1
|
Dagnino-Acosta A, Guerrero-Hernandez A. PKC Inhibits Sec61 Translocon-Mediated Sarcoplasmic Reticulum Ca2+ Leak in Smooth Muscle Cells. Front Physiol 2022; 13:925023. [PMID: 35837019 PMCID: PMC9275787 DOI: 10.3389/fphys.2022.925023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/03/2022] [Indexed: 01/13/2023] Open
Abstract
PKC inhibitors stimulate Ca2+ release from internal stores in diverse cell types. Our data indicate that this action cannot be explained by an increased agonist-induced IP3 production or an overloaded SR Ca2+ pool in smooth muscle cells from guinea pig urinary bladder. The incubation of these cells with three different PKC inhibitors, such as Go6976, Go6983, and BIM 1, resulted in a higher SR Ca2+ leak revealed by inhibition of the SERCA pump with thapsigargin. This SR Ca2+ leakage was sensitive to protein translocation inhibitors such as emetine and anisomycin. Since this increased SR Ca2+ leak did not result in a depleted SR Ca2+ store, we have inferred there was a compensatory increase in SERCA pump activity, resulting in a higher steady-state. This new steady-state increased the frequency of Spontaneous Transient Outward Currents (STOCs), which reflect the activation of high conductance, Ca2+-sensitive potassium channels in response to RyR-mediated Ca2+ sparks. This increased STOC frequency triggered by PKC inhibition was restored to normal by inhibiting translocon-mediated Ca2+ leak with emetine. These results suggest a critical role of PKC-mediated translocon phosphorylation in regulating SR Ca2+ steady-state, which, in turn, alters SR Ca2+ releasing activity.
Collapse
Affiliation(s)
- Adan Dagnino-Acosta
- Centro Universitario de Investigaciones Biomédicas, CONACYT-Universidad de Colima, Colima, Mexico
| | - Agustín Guerrero-Hernandez
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
- *Correspondence: Agustín Guerrero-Hernandez,
| |
Collapse
|
2
|
Sarco-Endoplasmic Reticulum Calcium Release Model Based on Changes in the Luminal Calcium Content. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:337-370. [DOI: 10.1007/978-3-030-12457-1_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Angebault C, Fauconnier J, Patergnani S, Rieusset J, Danese A, Affortit CA, Jagodzinska J, Mégy C, Quiles M, Cazevieille C, Korchagina J, Bonnet-Wersinger D, Milea D, Hamel C, Pinton P, Thiry M, Lacampagne A, Delprat B, Delettre C. ER-mitochondria cross-talk is regulated by the Ca 2+ sensor NCS1 and is impaired in Wolfram syndrome. Sci Signal 2018; 11:11/553/eaaq1380. [PMID: 30352948 DOI: 10.1126/scisignal.aaq1380] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Communication between the endoplasmic reticulum (ER) and mitochondria plays a pivotal role in Ca2+ signaling, energy metabolism, and cell survival. Dysfunction in this cross-talk leads to metabolic and neurodegenerative diseases. Wolfram syndrome is a fatal neurodegenerative disease caused by mutations in the ER-resident protein WFS1. Here, we showed that WFS1 formed a complex with neuronal calcium sensor 1 (NCS1) and inositol 1,4,5-trisphosphate receptor (IP3R) to promote Ca2+ transfer between the ER and mitochondria. In addition, we found that NCS1 abundance was reduced in WFS1-null patient fibroblasts, which showed reduced ER-mitochondria interactions and Ca2+ exchange. Moreover, in WFS1-deficient cells, NCS1 overexpression not only restored ER-mitochondria interactions and Ca2+ transfer but also rescued mitochondrial dysfunction. Our results describe a key role of NCS1 in ER-mitochondria cross-talk, uncover a pathogenic mechanism for Wolfram syndrome, and potentially reveal insights into the pathogenesis of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Claire Angebault
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France.,PhyMedExp, University of Montpellier, INSERM, CNRS, CHRU Montpellier, 34295 Montpellier, France
| | - Jérémy Fauconnier
- PhyMedExp, University of Montpellier, INSERM, CNRS, CHRU Montpellier, 34295 Montpellier, France
| | - Simone Patergnani
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy
| | - Jennifer Rieusset
- INSERM U1060, UMR INRA 1397, CarMeN Laboratory, Lyon 1 University, F-69003 Lyon, France
| | - Alberto Danese
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Corentin A Affortit
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Jolanta Jagodzinska
