1
|
Mori K, Togo A, Yamashita K, Sakuragi S, Bannai H, Umezawa T, Ohta K, Asahi T, Nozaki C, Kataoka K. Mitochondrial damage and ER stress in CB1 receptor antagonist-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neuropharmacology 2025; 273:110440. [PMID: 40185361 DOI: 10.1016/j.neuropharm.2025.110440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/13/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Cannabinoid receptor type 1 (CB1R) is the key modulator of neuronal viability. CB1R antagonists provide neuroprotective effects on neurotoxicity caused by e.g. neuronal injury. However, the underlying mechanisms and potential limitations of CB1R antagonism remain unclear. Here we investigated the impact of environmental conditions on CB1R antagonist effects. We have found that cell-permeable CB1R antagonists, rimonabant and AM251, induced cell death in human neuroblastoma SH-SY5Y cells under serum-free conditions. Mitochondrial morphological analysis revealed mitochondrial swelling characterized by their network fragmentation and cristae reduction. Phosphoproteomics analysis showed the ER stress signaling pathway PERK/eIF2α/ATF4/CHOP, leading to caspase-dependent apoptosis. These results suggest that CB1R antagonists promote apoptosis via mitochondrial damage and ER stress under serum-free conditions in SH-SY5Y cells. Our findings indicate that while CB1R antagonists may be neuroprotective in certain conditions, they may also pose a neurotoxic risk in environments characterized by cellular stress or nutrient deprivation.
Collapse
Affiliation(s)
- Kazuaki Mori
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, 67 Asahi-cho, Kurume-shi, Fukuoka, 830-0011, Japan
| | - Kota Yamashita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Shigeo Sakuragi
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hiroko Bannai
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan
| | - Keisuke Ohta
- Advanced Imaging Research Center, Kurume University School of Medicine, 67 Asahi-cho, Kurume-shi, Fukuoka, 830-0011, Japan
| | - Toru Asahi
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan; Comprehensive Research Organization, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Chihiro Nozaki
- Global Center for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kosuke Kataoka
- Comprehensive Research Organization, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan; Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan.
| |
Collapse
|
2
|
Somogyi P, Horie S, Lukacs I, Hunter E, Sarkany B, Viney T, Livermore J, Plaha P, Stacey R, Ansorge O, El Mestikawy S, Zhao Q. Synaptic Targets and Cellular Sources of CB1 Cannabinoid Receptor and Vesicular Glutamate Transporter-3 Expressing Nerve Terminals in Relation to GABAergic Neurons in the Human Cerebral Cortex. Eur J Neurosci 2025; 61:e16652. [PMID: 39810425 PMCID: PMC11733414 DOI: 10.1111/ejn.16652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025]
Abstract
Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3. Of the CB1-immunopositive GABAergic terminals, 25% were vesicular-glutamate-transporter-3 (VGLUT3)-immunoreactive, suggesting GABAergic/glutamatergic co-transmission on dendritic shafts. In vitro recorded and labelled VGLUT3 or CB1-positive GABAergic interneurons expressed cholecystokinin, vasoactive-intestinal-polypeptide and calretinin, had diverse firing, axons and dendrites, and included rosehip, neurogliaform and basket cells, but not double bouquet or axo-axonic cells. CB1-positive interneurons innervated pyramidal cells and GABAergic interneurons. Glutamatergic synaptic terminals formed type-1 synapses and some were positive for CB1 receptor with a distribution that appeared different from that in GABAergic terminals. From the sampled VGLUT3-positive terminals, 60% formed type-1 synapses with dendritic spines (80%) or shafts (20%) and 52% were also positive for VGLUT1, suggesting intracortical origin. Some VGLUT3-positive terminals were immunopositive for vesicular-monoamine-transporter-2, suggesting 5-HT/glutamate co-transmission. Overall, the results show that CB1 regulates GABA release mainly to dendritic shafts of both pyramidal cells and interneurons and predict CB1-regulated co-release of GABA and glutamate from single cortical interneurons. We also demonstrate the co-existence of multiple vesicular glutamate transporters in a select population of terminals probably originating from cortical neurons and innervating dendritic spines in the human cerebral cortex.
Collapse
Affiliation(s)
- Peter Somogyi
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Sawa Horie
- Department of PharmacologyUniversity of OxfordOxfordUK
- Kawasaki Medical SchoolOkayamaJapan
- Department of Anatomy and NeurobiologyNational Defense Medical CollegeSaitamaJapan
| | - Istvan Lukacs
- Department of PharmacologyUniversity of OxfordOxfordUK
- Institute of Experimental MedicineBudapestHungary
| | - Emily Hunter
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | | | - James Livermore
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
- Department of NeurosurgeryLeeds General InfirmaryLeedsUK
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
| | - Richard Stacey
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
| | - Olaf Ansorge
- Nuffield Department of Clinical NeurosciencesUniv. OxfordOxfordUK
| | - Salah El Mestikawy
- Douglas Research CentreMcGill University and the Montreal West Island IUHSSCMontréalCanada
| | - Qianru Zhao
- Department of PharmacologyUniversity of OxfordOxfordUK
- Department of Chemical Biology, School of Pharmaceutical SciencesSouth‐Central Minzu UniversityWuhanChina
| |
Collapse
|
3
|
Turco F, Brugnatelli V, Abalo R. Neuro-Gastro-Cannabinology: A Novel Paradigm for Regulating Mood and Digestive Health. Med Cannabis Cannabinoids 2023; 6:130-137. [PMID: 37920559 PMCID: PMC10618907 DOI: 10.1159/000534007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/30/2023] [Indexed: 11/04/2023] Open
Abstract
The maintenance of homeostasis in the gastrointestinal (GI) tract is ensured by the presence of the endocannabinoid system (ECS), which regulates important physiological activities, such as motility, permeability, fluid secretion, immunity, and visceral pain sensation. Beside its direct effects on the GI system, the ECS in the central nervous system indirectly regulates GI functions, such as food intake and energy balance. Mounting evidence suggests that the ECS may play an important role in modulating central neurotransmission which affects GI functioning. It has also been found that the interaction between the ECS and microbiota affects brain and gut activity in a bidirectional manner, and a number of studies demonstrate that there is a strong relationship between GI dysfunctions and mood disorders. Thus, microbiota can regulate the tone of the ECS. Conversely, changes in intestinal ECS tone may influence microbiota composition. In this mini-review, we propose the concept of neuro-gastro-cannabinology as a novel and alternative paradigm for studying and treating GI disorders that affect mood, as well as mood disorders that imbalance GI physiology. This concept suggests the use of prebiotics or probiotics for improving the tone of the ECS, as well as the use of phytocannabinoids or endocannabinoid-like molecules, such as palmitoylethanolamide, to restore the normal intestinal microbiota. This approach may be effective in ameliorating the negative effects of GI dysfunctions on mood and/or the effects of mood disorders on digestive health.
Collapse
Affiliation(s)
| | | | - Raquel Abalo
- Depar High Performance Research Group in Physiopathology and Pharmacology of the Digestive System NeuGut-URJC, Department of Basic Health Sciences, Faculty of Health Sciences, Universidad Rey Juan Carlos (URJC), Madrid, Spain
- R & D & I Unit Associated with the Institute of Medicinal Chemistry (IQM), Spanish National Research-Council (CSIC), Madrid, Spain
- Spanish Pain Society Working Groups on Basic Sciences in Pain and Analgesia and on Cannabinoids, Madrid, Spain
| |
Collapse
|
4
|
TRPV1: A Common Denominator Mediating Antinociceptive and Antiemetic Effects of Cannabinoids. Int J Mol Sci 2022; 23:ijms231710016. [PMID: 36077412 PMCID: PMC9456209 DOI: 10.3390/ijms231710016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/19/2022] Open
Abstract
The most common medicinal claims for cannabis are relief from chronic pain, stimulation of appetite, and as an antiemetic. However, the mechanisms by which cannabis reduces pain and prevents nausea and vomiting are not fully understood. Among more than 450 constituents in cannabis, the most abundant cannabinoids are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Cannabinoids either directly or indirectly modulate ion channel function. Transient receptor potential vanilloid 1 (TRPV1) is an ion channel responsible for mediating several modalities of pain, and it is expressed in both the peripheral and the central pain pathways. Activation of TRPV1 in sensory neurons mediates nociception in the ascending pain pathway, while activation of TRPV1 in the central descending pain pathway, which involves the rostral ventral medulla (RVM) and the periaqueductal gray (PAG), mediates antinociception. TRPV1 channels are thought to be implicated in neuropathic/spontaneous pain perception in the setting of impaired descending antinociceptive control. Activation of TRPV1 also can cause the release of calcitonin gene-related peptide (CGRP) and other neuropeptides/neurotransmitters from the peripheral and central nerve terminals, including the vagal nerve terminal innervating the gut that forms central synapses at the nucleus tractus solitarius (NTS). One of the adverse effects of chronic cannabis use is the paradoxical cannabis-induced hyperemesis syndrome (HES), which is becoming more common, perhaps due to the wider availability of cannabis-containing products and the chronic use of products containing higher levels of cannabinoids. Although, the mechanism of HES is unknown, the effective treatment options include hot-water hydrotherapy and the topical application of capsaicin, both activate TRPV1 channels and may involve the vagal-NTS and area postrema (AP) nausea and vomiting pathway. In this review, we will delineate the activation of TRPV1 by cannabinoids and their role in the antinociceptive/nociceptive and antiemetic/emetic effects involving the peripheral, spinal, and supraspinal structures.
