1
|
Mangione W, Falls Z, Samudrala R. Effective holistic characterization of small molecule effects using heterogeneous biological networks. Front Pharmacol 2023; 14:1113007. [PMID: 37180722 PMCID: PMC10169664 DOI: 10.3389/fphar.2023.1113007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
The two most common reasons for attrition in therapeutic clinical trials are efficacy and safety. We integrated heterogeneous data to create a human interactome network to comprehensively describe drug behavior in biological systems, with the goal of accurate therapeutic candidate generation. The Computational Analysis of Novel Drug Opportunities (CANDO) platform for shotgun multiscale therapeutic discovery, repurposing, and design was enhanced by integrating drug side effects, protein pathways, protein-protein interactions, protein-disease associations, and the Gene Ontology, and complemented with its existing drug/compound, protein, and indication libraries. These integrated networks were reduced to a "multiscale interactomic signature" for each compound that describe its functional behavior as vectors of real values. These signatures are then used for relating compounds to each other with the hypothesis that similar signatures yield similar behavior. Our results indicated that there is significant biological information captured within our networks (particularly via side effects) which enhance the performance of our platform, as evaluated by performing all-against-all leave-one-out drug-indication association benchmarking as well as generating novel drug candidates for colon cancer and migraine disorders corroborated via literature search. Further, drug impacts on pathways derived from computed compound-protein interaction scores served as the features for a random forest machine learning model trained to predict drug-indication associations, with applications to mental disorders and cancer metastasis highlighted. This interactomic pipeline highlights the ability of Computational Analysis of Novel Drug Opportunities to accurately relate drugs in a multitarget and multiscale context, particularly for generating putative drug candidates using the information gleaned from indirect data such as side effect profiles and protein pathway information.
Collapse
Affiliation(s)
| | | | - Ram Samudrala
- Jacobs School of Medicine and Biomedical Sciences, Department of Biomedical Informatics, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
2
|
Banik A, Ahmed SR, Sajib EH, Deb A, Sinha S, Azim KF. Identification of potential inhibitory analogs of metastasis tumor antigens (MTAs) using bioactive compounds: revealing therapeutic option to prevent malignancy. Mol Divers 2022; 26:2473-2502. [PMID: 34743299 DOI: 10.1007/s11030-021-10345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/24/2021] [Indexed: 12/31/2022]
Abstract
The deeper understanding of metastasis phenomenon and detection of drug targets could be a potential approach to minimize cancer mortality. In this study, attempts were taken to unmask novel therapeutics to prevent metastasis and cancer progression. Initially, we explored the physiochemical, structural and functional insights of three metastasis tumor antigens (MTAs) and evaluated some plant-based bioactive compounds as potent MTA inhibitors. From 50 plant metabolites screened, isoflavone, gingerol, citronellal and asiatic acid showed maximum binding affinity with all three MTA proteins. The ADME analysis detected no undesirable toxicity that could reduce the drug likeness properties of top plant metabolites. Moreover, molecular dynamics studies revealed that the complexes were stable and showed minimum fluctuation at molecular level. We further performed ligand-based virtual screening to identify similar drug molecules using a large collection of 376,342 compounds from DrugBank. The results suggested that several structural analogs (e.g., tramadol, nabumetone, DGLA and hydrocortisone) may act as agonist to block the MTA proteins and inhibit cancer progression at early stage. The study could be useful to develop effective medications against cancer metastasis in future. Due to encouraging results, we highly recommend further in vitro and in vivo trials for the experimental validation of the findings.
Collapse
Affiliation(s)
- Anik Banik
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Sheikh Rashel Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Emran Hossain Sajib
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Anamika Deb
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shiuly Sinha
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Kazi Faizul Azim
- Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
- Faculté de Pharmacie, Université de Tours, 37200, Tours, France.