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Camille Mégy
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Mélanie Quiles
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Chantal Cazevieille
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Julia Korchagina
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Delphine Bonnet-Wersinger
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France
| | - Dan Milea
- Department of Ophthalmology, Angers University Hospital, 43933 Angers, France.,Singapore Eye Research Institute, Duke-NUS Graduate Medical School, 169857 Singapore, Singapore
| | - Christian Hamel
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France.,CHRU Montpellier, Centre of Reference for Genetic Sensory Diseases, CHU, Gui de Chauliac Hospital, 34090 Montpellier, France
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Marc Thiry
- Laboratoire de Biologie Cellulaire, Université de Liège, Bât. B36 (Tour 4) GIGA-Neurosciences, Quartier Hôpital, Avenue Hippocrate 15, 4000 Liège 1, Belgium
| | - Alain Lacampagne
- PhyMedExp, University of Montpellier, INSERM, CNRS, CHRU Montpellier, 34295 Montpellier, France
| | - Benjamin Delprat
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France. .,MMDN, Univ. Montpellier, EPHE, INSERM U1198, F-34095 Montpellier, France
| | - Cécile Delettre
- Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, 34090 Montpellier, France.
| |
Collapse
|
4
|
de Alba-Aguayo DR, Pavón N, Mercado-Morales M, Miranda-Saturnino M, López-Casamichana M, Guerrero-Hernández A, Rueda A. Increased calcium leak associated with reduced calsequestrin expression in hyperthyroid cardiomyocytes. Cell Calcium 2017; 62:29-40. [DOI: 10.1016/j.ceca.2017.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/21/2016] [Accepted: 01/20/2017] [Indexed: 11/28/2022]
|
5
|
Rivera-Ramírez N, Montejo-López W, López-Méndez MC, Guerrero-Hernández A, Molina-Hernández A, García-Hernández U, Arias-Montaño JA. Histamine H3 receptor activation stimulates calcium mobilization in a subpopulation of rat striatal neurons in primary culture, but not in synaptosomes. Neurochem Int 2016; 101:38-47. [DOI: 10.1016/j.neuint.2016.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/09/2016] [Accepted: 10/10/2016] [Indexed: 01/08/2023]
|
6
|
Rueda A, Fernández-Velasco M, Benitah JP, Gómez AM. Abnormal Ca2+ spark/STOC coupling in cerebral artery smooth muscle cells of obese type 2 diabetic mice. PLoS One 2013; 8:e53321. [PMID: 23301060 PMCID: PMC3536748 DOI: 10.1371/journal.pone.0053321] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 11/30/2012] [Indexed: 01/19/2023] Open
Abstract
Diabetes is a major risk factor for stroke. However, the molecular mechanisms involved in cerebral artery dysfunction found in the diabetic patients are not completely elucidated. In cerebral artery smooth muscle cells (CASMCs), spontaneous and local increases of intracellular Ca2+ due to the opening of ryanodine receptors (Ca2+ sparks) activate large conductance Ca2+-activated K+ (BK) channels that generate spontaneous transient outward currents (STOCs). STOCs have a key participation in the control of vascular myogenic tone and blood pressure. Our goal was to investigate whether alterations in Ca(2+) spark and STOC activities, measured by confocal microscopy and patch-clamp technique, respectively, occur in isolated CASMCs of an experimental model of type-2 diabetes (db/db mouse). We found that mean Ca(2+) spark amplitude, duration, size and rate-of-rise were significantly smaller in Fluo-3 loaded db/db compared to control CASMCs, with a subsequent decrease in the total amount of Ca(2+) released through Ca(2+) sparks in db/db CASMCs, though Ca(2+) spark frequency remained. Interestingly, the frequency of large-amplitude Ca(2+) sparks was also significantly reduced in db/db cells. In addition, the frequency and amplitude of STOCs were markedly reduced at all voltages tested (from -50 to 0 mV) in db/db CASMCs. The latter correlates with decreased BK channel β1/α subunit ratio found in db/db vascular tissues. Taken together, Ca(2+) spark alterations lead to inappropriate BK channels activation in CASMCs of db/db mice and this condition is aggravated by the decrease in the BK β1 subunit/α subunit ratio which underlies the significant reduction of Ca(2+) spark/STOC coupling in CASMCs of diabetic animals.