Collapse
|
5
|
Vallés AS, Barrantes FJ. Interactions between the Nicotinic and Endocannabinoid Receptors at the Plasma Membrane. MEMBRANES 2022; 12:812. [PMID: 36005727 PMCID: PMC9414690 DOI: 10.3390/membranes12080812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Compartmentalization, together with transbilayer and lateral asymmetries, provide the structural foundation for functional specializations at the cell surface, including the active role of the lipid microenvironment in the modulation of membrane-bound proteins. The chemical synapse, the site where neurotransmitter-coded signals are decoded by neurotransmitter receptors, adds another layer of complexity to the plasma membrane architectural intricacy, mainly due to the need to accommodate a sizeable number of molecules in a minute subcellular compartment with dimensions barely reaching the micrometer. In this review, we discuss how nature has developed suitable adjustments to accommodate different types of membrane-bound receptors and scaffolding proteins via membrane microdomains, and how this "effort-sharing" mechanism has evolved to optimize crosstalk, separation, or coupling, where/when appropriate. We focus on a fast ligand-gated neurotransmitter receptor, the nicotinic acetylcholine receptor, and a second-messenger G-protein coupled receptor, the cannabinoid receptor, as a paradigmatic example.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca 8000, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute of Biomedical Research (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
6
|
Theunissen EL, Reckweg JT, Hutten NRPW, Kuypers KPC, Toennes SW, Neukamm MA, Halter S, Ramaekers JG. Psychotomimetic symptoms after a moderate dose of a synthetic cannabinoid (JWH-018): implications for psychosis. Psychopharmacology (Berl) 2022; 239:1251-1261. [PMID: 33501595 PMCID: PMC9110546 DOI: 10.1007/s00213-021-05768-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Synthetic cannabinoids (SCs) are the largest class of novel psychoactive substances (NPS) and are associated with an increased risk of overdosing and adverse events such as psychosis. JWH-018 is one of the earliest SCs and still widely available in large parts of the world. Controlled studies to assess the safety and behavioural profiles of SCs are extremely scarce. AIM The current study was designed to assess the psychotomimetic effects of a moderate dose of JWH-018. METHODS Twenty-four healthy participants (10 males, 14 females) entered a placebo-controlled, double blind, within-subjects trial and inhaled vapour of placebo or 75μg/kg bodyweight JWH-018. To ascertain a minimum level of intoxication, a booster dose of JWH-018 was administered on an as-needed basis. The average dose of JWH-018 administered was 5.52 mg. Subjective high, dissociative states (CADSS), psychedelic symptoms (Bowdle), mood (POMS) and cannabis reinforcement (SCRQ) were assessed within a 4.5-h time window after drug administration. RESULTS JWH-018 caused psychedelic effects, such as altered internal and external perception, and dissociative effects, such as amnesia, derealisation and depersonalisation and induced feelings of confusion. CONCLUSION Overall, these findings suggest that a moderate dose of JWH-018 induces pronounced psychotomimetic symptoms in healthy participants with no history of mental illness, which confirms that SCs pose a serious risk for public health.
Collapse
Affiliation(s)
- Eef L Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands.
| | - Johannes T Reckweg
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Nadia R P W Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Kim P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| | - Stefan W Toennes
- Department of Forensic Toxicology, Institute of Legal Medicine, Goethe University of Frankfurt, Frankfurt, Germany
| | - Merja A Neukamm
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Halter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
| |
Collapse
|
7
|
Moore CF, Stiltner JW, Davis CM, Weerts EM. Translational models of cannabinoid vapor exposure in laboratory animals. Behav Pharmacol 2022; 33:63-89. [PMID: 33136615 PMCID: PMC8079522 DOI: 10.1097/fbp.0000000000000592] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cannabis is one of the most frequently used psychoactive substances in the world. The most common route of administration for cannabis and cannabinoid constituents such as Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) is via smoking or vapor inhalation. Preclinical vapor models have been developed, although the vaporization devices and delivery methods vary widely across laboratories. This review examines the emerging field of preclinical vapor models with a focus on cannabinoid exposure in order to (1) summarize vapor exposure parameters and other methodological details across studies; (2) discuss the pharmacological and behavioral effects produced by exposure to vaporized cannabinoids; and (3) compare behavioral effects of cannabinoid vapor administration with those of other routes of administration. This review will serve as a guide for past and current vapor delivery methods in animals, synergize findings across studies, and propose future directions for this area of research.
Collapse
Affiliation(s)
- Catherine F. Moore
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jeffrey W. Stiltner
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Catherine M. Davis
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elise M. Weerts
- Division of Behavioral Biology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
8
|
Ahmadi-Mahmoodabadi N, Emamghoreishi M, Nasehi M, Zarrindast MR. The bidirectional effect of prelimbic 5-hydroxytryptamine type-4 (5-HT4) receptors on ACPA-mediated aversive memory impairment in adult male Sprague-Dawley rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:726-733. [PMID: 34630949 PMCID: PMC8487599 DOI: 10.22038/ijbms.2021.49501.11317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 05/01/2021] [Indexed: 11/06/2022]
Abstract
Objectives This study aimed at investigating the effect of serotonergic 5-HT4 receptor agonist/antagonist on memory consolidation deficit induced by ACPA (a potent, selective CB1 cannabinoid receptor agonist) in the pre-limbic (PL) cortex. Materials and Methods We used the step-through passive avoidance test to evaluate memory consolidation of male Sprague-Dawley (SD) rats. Bilateral post-training microinjections of the drugs were done in a volume of 0.6 μl/rat into the PL area (0.3 μl per side). Results The results showed a significant interaction between RS67333 hydrochloride (5-HT4 receptor agonist) or RS23597-190 hydrochloride (5-HT4 receptor antagonist) and ACPA on consolidation of aversive memory. RS67333 hydrochloride (0.5 μg/rat) enhanced consolidation of memory and its co-administration at the ineffective dose of 0.005 μg/rat with ineffective (0.001 μg/rat) or effective (0.1 μg/rat) doses of ACPA improved and prevented impairment of memory caused by ACPA, respectively. In other words, RS67333 had a bidirectional effect on ACPA-caused amnesia. While RS23597-190 hydrochloride had no effect on memory at the doses used (0.005, 0.01, 0.1, or 0.5 μg/rat); but its concomitant use with an effective dose of ACPA (0.1 μg/rat) potentiated amnesia. None of the drugs had an effect on locomotor activity. Conclusion This study revealed that activation or deactivation of the 5-HT4 receptors in the PL may mediate the IA memory impairment induced by ACPA indicating a modulatory role for the 5-HT4 serotonergic receptors.
Collapse
Affiliation(s)
- Nargol Ahmadi-Mahmoodabadi
- Institute for Cognitive Science Studies, Tehran, Iran.,Department of Basic Sciences, Campus of Shahid Bahonar, Farhangian University of Shiraz, Shiraz, Iran
| | - Masoumeh Emamghoreishi
- Department of Pharmacology, School of Medicine and Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Institute for Cognitive Science Studies, Tehran, Iran.,Cognitive and Neuroscience Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| |
Collapse
|
9
|
Bourque J, Potvin S. Cannabis and Cognitive Functioning: From Acute to Residual Effects, From Randomized Controlled Trials to Prospective Designs. Front Psychiatry 2021; 12:596601. [PMID: 34177633 PMCID: PMC8222623 DOI: 10.3389/fpsyt.2021.596601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/17/2021] [Indexed: 12/30/2022] Open
Abstract
In recent years, several jurisdictions have revised their regulation policy toward both medical and recreational use of cannabis. These changes have elicited concerns regarding how legalization impacts academic achievement and work performance. This review evaluates the acute and long-term (residual) association between cannabis use and cognitive functioning that underlies poor academic and work performance. Relative to other reviews, this article focuses on cross-over randomized controlled trials and prospective designs given that they allow to test the impairing effects of cannabis exposure at the within-subject level. Acute cannabis cognitive effects are discussed separately for known confounding factors such as levels of delta-9-tetrahydrocannabinol (Δ9-THC), Δ9-THC:cannabidiol ratio, previous cannabis use and, comorbidity with psychosis-spectrum disorders. The cognitive residual effects of cannabis are detailed in relation to duration of abstinence, frequency of use, comorbidity with psychosis-spectrum disorders, types of cognitive domains assessed, and age of cannabis use initiation. Moreover, considering the fact that adequate longitudinal studies can make inferences about causality between cannabis use and impaired cognitive functioning when disentangling between-subject from within-subject variation, proofs for the three main non-mutually exclusive hypotheses about this relationship will be presented: i) the cognitive vulnerability hypothesis as part of the more general common antecedent hypothesis, ii) the concurrent cannabis impairing hypothesis, and iii) the neurotoxic hypothesis of cannabis. Current research provides evidence for mild to moderate acute cannabis effects on episodic and working memory, processing speed, and executive functions. Mild residual impairing effects were also observed in these exact same cognitive domains, suggesting that adverse effects following cannabis intoxication persist at least days or weeks following cannabis abstinence. Relative to adult-onset, adolescent-onset cannabis use seems to explain the dose-response relationship and is associated with longer lasting residual effects even in mild users (<weekly). The association between cannabis and cognition is likely explained by common antecedents, such that genetic and shared environment factors predispose individuals to both cannabis use and cognitive deficits, and to a lesser degree, neurotoxic effects.
Collapse
Affiliation(s)
- Josiane Bourque
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Stéphane Potvin
- Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, QC, Canada.,Centre de Recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, QC, Canada
| |
Collapse
|
10
|
Possible interaction between the ventral hippocampal cannabinoid CB2 and muscarinic acetylcholine receptors on the modulation of memory consolidation in mice. Neuroreport 2020; 31:174-183. [DOI: 10.1097/wnr.0000000000001381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Wang H, Han J. The endocannabinoid system regulates the moderate exercise-induced enhancement of learning and memory in mice. J Sports Med Phys Fitness 2020; 60:320-328. [PMID: 31974335 DOI: 10.23736/s0022-4707.19.10235-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Exercise has been reported to enhance cognitive functions via mechanism(s) yet to be fully understood. The endogenous cannabinoid system (ECS) is involved in regulating cognitive function, including learning and memory. This system may also be involved in enhancing learning and memory after exercise. The objective of this study is to explore whether and how ECS participates in the enhancement of learning and memory after exercise. METHODS In this study, a treadmill exercise training model was established. Wild-type C57BL/6J mice and those deficient in the cannabinoid receptor 1 (CB1R) coding gene, Cnr1, specifically in the glutamatergic neurons, γ-aminobutyric acid (GABA) neurons or glial cells were randomly grouped for 4 weeks' moderate treadmill exercise. The Morris water maze was used to evaluate the spatial learning and memory abilities of mice in each group. The expression of brain-derived neurotrophic factor (BDNF) and CB1R in hippocampus was detected by western blot. The dendritic spine density of pyramidal cells in the hippocampal CA1 region was analyzed by quantitative Golgi staining. This study consisted of eight single-factor inter-subject designs, and each batch of experiments was divided into two groups. Corresponding experimental items and data analysis were carried out according to the experimental objectives. RESULTS CB1R antagonist administration or CB1R knockout in glutamatergic neurons eliminated the effect of exercise on learning and memory, and counteracted exercise-elicited upregulation of BDNF in the hippocampus; CB1R-specific knockout on GABAergic neurons and glial cells did not affect the moderate exercise-induced enhancement of learning and memory. In addition, the results of Golgi staining showed that exercise increased dendritic spine density in hippocampal neurons, which was abolished by specific CB1R depletion in glutamatergic neurons. CONCLUSIONS The ECS, particularly CB1R signaling in glutamatergic neurons, mediates the enhancement of learning and memory by exercise, which involves increased BDNF production and dendritic spine density.