| |
Collapse
|
3
|
Dileep KV, Remya C, Tintu I, Mandal PK, Karthe P, Haridas M, Sadasivan C. Crystal structure of phospholipase A 2 in complex with 1-naphthaleneacetic acid. IUBMB Life 2018; 70:995-1001. [PMID: 30120882 DOI: 10.1002/iub.1924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/12/2018] [Accepted: 06/04/2018] [Indexed: 11/06/2022]
Abstract
Phospholipase A2 (PLA2 ) is one of the rate limiting enzymes involved in the production of arachidonic acid, a potent inflammatory mediator. PLA2 is widely distributed all over the animal kingdom. It is also seen in inflammatory exudation and venoms of different organisms. The studies demonstrated that PLA2 inhibitors have broad spectrum activities that they can either be used against inflammation or envenomation. In this study, the inhibitory activity of 1-napthaleneacetic acid (NAA) against porcine pancreatic PLA2 has been explained through isothermal titration calorimetry and enzyme kinetics studies. The atomic level of interactions of NAA with PLA2 was also studied using X-ray crystallography. Apart from these findings, the theoretical binding affinities and mode of interactions of two naphthalene-based NSAIDs such as naproxen (NAP) and nabumetone (NAB) were studied through molecular modeling. The studies proved that the selected ligands are binding at the doorway of the active site cleft and hindering the substrate entry to the active site. The study brings out a potential scaffold for the designing of broad spectrum PLA2 inhibitors which can be used for inflammation or envenomation. © 2018 IUBMB Life, 70(10):995-1001, 2018.
Collapse
Affiliation(s)
- Kalarickal V Dileep
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, India
| | - Chandran Remya
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, India
| | - Ignatius Tintu
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, India
| | - Pradeep K Mandal
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | - Ponnuraj Karthe
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | - Madathilkovilakathu Haridas
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, India.,Inter University Centre for Bioscience, Kannur University, Kannur, Kerala, India
| | - Chittalakkottu Sadasivan
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, India.,Inter University Centre for Bioscience, Kannur University, Kannur, Kerala, India
| |
Collapse
|
4
|
Hussain A, Harish G, Prabhu SA, Mohsin J, Khan MA, Rizvi TA, Sharma C. Inhibitory effect of genistein on the invasive potential of human cervical cancer cells via modulation of matrix metalloproteinase-9 and tissue inhibitors of matrix metalloproteinase-1 expression. Cancer Epidemiol 2012; 36:e387-93. [PMID: 22884883 DOI: 10.1016/j.canep.2012.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/14/2012] [Accepted: 07/10/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND One of the most challenging stumbling blocks for the treatment of cancer is the ability of cancer cells to break the natural barriers and spread from its site of origin to non-adjacent regional and distant sites, accounting for high cancer mortality rates. Gamut experimental and epidemiological data advocate the use of pharmacological or nutritional interventions to inhibit or delay various stage(s) of cancer such as invasion and metastasis. Genistein, a promising chemopreventive agent, has gained considerable attention for its powerful anti-carcinogenic, anti-angiogenic and chemosensitizing activities. METHODS In this study, the cytotoxic potential of genistein on HeLa cells by cell viability assay and the mode of cell death induced by genistein were determined by nuclear morphological examination, DNA laddering assay and cell cycle analysis. Moreover, to establish its inhibitory effect on migration of HeLa cells, scratch wound assay was performed and these results were correlated with the expression of genes involved in invasion and migration (MMP-9 and TIMP-1) by RT-PCR. RESULTS The exposure of HeLa cells to genistein resulted in significant dose- and time-dependent growth inhibition, which was found to be mediated by apoptosis and cell cycle arrest at G(2)/M phase. In addition, it induced migration-inhibition in a time-dependent manner by modulating the expression of MMP-9 and TIMP-1. CONCLUSION Our results signify that genistein may be an effective anti-neoplastic agent to prevent cancer cell growth and invasion and metastasis. Therefore therapeutic strategies utilizing genistein could be developed to substantially reduce cancer morbidity and mortality.
