomes in memory and drug addiction will be illustrated. We will particularly highlight, first, the importance of the sigma1-receptor activation by PREGS and DHEAS which may contribute to their modulatory effect on calcium homeostasis and, second, the importance of the steroid tonus in the pharmacological development of selective sigma1 drugs.
Collapse
Affiliation(s)
- François P Monnet
- Unité 705 de l'Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 7157 du Centre National de la Recherche Scientifique, Université de Paris V et VII, Hôpital Lariboisière-Fernand Widal, Paris, France
| | | |
Collapse
|
29
|
Bénard F, Turcotte É. Imaging in breast cancer: Single-photon computed tomography and positron-emission tomography. Breast Cancer Res 2005; 7:153-62. [PMID: 15987467 PMCID: PMC1175073 DOI: 10.1186/bcr1201] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although mammography remains a key imaging method for the early detection and screening of breast cancer, the overall accuracy of this test remains low. Several radiopharmaceuticals have been proposed as adjunct imaging methods to characterize breast masses by single-photon-emission computed tomography (SPECT) and positron-emission tomography (PET). Useful in characterizing indeterminate palpable masses and in the detection of axillary metastases, these techniques are insufficiently sensitive to detect subcentimetric tumor deposits. Their role in staging nodal involvement of the axillary areas therefore currently remains limited. Several enzymes and receptors have been targeted for imaging breast cancers with PET. [18F]Fluorodeoxyglucose is particularly useful in the detection and staging of recurrent breast cancer and in assessing the response to chemotherapy. Several other ligands targeting proliferative activity, protein synthesis, and hormone and cell-membrane receptors may complement this approach by providing unique information about biological characteristics of breast cancer across primary and metastatic tumor sites.
Collapse
Affiliation(s)
- François Bénard
- Metabolic and Functional Imaging Center, Clinical Research Center, Centre hospitalier universitaire de Sherbrooke, Fleurimont, QC, Canada
| | - Éric Turcotte
- Metabolic and Functional Imaging Center, Clinical Research Center, Centre hospitalier universitaire de Sherbrooke, Fleurimont, QC, Canada
| |
Collapse
|
30
|
Wang B, Rouzier R, Albarracin CT, Sahin A, Wagner P, Yang Y, Smith TL, Meric-Bernstam F, Marcelo Aldaz C, Marcelo AC, Hortobagyi GN, Pusztai L. Expression of sigma 1 receptor in human breast cancer. Breast Cancer Res Treat 2005; 87:205-14. [PMID: 15528963 DOI: 10.1007/s10549-004-6590-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The sigma 1 receptor (S1R) represents a unique drug-binding site that is distinct from any other receptors. We examined S1R expression in human breast cancer and assessed the activity of S1R ligands in breast cancer cell lines. One-hundred nine breast specimens from normal breast, benign breast disease and cancer were examined with immunohistochemistry or RT-PCR and six different cell lines were also evaluated. S1R mRNA overexpression was detected in 64% of breast cancers compared to normal breast tissue. Immunohistochemistry showed positive epithelial cell staining in 60% of invasive and 41% of in situ cancers, 75% of ductal hyperplasia and in 33% of normal breast. The pattern of expression was more diffuse in invasive breast carcinoma compared to other conditions (p = 0.02). S1R expression was neither a prognostic nor a predictive factor for efficacy of adjuvant chemotherapy but the study only included 58 cancer patients and therefore the statistical power is limited. MDA-MB-361, MDA-MB-435, BT20 and MCF7 cells all expressed S1R protein by Western blot. The non-specific S1R ligands haloperidol, reduced haloperidol and progesterone produced a dose-dependent inhibition of the growth at high (>10 microM) concentrations. Reduced haloperidol also showed additive cytotoxic effects when combined with doxorubicin, vinorelbine , paclitaxel and docetaxel in vitro. The S1R-specific ligand, SKF 10047 demonstrated the least growth inhibitory activity and showed no interaction with chemotherapy. These results demonstrate that some normal and most neoplastic breast epithelial cells and cell lines commonly express S1R. High concentrations of haloperidol inhibit the growth of these cells and potentiate the effect of chemotherapy in vitro.
Collapse
Affiliation(s)
- B Wang
- Department of Breast Medical Oncology, The University of Texas MD, Anderson Cancer Center, TX 77030-4009, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Han Z, Slack RS, Li W, Papadopoulos V. Expression of peripheral benzodiazepine receptor (PBR) in human tumors: relationship to breast, colorectal, and prostate tumor progression. J Recept Signal Transduct Res 2004; 23:225-38. [PMID: 14626449 DOI: 10.1081/rrs-120025210] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
High levels of peripheral-type benzodiazepine receptor (PBR), the alternative-binding site for diazepam, are part of the aggressive human breast cancer cell phenotype in vitro. We examined PBR levels and distribution in normal tissue and tumors from multiple cancer types by immunohistochemistry. Among normal breast tissues, fibroadenomas, primary and metastatic adenocarcinomas, there is a progressive increase in PBR levels parallel to the invasive and metastatic ability of the tumor (p < 0.0001). In colorectal and prostate carcinomas, PBR levels were also higher in tumor than in the corresponding non-tumoral tissues and benign lesions (p < 0.0001). In contrast, PBR was highly concentrated in normal adrenal cortical cells and hepatocytes, whereas in adrenocortical tumors and hepatomas PBR levels were decreased. Moreover, malignant skin tumors showed decreased PBR expression compared with normal skin. These results indicate that elevated PBR expression is not a common feature of aggressive tumors, but rather may be limited to certain cancers, such as those of breast, colon-rectum and prostate tissues, where elevated PBR expression is associated with tumor progression. Thus, we propose that PBR overexpression could serve as a novel prognostic indicator of an aggressive phenotype in breast, colorectal and prostate cancers.