Collapse
Affiliation(s)
- Haoquan Wang
- Key Laboratory of Teaching Technology, Ministry Education, Shaanxi Normal University, Xian, China.,Medical School, Shangqiu Institute of Technology, Shangqiu, China
| | - Jing Han
- Key Laboratory of Teaching Technology, Ministry Education, Shaanxi Normal University, Xian, China -
| |
Collapse
|
12
|
Ren M, Lotfipour S. Nicotine Gateway Effects on Adolescent Substance Use. West J Emerg Med 2019; 20:696-709. [PMID: 31539325 PMCID: PMC6754186 DOI: 10.5811/westjem.2019.7.41661] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 11/11/2022] Open
Abstract
Given the rise in teenage use of electronic nicotine delivery systems ("vaping") in congruence with the increasing numbers of drug-related emergencies, it is critical to expand the knowledge of the physical and behavioral risks associated with developmental nicotine exposure. A further understanding of the molecular and neurochemical underpinnings of nicotine's gateway effects allows emergency clinicians to advise patients and families and adjust treatment accordingly, which may minimize the use of tobacco, nicotine, and future substances. Currently, the growing use of tobacco products and electronic cigarettes among teenagers represents a major public health concern. Adolescent exposure to tobacco or nicotine can lead to subsequent abuse of nicotine and other substances, which is known as the gateway hypothesis. Adolescence is a developmentally sensitive time period when risk-taking behaviors, such as sensation seeking and drug experimentation, often begin. These hallmark behaviors of adolescence are largely due to maturational changes in the brain. The developing brain is particularly vulnerable to the harmful effects of drugs of abuse, including tobacco and nicotine products, which activate nicotinic acetylcholine receptors (nAChRs). Disruption of nAChR development with early nicotine use may influence the function and pharmacology of the receptor subunits and alter the release of reward-related neurotransmitters, including acetylcholine, dopamine, GABA, serotonin, and glutamate. In this review, we emphasize that the effects of nicotine are highly dependent on timing of exposure, with a dynamic interaction of nAChRs with dopaminergic, endocannabinoid, and opioidergic systems to enhance general drug reward and reinforcement. We analyzed available literature regarding adolescent substance use and nicotine's impact on the developing brain and behavior using the electronic databases of PubMed and Google Scholar for articles published in English between January 1968 and November 2018. We present a large collection of clinical and preclinical evidence that adolescent nicotine exposure influences long-term molecular, biochemical, and functional changes in the brain that encourage subsequent drug abuse.
Collapse
Affiliation(s)
- Michelle Ren
- University of California, Irvine, Department of Pharmaceutical Sciences, Irvine, California
| | - Shahrdad Lotfipour
- University of California, Irvine, Department of Emergency Medicine and Pharmaceutical Sciences, Irvine, California
| |
Collapse
|
13
|
Sugarman DE, De Aquino JP, Poling J, Sofuoglu M. Feasibility and effects of galantamine on cognition in humans with cannabis use disorder. Pharmacol Biochem Behav 2019; 181:86-92. [PMID: 31082417 PMCID: PMC6545124 DOI: 10.1016/j.pbb.2019.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND As long-term use of medicinal and recreational cannabis becomes more common and concentrations of delta-9-tetrahydrocannabinol (THC) in cannabis increase, it is timely to identify strategies to counteract the cognitive effects of cannabinoids. OBJECTIVE Galantamine is an acetylcholinesterase inhibitor approved for the treatment of Alzheimer's disease and other dementias. This study aimed to investigate the feasibility of galantamine administration to individuals with cannabis use disorder (CUD), and the effects of galantamine on cognition. We hypothesized galantamine would be well tolerated and would not have procognitive effects in the absence of acute cannabis intoxication. METHODS Thirty individuals with CUD (73.5% male, 26.5% female) participated in a randomized, double-blind, parallel-group trial. Participants completed a baseline session followed by a 10-day outpatient treatment period, during which they received either 8 mg/day of galantamine orally or placebo. Cognitive assessments were conducted at three time points and self-reported measures that may impact cognitive performance (cannabis withdrawal, craving, and mood) were completed at six time points. RESULTS There were no significant differences in demographic and baseline variables between groups (galantamine vs. placebo). There were no significant adverse effects from galantamine. Cannabis withdrawal and craving continuously decreased over the study. We saw evidence of a modest improvement in cognitive outcomes during the 10-day period, exemplified by a statistically significant increase in measures of response inhibition (increased median reaction time on the Stop Signal Task), and a trend for improvement in measures of attention (increased RVP A'), for both groups. Analyses did not show, however, a significant main effect for treatment or treatment-by-time interactions. CONCLUSIONS The findings of this pilot study support the feasibility of the administration of galantamine for individuals with CUD. Adequately powered, randomized, placebo-controlled trials are required to investigate the potential of galantamine to improve cognitive deficits associated with CUD.
Collapse
Affiliation(s)
- Dawn E Sugarman
- Division of Alcohol and Drug Abuse, 115 Mill Street, McLean Hospital, Belmont 02478, MA, United States; Harvard Medical School, 25 Shattuck Street, Boston 02115, MA, United States.
| | - Joao P De Aquino
- VA Connecticut Healthcare System, 950 Campbell Ave., Bldg. 36/116A4, West Haven, CT 06516, USA; Yale University School of Medicine, Department of Psychiatry, 300 George St., New Haven, CT 06511, USA
| | - James Poling
- Yale University School of Medicine, Department of Psychiatry, 300 George St., New Haven, CT 06511, USA
| | - Mehmet Sofuoglu
- VA Connecticut Healthcare System, 950 Campbell Ave., Bldg. 36/116A4, West Haven, CT 06516, USA; Yale University School of Medicine, Department of Psychiatry, 300 George St., New Haven, CT 06511, USA
| |
Collapse
|
14
|
Gilman JM, Yücel MA, Pachas GN, Potter K, Levar N, Broos H, Manghis EM, Schuster RM, Evins AE. Delta-9-tetrahydrocannabinol intoxication is associated with increased prefrontal activation as assessed with functional near-infrared spectroscopy: A report of a potential biomarker of intoxication. Neuroimage 2019; 197:575-585. [PMID: 31075393 DOI: 10.1016/j.neuroimage.2019.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 11/17/2022] Open
Abstract
The primary psychoactive compound in cannabis, Δ9-tetrahydrocannabinol (THC), binds to cannabinoid receptors (CB1) present in high concentrations in the prefrontal cortex (PFC). It is unknown whether the PFC hemodynamic response changes with THC intoxication. We conducted the first double-blind, placebo-controlled, cross-over study of the effect of THC intoxication on functional near infrared spectroscopy (fNIRS) measures of PFC activation. Fifty-four adult, regular (at least weekly) cannabis users received a single oral dose of synthetic THC (dronabinol; 5-50 mg, dose individually tailored to produce intoxication) and identical placebo on two visits at least one week apart. fNIRS recordings were obtained during a working memory task (N-Back) at three timepoints: before THC/placebo, at 100 min (when peak effects were expected), and at 200 min after THC/placebo administration. Functional data were collected using a continuous-wave NIRS device, with 8 sources and 7 detectors arrayed over the forehead, resulting in 20 channels covering PFC regions. Participants also completed frequent heart rate measures and subjective ratings of intoxication. Approximately half of participants reported significant intoxication. Intoxication ratings were not correlated with dose of THC. Increases in heart rate significantly correlated with intoxication ratings after THC dosing. Results indicated that 100 min after THC administration, oxygenated hemoglobin (HbO) response significantly increased from pre-dose HbO levels throughout the PFC in participants who reported significant intoxication. Changes in HbO response significantly correlated with self-reported intoxication at 100 min after THC administration. Among those who reported intoxication, HbO response decreased at 200 min after THC, when intoxication had largely resolved, compared to the peak THC time point. This study demonstrates that THC intoxication causes increased PFC activity, and fNIRS of the PFC can measure this effect. Increased neural activation in PFC represents a potential biomarker for cannabis intoxication.
Collapse
Affiliation(s)
- Jodi M Gilman
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Meryem A Yücel
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Gladys N Pachas
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kevin Potter
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Nina Levar
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Hannah Broos
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA
| | - Eve M Manghis
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA
| | - Randi M Schuster
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - A Eden Evins
- Massachusetts General Hospital (MGH) Department of Psychiatry, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Theunissen EL, Hutten NR, Mason NL, Toennes SW, Kuypers KP, Ramaekers JG. Neurocognition and Subjective Experience Following Acute Doses of the Synthetic Cannabinoid JWH-018: Responders Versus Nonresponders. Cannabis Cannabinoid Res 2019; 4:51-61. [PMID: 31363493 PMCID: PMC6661919 DOI: 10.1089/can.2018.0047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: Synthetic cannabinoid mixtures have been easily accessible for years, leading to the belief that these products were natural and harmless, which contributed to their popularity. Nevertheless, there are many reports of users ending up in hospital due to severe side effects such as tachycardia, aggression, and psychosis. Controlled studies on the effects of synthetic cannabinoids on human performance are lacking. In the present study, we assessed the safety pharmacology of the synthetic cannabinoid JWH-018 after acute administration. Methods: Seventeen healthy cannabis-experienced participants took part in this placebo-controlled, crossover study. Participants inhaled the vapor of JWH-018 (doses ranged between 2 and 6.2 mg) and were subsequently monitored for 12 h, during which vital signs, cognitive performance, and subjective experience were measured. Subjective high scores showed that there is a large variability in the subjective experience of participants. Therefore, a mixed analysis of variance, with "Responder" (i.e., subjective high score >2) as a between-subjects factor and "Drug" as a within-subjects factor (placebo and JWH-018), was used. Results: Serum concentrations of JWH-018 were significantly higher in the responders. Overall, JWH-018 increased heart rate within the first hour and significantly impaired critical tracking and memory performance. Responders to JWH-018 performed more poorly in tests measuring reaction time and showed increased levels of confusion, amnesia, dissociation, derealization, and depersonalization and increased drug liking after JWH-018. Conclusion: JWH-018 administration produced large variability in drug concentrations and subjective experience. Fluctuations in drug delivery probably contributed to the variation in response. JWH-018's impairing effects on cognition and subjective measures were mainly demonstrated in participants who experienced a subjective intoxication of the drug. Lack of control over drug delivery may increase the risk of overdosing in synthetic cannabinoid users.
