1
|
Hill JR, Eekhoff JD, Brophy RH, Lake SP. Elastic fibers in orthopedics: Form and function in tendons and ligaments, clinical implications, and future directions. J Orthop Res 2020; 38:2305-2317. [PMID: 32293749 PMCID: PMC7572591 DOI: 10.1002/jor.24695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/21/2020] [Accepted: 04/11/2020] [Indexed: 02/04/2023]
Abstract
Elastic fibers are an essential component of the extracellular matrix of connective tissues. The focus of both clinical management and scientific investigation of elastic fiber disorders has centered on the cardiovascular manifestations due to their significant impact on morbidity and mortality. As such, the current understanding of the orthopedic conditions experienced by these patients is limited. The musculoskeletal implications of more subtle elastic fiber abnormalities, whether due to allelic variants or age-related tissue degeneration, are also not well understood. Recent advances have begun to uncover the effects of elastic fiber deficiency on tendon and ligament biomechanics; future research must further elucidate mechanisms governing the role of elastic fibers in these tissues. The identification of population-based genetic variations in elastic fibers will also be essential. Minoxidil administration, modulation of protein expression with micro-RNA molecules, and direct injection of recombinant elastic fiber precursors have demonstrated promise for therapeutic intervention, but further work is required prior to consideration for orthopedic clinical application. This review provides an overview of the role of elastic fibers in musculoskeletal tissue, summarizes current knowledge of the orthopedic manifestations of elastic fiber abnormalities, and identifies opportunities for future investigation and clinical application.
Collapse
Affiliation(s)
- J. Ryan Hill
- Department of Orthopaedic Surgery, Washington University in St. Louis, 425 S. Euclid Avenue, Suite 5505, St. Louis, MO 63110
| | - Jeremy D. Eekhoff
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Robert H. Brophy
- Department of Orthopaedic Surgery, Washington University in St. Louis, 425 S. Euclid Avenue, Suite 5505, St. Louis, MO 63110
| | - Spencer P. Lake
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130,Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| |
Collapse
|
2
|
Barin FR, de Sousa Neto IV, Vieira Ramos G, Szojka A, Ruivo AL, Anflor CTM, Agualimpia JDH, Domingues AC, Franco OL, Adesida AB, Durigan JLQ, Marqueti RDC. Calcaneal Tendon Plasticity Following Gastrocnemius Muscle Injury in Rat. Front Physiol 2019; 10:1098. [PMID: 31551799 PMCID: PMC6733963 DOI: 10.3389/fphys.2019.01098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023] Open
Abstract
Cross-talk between skeletal muscle and tendon is important for tissue homeostasis. Whereas the skeletal muscle response to tendon injury has been well-studied, to the best of our knowledge the tendon response to skeletal muscle injury has been neglected. Thus, we investigated calcaneal tendon extracellular matrix (ECM) remodeling after gastrocnemius muscle injury using a rat model. Wistar rats were randomly divided into four groups: control group (C; animals that were not exposed to muscle injury) and harvested at different time points post gastrocnemius muscle injury (3, 14, and 28 days) for gene expression, morphological, and biomechanical analyses. At 3 days post injury, we observed mRNA-level dysregulation of signaling pathways associated with collagen I accompanied with disrupted biomechanical properties. At 14 days post injury, we found reduced collagen content histologically accompanied by invasion of blood vessels into the tendon proper and an abundance of peritendinous sheath cells. Finally, at 28 days post injury, there were signs of recovery at the gene expression level including upregulation of transcription factors related to ECM synthesis, remodeling, and repair. At this time point, tendons also presented with increased peritendinous sheath cells, decreased adipose cells, higher Young's modulus, and lower strain to failure compared to the uninjured controls and all post injury time points. In summary, we demonstrate that the calcaneal tendon undergoes extensive ECM remodeling in response to gastrocnemius muscle injury leading to altered functional properties in a rat model. Tendon plasticity in response to skeletal muscle injury merits further investigation to understand its physiological relevance and potential clinical implications.
