1
|
Wang X, Chen X, Guan X, Li Z. The neutrophil-to-Lymphocyte ratio is associated with clinical symptoms in first-episode medication-naïve patients with schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:13. [PMID: 38310098 PMCID: PMC10851699 DOI: 10.1038/s41537-024-00437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
Innate immunity has been shown to be associated with schizophrenia (Sch). This study explored the relationship between symptoms and neutrophil-to-lymphocyte ratio (NLR) (a marker of innate immunity) in patients with Sch. Ninety-seven first-episode medication-naïve (FEMN) patients with Sch and 65 healthy controls were recruited in this study. We measured the complete blood count and assessed the clinical symptoms using the PANSS scales. We found higher NEU counts and NLR in patients with Sch compared with control subjects. Male patients showed a higher NEU count than female patients. In addition, FEMN patients with higher NLR and NEU values showed higher PANSS-p, PANSS-g, and PANSS-total scores (all p < 0.05). Regression analysis revealed that NLR was a predictor for PANSS total scores in patients with Sch. Higher NLR value was observed in patients with Sch and the significant associations between NLR and psychotic symptoms indicate that an imbalance in inflammation and innate immune system may be involved in the pathophysiology of Sch.
Collapse
Affiliation(s)
- Xuan Wang
- Hebei Province Veterans Hospital, Baoding, China
| | - Xiaofang Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Xiaoni Guan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Zezhi Li
- Department of Nutritional and Metabolic Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Song R, Liu L, Wei N, Li X, Liu J, Yuan J, Yan S, Sun X, Mei L, Liang Y, Li Y, Jin X, Wu Y, Pan R, Yi W, Song J, He Y, Tang C, Liu X, Cheng J, Su H. Short-term exposure to air pollution is an emerging but neglected risk factor for schizophrenia: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158823. [PMID: 36116638 DOI: 10.1016/j.scitotenv.2022.158823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE This meta-analysis aimed to explore the association between short-term exposure to air pollution and schizophrenia (SCZ)1, and investigate the susceptible population and the lag characteristics of different pollutants. METHODS A systematic review and meta-analysis was conducted by searching PubMed, Cochrane, Web of Sciences, and CNKI for relevant literature published up to 28 Feb 2022. Meta-analysis was performed separately to investigate the association of ambient particulates (diameter ≤ 2.5 μm (PM2.5)2, 2.5 μm < diameter < 10 μm (PMC)3, ≤10μm (PM10)4) and gaseous pollutants (nitrogen dioxide (NO2)5, sulfur dioxide (SO2)6, carbon monoxide (CO)7) with SCZ. Relative risk (RR)8 per 10 μg/m3 increase in air pollutants concentration was used as the effect estimate. Subgroup analyses were conducted by age, gender, country, median pollutant concentration, and median temperature. RESULTS We identified 17 articles mainly conducted in Asia, of which 13 were included in the meta-analysis. Increased risk of SCZ was associated with short-term exposure to PM2.5 (RR: 1.0050, 95 % confidence interval (CI)9: 1.0017, 1.0083), PMC (1.0117, 1.0023, 1.0211), PM10 (1.0047, 1.0025, 1.0070), NO2 (1.0275, 1.0132, 1.0420), and SO2 (1.0288, 1.0146, 1.0432) exposure. Subgroup analyses showed that females may be more susceptible to SO2 and NO2, and the young seem to be more sensitive to PM2.5 and PM10. Gaseous pollutants presented the immediate risk, and particulates showed the delayed risk. CONCLUSIONS The present meta-analysis suggests that short-term exposure to PM2.5, PMC, PM10, SO2, and NO2 exposure may be associated with an elevated risk of SCZ.
Collapse
Affiliation(s)
- Rong Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Li Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Ning Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Xuanxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jintao Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jiajun Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Shuangshuang Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Xiaoni Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Lu Mei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yunfeng Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yuxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Xiaoyu Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yudong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China.
| |
Collapse
|
3
|
Gupta L, Hoffman KW. Exploring the intersection of the microbiome and the developing brain: Impacts on schizophrenia risk. Schizophr Res 2022; 247:92-100. [PMID: 34483026 DOI: 10.1016/j.schres.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/21/2022]
Abstract
Recent findings show that the perinatal maternal and infant microbiomes have profound potential to impact long term health outcomes. Of particular interest are the ways in which the microbiome influences the developing brain during one of its most critical windows. Schizophrenia and psychosis risk are strongly connected to disruptions in perinatal neurodevelopment. In this review we present an overview of critical aspects in development of both the microbiome and brain, discuss their overlap, and consider what role the microbiome plays in schizophrenia risk during the perinatal window. Considering this, we discuss ways in which expecting and new mothers may reduce offspring schizophrenia risk.
Collapse
Affiliation(s)
- Lipi Gupta
- The University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, United States
| | - Kevin W Hoffman
- The University of Pennsylvania, Department of Psychiatry, Philadelphia, PA, United States.
| |
Collapse
|
4
|
A high-fat diet, but not haloperidol or olanzapine administration, increases activated microglial expression in the rat brain. Neurosci Lett 2021; 757:135976. [PMID: 34023409 DOI: 10.1016/j.neulet.2021.135976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022]
Abstract
This study examined the effects of chronic treatment of the antipsychotic drugs, haloperidol and olanzapine, on microglial activation in the brain. In addition, we explored the interaction of these antipsychotic drugs with normal and high-fat diet. In order to measure activated microglial expression, we used [3H] PK11195 in vitro autoradiography. Male Sprague Dawley rats were given a diet of either regular chow diet or a high-fat diet, and assigned either water, haloperidol drinking solution (1.5 mg/kg), or olanzapine drinking solution (10 mg/kg) for four weeks. Following treatment, rats were euthanized and brains extracted for [3H] PK11195 autoradiography. Rats on 4 weeks of a high-fat diet showed increased [3H] PK11195 binding compared to rats on a normal diet in the temporal association cortex (19 %), ectorhinal cortex (17 %), entorhinal cortex (18 %), and perirhinal cortex (18 %), irrespective of drug treatment. These are regions associated with memory, sensory, and visual processing. Rats treated with either haloperidol or olanzapine showed no differences in [3H] PK11195 binding compared to the control group. However, there were differences between the 2 different antipsychotic medications themselves. Haloperidol increased [3H] PK11195 binding in the amygdala (23 %), ectorhinal cortex (24 %), and perihinal cortex (29 %), compared to olanzapine. These results corroborate a known role of a high-fat diet and central inflammatory changes but suggest no role of these antipsychotic drugs in promoting neuroinflammation across 4 weeks compared to normal control rats.
