1
|
Hayford FEA, Dolman RC, Ozturk M, Nienaber A, Ricci C, Loots DT, Brombacher F, Blaauw R, Smuts CM, Parihar SP, Malan L. Adjunct n-3 Long-Chain Polyunsaturated Fatty Acid Treatment in Tuberculosis Reduces Inflammation and Improves Anemia of Infection More in C3HeB/FeJ Mice With Low n-3 Fatty Acid Status Than Sufficient n-3 Fatty Acid Status. Front Nutr 2021; 8:695452. [PMID: 34504860 PMCID: PMC8421789 DOI: 10.3389/fnut.2021.695452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/23/2021] [Indexed: 02/02/2023] Open
Abstract
Populations at risk for tuberculosis (TB) may have a low n-3 polyunsaturated fatty acid (PUFA) status. Our research previously showed that post-infection supplementation of n-3 long-chain PUFA (LCPUFA) in TB without TB medication was beneficial in n-3 PUFA sufficient but not in low-status C3HeB/FeJ mice. In this study, we investigated the effect of n-3 LCPUFA adjunct to TB medication in TB mice with a low compared to a sufficient n-3 PUFA status. Mice were conditioned on an n-3 PUFA-deficient (n-3FAD) or n-3 PUFA-sufficient (n-3FAS) diet for 6 weeks before TB infection. Post-infection at 2 weeks, both groups were switched to an n-3 LCPUFA [eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA)] supplemented diet and euthanized at 4- and 14- days post-treatment. Iron and anemia status, bacterial loads, lung pathology, lung cytokines/chemokines, and lung lipid mediators were measured. Following 14 days of treatment, hemoglobin (Hb) was higher in the n-3FAD than the untreated n-3FAS group (p = 0.022), whereas the n-3FAS (drug) treated control and n-3FAS groups were not. Pro-inflammatory lung cytokines; interleukin-6 (IL-6) (p = 0.011), IL-1α (p = 0.039), MCP1 (p = 0.003), MIP1- α (p = 0.043), and RANTES (p = 0.034); were lower, and the anti-inflammatory cytokine IL-4 (p = 0.002) and growth factor GMCSF (p = 0.007) were higher in the n-3FAD compared with the n-3FAS mice after 14 days. These results suggest that n-3 LCPUFA therapy in TB-infected mice, in combination with TB medication, may improve anemia of infection more in low n-3 fatty acid status than sufficient status mice. Furthermore, the low n-3 fatty acid status TB mice supplemented with n-3 LCPUFA showed comparatively lower cytokine-mediated inflammation despite presenting with lower pro-resolving lipid mediators.
Collapse
Affiliation(s)
- Frank E. A. Hayford
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- Department of Dietetics, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Robin C. Dolman
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
| | - Arista Nienaber
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Cristian Ricci
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Du Toit Loots
- Laboratory of Infectious Disease Metabolomics, Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Renée Blaauw
- Division of Human Nutrition, Stellenbosch University, Cape Town, South Africa
| | - Cornelius M. Smuts
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Suraj P. Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town-Component, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Linda Malan
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Salaga M, Bartoszek A, Binienda A, Krajewska JB, Fabisiak A, Mosińska P, Dziedziczak K, Niewinna K, Talar M, Tarasiuk A, Kordek R, Fichna J. Activation of Free Fatty Acid Receptor 4 Affects Intestinal Inflammation and Improves Colon Permeability in Mice. Nutrients 2021; 13:nu13082716. [PMID: 34444876 PMCID: PMC8399282 DOI: 10.3390/nu13082716] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Diet is considered an important trigger in inflammatory bowel diseases (IBD), as feeding habits can affect intestinal permeability and clearance of bacterial antigens, consequently influencing the immune system. Free fatty acid receptors (FFARs), expressed on the intestinal epithelial cells, belong to the family of luminal-facing receptors that are responsive to nutrients. The objective of this study was to characterize the anti-inflammatory activity and the effect on intestinal barrier function of synthetic FFAR agonists in mouse models of colitis. Therapeutic activity of GW9508 (FFAR1 agonist), 4-CMTB (FFAR2 agonist), AR420626 (FFAR3 agonist), and GSK137647 (FFAR4 agonist) was investigated in two models of semi-chronic colitis: induced by trinitrobenzenesulfonic acid (TNBS), mimicking Crohn's disease, as well as induced by dextran sulfate sodium (DSS), which recapitulates ulcerative colitis in humans. Moreover, we assessed the influence of FFARs agonists on epithelial ion transport and measured the ion flow stimulated by forskolin and veratridine. Administration of FFAR4 agonist GSK137647 attenuated both TNBS-induced and DSS-induced colitis in mice, as indicated by macroscopic parameters and myeloperoxidase activity. The action of FFAR4 agonist GSK137647 was significantly blocked by pretreatment with selective FFAR4 antagonist AH7614. Moreover, FFAR1 and FFAR4 agonists reversed the increase in the colon permeability caused by inflammation. FFAR4 restored the tight junction genes expression in mouse colon. This is the first evaluation of the anti-inflammatory activity of selective FFAR agonists, showing that pharmacological intervention targeting FFAR4, which is a sensor of medium and long chain fatty acids, attenuates intestinal inflammation.
Collapse
Affiliation(s)
- Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Adrian Bartoszek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Julia B. Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
- Department of Digestive Tract Diseases, Medical University of Lodz, 92-215 Lodz, Poland
| | - Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Katarzyna Dziedziczak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Karolina Niewinna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Marcin Talar
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
| | - Radzisław Kordek
- Department of Pathology, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (M.S.); (A.B.); (A.B.); (J.B.K.); (A.F.); (P.M.); (K.D.); (K.N.); (M.T.); (A.T.)
- Correspondence: ; Tel.: +48-42-272-57-07; Fax: +48-42-272-56-94
| |
Collapse
|
3
|
Durkin LA, Childs CE, Calder PC. Omega-3 Polyunsaturated Fatty Acids and the Intestinal Epithelium-A Review. Foods 2021; 10:foods10010199. [PMID: 33478161 PMCID: PMC7835870 DOI: 10.3390/foods10010199] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial cells (enterocytes) form part of the intestinal barrier, the largest human interface between the internal and external environments, and responsible for maintaining regulated intestinal absorption and immunological control. Under inflammatory conditions, the intestinal barrier and its component enterocytes become inflamed, leading to changes in barrier histology, permeability, and chemical mediator production. Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) can influence the inflammatory state of a range of cell types, including endothelial cells, monocytes, and macrophages. This review aims to assess the current literature detailing the effects of ω-3 PUFAs on epithelial cells. Marine-derived ω-3 PUFAs, eicosapentaenoic acid and docosahexaenoic acid, as well as plant-derived alpha-linolenic acid, are incorporated into intestinal epithelial cell membranes, prevent changes to epithelial permeability, inhibit the production of pro-inflammatory cytokines and eicosanoids and induce the production of anti-inflammatory eicosanoids and docosanoids. Altered inflammatory markers have been attributed to changes in activity and/or expression of proteins involved in inflammatory signalling including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), peroxisome proliferator activated receptor (PPAR) α and γ, G-protein coupled receptor (GPR) 120 and cyclooxygenase (COX)-2. Effective doses for each ω-3 PUFA are difficult to determine due to inconsistencies in dose and time of exposure between different in vitro models and between in vivo and in vitro models. Further research is needed to determine the anti-inflammatory potential of less-studied ω-3 PUFAs, including docosapentaenoic acid and stearidonic acid.