Collapse
Affiliation(s)
| | | | | | - Alexander Szojka
- Division of Orthopaedic Surgery, University of Alberta, Edmonton, AB, Canada
- Division of Surgical Research, University of Alberta, Edmonton, AB, Canada
| | | | | | | | - Allan Corrêa Domingues
- Group of Experimental and Computational Mechanics, Universidade de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Universidade Catolica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Adetola B. Adesida
- Division of Orthopaedic Surgery, University of Alberta, Edmonton, AB, Canada
- Division of Surgical Research, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
3
|
Fêo HB, Biancalana A, Romero Nakagaki W, Aparecida de Aro A, Gomes L. Morphological Alterations and Increased Gelatinase Activity in the Superficial Digital Flexor Tendon of Chickens During Growth and Maturation. Anat Rec (Hoboken) 2018; 302:964-972. [DOI: 10.1002/ar.24027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/30/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Haline Ballestero Fêo
- Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas – UNICAMP Campinas Brazil
| | - Adriano Biancalana
- Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas – UNICAMP Campinas Brazil
- Laboratory of Cellular and Molecular BiologyFederal University of Pará – UFPA Soure Brazil
| | - Wilson Romero Nakagaki
- Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas – UNICAMP Campinas Brazil
- Master's Program in Health SciencesUniversity of Western São Paulo – UNOESTE Presidente Prudente Brazil
| | - Andrea Aparecida de Aro
- Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas – UNICAMP Campinas Brazil
- Biomedical Sciences Graduate ProgramHerminio Ometto University Center –UNIARARAS Araras Brazil
| | - Laurecir Gomes
- Department of Structural and Functional BiologyInstitute of Biology, State University of Campinas – UNICAMP Campinas Brazil
| |
Collapse
|
4
|
Resistance training minimizes the biomechanical effects of aging in three different rat tendons. J Biomech 2017; 53:29-35. [DOI: 10.1016/j.jbiomech.2016.12.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 11/18/2022]
|
5
|
Oliveira LP, Vieira CP, Marques PP, Pimentel ER. Do different tendons exhibit the same response following chronic exposure to statins? Can J Physiol Pharmacol 2017; 95:333-339. [PMID: 28112540 DOI: 10.1139/cjpp-2016-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the past few years, a number of cases of tendon injuries associated with statin therapy have been reported. In this study, we assessed whether statins can affect the extracellular matrix (ECM) of the deep digital flexor tendon (DDFT) and patellar tendon (PT). Wistar rats were assigned to groups treated with atorvastatin (A20, A80), treated with simvastatin (S20, S80), and control. Zymography, Western blotting for collagen I, non-collagenous proteins (NCP), glycosaminoglycans (GAGs), and hydroxyproline quantifications were performed. DDFT findings: NCP were increased in A20 and A80; higher concentration of hydroxyproline was found in S80; levels of GAGs was increased in all statin-treated groups; collagen I was increased in S80 and pro-MMP-2 activity was reduced in A80, S20, and S80. PT findings: NCP were reduced in A20, A80, and S80; GAGs was reduced in A80 and S20; collagen I was increased in A20 and pro-MMP-2 activity was reduced in the S20. Both the statins provoked marked changes in both tendons. All these changes may make the tendons more prone to microdamage and ruptures. Therefore, a better understanding of the behavior of the tendon ECM components under statin therapy may provide important insights into the mechanisms behind statin-induced tendon injuries.