Collapse
|
5
|
Kaul D, Schwab SG, Mechawar N, Matosin N. How stress physically re-shapes the brain: Impact on brain cell shapes, numbers and connections in psychiatric disorders. Neurosci Biobehav Rev 2021; 124:193-215. [PMID: 33556389 DOI: 10.1016/j.neubiorev.2021.01.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022]
Abstract
Severe stress is among the most robust risk factors for the development of psychiatric disorders. Imaging studies indicate that life stress is integral to shaping the human brain, especially regions involved in processing the stress response. Although this is likely underpinned by changes to the cytoarchitecture of cellular networks in the brain, we are yet to clearly understand how these define a role for stress in human psychopathology. In this review, we consolidate evidence of macro-structural morphometric changes and the cellular mechanisms that likely underlie them. Focusing on stress-sensitive regions of the brain, we illustrate how stress throughout life may lead to persistent remodelling of the both neurons and glia in cellular networks and how these may lead to psychopathology. We support that greater translation of cellular alterations to human cohorts will support parsing the psychological sequalae of severe stress and improve our understanding of how stress shapes the human brain. This will remain a critical step for improving treatment interventions and prevention outcomes.
Collapse
Affiliation(s)
- Dominic Kaul
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia
| | - Sibylle G Schwab
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia
| | - Naguib Mechawar
- Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| | - Natalie Matosin
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia; Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
| |
Collapse
|
6
|
Vikhreva O, Uranova N. Microglial reactivity in the prefrontal cortex in different types of schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:77-83. [DOI: 10.17116/jnevro202112112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Smedlund KB, Hill JW. The role of non-neuronal cells in hypogonadotropic hypogonadism. Mol Cell Endocrinol 2020; 518:110996. [PMID: 32860862 DOI: 10.1016/j.mce.2020.110996] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/01/2020] [Accepted: 08/16/2020] [Indexed: 12/18/2022]
Abstract
The hypothalamic-pituitary-gonadal axis is controlled by gonadotropin-releasing hormone (GnRH) released by the hypothalamus. Disruption of this system leads to impaired reproductive maturation and function, a condition known as hypogonadotropic hypogonadism (HH). Most studies to date have focused on genetic causes of HH that impact neuronal development and function. However, variants may also impact the functioning of non-neuronal cells known as glia. Glial cells make up 50% of brain cells of humans, primates, and rodents. They include radial glial cells, microglia, astrocytes, tanycytes, oligodendrocytes, and oligodendrocyte precursor cells. Many of these cells influence the hypothalamic neuroendocrine system controlling fertility. Indeed, glia regulate GnRH neuronal activity and secretion, acting both at their cell bodies and their nerve endings. Recent work has also made clear that these interactions are an essential aspect of how the HPG axis integrates endocrine, metabolic, and environmental signals to control fertility. Recognition of the clinical importance of interactions between glia and the GnRH network may pave the way for the development of new treatment strategies for dysfunctions of puberty and adult fertility.
Collapse
Affiliation(s)
- Kathryn B Smedlund
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA; Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
8
|
Bobilev AM, Perez JM, Tamminga CA. Molecular alterations in the medial temporal lobe in schizophrenia. Schizophr Res 2020; 217:71-85. [PMID: 31227207 DOI: 10.1016/j.schres.2019.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 11/30/2022]
Abstract
The medial temporal lobe (MTL) and its individual structures have been extensively implicated in schizophrenia pathophysiology, with considerable efforts aimed at identifying structural and functional differences in this brain region. The major structures of the MTL for which prominent differences have been revealed include the hippocampus, the amygdala and the superior temporal gyrus (STG). The different functions of each of these regions have been comprehensively characterized, and likely contribute differently to schizophrenia. While neuroimaging studies provide an essential framework for understanding the role of these MTL structures in various aspects of the disease, ongoing efforts have sought to employ molecular measurements in order to elucidate the biology underlying these macroscopic differences. This review provides a summary of the molecular findings in three major MTL structures, and discusses convergent findings in cellular architecture and inter-and intra-cellular networks. The findings of this effort have uncovered cell-type, network and gene-level specificity largely unique to each brain region, indicating distinct molecular origins of disease etiology. Future studies should test the functional implications of these molecular changes at the circuit level, and leverage new advances in sequencing technology to further refine our understanding of the differential contribution of MTL structures to schizophrenia.
Collapse
Affiliation(s)
- Anastasia M Bobilev
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Jessica M Perez
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| |
Collapse
|
9
|
Eldahshan W, Fagan SC, Ergul A. Inflammation within the neurovascular unit: Focus on microglia for stroke injury and recovery. Pharmacol Res 2019; 147:104349. [PMID: 31315064 PMCID: PMC6954670 DOI: 10.1016/j.phrs.2019.104349] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/20/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Neuroinflammation underlies the etiology of multiple neurodegenerative diseases and stroke. Our understanding of neuroinflammation has evolved in the last few years and major players have been identified. Microglia, the brain resident macrophages, are considered sentinels at the forefront of the neuroinflammatory response to different brain insults. Interestingly, microglia perform other physiological functions in addition to their role in neuroinflammation. Therefore, an updated approach in which modulation, rather than complete elimination of microglia is necessary. In this review, the emerging roles of microglia and their interaction with different components of the neurovascular unit are discussed. In addition, recent data on sex differences in microglial physiology and in the context of stroke will be presented. Finally, the multiplicity of roles assumed by microglia in the pathophysiology of ischemic stroke, and in the presence of co-morbidities such as hypertension and diabetes are summarized.