Collapse
Affiliation(s)
- Eef L. Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Nadia R.P.W. Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Natasha L. Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Stefan W. Toennes
- Department of Forensic Toxicology, Institute of Legal Medicine, Goethe University of Frankfurt, Frankfurt, Germany
| | - Kim P.C. Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Johannes G. Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Tirgar F, Rezayof A, Alijanpour S, Yazdanbakhsh N. Interactive effects of morphine and nicotine on memory function depend on the central amygdala cannabinoid CB1 receptor function in rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:62-68. [PMID: 29203303 DOI: 10.1016/j.pnpbp.2017.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/23/2017] [Accepted: 11/30/2017] [Indexed: 11/25/2022]
Abstract
The present study investigated the possible involvement of the central amygdala (CeA) cannabinoid receptors type-1 (CB1Rs) in the interactive effects of morphine and nicotine on memory formation in a passive avoidance learning task. Our results showed that systemic administration of morphine (3 and 6mg/kg, s.c.) immediately after training phase impaired memory consolidation and induced amnesia. Administration of nicotine (0.3 and 0.6mg/kg, s.c.) before testing phase significantly restored morphine-induced amnesia, suggesting a cross state-dependent learning between morphine and nicotine. The results showed that while the administration of the lower dose of nicotine (0.1mg/kg, s.c.) per se did not induce a significant effect on morphine-induced amnesia, intra-CeA injection of arachidonylcyclopropylamide (ACPA), a cannabinoid CB1 receptor agonist (3 and 4ng/rat), significantly potentiated the nicotine response. Furthermore, the blockade of the CeA cannabinoid CB1 receptors by the injection of AM251 (0.75 and 1ng/rat) reversed the potentiative effect of nicotine (0.6mg/kg, s.c.) on morphine-induced amnesia. It should be considered that bilateral injection of the same doses of ACPA or AM251 (0.5-1ng/rat) into the CeA by itself had no effect on morphine response in a passive avoidance learning task. Confirmed by the cubic interpolation planes, the dose-response data revealed a cross-state-dependent learning between morphine and nicotine which may be mediated by the CeA endocannabinoid system via CB1 receptors.
Collapse
Affiliation(s)
- Fatemeh Tirgar
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Nima Yazdanbakhsh
- School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Dorsal hippocampal cannabinergic and GABAergic systems modulate memory consolidation in passive avoidance task. Brain Res Bull 2018; 137:197-203. [DOI: 10.1016/j.brainresbull.2017.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/15/2017] [Accepted: 11/28/2017] [Indexed: 01/02/2023]
|
18
|
Boggs DL, Nguyen JD, Morgenson D, Taffe MA, Ranganathan M. Clinical and Preclinical Evidence for Functional Interactions of Cannabidiol and Δ 9-Tetrahydrocannabinol. Neuropsychopharmacology 2018; 43:142-154. [PMID: 28875990 PMCID: PMC5719112 DOI: 10.1038/npp.2017.209] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 12/21/2022]
Abstract
The plant Cannabis sativa, commonly called cannabis or marijuana, has been used for its psychotropic and mind-altering side effects for millennia. There has been growing attention in recent years on its potential therapeutic efficacy as municipalities and legislative bodies in the United States, Canada, and other countries grapple with enacting policy to facilitate the use of cannabis or its constituents for medical purposes. There are >550 chemical compounds and >100 phytocannabinoids isolated from cannabis, including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is thought to produce the main psychoactive effects of cannabis, while CBD does not appear to have similar effects. Studies conflict as to whether CBD attenuates or exacerbates the behavioral and cognitive effects of THC. This includes effects of CBD on THC-induced anxiety, psychosis, and cognitive deficits. In this article, we review the available evidence on the pharmacology and behavioral interactions of THC and CBD from preclinical and human studies, particularly with reference to anxiety and psychosis-like symptoms. Both THC and CBD, as well as other cannabinoid molecules, are currently being evaluated for medicinal purposes, separately and in combination. Future cannabis-related policy decisions should include consideration of scientific findings, including the individual and interactive effects of CBD and THC.
Collapse
Affiliation(s)
- Douglas L Boggs
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,VA Connecticut Healthcare System, West Haven, CT, USA
| | - Jacques D Nguyen
- Department of Neuroscience; The Scripps Research Institute, La Jolla, CA, USA
| | | | - Michael A Taffe
- Department of Neuroscience; The Scripps Research Institute, La Jolla, CA, USA
| | - Mohini Ranganathan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,VA Connecticut Healthcare System, West Haven, CT, USA,Department of Psychiatry, Yale University School of Medicine, 950 Campbell Avenue, New Haven, CT 06511, USA, Tel: +1 203 932 5711X2546, E-mail:
| |
Collapse
|
19
|
Keles HO, Radoman M, Pachas GN, Evins AE, Gilman JM. Using Functional Near-Infrared Spectroscopy to Measure Effects of Delta 9-Tetrahydrocannabinol on Prefrontal Activity and Working Memory in Cannabis Users. Front Hum Neurosci 2017; 11:488. [PMID: 29066964 PMCID: PMC5641318 DOI: 10.3389/fnhum.2017.00488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/22/2017] [Indexed: 11/13/2022] Open
Abstract
Intoxication from cannabis impairs cognitive performance, in part due to the effects of Δ9-tetrahydrocannabinol (THC, the primary psychoactive compound in cannabis) on prefrontal cortex (PFC) function. However, a relationship between impairment in cognitive functioning with THC administration and THC-induced change in hemodynamic response has not been demonstrated. We explored the feasibility of using functional near-infrared spectroscopy (fNIRS) to examine the functional changes of the human PFC associated with cannabis intoxication and cognitive impairment. Eighteen adult regular cannabis users (final sample, n = 13) performed a working memory task (n-back) during fNIRS recordings, before and after receiving a single dose of oral synthetic THC (dronabinol; 20–50 mg). Functional data were collected using a continuous-wave NIRS device, in which 8 Sources and 7 detectors were placed on the forehead, resulting in 20 channels covering PFC regions. Physiological changes and subjective intoxication measures were collected. We found a significant increase in the oxygenated hemoglobin (HbO) concentration after THC administration in several channels on the PFC during both the high working memory load (2-back) and the low working memory load (0-back) condition. The increased HbO response was accompanied by a trend toward an increased number of omission errors after THC administration. The current study suggests that cannabis intoxication is associated with increases in hemodynamic blood flow to the PFC, and that this increase can be detected with fNIRS.
Collapse
Affiliation(s)
- Hasan O Keles
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Milena Radoman
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Gladys N Pachas
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States
| | - A Eden Evins
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Jodi M Gilman
- Center for Addiction Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
20
|
Murray RM, Englund A, Abi-Dargham A, Lewis DA, Di Forti M, Davies C, Sherif M, McGuire P, D'Souza DC. Cannabis-associated psychosis: Neural substrate and clinical impact. Neuropharmacology 2017. [PMID: 28634109 DOI: 10.1016/j.neuropharm.2017.06.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Prospective epidemiological studies have consistently demonstrated that cannabis use is associated with an increased subsequent risk of both psychotic symptoms and schizophrenia-like psychoses. Early onset of use, daily use of high-potency cannabis, and synthetic cannabinoids carry the greatest risk. The risk-increasing effects are not explained by shared genetic predisposition between schizophrenia and cannabis use. Experimental studies in healthy humans show that cannabis and its active ingredient, delta-9-tetrahydrocannabinol (THC), can produce transient, dose-dependent, psychotic symptoms, as well as an array of psychosis-relevant behavioral, cognitive and psychophysiological effects; the psychotogenic effects can be ameliorated by cannabidiol (CBD). Findings from structural imaging studies in cannabis users have been inconsistent but functional MRI studies have linked the psychotomimetic and cognitive effects of THC to activation in brain regions implicated in psychosis. Human PET studies have shown that acute administration of THC weakly releases dopamine in the striatum but that chronic users are characterised by low striatal dopamine. We are beginning to understand how cannabis use impacts on the endocannabinoid system but there is much still to learn about the biological mechanisms underlying how cannabis increases risk of psychosis. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- R M Murray
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK.
| | - A Englund
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - A Abi-Dargham
- Department of Psychiatry, School of Medicine, Stony Brook University, New York, USA
| | - D A Lewis
- Department of Psychiatry, University of Pittsburg, PA, USA
| | - M Di Forti
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - C Davies
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - M Sherif
- Department of Psychiatry, Yale University School of Medicine, CT, USA
| | - P McGuire
- Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - D C D'Souza
- Department of Psychiatry, Yale University School of Medicine, CT, USA
| |
Collapse
|
21
|
Sharifi KA, Rezayof A, Torkaman-Boutorabi A, Zarrindast MR. The major neurotransmitter systems in the basolateral amygdala and the ventral tegmental area mediate morphine-induced memory consolidation impairment. Neuroscience 2017; 353:7-16. [DOI: 10.1016/j.neuroscience.2017.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/11/2017] [Accepted: 03/23/2017] [Indexed: 01/06/2023]
|
22
|
The effects of synthetic cannabinoids on executive function. Psychopharmacology (Berl) 2017; 234:1121-1134. [PMID: 28160034 DOI: 10.1007/s00213-017-4546-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 01/23/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS There is a growing use of novel psychoactive substances (NPSs) including synthetic cannabinoids. Synthetic cannabinoid products have effects similar to those of natural cannabis but the new synthetic cannabinoids are more potent and dangerous and their use has resulted in various adverse effects. The purpose of the study was to assess whether persistent use of synthetic cannabinoids is associating with impairments of executive function in chronic users. METHODS A total of 38 synthetic cannabinoids users, 43 recreational cannabis users, and 41 non-user subjects were studied in two centers in Hungary and Israel. Computerized cognitive function tests, the classical Stroop word-color task, n-back task, and a free-recall memory task were used. RESULTS Synthetic cannabinoid users performed significantly worse than both recreational and non-cannabis users on the n-back task (less accuracy), the Stroop task (overall slow responses and less accuracy), and the long-term memory task (less word recall). Additionally, they have also shown higher ratings of depression and anxiety compared with both recreational and non-users groups. DISCUSSION This study showed impairment of executive function in synthetic cannabinoid users compared with recreational users of cannabis and non-users. This may have major implications for our understanding of the long-term consequences of synthetic cannabinoid based drugs.