Collapse
Affiliation(s)
- L P Oliveira
- a Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - C P Vieira
- b Department of Pharmacology, Medical Sciences College, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - P P Marques
- c Department of Biochemistry, Federal University of Alfenas - Unifal, Alfenas, MG, Brazil
| | - E R Pimentel
- a Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
6
|
Vieira CP, De Oliveira LP, Da Ré Guerra F, Marcondes MCC, Pimentel ER. Green Tea and Glycine Modulate the Activity of Metalloproteinases and Collagen in the Tendinitis of the Myotendinous Junction of the Achilles Tendon. Anat Rec (Hoboken) 2016; 299:918-28. [DOI: 10.1002/ar.23361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Cristiano Pedrozo Vieira
- Department of Pharmacology; State University of Campinas; 13083-863 CP 6109 Campinas São Paulo Brazil
| | - LetÍCia Prado De Oliveira
- Structural and Functional Biology; Institute of Biology, State University of Campinas; 13083-863 CP 6109 Campinas São Paulo Brazil
| | - Flávia Da Ré Guerra
- Institute of Biological Sciences; Federal University of Alfenas; Alfenas Minas Gerais Brazil
| | - Maria Cristina Cintra Marcondes
- Structural and Functional Biology; Institute of Biology, State University of Campinas; 13083-863 CP 6109 Campinas São Paulo Brazil
| | - Edson Rosa Pimentel
- Structural and Functional Biology; Institute of Biology, State University of Campinas; 13083-863 CP 6109 Campinas São Paulo Brazil
| |
Collapse
|
7
|
de Oliveira LP, Vieira CP, Guerra FD, Almeida MS, Pimentel ER. Structural and biomechanical changes in the Achilles tendon after chronic treatment with statins. Food Chem Toxicol 2014; 77:50-7. [PMID: 25544391 DOI: 10.1016/j.fct.2014.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 12/13/2014] [Accepted: 12/17/2014] [Indexed: 12/15/2022]
Abstract
Cases of tendinopathy and tendon ruptures have been reported as side effects associated with statin therapy. This work assessed possible changes in the structural and biomechanical properties of the tendons after chronic treatment with statins. Wistar rats were divided into the following groups: treated with atorvastatin (A-20 and A-80), simvastatin (S-20 and S-80) and the group that received no treatment (C). The doses of statins were calculated using allometric scaling, based on the doses of 80 mg/day and 20 mg/day recommended for humans. The morphological aspect of the tendons in A-20, S-20 and S-80 presented signals consistent with degeneration. Both the groups A-80 and S-80 showed a less pronounced metachromasia in the compression region of the tendons. Measurements of birefringence showed that A-20, A-80 and S-80 groups had a lower degree of organization of the collagen fibers. In all of the groups treated with statins, the thickness of the epitenon was thinner when compared to the C group. In the biomechanical tests the tendons of the groups A-20, A-80 and S-20 were less resistant to rupture. Therefore, statins affected the organization of the collagen fibers and decreased the biomechanical strength of the tendons, making them more predisposed to ruptures.
Collapse
Affiliation(s)
- L P de Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| | - C P Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - F D Guerra
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - M S Almeida
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - E R Pimentel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
8
|
Zorel VJ, Morais JD, de Aro AA, Gomes L, Esquisatto MAM. Effects of maturation and aging on the pressure-bearing region of the plantaris longus tendon of the bullfrog (Lithobates catesbeianus). Microsc Res Tech 2014; 77:797-805. [DOI: 10.1002/jemt.22402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/19/2014] [Accepted: 07/05/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Valdenilson José Zorel
- Programa de Pós-graduação em Ciências Biomédicas; Centro Universitário Hermínio Ometto, Av. Dr. Maximiliano Baruto; 500 Jd. Universitário; 13607-339 Araras SP Brazil
| | - Jymenez De Morais
- Divisão de Reumatologia; Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455 Cerqueira César; 01246-903 São Paulo SP Brazil
| | - Andrea Aparecida de Aro
- Departamento de Biologia Estrutural e Funcional; Instituto de Biologia, Universidade Estadual de Campinas, Rua Charles Darwin, s/n. CxP 6109; 13083-863 Campinas SP Brazil
| | - Laurecir Gomes
- Departamento de Biologia Estrutural e Funcional; Instituto de Biologia, Universidade Estadual de Campinas, Rua Charles Darwin, s/n. CxP 6109; 13083-863 Campinas SP Brazil
| | - Marcelo Augusto Marretto Esquisatto