Collapse
Affiliation(s)
- Wael Eldahshan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, United States; Charlie Norwood VA Medical Center Augusta, GA, United States
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, United States; Charlie Norwood VA Medical Center Augusta, GA, United States
| | - Adviye Ergul
- Ralph Johnson VA Medical Center, Medical University of South Carolina, Charleston, SC, United States; Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
10
|
Bai L, Zhang X, Zhang Y, Cheng Q, Duan J, Gao J, Xu Z, Zhang H, Wang S, Su H. Ambient concentrations of NO2 and hospital admissions for schizophrenia. Occup Environ Med 2018; 76:125-131. [DOI: 10.1136/oemed-2018-105162] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/21/2018] [Accepted: 10/06/2018] [Indexed: 12/13/2022]
Abstract
ObjectivesSchizophrenia is a chronic and severe mental disorder affecting more than 21 million people worldwide. Short-term exposure to nitrogen dioxide (NO2) has been associated with hospital admissions (HAs) for mental disorders, but no study has evaluated the specific association of NO2 and schizophrenia. Additionally, the shape of the concentration–response (C–R) curve has not yet been assessed at present. This study aims to investigate the relationship between short-term exposure to NO2 and HAs for schizophrenia in Hefei, from 2014 to 2016. We also attempt to explore the C–R and the underlying effect modifiers of the association.MethodsDaily number of HAs for schizophrenia was derived from the computerised medical record system of Anhui Mental Health Center. We used a time-series Poisson generalised linear regression combined with distributed lag non-linear models to model the NO2–schizophrenia relationship.ResultsA total of 11 373 HAs were identified during the study period. An increase in levels of NO2 was significantly associated with elevated schizophrenia HAs. The estimated relative risk per IQR increase in NO2 at lag 01 was 1.10 (95% CI 1.01 to 1.18). Greater association was observed in young patients (relative risk: 1.11, 95% CI 1.02 to 1.19). The modelled C–R curves of the NO2–schizophrenia relationship suggested possible threshold effects of NO2 for all ages combined, young patients, men and both seasons.ConclusionsShort-term exposure to NO2 may be associated with increased schizophrenia HAs. Findings indicated potential threshold effects of NO2, which has important implications for health-based risk assessments.
Collapse
|
11
|
Dahan S, Bragazzi NL, Yogev A, Bar-Gad M, Barak V, Amital H, Amital D. The relationship between serum cytokine levels and degree of psychosis in patients with schizophrenia. Psychiatry Res 2018; 268:467-472. [PMID: 30138859 DOI: 10.1016/j.psychres.2018.07.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/02/2018] [Accepted: 07/29/2018] [Indexed: 10/28/2022]
Abstract
Several observations indicate that cytokine concentrations might also relate to the severity of the psychosis. In this study we assessed whether inflammatory and anti-inflammatory cytokine concentrations are associated with the degree of the psychotic manifestations. A group of 41 patients with schizophrenia suffering from an acute psychosis leading to hospitalization in a psychiatric ward were assessed for the intensity of their psychotic manifestations by the PANSS score. Serum IL-2R, IL-6, IL-8, IL-10 were analyzed by commercial ELISA kits. These patients were compared to controls without schizophrenia. At the univariate analysis, statistically significant elevated levels of the cytokines IL-6, IL-2R and IL-8 were detected in the sera of the patients with schizophrenia compared to controls. At the multivariate analysis, statistically significance held only for IL-2R concentration. Furthermore, positive correlation was found between symptom severity as measured by the PANSS and IL-6 levels as well as IL-2R levels. In Conclusion, our data indicate that elevated serum concentrations of IL-6, IL-8 and IL-2R are associated with severe clinical symptoms measured by the total, general, negative and positive scores of the PANSS scale.
Collapse
Affiliation(s)
- Shani Dahan
- Department of Medicine 'B' and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Nicola Luigi Bragazzi
- Postgraduate School of Public Health, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Ayala Yogev
- Beer-Yaacov- Ness Ziona, Mental Health Center, Israel
| | - Mayan Bar-Gad
- Postgraduate School of Public Health, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Vivian Barak
- Immunology Laboratory for Tumor Diagnosis, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Howard Amital
- Department of Medicine 'B' and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Israel.
| | | |
Collapse
|
12
|
Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional Microglia-Neuron Communication in Health and Disease. Front Cell Neurosci 2018; 12:323. [PMID: 30319362 PMCID: PMC6170615 DOI: 10.3389/fncel.2018.00323] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia are ramified cells that exhibit highly motile processes, which continuously survey the brain parenchyma and react to any insult to the CNS homeostasis. Although microglia have long been recognized as a crucial player in generating and maintaining inflammatory responses in the CNS, now it has become clear, that their function are much more diverse, particularly in the healthy brain. The innate immune response and phagocytosis represent only a little segment of microglia functional repertoire that also includes maintenance of biochemical homeostasis, neuronal circuit maturation during development and experience-dependent remodeling of neuronal circuits in the adult brain. Being equipped by numerous receptors and cell surface molecules microglia can perform bidirectional interactions with other cell types in the CNS. There is accumulating evidence showing that neurons inform microglia about their status and thus are capable of controlling microglial activation and motility while microglia also modulate neuronal activities. This review addresses the topic: how microglia communicate with other cell types in the brain, including fractalkine signaling, secreted soluble factors and extracellular vesicles. We summarize the current state of knowledge of physiological role and function of microglia during brain development and in the mature brain and further highlight microglial contribution to brain pathologies such as Alzheimer’s and Parkinson’s disease, brain ischemia, traumatic brain injury, brain tumor as well as neuropsychiatric diseases (depression, bipolar disorder, and schizophrenia).