Collapse
Affiliation(s)
- Luke A. Durkin
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.E.C.); (P.C.C.)
- Correspondence:
| | - Caroline E. Childs
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.E.C.); (P.C.C.)
- Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.E.C.); (P.C.C.)
- Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
4
|
Azuma MM, Cardoso CDBM, da Silva CC, de Oliveira PHC, Jacinto RDC, Andrada AC, Cintra LTA. The use of omega-3 fatty acids in the treatment of oral diseases. Oral Dis 2020; 28:264-274. [PMID: 33022782 DOI: 10.1111/odi.13667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/26/2020] [Accepted: 09/16/2020] [Indexed: 11/28/2022]
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have been reported to exert important roles in the inflammatory response. There are many inflammatory diseases in dentistry which support the administration of ω-3 PUFAs as an adjunct therapy during the treatment of these diseases. The aim of this review was to evaluate the use of ω-3 PUFAs as an adjuvant therapy during the treatment of buccal diseases. The review showed that supplementation with ω-3 PUFAs was used for treatment of gingivitis, periodontal diseases, apical periodontitis, stomatitis, and orthodontic tooth movement. The results indicate that ω-3 PUFAs decreased the number of pro-inflammatory mediators in the gingival tissues of individuals with gingivitis and periodontitis. In apical periodontitis, the supplementation suppressed bone resorption and promoted bone formation in the periapical area of rats. During orthodontic movement, the supplementation showed a decrease of bone resorption in rats. It also showed that painful symptoms of recurrent aphthous stomatitis were alleviated in supplemented patients. In conclusion, the ω-3 PUFAs may be used as an adjuvant therapy in the treatment of inflammatory diseases that affect the oral cavity. However, more studies are required to elucidate the role of ω-3 PUFAs in decreasing oral cavity inflammatory processes.
Collapse
Affiliation(s)
- Mariane Maffei Azuma
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, Ann Arbor, MI, USA
| | | | - Cristiane Cantiga da Silva
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | | | - Rogério de Castilho Jacinto
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil
| | - Ana Cristina Andrada
- Division of Endodontics, University of Detroit Mercy School of Dentistry, Detroit, MI, USA
| | - Luciano Tavares Angelo Cintra
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (Unesp), Araçatuba, Brazil.,Dental Assistance Center for Disabled Persons (CAOE) of the São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| |
Collapse
|
5
|
Walnut Oil Alleviates Intestinal Inflammation and Restores Intestinal Barrier Function in Mice. Nutrients 2020; 12:nu12051302. [PMID: 32370215 PMCID: PMC7284466 DOI: 10.3390/nu12051302] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/19/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Ulcerative colitis belongs to inflammatory bowel diseases, which is a group of chronic disorders of the gastrointestinal tract. It is a debilitating condition with a wide range of symptoms including rectal bleeding, diarrhea, and visceral pain. Current dietary habits often lead to imbalance in n-6/n-3 polyunsaturated fatty acids (PUFA) in favor of n-6 PUFA. Recent data showed the potential anti-inflammatory advantage of n-3 PUFA. Walnut oil (WO) is rich in those fatty acids and mainly consists of linoleic and linolenic acids that may act via free fatty acids receptors (FFARs). We assessed the anti-inflammatory effect of WO in the mouse model of dextran sulfate sodium (DSS)-induced colitis. Moreover, we examined changes in the expression of tight junction proteins (TJ), pro-inflammatory cytokines, and FFAR proteins in the inflamed mouse colon. WO improves the damage score in inflamed tissue, significantly restoring ion transport and colonic wall permeability. Inflammation caused changes in TJ, FFAR, and pro-inflammatory gene proteins expression, which WO was able to partially reverse. WO has anti-inflammatory properties; however, its exact mechanism of action remains unclear. This stems from the pleiotropic effects of n-3 PUFA ligands associated with receptor distribution and targeted signaling pathways.
Collapse
|
6
|
Bartoszek A, Moo EV, Binienda A, Fabisiak A, Krajewska JB, Mosińska P, Niewinna K, Tarasiuk A, Martemyanov K, Salaga M, Fichna J. Free Fatty Acid Receptors as new potential therapeutic target in inflammatory bowel diseases. Pharmacol Res 2019; 152:104604. [PMID: 31846762 DOI: 10.1016/j.phrs.2019.104604] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/19/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Family of Free Fatty Acid Receptors (FFARs), specific G protein-coupled receptors comprises of four members: FFAR1-4, where each responds to different chain length of fatty acids (FAs). Over the years, FFARs have become attractive pharmacological targets in the treatment of type 2 diabetes, metabolic syndrome, cardiovascular diseases and asthma; recent studies also point to their role in inflammation. It is now well-established that activation of FFAR1 and FFAR4 by long and medium chain FAs may lead to reduction of inflammatory state; FFAR2 and FFAR3 are activated by short chain FAs, but only FFAR2 was shown to alleviate inflammation, mostly by neutrophil inhibition. All FFARs have thus been proposed as targets in inflammatory bowel diseases (IBD). Here we discuss current knowledge and future directions in FFAR research related to IBD.
Collapse
Affiliation(s)
- Adrian Bartoszek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Ee Von Moo
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Agata Binienda
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland; Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Julia B Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Paula Mosińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Karolina Niewinna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kirill Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
7
|
Baynes HW, Mideksa S, Ambachew S. The role of polyunsaturated fatty acids (n-3 PUFAs) on the pancreatic β-cells and insulin action. Adipocyte 2018. [PMID: 29537934 DOI: 10.1080/21623945.2018.1443662] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Polyunsaturated Fatty acids have multiple effects in peripheral tissues and pancreatic beta cell function. The n-3 Polyunsaturated Fatty acids prevent and reverse high-fat-diet induced adipose tissue inflammation and insulin resistance. Insulin secretion is stimulated by glucose, amino acids, and glucagon- like peptide-1 in tissue containing high levels of n-3 Polyunsaturated Fatty acids than lower level of n-3 Polyunsaturated Fatty acids. Also, n-3 Polyunsaturated Fatty acids led to decreased production of prostaglandin, which in turn contributed to the elevation of insulin secretion. N-3 polyunsaturated fatty acids prevent cytokine-induced cell death in pancreatic islets. Supplementation of n-3 Polyunsaturated Fatty acids for human subjects prevent beta cell destruction and insulin resistance. It also enhances insulin secretion, reduction in lipid profiles and glucose concentration particularly in type II diabetes patients. Therefore there should be a focus on the treatment mechanism of insulin related obesity and diabetes by n-3 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Habtamu Wondifraw Baynes
- Department of Clinical Chemistry, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Northwest Ethiopia
| | - Seifu Mideksa
- Clinical Chemistry laboratory, Ayder Comprehensive Specialized Hospital, Mekelle, Northern, Ethiopia
| | - Sintayehu Ambachew
- Department of Clinical Chemistry, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Northwest Ethiopia
| |
Collapse
|
8
|
Cehreli R, Akpinar H, Artmann AT, Sagol O. Effects of Glutamine and Omega-3 Fatty Acids on Erythrocyte Deformability and Oxidative Damage in Rat Model of Enterocolitis. Gastroenterology Res 2016; 8:265-273. [PMID: 27785307 PMCID: PMC5051045 DOI: 10.14740/gr683w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2015] [Indexed: 11/11/2022] Open
Abstract
Background The aim of the study was to investigate preventive effects of glutamine (Gln), omega-3 fatty acids (FA) on erythrocyte deformability (EDEF) in rat model of indomethacin-induced enterocolitis. Methods Nineteen Wistar albino male rats were divided into three groups: control group, colitis induced by indomethacin and were fed with a standard laboratory diet (group 1), and colitis induced by indomethacin and were also fed with Gln, omega-3 FA (group 2). An investigation was performed in a rat model of experimental colitis induced by subcutaneous injections of 2 mL intdomethacine solution applied at 24 and 48 hours intervals to male Wistar rats for 14 days. Gln and omega-3 FA were added to the daily standard diets of the animals during 14 days of injections. During the study, changes in body weight were evaluated. The intestines were examined, and colitis was macroscopic and histologically scored. The circulating tumor necrosis factor alpha (TNF-α) and interleukine-1β (IL-1β), erythrocyte transit time (ETT) and thiobarbituric acid reactive substances (TBARS) levels were determined in addition to calculation of EDEF indices in all groups. Results No significant differences in body weight changes could be determined between the standard diet and special diet groups at the end of the experiment. After macroscopic and microscopic scoring, in all of the groups that colitis was found induced, the lowest microscopic score was observed in the group 2. But Gln and omega-3 FA supplemented diet did not change the mean macroscopic and histological scores in all rats. The proliferating cell nuclear antigen (PCNA) levels were significantly higher in group 1 and group 2 compared to the control group. Effects of the diet on circulating TNF-α and IL-1β levels were found correlated with inflammation but statistically significant differences were not found in the group 1 and group 2 (P < 0.05). The ETT and TBARS levels in standard and special diet groups were significantly increased (P < 0.05). However, EDEF indices which are an important parameter of the study were decreased in indomethacin-induced enterocolitis groups that fed with standard and special diet. Conclusions Increases in ETT and TBARS levels did not return to normal by addition of Gln and omega-3 FA to diet. Our results suggest that determination of effective optimal doses and route of administration for these nutrients may play an important role in reducing EDEF and microvascular changes.