Collapse
Affiliation(s)
- Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del IPN, México City, México
- Inserm, U-637; Université de Montpellier 1, Université de Montpellier 2, Montpellier, France
- * E-mail: (AMG); (AR)
| | - María Fernández-Velasco
- Inserm, U-637; Université de Montpellier 1, Université de Montpellier 2, Montpellier, France
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Jean-Pierre Benitah
- Inserm, U769; Université de Paris-Sud, IFR141, Labex Lermit, Châtenay-Malabry, France
| | - Ana María Gómez
- Inserm, U769; Université de Paris-Sud, IFR141, Labex Lermit, Châtenay-Malabry, France
- * E-mail: (AMG); (AR)
| |
Collapse
|
7
|
Gómez-Viquez NL, Guerrero-Serna G, Arvizu F, García U, Guerrero-Hernández A. Inhibition of SERCA pumps induces desynchronized RyR activation in overloaded internal Ca2+ stores in smooth muscle cells. Am J Physiol Cell Physiol 2010; 298:C1038-46. [DOI: 10.1152/ajpcell.00222.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that rapid inhibition of sarcoplasmic reticulum (SR) ATPase (SERCA pumps) decreases the amplitude and rate of rise (synchronization) of caffeine induced-Ca2+ release without producing a reduction of free luminal SR Ca2+ level in smooth muscle cells (Gómez-Viquez L, Guerrero-Serna G, García U, Guerrero-Hernández A. Biophys J 85: 370–380, 2003). Our aim was to investigate the role of luminal SR Ca2+ content in the communication between ryanodine receptors (RyRs) and SERCA pumps. To this end, we studied the effect of SERCA pump inhibition on RyR-mediated Ca2+ release in smooth muscle cells with overloaded SR Ca2+ stores. Under this condition, the amplitude of RyR-mediated Ca2+ release was not affected but the rate of rise was still decreased. In addition, the caffeine-induced Ca2+-dependent K+ outward currents revealed individual events, suggesting that SERCA pump inhibition reduces the coordinated activation of RyRs. Collectively, our results indicate that SERCA pumps facilitate the activation of RyRs by a mechanism that does not involve the regulation of SR Ca2+ content. Importantly, SERCA pumps and RyRs colocalize in smooth muscle cells, suggesting a possible local communication between these two proteins.