Collapse
Affiliation(s)
- Zsuzsanna Szepesi
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oscar Manouchehrian
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sara Bachiller
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Di Biase MA, Zalesky A, O'keefe G, Laskaris L, Baune BT, Weickert CS, Olver J, McGorry PD, Amminger GP, Nelson B, Scott AM, Hickie I, Banati R, Turkheimer F, Yaqub M, Everall IP, Pantelis C, Cropley V. PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia. Transl Psychiatry 2017; 7:e1225. [PMID: 28850113 PMCID: PMC5611755 DOI: 10.1038/tp.2017.193] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 06/23/2017] [Indexed: 01/22/2023] Open
Abstract
We examined putative microglial activation as a function of illness course in schizophrenia. Microglial activity was quantified using [11C](R)-(1-[2-chrorophynyl]-N-methyl-N-[1-methylpropyl]-3 isoquinoline carboxamide (11C-(R)-PK11195) positron emission tomography (PET) in: (i) 10 individuals at ultra-high risk (UHR) of psychosis; (ii) 18 patients recently diagnosed with schizophrenia; (iii) 15 patients chronically ill with schizophrenia; and, (iv) 27 age-matched healthy controls. Regional-binding potential (BPND) was calculated using the simplified reference-tissue model with four alternative reference inputs. The UHR, recent-onset and chronic patient groups were compared to age-matched healthy control groups to examine between-group BPND differences in 6 regions: dorsal frontal, orbital frontal, anterior cingulate, medial temporal, thalamus and insula. Correlation analysis tested for BPND associations with gray matter volume, peripheral cytokines and clinical variables. The null hypothesis of equality in BPND between patients (UHR, recent-onset and chronic) and respective healthy control groups (younger and older) was not rejected for any group comparison or region. Across all subjects, BPND was positively correlated to age in the thalamus (r=0.43, P=0.008, false discovery rate). No correlations with regional gray matter, peripheral cytokine levels or clinical symptoms were detected. We therefore found no evidence of microglial activation in groups of individuals at high risk, recently diagnosed or chronically ill with schizophrenia. While the possibility of 11C-(R)-PK11195-binding differences in certain patient subgroups remains, the patient cohorts in our study, who also displayed normal peripheral cytokine profiles, do not substantiate the assumption of microglial activation in schizophrenia as a regular and defining feature, as measured by 11C-(R)-PK11195 BPND.
Collapse
Affiliation(s)
- M A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
| | - A Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
- Melbourne School of Engineering, The University of Melbourne, Parkville, VIC Australia
| | - G O'keefe
- Department of Molecular Imaging and Therapy, The University of Melbourne, Heidelberg, VIC Australia
- Department of Medicine, The University of Melbourne, and La Trobe University, Austin Hospital, Heidelberg, VIC, Australia
| | - L Laskaris
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
| | - B T Baune
- Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia
| | - C S Weickert
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
- Schizophrenia Research Institute, Randwick, NSW, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - J Olver
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
- Department of Molecular Imaging and Therapy, The University of Melbourne, Heidelberg, VIC Australia
- Department of Medicine, The University of Melbourne, and La Trobe University, Austin Hospital, Heidelberg, VIC, Australia
| | - P D McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - G P Amminger
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
| | - B Nelson
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
| | - A M Scott
- Department of Molecular Imaging and Therapy, The University of Melbourne, Heidelberg, VIC Australia
- Department of Medicine, The University of Melbourne, and La Trobe University, Austin Hospital, Heidelberg, VIC, Australia
| | - I Hickie
- Brain & Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - R Banati
- Medical Radiation Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - F Turkheimer
- Department of Neuroimaging, King’s College London, London, UK
| | - M Yaqub
- VU University Medical Center, Amsterdam, The Netherlands
| | - I P Everall
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
- North Western Mental Health, Melbourne Health, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton South, VIC, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
- North Western Mental Health, Melbourne Health, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton South, VIC, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - V Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
| |
Collapse
|
14
|
Role of sICAM-1 and sVCAM-1 as biomarkers in early and late stages of schizophrenia. J Psychiatr Res 2016; 73:45-52. [PMID: 26679764 DOI: 10.1016/j.jpsychires.2015.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 12/14/2022]
Abstract
Schizophrenia (SZ) is a neuroprogressive disorder presenting with biochemical, functional, and structural changes, which differ from early to late stages of the illness. We explored the differences in serum levels of soluble intercellular cell adhesion molecule-1 (sICAM-1) and soluble vascular cell adhesion molecule-1 (sVCAM-1) between early and late stages of SZ, in regard to clinical characteristics and treatment application. Serum levels of sICAM-1 and sVCAM-1 were measured in 80 patients with SZ (40 early stage; 40 late stage), and compared with 80 healthy controls, matched by age, gender, body mass index, and smoking habits with each SZ group. Serum levels of sICAM-1 and sVCAM-1 were measured using ELISA. The severity of psychopathology was assessed using the Clinical Global Impression Scale and five-factor Positive and Negative Symptoms in Schizophrenia Scale. After adjustment for confounders, we noticed normal levels of sICAM-1 in the early stage, and elevated levels of sICAM-1 in the late stage of SZ. sVCAM-1 levels were decreased in both stages of SZ. Higher sICAM-1 levels have been related to more pronounced cognitive deficit and excitement symptoms in the early stage of SZ and to favorable characteristics of treatment application in both stages. SZ is associated with changes in the levels of adhesion molecules that vary from early to late stages of the illness. This implies that the concept of biochemical staging is applicable in SZ, at least for markers of cellular adhesion.
Collapse
|
15
|
Laskaris LE, Di Biase MA, Everall I, Chana G, Christopoulos A, Skafidas E, Cropley VL, Pantelis C. Microglial activation and progressive brain changes in schizophrenia. Br J Pharmacol 2016; 173:666-80. [PMID: 26455353 PMCID: PMC4742288 DOI: 10.1111/bph.13364] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/16/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a debilitating disorder that typically begins in adolescence and is characterized by perceptual abnormalities, delusions, cognitive and behavioural disturbances and functional impairments. While current treatments can be effective, they are often insufficient to alleviate the full range of symptoms. Schizophrenia is associated with structural brain abnormalities including grey and white matter volume loss and impaired connectivity. Recent findings suggest these abnormalities follow a neuroprogressive course in the earliest stages of the illness, which may be associated with episodes of acute relapse. Neuroinflammation has been proposed as a potential mechanism underlying these brain changes, with evidence of increased density and activation of microglia, immune cells resident in the brain, at various stages of the illness. We review evidence for microglial dysfunction in schizophrenia from both neuroimaging and neuropathological data, with a specific focus on studies examining microglial activation in relation to the pathology of grey and white matter. The studies available indicate that the link between microglial dysfunction and brain change in schizophrenia remains an intriguing hypothesis worthy of further examination. Future studies in schizophrenia should: (i) use multimodal imaging to clarify this association by mapping brain changes longitudinally across illness stages in relation to microglial activation; (ii) clarify the nature of microglial dysfunction with markers specific to activation states and phenotypes; (iii) examine the role of microglia and neurons with reference to their overlapping roles in neuroinflammatory pathways; and (iv) examine the impact of novel immunomodulatory treatments on brain structure in schizophrenia.
Collapse
Affiliation(s)
- L E Laskaris
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - M A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - I Everall
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
| | - G Chana
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - A Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - E Skafidas
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
| | - V L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
16
|
Abstract
Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.