Collapse
|
23
|
Alteba S, Korem N, Akirav I. Cannabinoids reverse the effects of early stress on neurocognitive performance in adulthood. ACTA ACUST UNITED AC 2016; 23:349-58. [PMID: 27317195 PMCID: PMC4918780 DOI: 10.1101/lm.041608.116] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/22/2016] [Indexed: 11/24/2022]
Abstract
Early life stress (ES) significantly increases predisposition to psychopathologies. Cannabinoids may cause cognitive deficits and exacerbate the effects of ES. Nevertheless, the endocannabinoid system has been suggested as a therapeutic target for the treatment of stress- and anxiety-related disorders. Here we examined whether cannabinoids administered during "late adolescence" (extensive cannabis use in humans at the ages 18-25) could reverse the long-term adverse effects of ES on neurocognitive function in adulthood. Male and female rats were exposed to ES during post-natal days (P) 7-14, injected with the cannabinoid CB1/2 receptor agonist WIN55,212-2 (WIN; 1.2 mg/kg, i.p.) for 2 wk during late adolescence (P45-60) and tested in adulthood (P90) for working memory, anxiety, and alterations in CB1 receptors (CB1r), and glucocorticoid receptors (GRs) in the stress circuit [hippocampus, prefrontal cortex (PFC), and basolateral amygdala (BLA)]. ES males and females exhibited impaired performance in short-term memory in adulthood in the spatial location and social recognition tasks; males were also impaired in the novel object recognition task. WIN administered during late adolescence prevented these stress-induced impairments and reduced anxiety levels. WIN normalized the ES-induced up-regulation in PFC-GRs and CA1-CB1r in females. In males, WIN normalized the ES-induced up-regulation in PFC-GR and down-regulation in BLA-CB1r. There is a crucial role of the endocannabinoid system in the effects of early life stress on behavior at adulthood. Differences in recognition memory and in the expression of GRs and CB1r in the fear circuit suggest sex differences in the mechanism underlying coping with stress.
Collapse
Affiliation(s)
- Shirley Alteba
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| | - Nachshon Korem
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
24
|
Ghaderi M, Rezayof A, Vousooghi N, Zarrindast MR. Dorsal hippocampal NMDA receptors mediate the interactive effects of arachidonylcyclopropylamide and MDMA/ecstasy on memory retrieval in rats. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:41-47. [PMID: 26612394 DOI: 10.1016/j.pnpbp.2015.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/15/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
A combination of cannabis and ecstasy may change the cognitive functions more than either drug alone. The present study was designed to investigate the possible involvement of dorsal hippocampal NMDA receptors in the interactive effects of arachidonylcyclopropylamide (ACPA) and ecstasy/MDMA on memory retrieval. Adult male Wistar rats were cannulated into the CA1 regions of the dorsal hippocampus (intra-CA1) and memory retrieval was examined using the step-through type of passive avoidance task. Intra-CA1 microinjection of a selective CB1 receptor agonist, ACPA (0.5-4ng/rat) immediately before the testing phase (pre-test), but not after the training phase (post-training), impaired memory retrieval. In addition, pre-test intra-CA1 microinjection of MDMA (0.5-1μg/rat) dose-dependently decreased step-through latency, indicating an amnesic effect of the drug by itself. Interestingly, pre-test microinjection of a higher dose of MDMA into the CA1 regions significantly improved ACPA-induced memory impairment. Moreover, pre-test intra-CA1 microinjection of a selective NMDA receptor antagonist, D-AP5 (1 and 2μg/rat) inhibited the reversal effect of MDMA on the impairment of memory retrieval induced by ACPA. Pre-test intra-CA1 microinjection of the same doses of D-AP5 had no effect on memory retrieval alone. These findings suggest that ACPA or MDMA consumption can induce memory retrieval impairment, while their co-administration improves this amnesic effect through interacting with hippocampal glutamatergic-NMDA receptor mechanism. Thus, it seems that the tendency to abuse cannabis with ecstasy may be for avoiding cognitive dysfunction.
Collapse
Affiliation(s)
- Marzieh Ghaderi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine and Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
25
|
Sherif M, Radhakrishnan R, D'Souza DC, Ranganathan M. Human Laboratory Studies on Cannabinoids and Psychosis. Biol Psychiatry 2016; 79:526-38. [PMID: 26970363 DOI: 10.1016/j.biopsych.2016.01.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
Abstract
Some of the most compelling evidence supporting an association between cannabinoid agonists and psychosis comes from controlled laboratory studies in humans. Randomized, double-blind, placebo-controlled, crossover laboratory studies demonstrate that cannabinoid agonists, including phytocannabinoids and synthetic cannabinoids, produce a wide range of positive, negative, and cognitive symptoms and psychophysiologic deficits in healthy human subjects that resemble the phenomenology of schizophrenia. These effects are time locked to drug administration, are dose related, and are transient and rarely necessitate intervention. The magnitude of effects is similar to the effects of ketamine but qualitatively distinct from other psychotomimetic drugs, including ketamine, amphetamine, and salvinorin A. Cannabinoid agonists have also been shown to transiently exacerbate symptoms in individuals with schizophrenia in laboratory studies. Patients with schizophrenia are more vulnerable than healthy control subjects to the acute behavioral and cognitive effects of cannabinoid agonists and experience transient exacerbation of symptoms despite treatment with antipsychotic medications. Furthermore, laboratory studies have failed to demonstrate any "beneficial" effects of cannabinoid agonists in individuals with schizophrenia-challenging the cannabis self-medication hypothesis. Emerging evidence suggests that polymorphisms of several genes related to dopamine metabolism (e.g., COMT, DAT1, and AKT1) may moderate the effects of cannabinoid agonists in laboratory studies. Cannabinoid agonists induce dopamine release, although the magnitude of release does not appear to be commensurate to the magnitude and spectrum of their acute psychotomimetic effects. Interactions between the endocannabinoid, gamma-aminobutyric acid, and glutamate systems and their individual and interactive effects on neural oscillations provide a plausible mechanism underlying the psychotomimetic effects of cannabinoids.
Collapse
Affiliation(s)
- Mohamed Sherif
- Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Rajiv Radhakrishnan
- Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Deepak Cyril D'Souza
- Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Mohini Ranganathan
- Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System, West Haven; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
26
|
Ahmadi-Mahmoodabadi N, Nasehi M, Emam Ghoreishi M, Zarrindast MR. Synergistic effect between prelimbic 5-HT3 and CB1 receptors on memory consolidation deficit in adult male Sprague–Dawley rats: An isobologram analysis. Neuroscience 2016; 317:173-83. [DOI: 10.1016/j.neuroscience.2015.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/20/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
|
27
|
Kangarlu-Haghighi K, Oryan S, Nasehi M, Zarrindast MR. The effect of BLA GABA(A) receptors in anxiolytic-like effect and aversive memory deficit induced by ACPA. EXCLI JOURNAL 2015; 14:613-26. [PMID: 26648818 PMCID: PMC4669909 DOI: 10.17179/excli2015-201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/09/2015] [Indexed: 11/10/2022]
Abstract
The roles of GABAergic receptors of the Basolateral amygdala (BLA) in the cannabinoid CB1 receptor agonist (arachydonilcyclopropylamide; ACPA)-induced anxiolytic-like effect and aversive memory deficit in adult male mice were examined in elevated plus-maze task. Results showed that pre-test intra-peritoneal injection of ACPA induced anxiolytic-like effect (at dose of 0.05 mg/kg) and aversive memory deficit (at doses of 0.025 and 0.05 mg/kg). The results revealed that Pre-test intra-BLA infusion of muscimol (GABAA receptor agonist; at doses of 0.1 and 0.2 µg/mouse) or bicuculline (GABAA receptor antagonist; at all doses) impaired and did not alter aversive memory, respectively. All previous GABA agents did not have any effects on anxiety-like behaviors. Interestingly, pretreatment with a sub-threshold dose of muscimol (0.025 µg/mouse) and bicuculline (0.025 µg/mouse) did not alter anxiolytic-like behaviors induced by ACPA, while both drugs restored ACPA-induced amnesia. Moreover, muscimol or bicuculline increased and decreased ACPA-induced locomotor activity, respectively. Finally the data may indicate that BLA GABAA receptors have critical and different roles in anxiolytic-like effect, aversive memory deficit and locomotor activity induced by ACPA.