Collapse
Affiliation(s)
- Ruksan Cehreli
- Department of Prevantive Oncology, Institute of Oncology, Dokuz Eylul University Inciralti, Izmir 35340, Turkey
| | - Hale Akpinar
- Division of Gastroenterology, Dokuz Eylul University School of Medicine, Inciralti, Izmir 35340, Turkey
| | - Aysegul Temiz Artmann
- Department of Cell Biophysics and Cellular Engineering, Institute for Bioengineering, Aachen University of Applied Sciences, Germany
| | - Ozgul Sagol
- Department of Pathology, Dokuz Eylul University School of Medicine, Inciralti, Izmir 35340, Turkey
| |
Collapse
|
9
|
Morin C, Blier PU, Fortin S. MAG-EPA reduces severity of DSS-induced colitis in rats. Am J Physiol Gastrointest Liver Physiol 2016; 310:G808-21. [PMID: 27012773 DOI: 10.1152/ajpgi.00136.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 03/16/2016] [Indexed: 01/31/2023]
Abstract
Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the intestinal mucosa of the large bowel. Omega-3 (ω3) fatty acid supplementation has been associated with a decreased production of inflammatory cytokines involved in UC pathogenesis. The aim of this study was to determine the preventive and therapeutic potential of eicosapentaenoic acid monoglyceride (MAG-EPA) in an in vivo rats model of UC induced by dextran sulfate sodium (DSS). DSS rats were untreated or treated per os with MAG-EPA. Morphological, histological, and biochemical analyses were performed following MAG-EPA administrations. Morphological and histological analyses revealed that MAG-EPA pretreatment (12 days pre-DSS) and treatment (6 days post-DSS) exhibited strong activity in reducing severity of disease in DSS rats. Following MAG-EPA administrations, tissue levels of the proinflammatory cytokines TNF-α, IL-1β, and IL-6 were markedly lower compared with rats treated only with DSS. MAG-EPA per os administration decrease neutrophil infiltration in colon tissues, as depicted by myelohyperoxidase activity. Results also revealed a reduced activation of NF-κB pathways correlated with a decreased expression of COX-2 in colon homogenates derived from MAG-EPA-pretreated and treated rats. Tension measurements performed on colon tissues revealed that contractile responses to methacholine and relaxing effect induced by sodium nitroprusside were largely increased following MAG-EPA treatment. The combined treatment of MAG-EPA and vitamin E displayed an antagonistic effect on anti-inflammatory properties of MAG-EPA in DSS rats.
Collapse
Affiliation(s)
- Caroline Morin
- SCF Pharma, Ste-Luce, Quebec, Canada; Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Pierre U Blier
- Department of Biology, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Samuel Fortin
- SCF Pharma, Ste-Luce, Quebec, Canada; Department of Biology, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| |
Collapse
|
10
|
Triantafyllidis I, Poutahidis T, Taitzoglou I, Kesisoglou I, Lazaridis C, Botsios D. Treatment with Mesna and n-3 polyunsaturated fatty acids ameliorates experimental ulcerative colitis in rats. Int J Exp Pathol 2016; 96:433-43. [PMID: 26852691 DOI: 10.1111/iep.12163] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 11/29/2015] [Indexed: 12/17/2022] Open
Abstract
Oxidative damage is a central feature of ulcerative colitis. Here, we tested whether the antioxidant Mesna, when administered alone or in combination with n-3 polyunsaturated fatty acids (n-3 PUFAs), affects the outcome of dextran sodium sulphate (DSS)-induced ulcerative colitis in rats. After the induction of colitis, DSS-treated rats were further treated orally (p.o), intraperitoneally (i.p) or intrarectally (i.r) for either 7 or 14 days with Mesna, n-3 PUFAs or both. Rats were euthanized at the end of each treatment period. Clinical disease activity index was recorded throughout the experiment. At necropsy colorectal gross lesions were scored. Colitis was scored histologically, and the expression of myeloperoxidase (MPO), caspase-3, inducible nitric oxide synthase (iNOS) and nuclear factor κB (NF-κΒ) in colonic tissue was assessed by immunohistochemistry. Mesna alone was sufficient to significantly reduce colorectal tissue damage when administered orally or intraperitoneally. Orally coadministered n-3 PUFAs enhanced this effect, resulting in the significant suppression of DSS colitis after 7 days, and a remarkable recovery of colorectal mucosa was evident after 14 days of treatment. The amelioration of colon pathology co-existed with a significant decrease in MPO expression, overexpression of iNOS and reduction of nuclear NF-κB p65 in inflammatory cells, and the suppression of apoptosis in colonic epithelial cells. The simultaneous administration of Mesna and n-3 PUFAs is particularly effective in ameliorating DSS colitis in rats, by reducing oxidative stress, inflammation and apoptosis, probably through a mechanism that involves the inhibition of NF-κB and overexpression of iNOS.