Collapse
Affiliation(s)
- Georg Juckel
- Department of Psychiatry, Ruhr University, LWL University Hospital, Bochum, Germany
| |
Collapse
|
17
|
Shin H, Song JH. Antipsychotics, chlorpromazine and haloperidol inhibit voltage-gated proton currents in BV2 microglial cells. Eur J Pharmacol 2014; 738:256-62. [DOI: 10.1016/j.ejphar.2014.05.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/15/2014] [Accepted: 05/20/2014] [Indexed: 01/23/2023]
|
18
|
|
19
|
Morris GP, Clark IA, Zinn R, Vissel B. Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 2013; 105:40-53. [PMID: 23850597 DOI: 10.1016/j.nlm.2013.07.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 12/25/2022]
Abstract
We focus on emerging roles for microglia in synaptic plasticity, cognition and disease. We outline evidence that ramified microglia, traditionally thought to be functionally "resting" (i.e. quiescent) in the normal brain, in fact are highly dynamic and plastic. Ramified microglia continually and rapidly extend processes, contact synapses in an activity and experience dependent manner, and play a functionally dynamic role in synaptic plasticity, possibly through release of cytokines and growth factors. Ramified microglial also contribute to structural plasticity through the elimination of synapses via phagocytic mechanisms, which is necessary for normal cognition. Microglia have numerous mechanisms to monitor neuronal activity and numerous mechanisms also exist to prevent them transitioning to an activated state, which involves retraction of their surveying processes. Based on the evidence, we suggest that maintaining the ramified state of microglia is essential for normal synaptic and structural plasticity that supports cognition. Further, we propose that change of their ramified morphology and function, as occurs in inflammation associated with numerous neurological disorders such as Alzheimer's and Parkinson's disease, disrupts their intricate and essential synaptic functions. In turn altered microglia function could cause synaptic dysfunction and excess synapse loss early in disease, initiating a range of pathologies that follow. We conclude that the future of learning and memory research depends on an understanding of the role of non-neuronal cells and that this should include using sophisticated molecular, cellular, physiological and behavioural approaches combined with imaging to causally link the role of microglia to brain function and disease including Alzheimer's and Parkinson's disease and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gary P Morris
- Neurodegenerative Disorders, Garvan Institute of Medical Research, Neuroscience Department, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia.
| | | | | | | |
Collapse
|
20
|
Cocaine self-administration differentially modulates the expression of endogenous cannabinoid system-related proteins in the hippocampus of Lewis vs. Fischer 344 rats. Int J Neuropsychopharmacol 2013; 16:1277-93. [PMID: 23217608 DOI: 10.1017/s1461145712001186] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The endocannabinoids anandamide and 2-arachidonyl glycerol (2-AG) are modulators of glutamate and γ-aminobutyric acid (GABA), two transmitters involved in cocaine addiction. However, little is known on the effects of cocaine on the enzymes that produce and degrade endocannabinoids. The present work addresses the effects of cocaine self-administration on the immunohistochemical expression of endocannabinoid signalling (ECS)-related proteins in the hippocampus. The study has been performed on two different strains of rats, Lewis (Lew) and Fischer 344 (F344), which are characterized for displaying a differential sensitivity to cocaine, thus making them suitable in the study of vulnerability to drug addiction. Both strains showed differences in the expression of ECS-related proteins in the hippocampus, i.e. Lew rats exhibited lower CB1 expression but higher CB2 expression than F344 rats. After setting similar cocaine self-administration, both strains showed clear differences in the expression of ECS-related proteins, which were differentially restricted to either the 2-AG or anandamide signalling pathways in a self-administration training/drug-dependent manner. The decreases observed in CB1 expression and N-acyl phosphatidylethanolamine phospholipase D:fatty acid amino hydrolase ratio after saline self-administration were enhanced only in cocaine self-administered Lew rats. CB2 expression increase and diacylglycerol lipase α:monoacylglycerol lipase ratio decrease detected after saline self-administration were blocked only in cocaine self-administered F344 rats. These findings indicate that cocaine may regulate hippocampal GABA/glutamate synapses by directly modulating endocannabinoid production/degradation enzymes and that these actions are strain-dependent. This differential response suggests that the endogenous cannabinoid system might contribute to genotype/strain differences on the sensitivity to self-administration training and cocaine addiction.
Collapse
|
21
|
Abstract
Brain sexual differentiation in rodents results from the perinatal testicular androgen surge. In the preoptic area (POA), estradiol aromatized from testosterone upregulates the production of the proinflammatory molecule, prostaglandin E(2) (PGE(2)) to produce sex-specific brain development. PGE(2) produces a two-fold greater density of dendritic spines in males than in females and masculinizes adult copulatory behavior. One neonatal dose of PGE(2) masculinizes the POA and behavior, and simultaneous treatment with an inhibitor of additional prostaglandin synthesis prevents this masculinization, indicating a positive feedforward process that leads to sustained increases in PGE(2). The mechanisms underlying this feedforward process were unknown. Microglia, the primary immunocompetent cells in the brain, are active neonatally, contribute to normal brain development, and both produce and respond to prostaglandins. We investigated whether there are sex differences in microglia in the POA and whether they influence developmental masculinization. Neonatal males had twice as many ameboid microglia as females and a more activated morphological profile, and both estradiol and PGE(2) masculinized microglial number and morphology in females. Microglial inhibition during the critical period for sexual differentiation prevented sex differences in microglia, estradiol-induced masculinization of dendritic spine density, and adult copulatory behavior. Microglial inhibition also prevented the estradiol-induced upregulation of PGE(2), indicating that microglia are essential to the feedforward process through which estradiol upregulates prostaglandin production. These studies demonstrate that immune cells in the brain interact with the nervous and endocrine systems during development, and are crucial for sexual differentiation of brain and behavior.