Collapse
Affiliation(s)
| | - Shahrbanoo Oryan
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Medical Genomics Research Center and School of Advanced Sciences in Medicine, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Cognitive and Neuroscience Research Center (CNRC), Medical Genomics Research Center and School of Advanced Sciences in Medicine, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran ; Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran ; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran ; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
28
|
Rivastigmine but not vardenafil reverses cannabis-induced impairment of verbal memory in healthy humans. Psychopharmacology (Berl) 2015; 232:343-53. [PMID: 24998257 DOI: 10.1007/s00213-014-3667-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/16/2014] [Indexed: 12/18/2022]
Abstract
RATIONALE One of the most often reported cognitive deficits of acute cannabis administration is an impaired recall of previously learned information. OBJECTIVE The aim of the present study was to determine whether cannabis-induced memory impairment in humans is mediated via glutamatergic or cholinergic pathways. METHODS Fifteen occasional cannabis users participated in a double-blind, placebo-controlled, six-way cross-over study. On separate test days, subjects received combinations of pretreatment (placebo, vardenafil 20 mg or rivastigmine 3 mg) and treatment (placebo or 1,376 mg cannabis/kg body weight). Cognitive tests were administered immediately after inhalation of treatment was finished and included measures of memory (visual verbal learning task, prospective memory test, Sternberg memory test), perceptual-motor control (critical tracking task), attention (divided attention task) and motor impulsivity (stop signal task). RESULTS The results of this study demonstrate that subjects under the influence of cannabis were impaired in all memory tasks, in critical tracking, divided attention and the stop signal task. Pretreatment with rivastigmine attenuated the effect of cannabis on delayed recall and showed a trend towards significance on immediate recall. When cannabis was given in combination with vardenafil, there were no significant interaction effects in any of the tasks. CONCLUSIONS The present data therefore suggest that acetylcholine plays an important role in cannabis-induced memory impairment, whereas similar results for glutamate have not been demonstrated in this study.
Collapse
|
29
|
Lubman DI, Cheetham A, Yücel M. Cannabis and adolescent brain development. Pharmacol Ther 2014; 148:1-16. [PMID: 25460036 DOI: 10.1016/j.pharmthera.2014.11.009] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 11/03/2014] [Indexed: 12/14/2022]
Abstract
Heavy cannabis use has been frequently associated with increased rates of mental illness and cognitive impairment, particularly amongst adolescent users. However, the neurobiological processes that underlie these associations are still not well understood. In this review, we discuss the findings of studies examining the acute and chronic effects of cannabis use on the brain, with a particular focus on the impact of commencing use during adolescence. Accumulating evidence from both animal and human studies suggests that regular heavy use during this period is associated with more severe and persistent negative outcomes than use during adulthood, suggesting that the adolescent brain may be particularly vulnerable to the effects of cannabis exposure. As the endocannabinoid system plays an important role in brain development, it is plausible that prolonged use during adolescence results in a disruption in the normative neuromaturational processes that occur during this period. We identify synaptic pruning and white matter development as two processes that may be adversely impacted by cannabis exposure during adolescence. Potentially, alterations in these processes may underlie the cognitive and emotional deficits that have been associated with regular use commencing during adolescence.
Collapse
Affiliation(s)
- Dan I Lubman
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia.
| | - Ali Cheetham
- Turning Point, Eastern Health and Eastern Health Clinical School, Monash University, Victoria, Australia
| | - Murat Yücel
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia; Monash Clinical & Imaging Neuroscience, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Ward SJ, McAllister SD, Kawamura R, Murase R, Neelakantan H, Walker EA. Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-HT(1A) receptors without diminishing nervous system function or chemotherapy efficacy. Br J Pharmacol 2014; 171:636-45. [PMID: 24117398 DOI: 10.1111/bph.12439] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 08/12/2013] [Accepted: 08/26/2013] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Paclitaxel (PAC) is associated with chemotherapy-induced neuropathic pain (CIPN) that can lead to the cessation of treatment in cancer patients even in the absence of alternate therapies. We previously reported that chronic administration of the non-psychoactive cannabinoid cannabidiol (CBD) prevents PAC-induced mechanical and thermal sensitivity in mice. Hence, we sought to determine receptor mechanisms by which CBD inhibits CIPN and whether CBD negatively effects nervous system function or chemotherapy efficacy. EXPERIMENTAL APPROACH The ability of acute CBD pretreatment to prevent PAC-induced mechanical sensitivity was assessed, as was the effect of CBD on place conditioning and on an operant-conditioned learning and memory task. The potential interaction of CBD and PAC on breast cancer cell viability was determined using the MTT assay. KEY RESULTS PAC-induced mechanical sensitivity was prevented by administration of CBD (2.5 - 10 mg·kg⁻¹) in female C57Bl/6 mice. This effect was reversed by co-administration of the 5-HT(1A) antagonist WAY 100635, but not the CB₁ antagonist SR141716 or the CB₂ antagonist SR144528. CBD produced no conditioned rewarding effects and did not affect conditioned learning and memory. Also, CBD + PAC combinations produce additive to synergistic inhibition of breast cancer cell viability. CONCLUSIONS AND IMPLICATIONS Our data suggest that CBD is protective against PAC-induced neurotoxicity mediated in part by the 5-HT(1A) receptor system. Furthermore, CBD treatment was devoid of conditioned rewarding effects or cognitive impairment and did not attenuate PAC-induced inhibition of breast cancer cell viability. Hence, adjunct treatment with CBD during PAC chemotherapy may be safe and effective in the prevention or attenuation of CIPN.
Collapse
Affiliation(s)
- Sara Jane Ward
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
31
|
Rasekhi K, Oryan S, Nasehi M, Zarrindast MR. Involvement of the nucleus accumbens shell glutamatergic system in ACPA-induced impairment of inhibitory avoidance memory consolidation. Behav Brain Res 2014; 269:28-36. [DOI: 10.1016/j.bbr.2014.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/30/2022]
|
32
|
Chegini HR, Nasehi M, Zarrindast MR. Differential role of the basolateral amygdala 5-HT3 and 5-HT4 serotonin receptors upon ACPA-induced anxiolytic-like behaviors and emotional memory deficit in mice. Behav Brain Res 2014; 261:114-26. [DOI: 10.1016/j.bbr.2013.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/26/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
|
33
|
Radhakrishnan R, Wilkinson ST, D'Souza DC. Gone to Pot - A Review of the Association between Cannabis and Psychosis. Front Psychiatry 2014; 5:54. [PMID: 24904437 PMCID: PMC4033190 DOI: 10.3389/fpsyt.2014.00054] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/02/2014] [Indexed: 01/01/2023] Open
Abstract
Cannabis is the most commonly used illicit drug worldwide, with ~5 million daily users worldwide. Emerging evidence supports a number of associations between cannabis and psychosis/psychotic disorders, including schizophrenia. These associations-based on case-studies, surveys, epidemiological studies, and experimental studies indicate that cannabinoids can produce acute, transient effects; acute, persistent effects; and delayed, persistent effects that recapitulate the psychopathology and psychophysiology seen in schizophrenia. Acute exposure to both cannabis and synthetic cannabinoids (Spice/K2) can produce a full range of transient psychotomimetic symptoms, cognitive deficits, and psychophysiological abnormalities that bear a striking resemblance to symptoms of schizophrenia. In individuals with an established psychotic disorder, cannabinoids can exacerbate symptoms, trigger relapse, and have negative consequences on the course of the illness. Several factors appear to moderate these associations, including family history, genetic factors, history of childhood abuse, and the age at onset of cannabis use. Exposure to cannabinoids in adolescence confers a higher risk for psychosis outcomes in later life and the risk is dose-related. Individuals with polymorphisms of COMT and AKT1 genes may be at increased risk for psychotic disorders in association with cannabinoids, as are individuals with a family history of psychotic disorders or a history of childhood trauma. The relationship between cannabis and schizophrenia fulfills many but not all of the standard criteria for causality, including temporality, biological gradient, biological plausibility, experimental evidence, consistency, and coherence. At the present time, the evidence indicates that cannabis may be a component cause in the emergence of psychosis, and this warrants serious consideration from the point of view of public health policy.
Collapse
Affiliation(s)
- Rajiv Radhakrishnan
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - Samuel T Wilkinson
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - Deepak Cyril D'Souza
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA ; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center , New Haven, CT , USA ; Schizophrenia and Neuropharmacology Research Group, VA Connecticut Healthcare System , West Haven, CT , USA
| |
Collapse
|
34
|
Substrate-selective COX-2 inhibition decreases anxiety via endocannabinoid activation. Nat Neurosci 2013; 16:1291-8. [PMID: 23912944 PMCID: PMC3788575 DOI: 10.1038/nn.3480] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/18/2013] [Indexed: 11/12/2022]
Abstract
Augmentation of endogenous cannabinoid (eCB) signaling represents an emerging approach to the treatment of affective disorders. Cyclooxygenase-2 (COX-2) oxygenates arachidonic acid to form prostaglandins, but also inactivates eCBs in vitro. However, the viability of COX-2 as a therapeutic target for in vivo eCB augmentation has not been explored. Using medicinal chemistry and in vivo analytical and behavioral pharmacological approaches, we found that COX-2 is important for the regulation of eCB levels in vivo. We used a pharmacological strategy involving substrate-selective inhibition of COX-2 to augment eCB signaling without affecting related non-eCB lipids or prostaglandin synthesis. Behaviorally, substrate-selective inhibition of COX-2 reduced anxiety-like behaviors in mice via increased eCB signaling. Our data suggest a key role for COX-2 in the regulation of eCB signaling and indicate that substrate-selective pharmacology represents a viable approach for eCB augmentation with broad therapeutic potential.
Collapse
|
35
|
Puighermanal E, Busquets-Garcia A, Maldonado R, Ozaita A. Cellular and intracellular mechanisms involved in the cognitive impairment of cannabinoids. Philos Trans R Soc Lond B Biol Sci 2013; 367:3254-63. [PMID: 23108544 DOI: 10.1098/rstb.2011.0384] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exogenous cannabinoids, such as delta9-tetrahydrocannabinol (THC), as well as the modulation of endogenous cannabinoids, affect cognitive function through the activation of cannabinoid receptors. Indeed, these compounds modulate a number of signalling pathways critically implicated in the deleterious effect of cannabinoids on learning and memory. Thus, the involvement of the mammalian target of rapamycin pathway and extracellular signal-regulated kinases, together with their consequent regulation of cellular processes such as protein translation, play a critical role in the amnesic-like effects of cannabinoids. In this study, we summarize the cellular and molecular mechanisms reported in the modulation of cognitive function by the endocannabinoid system.