Collapse
Affiliation(s)
| | | | | | - Ubaldo García
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados–Instituto Politécnico Nacional, Mexico City, Mexico
| | | |
Collapse
|
8
|
Dagnino-Acosta A, Guerrero-Hernández A. Variable luminal sarcoplasmic reticulum Ca2+ buffer capacity in smooth muscle cells. Cell Calcium 2009; 46:188-96. [DOI: 10.1016/j.ceca.2009.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 07/12/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
|
9
|
Hishinuma S, Saito M. Differential roles of ryanodine- and thapsigargin-sensitive intracellular CA2+ stores in excitation-contraction coupling in smooth muscle of guinea-pig taenia caeci. Clin Exp Pharmacol Physiol 2006; 33:1138-43. [PMID: 17184492 DOI: 10.1111/j.1440-1681.2006.04506.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. To explore roles of intracellular Ca(2+) stores in excitation-contraction coupling in smooth muscle, we examined the effects of ryanodine, a fixer of ryanodine receptor-Ca(2+) channels to an open state, and thapsigargin, a selective inhibitor of the Ca(2+) pump in the intracellular stores, on smooth muscle contraction in the presence and absence of extracellular Ca(2+) in guinea-pig taenia caeci. 2. In Ca(2+) -free solution, contractions induced by 0.1 mmol/L carbachol and 0.1 mmol/L histamine were reduced to approximately 65% of control by either 1 micro mol/L thapsigargin or 10 micro mol/L ryanodine. In contrast, caffeine-induced contraction was reduced to approximately 40% of control by ryanodine, but was not affected by thapsigargin. 3. In the presence of extracellular Ca(2+), thapsigargin slowly induced a large and sustained contraction. In contrast, ryanodine did not induce an apparent contraction, but increased the sensitivity of contractile responses to receptor agonists (carbachol, AHR-602 and histamine) or depolarizing high K(+) with no changes in the maximal contraction. 4. These results suggest that there are pharmacological and physiological differences between ryanodine- and thapsigargin-sensitive intracellular Ca(2+) stores in excitation-contraction coupling in smooth muscle, which may be responsible for their differential effects on the Ca(2+) -influx pathway.
Collapse
Affiliation(s)
- Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan.
| | | |
Collapse
|
10
|
Gómez-Viquez L, Rueda A, García U, Guerrero-Hernández A. Complex effects of ryanodine on the sarcoplasmic reticulum Ca2+ levels in smooth muscle cells. Cell Calcium 2005; 38:121-30. [PMID: 16055184 DOI: 10.1016/j.ceca.2005.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2002] [Revised: 05/19/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
We have studied the effects of ryanodine and inhibition of the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) with thapsigargin, on both [Ca(2+)](i) and the sarcoplasmic reticulum (SR) Ca(2+) level during caffeine-induced Ca(2+) release in single smooth muscle cells. Incubation with 10 microM ryanodine did not inhibit the first caffeine-induced [Ca(2+)](i) response, although it abolished the [Ca(2+)](i) response to a second application of caffeine. To assess whether ryanodine was inducing a permanent depletion of the internal Ca(2+) stores, we measured the SR Ca(2+) level with Mag-Fura-2. The magnitude of the caffeine-induced reduction in the SR Ca(2+) level was not augmented by incubating cells with 1 microM ryanodine. Moreover, on removal of caffeine, the SR Ca(2+) levels partially recovered in 61% of the cells due to the activity of thapsigargin-sensitive SERCA pumps. Unexpectedly, 10 microM ryanodine instead of inducing complete depletion of SR Ca(2+) stores markedly reduced the caffeine-induced SR Ca(2+) response. It was necessary to previously inhibit SERCA pumps with thapsigargin for ryanodine to be able to induce caffeine-triggered permanent depletion of SR Ca(2+) stores. These data suggest that the effect of ryanodine on smooth muscle SR Ca(2+) stores was markedly affected by the activity of SERCA pumps. Our data highlight the importance of directly measuring SR Ca(2+) levels to determine the effect of ryanodine on the internal Ca(2+) stores.