Collapse
|
22
|
London A, Cohen M, Schwartz M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci 2013; 7:34. [PMID: 23596391 PMCID: PMC3625831 DOI: 10.3389/fncel.2013.00034] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/18/2013] [Indexed: 11/25/2022] Open
Abstract
Functional macrophage heterogeneity is recognized outside the central nervous system (CNS), where alternatively activated macrophages can perform immune-resolving functions. Such functional heterogeneity was largely ignored in the CNS, with respect to the resident microglia and the myeloid-derived cells recruited from the blood following injury or disease, previously defined as blood-derived microglia; both were indistinguishably perceived detrimental. Our studies have led us to view the myeloid-derived infiltrating cells as functionally distinct from the resident microglia, and accordingly, to name them monocyte-derived macrophages (mo-MΦ). Although microglia perform various maintenance and protective roles, under certain conditions when they can no longer provide protection, mo-MΦ are recruited to the damaged CNS; there, they act not as microglial replacements but rather assistant cells, providing activities that cannot be timely performed by the resident cells. Here, we focus on the functional heterogeneity of microglia/mo-MΦ, emphasizing that, as opposed to the mo-MΦ, microglia often fail to timely acquire the phenotype essential for CNS repair.
Collapse
Affiliation(s)
- Anat London
- Department of Neurobiology, Weizmann Institute of Science Rehovot, Israel
| | | | | |
Collapse
|
23
|
Takahashi N, Sakurai T. Roles of glial cells in schizophrenia: possible targets for therapeutic approaches. Neurobiol Dis 2012; 53:49-60. [PMID: 23146995 DOI: 10.1016/j.nbd.2012.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 09/30/2012] [Accepted: 11/01/2012] [Indexed: 12/20/2022] Open
Abstract
Glial cells consisting of oligodendrocytes, astrocytes, microglia, and NG2 positive cells are major cell populations in the central nervous system, number-wise. They function as effectors and modulators of neurodevelopment through a wide variety of neuron-glial cell interactions in brain development and functions. Glial cells can be affected by both genetic and environmental factors, leading to their dysfunctions in supporting neuronal development and functions. These in turn can affect neuronal cells, causing alterations at the circuitry level that manifest as behavioral characteristics associated with schizophrenia in late teens-early twenties. Glial cells are also involved in neuroinflammatory processes, which sometimes have deleterious effects on the normal brain development. If the glial involvement plays significant roles in schizophrenia, the processes involving glial cells can become possible therapeutic targets for schizophrenia. A number of known antipsychotics are shown to have beneficial effects on glial cells, but other drugs targeting glial cell functions may also have therapeutic effects on schizophrenia. The latter can be taken into consideration for future drug development for schizophrenia.
Collapse
Affiliation(s)
- Nagahide Takahashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | | |
Collapse
|
24
|
Howes OD, Fusar-Poli P, Bloomfield M, Selvaraj S, McGuire P. From the prodrome to chronic schizophrenia: the neurobiology underlying psychotic symptoms and cognitive impairments. Curr Pharm Des 2012; 18:459-65. [PMID: 22239576 DOI: 10.2174/138161212799316217] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/18/2011] [Indexed: 11/22/2022]
Abstract
Schizophrenia is a chronic psychotic disorder that remains a considerable cause of global disease burden. Cognitive impairments are common and contribute significantly to the morbidity of the disorder. Over the last two decades or so molecular imaging studies have refined understanding of the pathophysiology underlying the development of psychosis and cognitive impairments. Firstly they have consistently implicated presynaptic dopaminergic dysfunction in the disorder, finding that dopamine synthesis capacity, dopamine release and baseline dopamine levels are increased in the illness. Secondly recent findings show that dopamine synthesis capacity is elevated in those that go on to develop psychosis in the following year, but not in those that do not, and appears to increase further with the development of psychosis. Thirdly evidence links greater dopamine synthesis capacity to poorer cognitive performance and altered frontal cortical function measured using functional imaging during cognitive tasks. Finally they have provided data on the nature of other neurofunctional alterations in the disorder, in particular in the serotonergic system and neuroinflammation. We review these findings and discuss their implications for understanding the neurobiology of psychosis and cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- O D Howes
- Psychiatric Imaging Group Cyclotron Building Hammersmith Hospital, London W12 0NN, UK.
| | | | | | | | | |
Collapse
|
25
|
Blank T, Prinz M. Microglia as modulators of cognition and neuropsychiatric disorders. Glia 2012; 61:62-70. [PMID: 22740320 DOI: 10.1002/glia.22372] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/24/2012] [Indexed: 12/12/2022]
Abstract
It has become evident recently only that microglia are not only responsible for immunomodulatory functions in the brain but represent vital components of the larger synaptic formation, which also includes pre and postsynaptic neurones as well as astrocytes. Microglia critically contribute to CNS homeostasis by their actions in phagocytosis of cellular debris, release of a variety of cell signaling factors including neurotrophins and extracellular matrix components and direct contact with neurons. The purpose of this review is to summarize our current understanding of the involvement of microglia in cognitive processes and neuropsychiatric disorders including schizophrenia, bipolar disorder, depression, and Rett syndrome and to outline their potential signaling mechanisms in this context.
Collapse
Affiliation(s)
- Thomas Blank
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
26
|
Association study of interleukin-4 polymorphisms with paranoid schizophrenia in the Polish population: a critical approach. Mol Biol Rep 2012; 39:7941-7. [DOI: 10.1007/s11033-012-1639-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/16/2012] [Indexed: 11/30/2022]
|
27
|
Hu X, Zhou H, Zhang D, Yang S, Qian L, Wu HM, Chen PS, Wilson B, Gao HM, Lu RB, Hong JS. Clozapine protects dopaminergic neurons from inflammation-induced damage by inhibiting microglial overactivation. J Neuroimmune Pharmacol 2012; 7:187-201. [PMID: 21870076 PMCID: PMC3633602 DOI: 10.1007/s11481-011-9309-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
Increasing evidence suggests a possible involvement of neuroinflammation in some psychiatric disorders, and also pharmacological reports indicate that anti-inflammatory effects are associated with therapeutic actions of psychoactive drugs, such as anti-depressants and antipsychotics. The purpose of this study was to explore whether clozapine, a widely used antipsychotic drugs, displays anti-inflammatory and neuroprotective effects. Using primary cortical and mesencephalic neuron-glia cultures, we found that clozapine was protective against inflammation-related neurodegeneration induced by lipopolysaccharide (LPS). Pretreatment of cortical or mesencephalic neuron-glia cultures with clozapine (0.1 or 1 μM) for 24 h attenuated LPS-induced neurotoxicity. Clozapine also protected neurons against 1-methyl-4-phenylpyridinium(+) (MPP(+))-induced neurotoxicity, but only in cultures containing microglia, indicating an indispensable role of microglia in clozapine-afforded neuroprotection. Further observation revealed attenuated LPS-induced microglial activation in primary neuron-glia cultures and in HAPI microglial cell line with clozapine pretreatment. Clozapine ameliorated the production of microglia-derived superoxide and intracellular reactive oxygen species (ROS), as well as the production of nitric oxide and TNF-α following LPS. In addition, the protective effect of clozapine was not observed in neuron-glia cultures from mice lacking functional NADPH oxidase (PHOX), a key enzyme for superoxide production in immune cells. Further mechanistic studies demonstrated that clozapine pretreatment inhibited LPS-induced translocation of cytosolic subunit p47(phox) to the membrane in microglia, which was most likely through inhibiting the phosphoinositide 3-kinase (PI3K) pathway. Taken together, this study demonstrates that clozapine exerts neuroprotective effect via the attenuation of microglia activation through inhibition of PHOX-generated ROS production and suggests potential use of antipsychotic drugs for neuroprotection.