Collapse
Affiliation(s)
- Emma Puighermanal
- Departament de Ciències Experimentals i de la Salut, Facultat de Ciències de la Salut i de la Vida, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | |
Collapse
|
36
|
Wellner N, Diep TA, Janfelt C, Hansen HS. N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:652-62. [DOI: 10.1016/j.bbalip.2012.08.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 12/22/2022]
|
37
|
Abstract
Investigating the effects of cannabis use on memory function appears challenging. While early observational investigations aimed to elucidate the longer-term effects of cannabis use on memory function in humans, findings remained equivocal and pointed to a pattern of interacting factors impacting on the relationship between cannabis use and memory function, rather than a simple direct effect of cannabis. Only recently, a clearer picture of the chronic and acute effects of cannabis use on memory function has emerged once studies have controlled for potential confounding factors and started to investigate the acute effects of delta-9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD), the main ingredients in the extract of the cannabis plant in pharmacological challenge experiments. Relatively consistent findings have been reported regarding the acute impairments induced by a single dose of Δ9-THC on verbal and working memory. It is unclear whether they may persist beyond the intoxication state. In the long-term, these impairments seem particularly likely to manifest and may also persist following abstinence if regular and heavy use of cannabis strains high in Δ9-THC is started at an early age. Although still at an early stage, studies that employed advanced neuroimaging techniques have started to model the neural underpinnings of the effects of cannabis use and implicate a network of functional and morphological alterations that may moderate the effects of cannabis on memory function. Future experimental and epidemiological studies that take into consideration individual differences, particularly previous cannabis history and demographic characteristics, but also the precise mixture of the ingredients of the consumed cannabis are necessary to clarify the magnitude and the mechanisms by which cannabis-induced memory impairments occur and to elucidate underlying neurobiological mechanisms.
Collapse
Affiliation(s)
- Tabea Schoeler
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, King's College London, Institute of Psychiatry, London, UK
| |
Collapse
|
38
|
Panlilio LV, Ferré S, Yasar S, Thorndike EB, Schindler CW, Goldberg SR. Combined effects of THC and caffeine on working memory in rats. Br J Pharmacol 2012; 165:2529-38. [PMID: 21699509 DOI: 10.1111/j.1476-5381.2011.01554.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabis and caffeine are two of the most widely used psychoactive substances. Δ(9) -Tetrahydrocannabinol (THC), the main psychoactive constituent of cannabis, induces deficits in short-term memory. Caffeine, a non-selective adenosine receptor antagonist, attenuates some memory deficits, but there have been few studies addressing the effects of caffeine and THC in combination. Here, we evaluate the effects of these drugs using a rodent model of working memory. EXPERIMENTAL APPROACH Rats were given THC (0, 1 and 3 mg·kg(-1) , i.p.) along with caffeine (0, 1, 3 and 10 mg·kg(-1) , i.p.), the selective adenosine A(1) -receptor antagonist CPT (0, 3 and 10 mg·kg(-1) ) or the selective adenosine A(2A) -receptor antagonist SCH58261 (0 and 5 mg·kg(-1) ) and were tested with a delayed non-matching-to-position procedure in which behaviour during the delay was automatically recorded as a model of memory rehearsal. KEY RESULTS THC alone produced memory deficits at 3 mg·kg(-1) . The initial exposure to caffeine (10 mg·kg(-1) ) disrupted the established pattern of rehearsal-like behaviour, but tolerance developed rapidly to this effect. CPT and SCH58261 alone had no significant effects on rehearsal or memory. When a subthreshold dose of THC (1 mg·kg(-1) ) was combined with caffeine (10 mg·kg(-1) ) or CPT (10 mg·kg(-1) ), memory performance was significantly impaired, even though performance of the rehearsal-like pattern was not significantly altered. CONCLUSION AND IMPLICATIONS Caffeine did not counteract memory deficits induced by THC but actually exacerbated them. These results are consistent with recent findings that adenosine A(1) receptors modulate cannabinoid signalling in the hippocampus. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7.
Collapse
Affiliation(s)
- Leigh V Panlilio
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
39
|
El Khoury MA, Gorgievski V, Moutsimilli L, Giros B, Tzavara ET. Interactions between the cannabinoid and dopaminergic systems: evidence from animal studies. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:36-50. [PMID: 22300746 DOI: 10.1016/j.pnpbp.2011.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 12/18/2011] [Accepted: 12/18/2011] [Indexed: 12/16/2022]
Abstract
There is a prominent role of the cannabinoid system to control basal ganglia function, in respect to reward, psychomotor function and motor control. Cannabinoid dysregulations might have a pathogenetic role in dopamine- and basal ganglia related neuropsychiatric disorders, such as drug addiction, psychosis, Parkinson's disease and Huntington's disease. This review highlights interactions between cannabinoids, and dopamine, to modulate neurotransmitter release and synaptic plasticity in the context of drug addiction, psychosis and cognition. Modulating endocannabinoid function, as a plasticity based therapeutic strategy, in the above pathologies with particular focus on cannabinoid receptor type 1 (CB1 receptor) antagonists/inverse agonists, is discussed. On the basis of the existing literature and of new experimental evidence presented here, CB1 receptor antagonists might be beneficial in disease states associated with hedonic dysregulation, and with cognitive dysfunction in particular in the context of psychosis. It is suggested that this effects might be mediated via a hyperglutamatergic state through metabotropic glutamate activation. Indications for endocannabinoid catabolism inhibitors in psychiatric disorders, that might be CB1 receptor independent and might involve TRPV1 receptors, are also discussed.
Collapse
Affiliation(s)
- Marie-Anne El Khoury
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMRS-952, Université Pierre et Marie Curie, 9 quai St Bernard, 75005 Paris, France
| | | | | | | | | |
Collapse
|
40
|
Jacob W, Marsch R, Marsicano G, Lutz B, Wotjak CT. Cannabinoid CB1 receptor deficiency increases contextual fear memory under highly aversive conditions and long-term potentiation in vivo. Neurobiol Learn Mem 2012; 98:47-55. [DOI: 10.1016/j.nlm.2012.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/30/2012] [Accepted: 04/25/2012] [Indexed: 12/12/2022]
|
41
|
Coulon D, Faure L, Salmon M, Wattelet V, Bessoule JJ. N-Acylethanolamines and related compounds: aspects of metabolism and functions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 184:129-140. [PMID: 22284717 DOI: 10.1016/j.plantsci.2011.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 05/31/2023]
Abstract
N-Acylethanolamines (NAE) are fatty acid derivates that are linked with an ethanolamine group via an amide bond. NAE can be characterized as lipid mediators in the plant and animal kingdoms owing to the diverse functions throughout the eukaryotic domain. The functions of NAE have been widely investigated in animal tissues in part due to their abilities to interact with the cannabinoid receptors, vanilloid receptors or peroxisome proliferator activated receptors. However, the interest of studying the functions of these lipids in plants is progressively becoming more apparent. The number of publications about the functions related to NAE and to structural analogs (homoserine lactone and alkamides) is greatly increasing, showing the importance of these lipids in various plant physiological processes. This review sheds light on their role in different processes such as seedling development, plant pathogen interaction, phospholipase D alpha inhibition and senescence of cut flowers, and underlines the interaction between NAE and NAE-related molecules with plant hormone signaling. The different metabolic pathways promoting the synthesis and degradation of NAE are also discussed, in particular the oxygenation of polyunsaturated N-acylethanolamines, which leads to NAE-oxylipins, a new family of bioactive lipids.
Collapse
Affiliation(s)
- Denis Coulon
- Laboratoire de Biogenèse Membranaire, Univ. de Bordeaux, UMR 5200, F-33000 Bordeaux, France.
| | | | | | | | | |
Collapse
|
42
|
Montgomery C, Seddon AL, Fisk JE, Murphy PN, Jansari A. Cannabis-related deficits in real-world memory. Hum Psychopharmacol 2012; 27:217-25. [PMID: 22389086 DOI: 10.1002/hup.1273] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Research shows that cannabis users exhibit deficits in prospective memory (PM) and executive function, which persist beyond acute intoxication. However, many studies rely on self-reports of memory failures or use laboratory-based measures that may not mimic functional deficits in the real world. The present study aimed to assess real-world memory functioning. METHOD Twenty cannabis-only users and 20 non-illicit drug users were recruited. Participants completed a substance use inventory and a mood scale, followed by a non-immersive virtual reality task assessing PM and executive functioning. The task involved the participant playing the role of an office worker for the day and performing routine office duties. A number of subscales were used to assess facets of executive function (planning, adaptive thinking, creative thinking, selection, prioritisation) and PM (time-based, event-based and action-based PM). RESULTS Multivariate analysis of variance revealed cannabis users performed worse overall on the task, with poor performance on the planning, time-based PM and event-based PM subscales. In addition, indices of cannabis (length, dose, frequency, total use) were correlated with performance on these three subscales. CONCLUSIONS The present study expands on previously established research, providing support for the cannabis-related deficits in PM and executive functioning, and the role of different aspects of cannabis use in these deficits.
Collapse
|
43
|
Martín-Moreno AM, Brera B, Spuch C, Carro E, García-García L, Delgado M, Pozo MA, Innamorato NG, Cuadrado A, de Ceballos ML. Prolonged oral cannabinoid administration prevents neuroinflammation, lowers β-amyloid levels and improves cognitive performance in Tg APP 2576 mice. J Neuroinflammation 2012; 9:8. [PMID: 22248049 PMCID: PMC3292807 DOI: 10.1186/1742-2094-9-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/16/2012] [Indexed: 12/26/2022] Open
Abstract
Background Alzheimer's disease (AD) brain shows an ongoing inflammatory condition and non-steroidal anti-inflammatories diminish the risk of suffering the neurologic disease. Cannabinoids are neuroprotective and anti-inflammatory agents with therapeutic potential. Methods We have studied the effects of prolonged oral administration of transgenic amyloid precursor protein (APP) mice with two pharmacologically different cannabinoids (WIN 55,212-2 and JWH-133, 0.2 mg/kg/day in the drinking water during 4 months) on inflammatory and cognitive parameters, and on 18F-fluoro-deoxyglucose (18FDG) uptake by positron emission tomography (PET). Results Novel object recognition was significantly reduced in 11 month old Tg APP mice and 4 month administration of JWH was able to normalize this cognitive deficit, although WIN was ineffective. Wild type mice cognitive performance was unaltered by cannabinoid administration. Tg APP mice showed decreased 18FDG uptake in hippocampus and cortical regions, which was counteracted by oral JWH treatment. Hippocampal GFAP immunoreactivity and cortical protein expression was unaffected by genotype or treatment. In contrast, the density of Iba1 positive microglia was increased in Tg APP mice, and normalized following JWH chronic treatment. Both cannabinoids were effective at reducing the enhancement of COX-2 protein levels and TNF-α mRNA expression found in the AD model. Increased cortical β-amyloid (Aβ) levels were significantly reduced in the mouse model by both cannabinoids. Noteworthy both cannabinoids enhanced Aβ transport across choroid plexus cells in vitro. Conclusions In summary we have shown that chronically administered cannabinoid showed marked beneficial effects concomitant with inflammation reduction and increased Aβ clearance.