Collapse
Affiliation(s)
| | - Theofilos Poutahidis
- Laboratory of Pathology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University, Thessaloniki, Greece
| | - Ioannis Taitzoglou
- Laboratory of Physiology, Faculty of Health Sciences, School of Veterinary Medicine, Aristotle University, Thessaloniki, Greece
| | - Isaak Kesisoglou
- 3rd Department of Surgery, AHEPA University Hospital, Faculty of Health Sciences, School of Medicine, Aristotle University, Thessaloniki, Greece
| | - Charalampos Lazaridis
- 4th Department of Surgery, Papanikolaou University Hospital, Faculty of Health Sciences, School of Medicine, Aristotle University, Thessaloniki, Greece
| | - Dimitrios Botsios
- 4th Department of Surgery, Papanikolaou University Hospital, Faculty of Health Sciences, School of Medicine, Aristotle University, Thessaloniki, Greece
| |
Collapse
|
11
|
Dumusc SD, Ontsouka EC, Schnyder M, Hartnack S, Albrecht C, Bruckmaier RM, Burgener IA. Cyclooxygenase-2 and 5-lipoxygenase in dogs with chronic enteropathies. J Vet Intern Med 2014; 28:1684-91. [PMID: 25269796 PMCID: PMC4895633 DOI: 10.1111/jvim.12463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 05/12/2014] [Accepted: 08/25/2014] [Indexed: 01/20/2023] Open
Abstract
Background Cyclooxygenase‐2 (COX‐2) is a key enzyme in the synthesis of pro‐inflammatory prostaglandins and 5‐lipoxygenase (5‐LO) is the major source of leukotrienes. Their role in IBD has been demonstrated in humans and animal models, but not in dogs with chronic enteropathies (CCE). Hypothesis COX‐2 and 5‐LO are upregulated in dogs with CCE. Animals Fifteen healthy control dogs (HCD), 10 dogs with inflammatory bowel disease (IBD), and 15 dogs with food‐responsive diarrhea (FRD). Methods Prospective study. mRNA expression of COX‐2, 5‐LO, IL‐1b, IL‐4, IL‐6, TNF, IL‐10 and TFG‐β was evaluated by quantitative real‐time RT‐PCR in duodenal and colonic biopsies before and after treatment. Results COX‐2 expression in the colon was significantly higher in IBD and FRD before and after treatment (all P < .01). IL‐1b was higher in FRD in the duodenum after treatment (P = .021). TGF‐β expression was significantly higher in the duodenum of HCD compared to FRD/IBD before treatment (both P < .001) and IBD after treatment (P = .012). There were no significant differences among groups and within groups before and after treatment for IL‐4, IL‐6, TNF, and IL‐10. There was a significant correlation between COX‐2 and IL‐1b in duodenum and colon before treatment in FRD and IBD, whereas 5‐LO correlated better with IL‐6 and TNF. IL‐10 and TGF‐β usually were correlated. Conclusions and Clinical Importance COX‐2 is upregulated in IBD and FRD, whereas IL‐1b and TGF‐β seem to be important pro‐ and anti‐inflammatory cytokines, respectively. The use of dual COX/5‐LO inhibitors could be an interesting alternative in the treatment of CCE.
Collapse
Affiliation(s)
- S D Dumusc
- Division of Small Animal Internal Medicine, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
12
|
Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:469-84. [PMID: 25149823 DOI: 10.1016/j.bbalip.2014.08.010] [Citation(s) in RCA: 996] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 12/15/2022]
Abstract
Inflammation is a condition which contributes to a range of human diseases. It involves a multitude of cell types, chemical mediators, and interactions. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are omega-3 (n-3) fatty acids found in oily fish and fish oil supplements. These fatty acids are able to partly inhibit a number of aspects of inflammation including leukocyte chemotaxis, adhesion molecule expression and leukocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid, production of inflammatory cytokines, and T-helper 1 lymphocyte reactivity. In addition, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonic acid and EPA and DHA give rise to anti-inflammatory and inflammation resolving mediators called resolvins, protectins and maresins. Mechanisms underlying the anti-inflammatory actions of marine n-3 fatty acids include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor kappa B so reducing expression of inflammatory genes, activation of the anti-inflammatory transcription factor peroxisome proliferator activated receptor γ and binding to the G protein coupled receptor GPR120. These mechanisms are interlinked, although the full extent of this is not yet elucidated. Animal experiments demonstrate benefit from marine n-3 fatty acids in models of rheumatoid arthritis (RA), inflammatory bowel disease (IBD) and asthma. Clinical trials of fish oil in RA demonstrate benefit, but clinical trials of fish oil in IBD and asthma are inconsistent with no overall clear evidence of efficacy. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UK; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
13
|
Yates CM, Calder PC, Ed Rainger G. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther 2014; 141:272-82. [DOI: 10.1016/j.pharmthera.2013.10.010] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/12/2013] [Indexed: 12/11/2022]
|
14
|
Mobraten K, Haug TM, Kleiveland CR, Lea T. Omega-3 and omega-6 PUFAs induce the same GPR120-mediated signalling events, but with different kinetics and intensity in Caco-2 cells. Lipids Health Dis 2013; 12:101. [PMID: 23849180 PMCID: PMC3720243 DOI: 10.1186/1476-511x-12-101] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/08/2013] [Indexed: 01/20/2023] Open
Abstract
Background Omega-3 PUFAs are known to have anti-inflammatory properties, and different mechanisms are involved. GPR120 is a G-protein coupled receptor that has recently received attention because of its anti-inflammatory signalling properties after binding omega-3 PUFAs. However, both omega-3 and omega-6 PUFAs are natural GPR120 ligands. The aim of this study was to study possible differences in GPR120-mediated signalling events after treatment with different long-chain PUFAs in intestinal epithelial cells. We also investigated possible GPR120-mediated anti-inflammatory effects of different long-chain PUFAs that may be relevant in the understanding of how dietary PUFAs influence inflammatory responses in inflammatory diseases such as IBD. Methods We used Caco-2 cells as a model system to study GPR120-mediated signalling events because we found this cell line to express GPR120, but not GPR40, another plasma membrane receptor for medium- and long chain fatty acids. Increase in cytosolic Ca2+concentration, activation of MAP kinase ERK1/2 and the inhibition of IL-1β induced NF-κB activity were studied to reveal potential differences in the activation of GPR120 by the omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and the omega-6 PUFA arachidonic acid (AA). Results We found that EPA, DHA and AA enhanced the cytosolic concentration of the second messenger Ca2+ with the same efficiency, but with different kinetics. Both omega-3 and omega-6 PUFAs activated MAP kinase ERK1/2, but differences regarding kinetics and intensity were also observed in this pathway. ERK1/2 activation was shown to be dependent upon EGFR and Raf-1. We further investigated the ability of EPA, DHA and AA to inhibit NF-κB activity in Caco-2 cells. All PUFAs tested were able to inhibit IL-1β induced breakdown of IκBα after binding to GPR120, but with different potency. Conclusions Our results show that EPA, DHA and AA elicit the same signalling events, but with different kinetics and efficiency through GPR120 in Caco-2 cells. We show, for the first time, that both omega-3 and omega-6 PUFAs inhibit NF-κB activation in intestinal epithelial cells. Our results may be important for understanding how dietary PUFAs influence inflammatory processes relevant in delineating effects of PUFAs in the treatment of IBD.