Collapse
|
11
|
Zarrindast MR, Fazli-Tabaei S, Khalilzadeh A, Farahmanfar M, Yahyavi SH. Cross state-dependent retrieval between histamine and lithium. Physiol Behav 2005; 86:154-63. [PMID: 16107272 DOI: 10.1016/j.physbeh.2005.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 06/29/2005] [Accepted: 07/06/2005] [Indexed: 10/25/2022]
Abstract
Histamine and lithium state-dependent (StD) retrieval of passive avoidance task and their interactions was examined in mice. The pre-training or pre-test intracerebroventricular (i.c.v.) injection of histamine (20 microg/mouse) impaired retrieval when it was tested 24 h later. In the animals, in which retrieval was impaired due to histamine pre-training administration, pre-test administration of histamine, with the same dose, restored retrieval. The H1 blocker, pyrilamine (20 microg/mouse, i.c.v.), but not the H(2) blocker; ranitidine prevented the restoration of retrieval by pre-test histamine. The pre-training (5 and 10 mg/kg) or pre-test (5 mg/kg) injection of lithium also impaired retrieval, when it was tested 24 h later. In the animals that received lithium (5 mg/kg) or histamine (20 microg/mouse) as pre-training treatment, administration of histamine, clobenpropit or lithium, respectively, resulted in restoration of memory retrieval. Neither pyrilamine nor ranitidine prevented the restoration of retrieval by pre-test lithium. In conclusion, histamine or lithium can induce state-dependent retrieval and a cross-StD exists between these drugs, which may be mediated through the inositol pathway.
Collapse
|
12
|
Andersson KE, Wein AJ. Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev 2004; 56:581-631. [PMID: 15602011 DOI: 10.1124/pr.56.4.4] [Citation(s) in RCA: 355] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The lower urinary tract constitutes a functional unit controlled by a complex interplay between the central and peripheral nervous systems and local regulatory factors. In the adult, micturition is controlled by a spinobulbospinal reflex, which is under suprapontine control. Several central nervous system transmitters can modulate voiding, as well as, potentially, drugs affecting voiding; for example, noradrenaline, GABA, or dopamine receptors and mechanisms may be therapeutically useful. Peripherally, lower urinary tract function is dependent on the concerted action of the smooth and striated muscles of the urinary bladder, urethra, and periurethral region. Various neurotransmitters, including acetylcholine, noradrenaline, adenosine triphosphate, nitric oxide, and neuropeptides, have been implicated in this neural regulation. Muscarinic receptors mediate normal bladder contraction as well as at least the main part of contraction in the overactive bladder. Disorders of micturition can roughly be classified as disturbances of storage or disturbances of emptying. Failure to store urine may lead to various forms of incontinence, the main forms of which are urge and stress incontinence. The etiology and pathophysiology of these disorders remain incompletely known, which is reflected in the fact that current drug treatment includes a relatively small number of more or less well-documented alternatives. Antimuscarinics are the main-stay of pharmacological treatment of the overactive bladder syndrome, which is characterized by urgency, frequency, and urge incontinence. Accepted drug treatments of stress incontinence are currently scarce, but new alternatives are emerging. New targets for control of micturition are being defined, but further research is needed to advance the pharmacological treatment of micturition disorders.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Department of Clinical Pharmacology, Lund University Hospital, S-221 85 Lund, Sweden.
| | | |
Collapse
|
13
|
Laporte R, Hui A, Laher I. Pharmacological modulation of sarcoplasmic reticulum function in smooth muscle. Pharmacol Rev 2004; 56:439-513. [PMID: 15602008 DOI: 10.1124/pr.56.4.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The sarco/endoplasmic reticulum (SR/ER) is the primary storage and release site of intracellular calcium (Ca2+) in many excitable cells. The SR is a tubular network, which in smooth muscle (SM) cells distributes close to cellular periphery (superficial SR) and in deeper aspects of the cell (deep SR). Recent attention has focused on the regulation of cell function by the superficial SR, which can act as a buffer and also as a regulator of membrane channels and transporters. Ca2+ is released from the SR via two types of ionic channels [ryanodine- and inositol 1,4,5-trisphosphate-gated], whereas accumulation from thecytoplasm occurs exclusively by an energy-dependent sarco-endoplasmic reticulum Ca2+-ATPase pump (SERCA). Within the SR, Ca2+ is bound to various storage proteins. Emerging evidence also suggests that the perinuclear portion of the SR may play an important role in nuclear transcription. In this review, we detail the pharmacology of agents that alter the functions of Ca2+ release channels and of SERCA. We describe their use and selectivity and indicate the concentrations used in investigating various SM preparations. Important aspects of cell regulation and excitation-contractile activity coupling in SM have been uncovered through the use of such activators and inhibitors of processes that determine SR function. Likewise, they were instrumental in the recent finding of an interaction of the SR with other cellular organelles such as mitochondria. Thus, an appreciation of the pharmacology and selectivity of agents that interfere with SR function in SM has greatly assisted in unveiling the multifaceted nature of the SR.