Collapse
Affiliation(s)
- Xiaoming Hu
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
- Department of Neurology and Pittsburgh Institute of Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Hui Zhou
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
| | - Dan Zhang
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
| | - Sufen Yang
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
| | - Li Qian
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
| | - Hung-Ming Wu
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
- Institute of Behavioral Medicine and Department of Psychiatry, College of Medicine & Hospital, National Cheng-Kung University, Tainan, Taiwan
| | - Po-See Chen
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
| | - Belinda Wilson
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
| | - Hui-Ming Gao
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
| | - Ru-band Lu
- Institute of Behavioral Medicine and Department of Psychiatry, College of Medicine & Hospital, National Cheng-Kung University, Tainan, Taiwan
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, 27709
| |
Collapse
|
28
|
Lenz KM, Nugent BM, McCarthy MM. Sexual differentiation of the rodent brain: dogma and beyond. Front Neurosci 2012; 6:26. [PMID: 22363256 PMCID: PMC3282918 DOI: 10.3389/fnins.2012.00026] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/04/2012] [Indexed: 11/20/2022] Open
Abstract
Steroid hormones of gonadal origin act on the neonatal brain to produce sex differences that underlie adult reproductive physiology and behavior. Neuronal sex differences occur on a variety of levels, including differences in regional volume and/or cell number, morphology, physiology, molecular signaling, and gene expression. In the rodent, many of these sex differences are determined by steroid hormones, particularly estradiol, and are established by diverse downstream effects. One brain region that is potently organized by estradiol is the preoptic area (POA), a region critically involved in many behaviors that show sex differences, including copulatory and maternal behaviors. This review focuses on the POA as a case study exemplifying the depth and breadth of our knowledge as well as the gaps in understanding the mechanisms through which gonadal hormones produce lasting neural and behavioral sex differences. In the POA, multiple cell types, including neurons, astrocytes, and microglia are masculinized by estradiol. Multiple downstream molecular mediators are involved, including prostaglandins, various glutamate receptors, protein kinase A, and several immune signaling molecules. Moreover, emerging evidence indicates epigenetic mechanisms maintain sex differences in the POA that are organized perinatally and thereby produce permanent behavioral changes. We also review emerging strategies to better elucidate the mechanisms through which genetics and epigenetics contribute to brain and behavioral sex differences.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Program in Neuroscience and Department of Physiology, University of Maryland School of Medicine Baltimore, MD, USA
| | | | | |
Collapse
|
29
|
Hickie IB, Banati R, Stewart CH, Lloyd AR. Are common childhood or adolescent infections risk factors for schizophrenia and other psychotic disorders? Med J Aust 2009. [DOI: 10.5694/j.1326-5377.2009.tb02369.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ian B Hickie
- Brain and Mind Research Institute, University of Sydney, Sydney, NSW
| | | | - Claire H Stewart
- Brain and Mind Research Institute, University of Sydney, Sydney, NSW
| | - Andrew R Lloyd
- Inflammation Research Unit, School of Pathology, University of New South Wales, Sydney, NSW
| |
Collapse
|
30
|
Hou Y, Wu CF, Yang JY, He X, Bi XL, Yu L, Guo T. Effects of clozapine, olanzapine and haloperidol on nitric oxide production by lipopolysaccharide-activated N9 cells. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:1523-8. [PMID: 16806626 DOI: 10.1016/j.pnpbp.2006.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Revised: 05/09/2006] [Accepted: 05/09/2006] [Indexed: 11/28/2022]
Abstract
Schizophrenia is a devastating illness of unknown etiology and the basis for its treatment rests in the symptomatic response to antipsychotics. It was found that some of the patients with schizophrenia elicited microglia activation. The present study used lipopolysaccharide (LPS)-activated mouse microglial cell line N9 as an in vitro model to mimic microglia activation seen in the patients with schizophrenia. The effects of clozapine, olanzapine and haloperidol on the release of nitric oxide (NO) by LPS-stimulated N9 cells were investigated. The results showed that olanzapine significantly inhibited NO release by LPS-stimulated N9 cells. Clozapine and haloperidol did not show significant effects on this model. The present study suggested that the inhibiting effect of olanzapine on the NO release by LPS-stimulated microglial cells might be a new mechanism through which olanzapine exhibits its therapeutic effect in the treatment of schizophrenia.
Collapse
Affiliation(s)
- Yue Hou
- Department of Pharmacology, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, PR China
| | | | | | | | | | | | | |
Collapse
|
31
|
Foster R, Kandanearatchi A, Beasley C, Williams B, Khan N, Fagerhol MK, Everall IP. Calprotectin in microglia from frontal cortex is up-regulated in schizophrenia: evidence for an inflammatory process? Eur J Neurosci 2006; 24:3561-6. [PMID: 17229104 DOI: 10.1111/j.1460-9568.2006.05219.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Schizophrenia is associated with a number of pathological changes, including alterations in levels of specific proteins. Calprotectin is a novel 36 kDa calcium-binding protein of the S100 family and appears to be a nonspecific marker of inflammation. Calprotectin has not previously been investigated in brain tissue. Samples of post-mortem brain tissue from Brodmann area 9 were obtained from prefrontal cortex from subjects with schizophrenia, bipolar affective disorder, major depression, and from controls. Calprotectin levels were determined by ELISA. To determine cellular localization, immunocytochemical and fluorescent double-labelling analyses were performed. Exogenous calprotectin was added to retinoic acid-differentiated human SH-SY5Y neuroblastoma cell cultures in order to investigate mechanisms of action of calprotectin. Calprotectin was detectable in all samples, and mean levels were noted to be highest in schizophrenic brains (P < 0.05) and lowest in controls. Levels were intermediate in bipolar affective disorder and major depression. Exogenous calprotectin appeared to induce dendritic extension in SH-SY5Y cell culture in a dose-dependent manner. Calprotectin was found to be localized to microglia. These findings suggest that increased levels of calprotecitn in the brain may reflect inflammatory processes, which play a role in the pathogenesis of major psychiatric disorders. Furthermore, calprotectin may influence dendritic plasticity.