Collapse
Affiliation(s)
- Kaia Mobraten
- Department of Chemistry, Biotechnology and Food Science, University of Life Sciences, Post box 5003, NO-1430 Aas, Norway.
| | | | | | | |
Collapse
|
15
|
Bosco N, Brahmbhatt V, Oliveira M, Martin FP, Lichti P, Raymond F, Mansourian R, Metairon S, Pace-Asciak C, Bastic Schmid V, Rezzi S, Haller D, Benyacoub J. Effects of increase in fish oil intake on intestinal eicosanoids and inflammation in a mouse model of colitis. Lipids Health Dis 2013; 12:81. [PMID: 23725086 PMCID: PMC3691874 DOI: 10.1186/1476-511x-12-81] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/24/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBD) are chronic intestinal inflammatory diseases affecting about 1% of western populations. New eating behaviors might contribute to the global emergence of IBD. Although the immunoregulatory effects of omega-3 fatty acids have been well characterized in vitro, their role in IBD is controversial. METHODS The aim of this study was to assess the impact of increased fish oil intake on colonic gene expression, eicosanoid metabolism and development of colitis in a mouse model of IBD. Rag-2 deficient mice were fed fish oil (FO) enriched in omega-3 fatty acids i.e. EPA and DHA or control diet for 4 weeks before colitis induction by adoptive transfer of naïve T cells and maintained in the same diet for 4 additional weeks. Onset of colitis was monitored by colonoscopy and further confirmed by immunological examinations. Whole genome expression profiling was made and eicosanoids were measured by HPLC-MS/MS in colonic samples. RESULTS A significant reduction of colonic proinflammatory eicosanoids in FO fed mice compared to control was observed. However, neither alteration of colonic gene expression signature nor reduction in IBD scores was observed under FO diet. CONCLUSION Thus, increased intake of dietary FO did not prevent experimental colitis.
Collapse
Affiliation(s)
- Nabil Bosco
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | - Viral Brahmbhatt
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | - Manuel Oliveira
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | - Francois-Pierre Martin
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
- Current address: Nestlé Institute of Health Sciences SA, EPFL campus, Quartier de l’innovation, Building G, Lausanne, 1015, Switzerland
| | - Pia Lichti
- Technische Universität München, Biofunctionality, ZIEL–Research Center for Nutrition and Food Science, CDD - Center for Diet and Disease, Gregor-Mendel-Straße 2, Freising-Weihenstephan, 85350, Germany
| | - Frederic Raymond
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
- Current address: Nestlé Institute of Health Sciences SA, EPFL campus, Quartier de l’innovation, Building G, Lausanne, 1015, Switzerland
| | - Robert Mansourian
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| | - Sylviane Metairon
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
- Current address: Nestlé Institute of Health Sciences SA, EPFL campus, Quartier de l’innovation, Building G, Lausanne, 1015, Switzerland
| | - Cecil Pace-Asciak
- Research Institute, E. McMaster Building, The Hospital for Sick Children, Toronto, Canada
| | | | - Serge Rezzi
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
- Current address: Nestlé Institute of Health Sciences SA, EPFL campus, Quartier de l’innovation, Building G, Lausanne, 1015, Switzerland
| | - Dirk Haller
- Technische Universität München, Biofunctionality, ZIEL–Research Center for Nutrition and Food Science, CDD - Center for Diet and Disease, Gregor-Mendel-Straße 2, Freising-Weihenstephan, 85350, Germany
| | - Jalil Benyacoub
- Nestlé Research Center, Vers-chez-les-Blanc, Lausanne 26, CH-1000, Switzerland
| |
Collapse
|
16
|
Grimstad T, Bjørndal B, Cacabelos D, Aasprong OG, Omdal R, Svardal A, Bohov P, Pamplona R, Portero-Otin M, Berge RK, Hausken T. A salmon peptide diet alleviates experimental colitis as compared with fish oil. J Nutr Sci 2013; 2:e2. [PMID: 25191568 PMCID: PMC4153328 DOI: 10.1017/jns.2012.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/31/2012] [Accepted: 10/16/2012] [Indexed: 12/11/2022] Open
Abstract
Fish oil (FO) has been shown to have anti-inflammatory properties in animal models of inflammatory bowel disease, but how fish peptides (FP) influence intestinal inflammation has been less studied. Male Wistar rats, divided into five groups, were included in a 4-week dietary intervention study. Of the groups, four were exposed in the fourth week to 5 % dextran sulfate sodium (DSS) to induce colitis, while one group was unexposed. The diets were: (1) control, (2) control + DSS, (3) FO (5 %) + DSS, (4) FP (3·5 %) + DSS, (5) FO + FP + DSS. Following DSS intake, weight and disease activity index (DAI) were assessed, and histological combined score (HCS), selected colonic PG, cytokines, oxidative damage markers and mRNA levels were measured. FP reduced HCS, tended to lower DAI (P = 0·07) and reduced keratinocyte chemoattractant/growth-regulated oncogene levels, as compared with the FO diet. FP also reduced mRNA levels of Il-6 and Cxcl1, although not significantly. FO intake increased the DAI as compared with DSS alone. PGE3 levels increased after the FO diet, and even more following FO + FP intake. The FP diet seems to have a protective effect in DSS-induced colitis as compared with FO. A number of beneficial, but non-significant, changes also occurred after FP v. DSS. A combined FO + FP diet may influence PG synthesis, as PGE3 levels were higher after the combined diet than after FO alone.
Collapse
Affiliation(s)
- Tore Grimstad
- Division of Gastroenterology, Department of
Medicine, Stavanger University Hospital,
Stavanger, Norway
- Institute of Medicine, University of
Bergen, Bergen, Norway
| | - Bodil Bjørndal
- Section of Clinical Biochemistry, Haukeland
University Hospital, Bergen,
Norway
| | - Daniel Cacabelos
- Department of Experimental Medicine,
University of Lleida (IRB Lleida),
Lleida, Spain
| | - Ole G. Aasprong
- Department of Pathology,
Stavanger University Hospital,
Stavanger, Norway
| | - Roald Omdal
- Institute of Medicine, University of
Bergen, Bergen, Norway
- Department of Medicine,
Stavanger University Hospital,
Stavanger, Norway
| | | | - Pavol Bohov
- Section of Clinical Biochemistry, Haukeland
University Hospital, Bergen,
Norway
| | - Reinald Pamplona
- Department of Experimental Medicine,
University of Lleida (IRB Lleida),
Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine,
University of Lleida (IRB Lleida),
Lleida, Spain
| | - Rolf K. Berge
- Section of Clinical Biochemistry, Haukeland
University Hospital, Bergen,
Norway
- Department of Heart Diseases,
Haukeland University Hospital, Bergen,
Norway
| | - Trygve Hausken
- Institute of Medicine, University of
Bergen, Bergen, Norway
- Division of Gastroenterology, Department of
Medicine, Haukeland University Hospital,
Bergen, Norway
| |
Collapse
|
17
|
Efficacy and Safety of Gwakhyangjeonggi-SanRetention Enema in Normal Rats and Spontaneously Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:765914. [PMID: 23843880 PMCID: PMC3703367 DOI: 10.1155/2013/765914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/30/2013] [Indexed: 11/18/2022]
Abstract
The purpose of this study is to establish a protocol of retention-enema experiments and evaluate the antihypertensive effect and the safety of Gwakhyangjeonggi-san retention enema. Normal and spontaneously hypertensive rats (SHRs) were divided into treatment and control groups, respectively. We applied the Gwakhyangjeonggi-san extract by decoction and 0.9% NaCl in each group, estimated the blood pressure and body weight, and performed HPLC analysis. ALT, AST, BUN, and creatinine were examined. The systolic blood pressure within each group in normal rats differed significantly in time effect, and so did the diastolic blood pressure in the treatment group of normal rats. The systolic, diastolic, and mean blood pressure showed significant differences in group effect in the treatment group of the SHRs. The time effect of the body weight in both groups of normal rats differed significantly, so did group × time and time effects in both groups of SHRs. AST, ALT, BUN, and creatinine showed no significant difference between groups. We concluded that the Gwakhyangjeonggi-san retention enema has a hypotensive effect in normal rats within the regular range of blood pressure, but an antihypertensive effect in SHRs. Also, the intervention is safe and does not affect the liver and kidney functions in normal rats.