Collapse
Affiliation(s)
- Arif Hussain
- Department of Biotechnology, Manipal University, PO Box 345050, Dubai, United Arab Emirates
| | | | | | | | | | | | | |
Collapse
|
5
|
Vural F, Ozcan MA, Ozsan GH, Ateş H, Demirkan F, Pişkin O, Undar B. Cyclo-oxygenase 2 inhibitor, nabumetone, inhibits proliferation in chronic myeloid leukemia cell lines. Leuk Lymphoma 2009; 46:753-6. [PMID: 16019514 DOI: 10.1080/10428190400027860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The anti-tumor effect of cyclo-oxygenase (COX) inhibitors has been documented in several studies. COX2 inhibitors have attracted more attention because of the fewer side-effects and the more prominent anti-tumor effects. However, experience with these drugs in hematological malignancies is limited. In our study, a potent COX2 inhibitor, nabumetone (NBT), was investigated for its anti-proliferative and apoptotic effects in K-562 and Meg-01 chronic myeloid leukemia blastic cell lines as a single agent or in combination with adriamycin (ADR) and interferon alpha (IFN-a). In these cell lines, a dose-dependent inhibition of proliferation was observed with NBT. We observed no significant apoptotic effect of NBT. However, NBT potentiated the apoptotic effect of ADR in the K-562 cell line. Bcl-2 expression was reduced by NBT (11% vs. 2%). The combination of NBT with IFN did not have any significant effect on the K-562 cell line. We suggest that NBT inhibits proliferation and potentiates the apoptotic effect of ADR in chronic myeloid leukemia cell lines.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Butanones/pharmacology
- Cell Line, Tumor
- Cyclooxygenase Inhibitors/pharmacology
- Doxorubicin/administration & dosage
- Drug Screening Assays, Antitumor
- Flow Cytometry
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Nabumetone
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
Collapse
Affiliation(s)
- Filiz Vural
- Department of Internal Medicine, Division of Hematology-Oncology, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | | | | | | | | | | | | |
Collapse
|
6
|
Roy HK, Kunte DP, Koetsier JL, Hart J, Kim YL, Liu Y, Bissonnette M, Goldberg M, Backman V, Wali RK. Chemoprevention of colon carcinogenesis by polyethylene glycol: suppression of epithelial proliferation via modulation of SNAIL/beta-catenin signaling. Mol Cancer Ther 2006; 5:2060-9. [PMID: 16928827 DOI: 10.1158/1535-7163.mct-06-0054] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polyethylene glycol (PEG) is one of the most potent chemopreventive agents against colorectal cancer; however, the mechanisms remain largely unexplored. In this study, we assessed the ability of PEG to target cyclin D1-beta-catenin-mediated hyperproliferation in the azoxymethane-treated rat model and the human colorectal cancer cell line, HT-29. Azoxymethane-treated rats were randomized to AIN-76A diet alone or supplemented with 5% PEG-8000. After 30 weeks, animals were euthanized and biopsies of aberrant crypt foci and uninvolved crypts were subjected to immunohistochemical and immunoblot analyses. PEG markedly suppressed both early and late markers of azoxymethane-induced colon carcinogenesis (fractal dimension by 80%, aberrant crypt foci by 64%, and tumors by 74%). In both azoxymethane-treated rats and HT-29 cells treated with 5% PEG-3350 for 24 hours, PEG decreased proliferation (45% and 52%, respectively) and cyclin D1 (78% and 56%, respectively). Because beta-catenin is the major regulator of cyclin D1 in colorectal cancer, we used the T-cell factor (Tcf)-TOPFLASH reporter assay to show that PEG markedly inhibited beta-catenin transcriptional activity. PEG did not alter total beta-catenin expression but rather its nuclear localization, leading us to assess E-cadherin expression (a major determinant of beta-catenin subcellular localization), which was increased by 73% and 71% in the azoxymethane-rat and HT-29 cells, respectively. We therefore investigated the effect of PEG treatment on levels of the negative regulator of E-cadherin, SNAIL, and observed a 50% and 75% decrease, respectively. In conclusion, we show, for the first time, a molecular mechanism through which PEG imparts its antiproliferative and hence profound chemopreventive effect.
Collapse
Affiliation(s)
- Hemant K Roy
- Department of Internal Medicine, Evanston Northwestern Healthcare, 2650 Ridge Avenue, IL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
N/A, 王 东, 谢 家. N/A. Shijie Huaren Xiaohua Zazhi 2006; 14:2473-2479. [DOI: 10.11569/wcjd.v14.i25.2473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
8
|
Fujimura T, Ohta T, Oyama K, Miyashita T, Miwa K. Role of cyclooxygenase-2 in the carcinogenesis of gastrointestinal tract cancers: A review and report of personal experience. World J Gastroenterol 2006; 12:1336-45. [PMID: 16552798 PMCID: PMC4124307 DOI: 10.3748/wjg.v12.i9.1336] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Selective cyclooxygenase (COX)-2 inhibitors (coxibs) were developed as one of the anti-inflammatory drugs to avoid the various side effects of non-steroidal anti-inflammatory drugs (NSAIDs). However, coxibs also have an ability to inhibit tumor development of various kinds the same way that NSAIDs do. Many experimental studies using cell lines and animal models demonstrated an ability to prevent tumor proliferation of COX-2 inhibitors. After performing a randomized study for polyp chemoprevention study in patients with familial adenomatous polyposis (FAP), which showed that the treatment with celecoxib, one of the coxibs, significantly reduced the number of colorectal polyps in 2000, the U.S. Food and Drug Administration (FDA) immediately approved the clinical use of celecoxib for FAP patients. However, some coxibs were recently reported to increase the risk of serious cardiovascular events including heart attack and stroke. In this article we review a role of COX-2 in carcinogenesis of gastrointestinal tract, such as the esophagus, stomach and colorectum, and also analyze the prospect of coxibs for chemoprevention of gastrointestinal tract tumors.