Collapse
Affiliation(s)
- Russell Foster
- HIV Mental Health Team, Maudsley Hospital, Denmark Hill, London SE5 8AZ, UK.
| | | | | | | | | | | | | |
Collapse
|
32
|
Schmitt A, Bertsch T, Tost H, Bergmann A, Henning U, Klimke A, Falkai P. Increased serum interleukin-1beta and interleukin-6 in elderly, chronic schizophrenic patients on stable antipsychotic medication. Neuropsychiatr Dis Treat 2005; 1:171-7. [PMID: 18568063 PMCID: PMC2413198 DOI: 10.2147/nedt.1.2.171.61048] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In schizophrenia, alterations of proinflammatory cytokine levels have been reported and related to the disease and psychopathology. However, only limited conclusions can be drawn in view of confounding factors such as infection, age, sex, smoking, and antipsychotic medication. Chronic schizophrenic patients with a long-term disease process and medication period have not been investigated so far. We have measured serum levels of interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)alpha in 41 elderly, chronic schizophrenic patients and 23 age- and sex-matched controls using enzyme-linked immunosorbent assay (ELISA). We assessed detailed psychopathology and neuropsychological performance and determined serum levels of haloperidol, clozapine, and the two main clozapine metabolites, desmethylclozapine and clozapine metabolite N-oxide, by high-pressure liquid chromatography (HPLC). IL-1beta and IL-6 levels were increased in treatment-resistant schizophrenic patients compared with healthy controls, whereas TNFalpha showed no difference. We did not find statistically significant differences of cytokine levels between medication groups and there was no correlation with serum levels of antipsychotics or psychopathological rating scores. Elevations of IL-1beta and IL-6 in elderly chronic schizophrenic patients may be related to an active disease process lasting until old age. Despite missing correlations, long-term treatment effects in treatment-resistant patients may have affected TNFalpha, leading to control levels. Post-mortem and animal studies should clarify the presence of altered immune function in the brain as well as the effect of cytokine levels in relation to neurodevelopmental disturbances and schizophrenia-associated behavior.
Collapse
|
33
|
Kim YK, Myint AM, Lee BH, Han CS, Lee HJ, Kim DJ, Leonard BE. Th1, Th2 and Th3 cytokine alteration in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:1129-34. [PMID: 15610925 DOI: 10.1016/j.pnpbp.2004.05.047] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2004] [Indexed: 01/07/2023]
Abstract
BACKGROUND Several studies have shown that there is an imbalance between T helper 1 (Th1) cytokines and T helper 2 (Th2) cytokines in patients with schizophrenia. The T helper 3 (Th3) cytokine, transforming growth factor beta-1 (TGF-beta1), has been shown to suppress the production of Th1 cytokines. Therefore it is hypothesized that it may play a role in schizophrenia by suppressing overactive Th1 system. METHODS We recruited 88 schizophrenic patients and 88 matched controls. The basal plasma concentrations of IFN-gamma (Th1), IL-4 (Th2) and TGF-beta1 (Th3) were studied at the time the patients were admitted to the hospital and following 8 weeks of treatment with antipsychotics. RESULTS The detection rate of plasma IFN-gamma and basal plasma TGF-beta1 level were significantly higher in schizophrenic patients than in controls whereas detection rate of plasma IL-4 was lower in patients. The ratio of Th1/Th2 cytokines (IFN-gamma/IL-4) was higher in schizophrenic patients. Following the neuroleptic treatment, the IFNgamma and TGF-beta1 levels returned to control values, and IL-4 concentration rose above the control value. CONCLUSION Schizophrenic patients showed higher Th1/Th2 ratio which is attenuated by effective neuroleptic treatment. It is possible that TGF-beta1 plays a role in reducing the activity of Th1 cytokine.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Ansan Hospital, 516, Go-Jan Dong, Ansan City, Kyunggi Province 425-070, South Korea.
| | | | | | | | | | | | | |
Collapse
|
34
|
Gorwood P, Pouchot J, Vinceneux P, Puéchal X, Flipo RM, De Bandt M, Adès J. Rheumatoid arthritis and schizophrenia: a negative association at a dimensional level. Schizophr Res 2004; 66:21-9. [PMID: 14693349 DOI: 10.1016/s0920-9964(03)00017-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is wide evidence for a decreased risk of rheumatoid arthritis in patients with schizophrenia. Nevertheless, very few studies have looked at the risk of schizophrenia in a group of patients with rheumatoid arthritis. We prospectively investigated, with the SCL-90R, 220 consecutive outpatients with rheumatoid arthritis and 196 consecutive outpatients with various medical conditions, half of them suffering from psoriatic arthritis (a medical condition close to rheumatoid arthritis). The SCL-90R appears to be a valuable tool to distinguish patients with schizophrenia from the outpatients of our sample, the former having more "paranoid ideation" (p = 0.004) and more "psychoticism" (p < 0.001) than the latter. The "paranoid ideation" dimension was significantly lower (25% decrease) in the sample of patients with rheumatoid arthritis compared to the combined control group (p = 0.005), ratings under the median value being more frequent in the former group (p = 0.025). Confounding factors might not explain this difference according to the regression logistic analysis performed. As patients with rheumatoid arthritis have a lower score of paranoid ideation than controls in our sample, even after controlling for age, gender and severity of the disease, these data represent further evidence for a decreased risk of schizophrenia in individuals with rheumatoid arthritis.
Collapse
Affiliation(s)
- P Gorwood
- Hôpital Louis Mourier (AP-HP), Service de Psychiatrie, 178 rue des Renouillers, 92700 Colombes, France.
| | | | | | | | | | | | | |
Collapse
|