Collapse
Affiliation(s)
- Ana María Martín-Moreno
- Neurodenegeration Group, Dept. of Cellular, Molecular and Developmental Neurobiology, Instituto Cajal, CSIC, Doctor Arce 37, Madrid 28002, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Coulon D, Faure L, Salmon M, Wattelet V, Bessoule JJ. Occurrence, biosynthesis and functions of N-acylphosphatidylethanolamines (NAPE): Not just precursors of N-acylethanolamines (NAE). Biochimie 2012; 94:75-85. [DOI: 10.1016/j.biochi.2011.04.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/29/2011] [Indexed: 01/19/2023]
|
45
|
Bilkei-Gorzo A, Drews E, Albayram Ö, Piyanova A, Gaffal E, Tueting T, Michel K, Mauer D, Maier W, Zimmer A. Early onset of aging-like changes is restricted to cognitive abilities and skin structure in Cnr1−/− mice. Neurobiol Aging 2012; 33:200.e11-22. [DOI: 10.1016/j.neurobiolaging.2010.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 07/02/2010] [Accepted: 07/09/2010] [Indexed: 12/19/2022]
|
46
|
Mateos B, Borcel E, Loriga R, Luesu W, Bini V, Llorente R, Castelli MP, Viveros MP. Adolescent exposure to nicotine and/or the cannabinoid agonist CP 55,940 induces gender-dependent long-lasting memory impairments and changes in brain nicotinic and CB(1) cannabinoid receptors. J Psychopharmacol 2011; 25:1676-90. [PMID: 20562169 DOI: 10.1177/0269881110370503] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have analysed the long-term effects of adolescent (postnatal day 28-43) exposure of male and female rats to nicotine (NIC, 1.4 mg/kg/day) and/or the cannabinoid agonist CP 55,940 (CP, 0.4 mg/kg/day) on the following parameters measured in the adulthood: (1) the memory ability evaluated in the object location task (OL) and in the novel object test (NOT); (2) the anxiety-like behaviour in the elevated plus maze; and (3) nicotinic and CB(1) cannabinoid receptors in cingulated cortex and hippocampus. In the OL, all pharmacological treatments induced significant decreases in the DI of females, whereas no significant effects were found among males. In the NOT, NIC-treated females showed a significantly reduced DI, whereas the effect of the cannabinoid agonist (a decrease in the DI) was only significant in males. The anxiety-related behaviour was not changed by any drug. Both, nicotine and cannabinoid treatments induced a long-lasting increase in CB(1) receptor activity (CP-stimulated GTPγS binding) in male rats, and the nicotine treatment also induced a decrease in nicotinic receptor density in the prefrontal cortex of females. The results show gender-dependent harmful effects of both drugs and long-lasting changes in CB(1) and nicotinic receptors.
Collapse
Affiliation(s)
- B Mateos
- Department of Physiology (Animal Physiology II), Faculty of Biology, Complutense University, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wise LE, Varvel SA, Selley DE, Wiebelhaus JM, Long KA, Middleton LS, Sim-Selley LJ, Lichtman AH. delta(9)-Tetrahydrocannabinol-dependent mice undergoing withdrawal display impaired spatial memory. Psychopharmacology (Berl) 2011; 217:485-94. [PMID: 21559804 PMCID: PMC3386852 DOI: 10.1007/s00213-011-2305-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 04/04/2011] [Indexed: 11/25/2022]
Abstract
RATIONALE Cannabis users display a constellation of withdrawal symptoms upon drug discontinuation, including sleep disturbances, irritability, and possibly memory deficits. In cannabinoid-dependent rodents, the CB(1) antagonist rimonabant precipitates somatic withdrawal and enhances forskolin-stimulated adenylyl cyclase activity in cerebellum, an effect opposite that of acutely administered ∆(9)-tetrahydrocannabinol (THC), the primary constituent in cannabis. OBJECTIVES Here, we tested whether THC-dependent mice undergoing rimonabant-precipitated withdrawal display short-term spatial memory deficits, as assessed in the Morris water maze. We also evaluated whether rimonabant would precipitate adenylyl cyclase superactivation in hippocampal and cerebellar tissue from THC-dependent mice. RESULTS Rimonabant significantly impaired spatial memory of THC-dependent mice at lower doses than those necessary to precipitate somatic withdrawal behavior. In contrast, maze performance was near perfect in the cued task, suggesting sensorimotor function and motivational factors were unperturbed by the withdrawal state. Finally, rimonabant increased adenylyl cyclase activity in cerebellar, but not in hippocampal, membranes. CONCLUSIONS The memory disruptive effects of THC undergo tolerance following repeated dosing, while the withdrawal state leads to a rebound deficit in memory. These results establish spatial memory impairment as a particularly sensitive component of cannabinoid withdrawal, an effect that may be mediated through compensatory changes in the cerebellum.
Collapse
Affiliation(s)
- Laura E. Wise
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 98061, Richmond, VA 23298, USA
| | - Stephen A. Varvel
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 98061, Richmond, VA 23298, USA
| | - Dana E. Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 98061, Richmond, VA 23298, USA. Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason M. Wiebelhaus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 98061, Richmond, VA 23298, USA
| | - Kelly A. Long
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 98061, Richmond, VA 23298, USA
| | - Lisa S. Middleton
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 98061, Richmond, VA 23298, USA
| | - Laura J. Sim-Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 98061, Richmond, VA 23298, USA. Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA
| | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 98061, Richmond, VA 23298, USA. Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
48
|
Ghiasvand M, Rezayof A, Zarrindast MR, Ahmadi S. Activation of cannabinoid CB1 receptors in the central amygdala impairs inhibitory avoidance memory consolidation via NMDA receptors. Neurobiol Learn Mem 2011; 96:333-8. [DOI: 10.1016/j.nlm.2011.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 05/31/2011] [Accepted: 06/17/2011] [Indexed: 12/14/2022]
|
49
|
van Hell HH, Bossong MG, Jager G, Kahn RS, Ramsey NF. Methods of the pharmacological imaging of the cannabinoid system (PhICS) study: towards understanding the role of the brain endocannabinoid system in human cognition. Int J Methods Psychiatr Res 2011; 20:10-27. [PMID: 21574207 PMCID: PMC6878573 DOI: 10.1002/mpr.327] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 04/06/2010] [Accepted: 06/28/2010] [Indexed: 01/22/2023] Open
Abstract
Various lines of (pre)clinical research indicate that cannabinoid agents carry the potential for therapeutic application to reduce symptoms in several psychiatric disorders. However, direct testing of the involvement of cannabinoid brain systems in psychiatric syndromes is essential for further development. In the Pharmacological Imaging of the Cannabinoid System (PhICS) study, the involvement of the endocannabinoid system in cognitive brain function is assessed by comparing acute effects of the cannabinoid agonist Δ9-tetrahydrocannabinol (THC) on brain function between healthy controls and groups of psychiatric patients showing cognitive dysfunction. This article describes the objectives and methods of the PhICS study and presents preliminary results of the administration procedure on subjective and neurophysiological parameters. Core elements in the methodology of PhICS are the administration method (THC is administered by inhalation using a vaporizing device) and a comprehensive use of pharmacological magnetic resonance imaging (phMRI) combining several types of MRI scans including functional MRI (fMRI), Arterial Spin Labeling (ASL) to measure brain perfusion, and resting-state fMRI. Additional methods like neuropsychological testing further specify the exact role of the endocannabinoid system in regulating cognition. Preliminary results presented in this paper indicate robust behavioral and subjective effects of THC. In addition, fMRI paradigms demonstrate activation of expected networks of brain regions in the cognitive domains of interest. The presented administration and assessment protocol provides a basis for further research on the involvement of the endocannabionoid systems in behavior and in psychopathology, which in turn may lead to development of therapeutic opportunities of cannabinoid ligands.
Collapse
Affiliation(s)
- Hendrika H van Hell
- Department of Neurology and Neurosurgery, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
50
|
Rodrigues LCDM, Conti CL, Nakamura-Palacios EM. Clozapine and SCH 23390 prevent the spatial working memory disruption induced by Δ9-THC administration into the medial prefrontal cortex. Brain Res 2011; 1382:230-7. [PMID: 21281616 DOI: 10.1016/j.brainres.2011.01.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 01/07/2023]
Abstract
Marijuana (Cannabis sativa) is one of the most widely used illicit drugs in the world. Its use is associated with impairments in cognitive function. We previously reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), the primary psychoactive component of marijuana, impaired spatial working memory in the radial maze task when injected intracortically (IC) into the medial prefrontal cortex (mPFC) of rats. Here, we used this paradigm to evaluate the involvement of prefrontal dopamine receptors in working memory disruption induced by Δ(9)-THC. Intracortical pre-treatment of animals with either the D(1)- or D(2)-like dopamine receptor antagonists SCH 23390 or clozapine, respectively, significantly reduced the number of errors rats made in the radial maze following treatment with Δ(9)-THC also administered intracortically. These results were obtained in the absence of locomotor impairment, as evidenced by the time spent in each arm a rat visited. Our findings suggest that prefrontal dopamine receptors are involved in Δ(9)-THC-induced disruption of spatial working memory. This interaction between the cannabinoid system and dopamine release in the PFC contributes to new directions in research and to treatments for cognitive dysfunctions associated with drug abuse and dependence.
Collapse
|