Collapse
Affiliation(s)
- Takashi Fujimura
- Gastroenterologic Surgery, Department of Oncology, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | | | | | | | | |
Collapse
|
9
|
Roy HK, Kim YL, Wali RK, Liu Y, Koetsier J, Kunte DP, Goldberg MJ, Backman V. Spectral markers in preneoplastic intestinal mucosa: an accurate predictor of tumor risk in the MIN mouse. Cancer Epidemiol Biomarkers Prev 2005; 14:1639-45. [PMID: 16030095 DOI: 10.1158/1055-9965.epi-04-0837] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND We have reported recently that microarchitectural analysis of the histologically normal mucosa using a novel optics technology, four-dimensional elastic light scattering fingerprinting (ELF), provided unprecedented sensitivity for early detection of colon carcinogenesis. In the present study, we explored the ability of four-dimensional ELF to identify an inherited predisposition to colorectal cancer, an issue of considerable importance for optimizing population screening strategies. METHODS We used the MIN mouse, a model whose germ line adenomatous polyposis coli truncation leads to spontaneous intestinal tumorigenesis, thus replicating the human syndrome, familial adenomatous polyposis. Spectral markers were assessed by four-dimensional ELF analysis in MIN mice at preneoplastic time points and compared with age-matched controls (C57BL6 mice with wild-type adenomatous polyposis coli). To assess the responsiveness of spectral markers to chemopreventive agents, a subset of MIN mice was supplemented with celecoxib 1,500 ppm. RESULTS Spectral slope, fractal dimension, and principal component 3 were dramatically altered in the uninvolved MIN mouse mucosa at the earliest time points. Furthermore, alteration in spectral variables increased over time, consonant with the microarchitectural underpinnings of subsequent tumorigenesis. Additionally, these markers spatially correlated with future adenoma development (small intestine > colon). Short-term treatment with the potent chemopreventive agent, celecoxib, resulted in near normalization of fractal dimension and principal component 3. CONCLUSIONS We report, for the first time, that spectral markers, assayed by four-dimensional ELF, were able to sensitively identify a genetic predisposition for intestinal tumorigenesis before the occurrence of phenotypic manifestations. Moreover, the reversal of spectral markers by celecoxib treatment supports the neoplastic relevance.
Collapse
Affiliation(s)
- Hemant K Roy
- Feinberg School of Medicine at Northwestern University, Department of Internal Medicine, Evanston Northwestern Healthcare, 2650 Ridge Avenue, Evanston, IL 60201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kundu JK, Choi KY, Surh YJ. beta-Catenin-mediated signaling: a novel molecular target for chemoprevention with anti-inflammatory substances. Biochim Biophys Acta Rev Cancer 2005; 1765:14-24. [PMID: 16226380 DOI: 10.1016/j.bbcan.2005.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2004] [Revised: 08/16/2005] [Accepted: 08/23/2005] [Indexed: 01/12/2023]
Abstract
Inflammation is thought to play a role in the pathophysiology of cancer. Accumulating evidence from clinical and laboratory-based studies suggests that substances with anti-inflammatory activities are potential candidates for chemoprevention. Recent advances in cellular and molecular biology of cancer shed light on components of intracellular signaling cascades that can be potential molecular targets of chemoprevention with various anti-inflammatory substances. Although cyclooxygenase-2, a primary enzyme that mediates inflammatory responses, has been well recognized as a molecular target for chemoprevention by both synthetic and natural anti-inflammatory agents, the cellular signaling mechanisms that associate inflammation and cancer are not still clearly illustrated. Recent studies suggest that beta-catenin-mediated signaling, which regulates developmental processes, may act as a potential link between inflammation and cancer. This review aims to focus on beta-catenin-mediated signaling pathways, particularly in relation to its contribution to carcinogenesis, and the modulation of inappropriately activated beta-catenin-mediated signaling by nonsteroidal anti-inflammatory drugs and chemopreventive phytochemicals possessing anti-inflammatory properties.