Collapse
|
18
|
Cho JY, Chi SG, Chun HS. Oral administration of docosahexaenoic acid attenuates colitis induced by dextran sulfate sodium in mice. Mol Nutr Food Res 2010; 55:239-46. [DOI: 10.1002/mnfr.201000070] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 07/01/2010] [Accepted: 07/08/2010] [Indexed: 01/25/2023]
|
19
|
Papadia C, Coruzzi A, Montana C, Di Mario F, Franzè A, Forbes A. Omega-3 fatty acids in the maintenance of ulcerative colitis. JRSM SHORT REPORTS 2010; 1:15. [PMID: 21103107 PMCID: PMC2984332 DOI: 10.1258/shorts.2010.010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cinzia Papadia
- Department of Gastroenterology and Clinical Nutrition, Maple House, University College Hospital , 235 Euston Road, London NW1 2BU , UK
| | | | | | | | | | | |
Collapse
|
20
|
Calder PC. Fatty acids and immune function: relevance to inflammatory bowel diseases. Int Rev Immunol 2010; 28:506-34. [PMID: 19954361 DOI: 10.3109/08830180903197480] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fatty acids may influence immune function through a variety of mechanisms; many of these are associated with changes in fatty acid composition of immune cell membranes. Eicosanoids produced from arachidonic acid have roles in inflammation and immunity. Increased membrane content of n-3 fatty acids results in a changed pattern of production of eicosanoids, resolvins, and cytokines. Changing the fatty acid composition of immune cells also affects T cell reactivity and antigen presentation. Little attention has been paid to the influence of fatty acids on the gut-associated lymphoid tissue. However, there has been considerable interest in fatty acids and gut inflammation.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom.
| |
Collapse
|
21
|
McNabb WC, Knoch B, Barnett MP, Roy NC. Study of the effects of dietary polyunsaturated fatty acids: Molecular mechanisms involved in intestinal inflammation. GRASAS Y ACEITES 2008. [DOI: 10.3989/gya.086508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Calder PC. Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol Nutr Food Res 2008; 52:885-97. [PMID: 18504706 DOI: 10.1002/mnfr.200700289] [Citation(s) in RCA: 327] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With regard to inflammatory processes, the main fatty acids of interest are the n-6 PUFA arachidonic acid (AA), which is the precursor of inflammatory eicosanoids like prostaglandin E(2) and leukotriene B(4), and the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). EPA and DHA are found in oily fish and fish oils. EPA and DHA inhibit AA metabolism to inflammatory eicosanoids. They also give rise to mediators that are less inflammatory than those produced from AA or that are anti-inflammatory. In addition to modifying the lipid mediator profile, n-3 PUFAs exert effects on other aspects of inflammation like leukocyte chemotaxis and inflammatory cytokine production. Some of these effects are likely due to changes in gene expression, as a result of altered transcription factor activity. Fish oil has been shown to decrease colonic damage and inflammation, weight loss and mortality in animal models of colitis. Fish oil supplementation in patients with inflammatory bowel diseases results in n-3 PUFA incorporation into gut mucosal tissue and modification of inflammatory mediator profiles. Clinical outcomes have been variably affected by fish oil, although some trials report improved gut histology, decreased disease activity, use of corticosteroids and relapse.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
23
|
An arachidonic acid-enriched diet does not result in more colonic inflammation as compared with fish oil- or oleic acid-enriched diets in mice with experimental colitis. Br J Nutr 2008; 100:347-54. [DOI: 10.1017/s0007114507901257] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fish oils (FO) – rich in EPA and DHA – may protect against colitis development. Moreover, inflammatory bowel disease patients have elevated colonic arachidonic acid (AA) proportions. So far, effects of dietary AAv.FO on colitis have never been examined. We therefore designed three isoenergetic diets, which were fed to mice for 6 weeks preceding and during 7 d dextran sodium sulfate colitis induction. The control diet was rich in oleic acid (OA). For the other two diets, 1·0 % (w/w) OA was exchanged for EPA+DHA (FO group) or AA. At 7 d after colitis induction, the AA group had gained weight (0·46 (sem0·54) g), whereas the FO and OA groups had lost weight ( − 0·98 (sem0·81) g and − 0·79 (sem1·05) g, respectively;P < 0·01v.AA). The AA group had less diarrhoea than the FO and OA groups (P < 0·05). Weight and length of the colon, histological scores and cytokine concentrations in colon homogenates showed no differences. Myeloperoxidase concentrations in plasma and polymorphonuclear cell infiltration in colon were decreased in the FO group as compared with the OA group. We conclude that in this mice model an AA-enriched diet increased colonic AA content, but did not result in more colonic inflammation as compared with FO- and OA-enriched diets. As we only examined effects after 7 d and because the time point for evaluating effects seems to be important, the present results should be regarded as preliminary. Future studies should further elucidate differential effects of fatty acids on colitis development in time.
Collapse
|
24
|
Stanke-Labesque F, Pofelski J, Moreau-Gaudry A, Bessard G, Bonaz B. Urinary leukotriene E4 excretion: a biomarker of inflammatory bowel disease activity. Inflamm Bowel Dis 2008; 14:769-74. [PMID: 18286646 DOI: 10.1002/ibd.20403] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Crohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory disorders collectively referred to as inflammatory bowel diseases (IBD). Cysteinyl leukotrienes are proinflammatory 5-lipoxygenase-derived products that play a major role in the immune and inflammatory response. Consequently, they may be involved in the pathogenesis of IBD. The aim of this study was therefore to evaluate 1) the urinary excretion of leukotriene E(4) (LTE(4)) in IBD patients and healthy volunteers, and 2) the association between LTE(4) production and the activity (relapse/remission) of the disease. METHODS IBD patients and healthy volunteers were prospectively recruited. CD and UC activity was determined on inclusion with the Crohn's Disease Activity Index and Clinical Activity Index, respectively. Urine was collected and the urinary excretion of LTE(4) was measured by liquid chromatography tandem mass spectrometry. RESULTS 32 CD patients, 28 UC patients, and 30 controls were enrolled in the study. LTE(4) urinary excretion was significantly increased (P < 0.01) in CD [52.0 pg/mg creatinine (10th-90th percentiles: 26.2-148.0)] and UC [64.1 pg/mg creatinine (10th-90th percentiles: 26.7-178.0)] patients compared to controls [32.3 pg/mg creatinine (10th-90th percentiles: 21.8-58.8)]. LTE(4) levels were higher (P < 0.001) in patients with active disease than in patients in remission, for whom the levels of LTE(4) were similar to the levels of controls. CONCLUSIONS Cysteinyl leukotriene pathway activation could contribute to the inflammation associated with IBD. The quantification of urinary LTE(4) could be an interesting noninvasive biomarker for the assessment of IBD activity.