Collapse
Affiliation(s)
- Régent Laporte
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California, USA
| | | | | |
Collapse
|
14
|
Aguilar-Maldonado B, Gómez-Viquez L, García L, Del Angel RM, Arias-Montaño JA, Guerrero-Hernández A. Histamine potentiates IP(3)-mediated Ca(2+) release via thapsigargin-sensitive Ca(2+) pumps. Cell Signal 2003; 15:689-97. [PMID: 12742229 DOI: 10.1016/s0898-6568(03)00012-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have studied the histamine-induced potentiation of inositol 1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release in HeLa cells. Intracellular IP(3) levels were increased by IP(3) dialysis with the whole-cell configuration of the patch-clamp technique (cell dialysis of IP(3)). Low concentrations of extracellular histamine (1 microM) accelerated the rate of IP(3)-mediated Ca(2+) release, an effect that required the coincidence of both histamine signalling and the increase in IP(3) levels. Our data suggest that the potentiation effect of histamine cannot be explained simply by agonist-induced increase in IP(3) levels. Disordering microfilaments with cytochalasin D and microtubules with colchicine caused a decrease in the histamine-induced Ca(2+) response. Furthermore, both cytochalasin D and colchicine diminished the rate of IP(3)-mediated Ca(2+) release, while only the former reduced slightly the histamine-induced potentiation effect. Remarkably, rapid inhibition of SERCA pumps with thapsigargin to avoid the depletion of internal Ca(2+) stores diminished the histamine-induced potentiation of IP(3)-mediated Ca(2+) release, without affecting the rate of IP(3)-mediated Ca(2+) release. These data indicate that histamine-induced potentiation of Ca(2+) release in HeLa cells requires active SERCA pumps and suggest that SERCA pumps are an important factor in determining the efficiency of agonist-induced Ca(2+) release.
Collapse
|
15
|
Gómez-Viquez L, Guerrero-Serna G, García U, Guerrero-Hernández A. SERCA pump optimizes Ca2+ release by a mechanism independent of store filling in smooth muscle cells. Biophys J 2003; 85:370-80. [PMID: 12829491 PMCID: PMC1303092 DOI: 10.1016/s0006-3495(03)74481-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Thapsigargin-sensitive sarco/endoplasmic reticulum Ca(2+) pumps (SERCAs) are involved in maintaining and replenishing agonist-sensitive internal stores. Although it has been assumed that release channels act independently of SERCA pumps, there are data suggesting the opposite. Our aim was to study the relationship between SERCA pumps and the release channels in smooth muscle cells. To this end, we have rapidly blocked SERCA pumps with thapsigargin, to avoid depletion of the internal Ca(2+) stores, and induced Ca(2+) release with either caffeine, to open ryanodine receptors, or acetylcholine, to open inositol 1,4,5-trisphosphate receptors. Blocking SERCA pumps produced smaller and slower agonist-induced [Ca(2+)](i) responses. We determined the Ca(2+) level of the internal stores both indirectly, measuring the frequency of spontaneous transient outward currents, and directly, using Mag-Fura-2, and demonstrated that the inhibition of SERCA pumps did not produce a reduction of the sarco/endoplasmic reticulum Ca(2+) levels to explain the decrease in the agonist-induced Ca(2+) responses. It appears that SERCA pumps are involved in sustaining agonist-induced Ca(2+) release by a mechanism that involves the modulation of Ca(2+) availability in the lumen of the internal stores.
Collapse
|