Collapse
Affiliation(s)
- Joydeb Kumar Kundu
- National Research Laboratory of Molecular Carcinogenesis and Chemoprevention, College of Pharmacy, Seoul National University, Shinlim-dong, Kwanak-ku, Seoul 151-742, South Korea
| | | | | |
Collapse
|
11
|
Wali RK, Roy HK, Kim YL, Liu Y, Koetsier JL, Kunte DP, Goldberg MJ, Turzhitsky V, Backman V. Increased microvascular blood content is an early event in colon carcinogenesis. Gut 2005; 54:654-60. [PMID: 15831911 PMCID: PMC1262671 DOI: 10.1136/gut.2004.056010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Increased premalignant epithelial microvascular blood content is a common theme in neoplastic transformation; however, demonstration of this phenomenon in colon carcinogenesis has been stymied by methodological limitations. Our group has recently developed a novel optics technology, four dimensional elastic light scattering fingerprinting (4D-ELF), which allows examination of the colonic mucosal architecture with unprecedented accuracy. In this study, we utilised 4D-ELF to probe the preneoplastic colonic microvasculature. METHODS Colonic mucosal blood content was assessed by 4D-ELF at serial preneoplastic time points from azoxymethane (AOM) treated Fisher 344 rats and age matched control animals. We also examined the pretumorigenic intestinal mucosa of the MIN mouse, and compared with wild-type mice. Finally, in a pilot study, we examined superficial blood content from the endoscopically normal mid transverse colon in 37 patients undergoing screening colonoscopy. RESULTS In the AOM treated rat model, augmentation of superficial mucosal and total mucosal/superficial submucosal blood supply preceded the appearance of aberrant crypt foci (ACF) and temporally and spatially correlated with future ACF occurrence. These findings were replicated in MIN mice. The 4D-ELF based results were corroborated with immunoblot analysis for haemoglobin on mucosal scrapings from AOM treated rats. Moreover, 4D-ELF analysis of normal human colonic mucosa indicated that there was a threefold increase in superficial blood in patients who harboured advanced adenomas. CONCLUSION We report, for the first time, that blood content is increased in the colonic microvasculature at the earliest stages of colon carcinogenesis. These findings may provide novel insights into early biological events in colorectal carcinogenesis and have potential applicability for screening.
Collapse
Affiliation(s)
- R K Wali
- Department of Internal Medicine, Evanston-Northwestern Healthcare, Evanston, IL 60201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Roy HK, Karolski WJ, Wali RK, Ratashak A, Hart J, Smyrk TC. The nonsteroidal anti-inflammatory drug, nabumetone, differentially inhibits beta-catenin signaling in the MIN mouse and azoxymethane-treated rat models of colon carcinogenesis. Cancer Lett 2005; 217:161-9. [PMID: 15617833 DOI: 10.1016/j.canlet.2004.07.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 07/09/2004] [Accepted: 07/15/2004] [Indexed: 12/16/2022]
Abstract
The mechanisms through which beta-catenin signaling is inhibited during colorectal cancer chemoprevention by nonsteroidal anti-inflammatory agents is incompletely understood. We report that nabumetone decreased uninvolved intestinal mucosal beta-catenin levels in the MIN mouse with a concomitant increase in glycogen synthase kinase (GSK)-3beta levels, an enzyme that targets beta-catenin for destruction. However, in the azoxymethane-treated rat, where beta-catenin is frequently rendered GSK-3beta-insensitive, nabumetone failed to alter beta-catenin levels but did decrease beta-catenin nuclear localization and transcriptional activity as gauged by cyclin D1. In conclusion, we demonstrate that the differential mechanisms for beta-catenin suppression may be determined, at least partly, by GSK-3beta.