Collapse
|
25
|
Arslan G, Erichsen K, Milde AM, Helgeland L, Bjørkkjær T, Frøyland L, Berstad A. No Protection against DSS-induced Colitis by Short-term Pretreatment with Seal or Fish Oils in Rats. INTEGRATIVE MEDICINE INSIGHTS 2007. [DOI: 10.1177/117863370700200004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background Omega-3 (n-3) polyunsaturated fatty acids (PUFAs) have modulating effects in several chronic inflammatory conditions. The aim of the present study was to test whether prior short-term dietary supplementation with n-3 (fish or seal oil) or n-6 (soy oil) PUFA rich oils would protect the development of dextran sulfate sodium (DSS)-induced colitis in rats. Methods Forty-eight male Wistar rats were divided into 6 groups: no intervention, sham, DSS, seal oil + DSS, fish oil + DSS and soy oil + DSS. Following 7 days of acclimatisation, 1 mL oil (seal, fish or soy) or distilled water (sham) was administered by gavage day 8 to 14. Colitis was induced by 5% DSS in drinking water from day 15 to 21. Rats were sacrificed on day 23. Histological colitis (crypt and inflammation) scores, faecal granulocyte marker protein (GMP) and quantitative fatty acid composition in red blood cells were measured. Results Pretreatment with fish or seal oils did not significantly influence DSS induced inflammation. In fact, all the oils tended to exacerbate the inflammation. Soy oil increased the mean crypt score ( P < 0.04), but not the inflammation score or GMP. The ratio of n-6 to n-3 fatty acids (FAs) was 11 to 1 and 10 to 1 in standard diet and in red blood cells of control rats, respectively. Following administration of DSS, the ratio fell in all treatment groups ( P < 0.001). The lowest ratios were seen in the groups receiving DSS + fish or seal oils (around 6 to 1). Conclusion Short-term pretreatment with fish or seal oils did not protect against subsequent induction of colitis by DSS in this rat model. Whether the high ratio of n-6 to n-3 FAs in the standard diet concealed effects of n-3 FA supplementation should be further investigated.
Collapse
Affiliation(s)
- Gülen Arslan
- Institute of Medicine, Bergen, Norway
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Kari Erichsen
- Institute of Medicine, Bergen, Norway
- Department of Medicine, Bergen, Norway
| | | | - Lars Helgeland
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Tormod Bjørkkjær
- Department of Biomedicine, University of Bergen, Bergen, Norway
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Livar Frøyland
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Arnold Berstad
- Institute of Medicine, Bergen, Norway
- Department of Medicine, Bergen, Norway
| |
Collapse
|
26
|
Jacobson K, Mundra H, Innis SM. Intestinal responsiveness to experimental colitis in young rats is altered by maternal diet. Am J Physiol Gastrointest Liver Physiol 2005; 289:G13-20. [PMID: 15731507 DOI: 10.1152/ajpgi.00459.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Increasing evidence suggests that fetal and neonatal nutrition impacts later health. Aims of the present study were to determine the effect of maternal dietary fat composition on intestinal phospholipid fatty acids and responsiveness to experimental colitis in suckling rat pups. Female rats were fed isocaloric diets varying only in fat composition throughout gestation and lactation. The oils used were high (8%) in n-3 [canola oil (18:3n-3)], n-6 (72%) [safflower oil (18:2n-6)], or n-9 (78%) [high oleic acid safflower oil (18:1n-9)] fatty acids, n = 6/group. Colitis was induced on postnatal day 15 by intrarectal 2,4-dinitrobenzene sulfonic acid (DNBS) administration with vehicle (50% ethanol) and procedure (0.9% saline) controls. Jejunal and colonic phospholipids and milk fatty acids were determined. The distal colon was assessed for macroscopic damage, histology, and MPO activity. The 18:2n-6 maternal diet increased n-6 fatty acids, whereas the 18:3n-3 diet increased n-3 fatty acids in milk and pup jejunal and colonic phospholipids. Maternal diet, milk, and pup intestinal n-6-to-n-3 fatty acid ratios increased significantly in order: high 18:3n-3 < high 18:1n-9 < high 18:2n-6. DNBS administration in pups in the high 18:2n-6 group led to severe colitis with higher colonic damage scores and MPO activity than in the 18:1n-9 and 18:3n-3 groups. High maternal dietary 18:3n-3 intake was associated with colonic damage scores and MPO activity, which were not significantly different from ethanol controls. We demonstrate that maternal dietary fat influences the composition of intestinal lipids and responsiveness to experimental colitis in nursing offspring.
Collapse
Affiliation(s)
- Kevan Jacobson
- Division of Gastroenterology, Department of Pediatrics and Nutrition Research Program, British Columbia Institute for Children's and Women's Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
27
|
Camuesco D, Gálvez J, Nieto A, Comalada M, Rodríguez-Cabezas ME, Concha A, Xaus J, Zarzuelo A. Dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, attenuates colonic inflammation in rats with DSS-induced colitis. J Nutr 2005; 135:687-94. [PMID: 15795419 DOI: 10.1093/jn/135.4.687] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previous studies proposed a protective role of the dietary intake of (n-3) PUFA in human inflammatory bowel disease (IBD), but almost no studies have been performed using olive oil. The aims of the present study were to test the beneficial effects of an olive oil-based diet with or without fish oil, rich in (n-3) PUFA, in the dextran sodium sulfate (DSS) model of rat colitis and to elucidate the mechanisms involved in their potential beneficial effects, with special attention to the production of some of the mediators involved in the intestinal inflammatory response, such as leukotriene B(4) (LTB(4)), tumor necrosis factor alpha (TNFalpha) and nitric oxide (NO). Rats were fed the different diets for 2 wk before colitis induction and thereafter until colonic evaluation 15 d later. Colitic rats fed the olive oil-based diet had a lower colonic inflammatory response than those fed the soybean oil diet, and this beneficial effect was increased by the dietary incorporation of (n-3) PUFA. A restoration of colonic glutathione levels and lower colonic NO synthase expression occurred in all colitic rats fed an olive oil diet compared with the control colitic group that consumed the soybean oil diet. However, (n-3) PUFA incorporation into an olive oil diet significantly decreased colonic TNFalpha and LTB(4) levels compared with colitic rats that were not supplemented with fish oil. These results affirm the benefits of an olive oil diet in the management of IBD, which are further enhanced by the addition of (n-3) PUFA.
Collapse
Affiliation(s)
- Desirée Camuesco
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Whiting CV, Bland PW, Tarlton JF. Dietary n-3 polyunsaturated fatty acids reduce disease and colonic proinflammatory cytokines in a mouse model of colitis. Inflamm Bowel Dis 2005; 11:340-9. [PMID: 15803023 DOI: 10.1097/01.mib.0000164016.98913.7c] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND n-3 polyunsaturated fatty acids (PUFAs) reduce the severity of chronic inflammatory bowel disease, probably by means of reduction of immune cell activation or enhancement of the epithelial barrier. Using the severe combined immunodeficient (SCID) mouse model of colitis, this study examined the effect of dietary n-3 PUFAs on development of colitis and on immunologic, epithelial, and matrix parameters in the intestines of control and colitic animals. METHODS SCID mice were fed n-3-enriched or control diet for 3 weeks before colitis induction by transplantation of CD45RB T cells and maintained on the same diet for 4 to 8 weeks. Phenotype of infiltrating cells, epithelial ZO-1 protein, and mucosal type I collagen were assessed by immunohistology and tissue cytokines by ELISA. RESULTS Transplanted n-3-fed animals had significantly reduced pathology scores, colonic tumor necrosis factor-alpha, interleukin-12, and interleukin-1beta compared with animals fed standard diet. Proinflammatory cytokines were reduced despite a similar level of immune cell infiltration by T cells, CD11c cells, and CD11b cells. Neutrophil infiltration was significantly reduced in n-3-fed control and colitic mice, and other myeloid populations were reduced in mice on the n-3 diet. Epithelial ZO-1 expression was increased, and myofibroblast activation significantly decreased in transplanted n-3-fed animals compared with standard diet mice. Submucosal collagen synthesis was enhanced in n-3-fed mice. CONCLUSIONS Dietary n-3 PUFAs reduced clinical colitis and colonic immunopathology in this model of colonic inflammation by decreasing proinflammatory cytokine synthesis, reducing myeloid cell recruitment and activation, and enhancing epithelial barrier function and mucosal wound healing mechanisms.