Collapse
Affiliation(s)
- Zeqiu Han
- Division of Hormone Research, Department of Cell Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, USA
| | | | | | | |
Collapse
|
32
|
Gilmore DL, Liu Y, Matsumoto RR. Review of the pharmacological and clinical profile of rimcazole. CNS DRUG REVIEWS 2004; 10:1-22. [PMID: 14978511 PMCID: PMC6741722 DOI: 10.1111/j.1527-3458.2004.tb00001.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rimcazole is a carbazole derivative that acts in part as a sigma receptor antagonist. Wellcome Research Laboratories introduced this compound during the 1980s when it was hypothesized to be a novel antipsychotic with an improved side effect profile. However, subsequent clinical trials demonstrated that rimcazole lacked efficacy in schizophrenic patients and it is now primarily used as an experimental tool. In addition to its actions as a sigma receptor antagonist, rimcazole also has high affinity for dopamine transporters, and in recent years it has served as a lead compound for the development of novel dopamine transporter ligands. Although rimcazole cannot be considered a selective ligand for sigma receptors, the recent development of other selective agonists and antagonists for sigma receptors have aided in clarifying the involvement of these receptors in the actions of rimcazole. Many of the physiological and behavioral effects of rimcazole can in fact be ascribed to its action as a sigma receptor antagonist, although there are exceptions. Rimcazole is likely to have a continued role in elucidating sigma receptor function in either in vitro or in vivo systems where sigma receptor-mediated effects can be studied independently of the influence of dopamine and serotonin transporters.
Collapse
Affiliation(s)
- Deborah L. Gilmore
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yun Liu
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Rae R. Matsumoto
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
33
|
Hansel DE, Rahman A, Hidalgo M, Thuluvath PJ, Lillemoe KD, Schulick R, Ku JL, Park JG, Miyazaki K, Ashfaq R, Wistuba II, Varma R, Hawthorne L, Geradts J, Argani P, Maitra A. Identification of novel cellular targets in biliary tract cancers using global gene expression technology. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:217-29. [PMID: 12819026 PMCID: PMC1868162 DOI: 10.1016/s0002-9440(10)63645-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Biliary tract carcinoma carries a poor prognosis, and difficulties with clinical management in patients with advanced disease are often due to frequent late-stage diagnosis, lack of serum markers, and limited information regarding biliary tumor pathogenesis. RNA-based global analyses of gene expression have led to the identification of a large number of up-regulated genes in several cancer types. We have used the recently developed Affymetrix U133A gene expression microarrays containing nearly 22,000 unique transcripts to obtain global gene expression profiles from normal biliary epithelial scrapings (n = 5), surgically resected biliary carcinomas (n = 11), and biliary cancer cell lines (n = 9). Microarray hybridization data were normalized using dCHIP (http://www.dCHIP.org) to identify differentially up-regulated genes in primary biliary cancers and biliary cancer cell lines and their expression profiles was compared to that of normal epithelial scrapings using the dCHIP software as well as Significance Analysis of Microarrays or SAM (http://www-stat.stanford.edu/ approximately tibs/SAM/). Comparison of the dCHIP and SAM datasets revealed an overlapping list of 282 genes expressed at greater than threefold levels in the cancers compared to normal epithelium (t-test P <0.1 in dCHIP, and median false discovery rate <10 in SAM). Several pathways integral to tumorigenesis were up-regulated in the biliary cancers, including proliferation and cell cycle antigens (eg, cyclins D2 and E2, cdc2/p34, and geminin), transcription factors (eg, homeobox B7 and islet-1), growth factors and growth factor receptors (eg, hepatocyte growth factor, amphiregulin, and insulin-like growth factor 1 receptor), and enzymes modulating sensitivity to chemotherapeutic agents (eg, cystathionine beta synthase, dCMP deaminase, and CTP synthase). In addition, we identified several "pathway" genes that are rapidly emerging as novel therapeutic targets in cancer (eg, cytosolic phospholipase A2, an upstream target of the cyclooxygenase pathway, and ribosomal protein S6 kinase and eukaryotic translation initiation factor 4E, two important downstream mediators of the mitogenic Akt/mTOR signaling pathway). Overexpression of selected up-regulated genes was confirmed in tissue microarrays of biliary cancers by immunohistochemical analysis (n = 4) or in situ hybridization (n = 1), and in biliary cancer cell lines by reverse transcriptase PCR (n = 2). The majority of genes identified in the present study has not been previously reported in biliary cancers, and represent novel potential screening and therapeutic targets of this cancer type.
Collapse
Affiliation(s)
- Donna E Hansel
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21212, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|