Collapse
Affiliation(s)
- Hemant K Roy
- Department of Internal Medicine, Evanston-Northwestern Healthcare Research Institute, 1001 University Place, Evanston, IL 60201, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Roy HK, Gulizia J, DiBaise JK, Karolski WJ, Ansari S, Madugula M, Hart J, Bissonnette M, Wali RK. Polyethylene glycol inhibits intestinal neoplasia and induces epithelial apoptosis in Apc(min) mice. Cancer Lett 2004; 215:35-42. [PMID: 15374630 DOI: 10.1016/j.canlet.2004.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 04/27/2004] [Accepted: 05/13/2004] [Indexed: 01/28/2023]
Abstract
Efficacy of a safe and clinically utilized polyethylene glycol formulation (PEG-3350) to suppress intestinal tumors was investigated in the Apc(min) mouse-model of experimental carcinogenesis. Furthermore, based on our previous finding on the induction of apoptosis in HT-29 cells by PEG, we evaluated its ability to stimulate epithelial cell apoptosis in both Apc(min) mouse as well as AOM-treated rat as a potential molecular mechanism of chemoprevention. Twenty-two Apc(min) mice were randomized equally to PEG or vehicle (control) supplementation. Tumors were scored and uninvolved intestinal mucosal apoptosis was assayed using a modified terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) assay and by immunohistochemical detection of cleaved caspase-3. Supplementation of Apc(min) mice with 10% PEG 3350 (in drinking water) resulted in a 48% (P<0.05) reduction in intestinal tumor burden and induced 2-3 fold increase in mucosal apoptosis. Dietary supplementation of polyethylene glycol (5%) also stimulated colonic mucosal apoptosis 4-5 fold in AOM-treated rats, the regimen that we previously reported to reduce tumor burden by 76% (P<0.05). In summary, we demonstrate, for the first time, that PEG does protect against Apc(min) mouse tumorigenesis. The correlation between pro-apoptotic actions and chemopreventive efficacy of PEG in these models strongly implicates induction of apoptosis as one of the impending mechanisms of chemoprevention.
Collapse
Affiliation(s)
- Hemant K Roy
- Department of Medicine, Evanston-Northwestern Healthcare Research Institute, 1001 University Place, Evanston, IL 60201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hong MY, Chapkin RS, Davidson LA, Turner ND, Morris JS, Carroll RJ, Lupton JR. Fish oil enhances targeted apoptosis during colon tumor initiation in part by downregulating Bcl-2. Nutr Cancer 2004; 46:44-51. [PMID: 12925303 DOI: 10.1207/s15327914nc4601_06] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
We have shown that fish oil is protective against colon tumorigenesis, primarily by upregulating apoptosis. Production of prostaglandin E2 (PGE2) in colon cancer cells by cyclooxygenase (COX)-I and -II is known to inhibit apoptosis by induction of bcl-2. Because we have shown that fish oil downregulates PGE2 and COX-II, we hypothesized that this upregulation of apoptosis would be coincident with a downregulation of bcl-2. Bcl-2 was localized within the colonic crypt by quantitative immunohistochemistry (IHC), and scraped colonic mucosa was used for immunoblot analysis of bcl-2. The tissue used for bcl-2 analysis was from the rats used to determine apoptosis. Briefly, tissues were collected from rats consuming diets containing either corn oil or fish oil at 3, 6, 9, and 12 h after carcinogen injection. The correlation between bcl-2 and apoptosis was also determined. Bcl-2 expression decreased until 9 h (P < 0.05), whereas apoptosis increased until 9 h (P < 0.01). Bcl-2 expression and apoptosis were negatively correlated in both the proximal (P < 0.05) and distal colon (P < 0.005). Fish oil decreased bcl-2 expression (P < 0.05) and increased apoptosis (P < 0.05) in the top third of the crypt in the distal colon. In conclusion, one pathway by which fish oil may mediate apoptosis and thus protect against colon tumorigenesis is by downregulation of anti-apoptotic bcl-2.
Collapse
Affiliation(s)
- Mee Young Hong
- Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Tumlinson AR, Hariri LP, Utzinger U, Barton JK. Miniature endoscope for simultaneous optical coherence tomography and laser-induced fluorescence measurement. APPLIED OPTICS 2004; 43:113-21. [PMID: 14714651 DOI: 10.1364/ao.43.000113] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have designed a multimodality system that combines optical coherence tomography (OCT) and laser-induced fluorescence (LIF) in a 2.0-mm-diameter endoscopic package. OCT provides approximately 18-microm resolution cross-sectional structural information over a 6-mm field. LIF spectra are collected sequentially at submillimeter resolution across the same field and provide histochemical information about the tissue. We present the use of a rod prism to reduce the asymmetry in the OCT beam caused by a cylindrical window. The endoscope has been applied to investigate mouse colon cancer in vivo.
Collapse
Affiliation(s)
- Alexandre R Tumlinson
- University of Arizona, 1230 East Speedway Boulevard, Tucson, Arizona 85721-0104, USA
| | | | | | | |
Collapse
|