Collapse
Affiliation(s)
- Christine V Whiting
- Veterinary Pathology Infection and Immunity, School Clinical Veterinary Sciences, University of Bristol, Bristol, United Kingdom.
| | | | | |
Collapse
|
29
|
Vardar S, Buduneli E, Türkoğlu O, Berdeli AH, Baylas H, Başkesen A, Atilla G. Therapeutic versus prophylactic plus therapeutic administration of omega-3 fatty acid on endotoxin-induced periodontitis in rats. J Periodontol 2005; 75:1640-6. [PMID: 15732866 DOI: 10.1902/jop.2004.75.12.1640] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The aim of the present study was 1) to evaluate the possible effects of therapeutic usage of omega-3 fatty acid on the gingival tissue levels of prostaglandin E2 (PGE2), prostaglandin F2alpha (PGF2alpha), platelet activating factor (PAF), and leukotriene B4 (LTB4) in endotoxin-induced periodontitis in rats and 2) to investigate whether prophylactic usage provides any additional benefits to therapeutic doses of omega-3 fatty acid. METHODS Experimental periodontitis was induced by repeated injection of Escherichia coli lipopolysaccharide (LPS). Thirty-six adult male Sprague-Dawley rats were divided into four study groups: 1) saline controls; 2) LPS; 3) therapeutic omega-3 fatty acid (TO3); and 4) prophylactic plus therapeutic omega-3 fatty acid (P + TO3) groups. In TO3 group, omega-3 fatty acid was given for 15 days following induction of experimental periodontitis. In P + TO3 group, omega-3 fatty acid was started 15 days before baseline, and then periodontitis was induced at baseline and omega-3 fatty acid was continued for 15 days after baseline. On day 15 after baseline, all rats were anesthetized and sacrificed. PGE2, PGF2alpha, and LTB4 levels in gingival tissue samples were analyzed by enzyme immunoassay and PAF levels were analyzed by radioimmonoassay. Data were evaluated statistically by using parametric tests. RESULTS LPS injection resulted in significant amount of bone loss (P<0.05). Neither therapeutic nor prophylactic plus therapeutic administration of omega-3 fatty acid with the doses and duration of therapy used in the present study was effective in preventing endotoxin-induced alveolar bone loss. TO3 group exhibited significant decreases in the gingival tissue levels of PGE2, PGF2alpha, LTB4, and PAF compared to the LPS group (P<0.05). PGE2 and PGF2alpha levels in TO3 group were similar to those of the saline group (P>0.05), while LTB4 and PAF levels were statistically higher than the saline group (P<0.05). Prophylactic plus therapeutic usage of omega-3 fatty acid provided similar levels of all these mediators to those of the saline controls (P>0.05). CONCLUSIONS Therapeutic omega-3 fatty acid significantly reduced the gingival tissue levels of PGE2, PGF2alpha, LTB4, and PAF in experimental periodontitis. Furthermore, prophylactic usage of omega-3 fatty acid provided additional beneficial effects to the therapeutic administration by decreasing the gingival tissue levels of these mediators to levels of healthy tissue. These findings should be verified by longitudinal clinical trials investigating clinical and biochemical periodontal parameters to better define the possible role of omega-3 fatty acids in periodontal treatment.
Collapse
Affiliation(s)
- Saynur Vardar
- Ege University, School of Dentistry, Department of Periodontology, Izmir, Turkey.
| | | | | | | | | | | | | |
Collapse
|
30
|
Aldhous MC, Meister D, Ghosh S. Modification of enteral diets in inflammatory bowel disease. Proc Nutr Soc 2001; 60:457-61. [PMID: 12069398 DOI: 10.1079/pns2001120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The provision of food is thought to promote the maintenance of gut integrity. Nutrients are able to elicit and affect both systemic and mucosal immune responses. Enteral diet therapy has long been known to be efficacious in inflammatory bowel disease (IBD), particularly in childhood Crohn's disease. However, the mechanisms of action of these diets are not clear. Nutritional repletion, direct effects on the gut mucosa or decreased intestinal permeability have all been postulated as being important in nutritional therapy. There is some evidence that the enteral diet has a direct effect on the gut mucosa by reducing cytokine production and the accompanying inflammation, thus leading to decreased intestinal permeability. Modifications of enteral diet composition have been evaluated in many studies. Such modifications include fat and/or protein content and the addition of bioactive peptides. The fatty acid composition of the enteral diet seems to have a much greater impact on its efficacy than modification of the N source. As specific fatty acids are precursors of inflammatory mediators derived from arachidonic acid, the reduction in these components may be beneficial in nutritional therapy for IBD. Addition of bioactive peptides to enteral diet formulas may also have a role; such peptides may have specific growth factor or anti-inflammatory actions. There is still much work to be done to define disease-specific enteral diet formulas that are effective as therapies for both Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- M C Aldhous
- Gastro-intestinal Laboratory, Western General Hospital, Edinburgh, UK.
| | | | | |
Collapse
|
31
|
Holma R, Salmenperä P, Riutta A, Virtanen I, Korpela R, Vapaatalo H. Acute effects of the cys-leukotriene-1 receptor antagonist, montelukast, on experimental colitis in rats. Eur J Pharmacol 2001; 429:309-18. [PMID: 11698051 DOI: 10.1016/s0014-2999(01)01330-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cysteinyl leukotrienes play a part in inflammatory reactions such as inflammatory bowel diseases. The aim of the present study was to evaluate the acute effects of a cys-leukotriene-1 receptor antagonist, montelukast, on trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats. Montelukast (5, 10 or 20 mg kg(-1) day(-1)), a 5-lipoxygenase inhibitor, zileuton (50 or 100 mg kg(-1) day(-1), a positive control), or the vehicle was administered intracolonically to the rats twice daily throughout the study, starting 12 h before the induction of colitis with TNBS. The severity of colitis (macroscopic and histological assessment, as well as myeloperoxidase activity), the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2, and eicosanoid production in colonic tissue incubation were assessed 24 and 72 h after colitis induction. Montelukast increased prostaglandin E(2) production at 24 h and tended to reduce the cyclooxygenase-2 protein expression at 72 h, but did not influence the severity of colitis. Zileuton failed to decrease the inflammatory reaction in spite of reduced leukotriene B(4) production at 72 h. The results suggest that drugs that block cysteinyl leukotriene receptors have limited potential to ameliorate acute TNBS-induced colitis, but that they exert some beneficial effects which make them capable of modulating the course of colitis.
Collapse
Affiliation(s)
- R Holma
- Institute of Biomedicine, Pharmacology, Biomedicum Helsinki, P.O. Box 63, FIN-00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Recent developments concerning nutritional complications of inflammatory bowel disease include a better understanding of disease-associated anorexia and increasing recognition of the interaction of nutrition and cytokines in the pathogenesis of growth impairment of children. Decreased bone mineral density is a multifactorial complication and an increased focus of research. Enteral nutrition continues to play an important role in the therapy of Crohn's disease. The mechanisms whereby specific nutrients, such as n-3 fatty acids, antioxidants, and butyrate, ameliorate inflammation are being elucidated in in-vitro studies, but beneficial effects have yet to be translated into the clinical sphere.
Collapse
Affiliation(s)
- S C Ling
- Royal Hospital for Sick Children, Yorkhill, Glasgow, UK.
| | | |
Collapse
|