- Programa de Pós-graduação em Ciências Biomédicas; Centro Universitário Hermínio Ometto, Av. Dr. Maximiliano Baruto; 500 Jd. Universitário; 13607-339 Araras SP Brazil
| |
Collapse
|
9
|
Marqueti RC, Paulino MG, Fernandes MN, de Oliveira EM, Selistre-de-Araujo HS. Tendon structural adaptations to load exercise are inhibited by anabolic androgenic steroids. Scand J Med Sci Sports 2013; 24:e39-51. [DOI: 10.1111/sms.12135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2013] [Indexed: 11/30/2022]
Affiliation(s)
- R. C. Marqueti
- Faculty of Ceilândia; University of Brasília; Brasilia DF Brazil
| | - M. G. Paulino
- Department of Physiological Sciences; Federal University of São Carlos; São Carlos SP Brazil
| | - M. N. Fernandes
- Department of Physiological Sciences; Federal University of São Carlos; São Carlos SP Brazil
| | - E. M. de Oliveira
- Laboratory of Biochemistry; School of Physical Education and Sports; University of São Paulo; São Paulo SP Brazil
| | | |
Collapse
|
10
|
Vieira CP, De Aro AA, Da Ré Guerra F, De Oliveira LP, De Almeida MDS, Pimentel ER. Inflammatory process induced by carrageenan in adjacent tissue triggers the acute inflammation in deep digital flexor tendon of rats. Anat Rec (Hoboken) 2013; 296:1187-95. [PMID: 23775880 DOI: 10.1002/ar.22729] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/05/2013] [Accepted: 05/14/2013] [Indexed: 01/08/2023]
Abstract
Tendinopathy is a pathology found mainly in the rotator cuff, patellar, Achilles and flexor tendons. Tendinopathy is a significant impediment to performance in athletes and in workers in the labor market. Some studies have indicated that inflammation in adjacent tissues may affect the rotator cuff and Achilles tendon. In this study alterations were verified in the extracellular matrix (ECM) of the deep digital flexor tendon after two periods (12 and 24 hr) of induction inflammation in rat paw. Wistar rats were divided into three groups: those that received injection of 1% carrageenan; those that received 0.9% NaCl; and those that received no application. The tendon was divided into distal (d), proximal (p), and intermediate (i) regions. Biochemical analyses were performed and included non-collagenous proteins (NCP), glycosaminoglycans (GAGs), hydroxyproline (HoPro) and metalloproteinases 2 and 9. Tissue sections were stained with toluidine blue, hematoxylin-eosin, and Ponceau SS and observed under polarization microscopy. Remarkable results were detected that included the presence of MMP-9, degradation of NCP and GAG and the presence of cellular infiltrate closer to digits in d region. The different concentrations of HoPro, as well as alterations in the organization of the collagen fibers showed the collagenous matrix undergoing some alterations. The results indicated that the induced inflammation in rat paw exhibited characteristics similar to the typical acute inflammatory process observed in tendons.
Collapse
|
11
|
Effects of low-power LED and therapeutic ultrasound in the tissue healing and inflammation in a tendinitis experimental model in rats. Lasers Med Sci 2013; 29:301-11. [PMID: 23660737 DOI: 10.1007/s10103-013-1327-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
This work evaluated the anti-inflammatory response of low-power light-emitting diode (LED) and ultrasound (US) therapies and the quality and rapidness of tendon repair in an experimental model of tendinitis, employing histomorphometry and Raman spectroscopy. Tendinitis was induced by collagenase into the right tendon of 35 male Wistar rats with an average weight of 230 g. The animals were randomly separated into seven groups of five animals each: tendinitis without treatment-control (TD7 and TD14, where 1 and 2 indicated sacrifice on the 7th and 14th day, respectively), tendinitis submitted to US therapy (US7 and US14) and tendinitis submitted to LED therapy (LED7 and LED14). Contralateral tendons of the TD group at the 14th day were used as the healthy group (H). US treatment was applied in pulsed mode at 10 %, 1 MHz frequency, 0.5 W/cm(2), 120 s. LED therapy parameters were 4 J/cm(2), 120 s, daily dose at the same time and same point. Sacrifice was performed on the 7th or 14th day. Histomorphometric analysis showed lower number of fibroblasts on the 14th day of therapy for the US-treated group, compared to the TD and LED, indicating lower tissue inflammation. Raman showed that the LED group had an increase in the amount of collagen I and III from the 7th to the 14th day, which would indicate more organized fibers and a better quality of the healing, and US showed lower collagen I synthesis in the 14th day compared to H, indicating a lower tissue reorganization.
Collapse
|
12
|
WEARING SCOTTC, HOOPER SUEL, PURDAM CRAIG, COOK JILL, GRIGG NICOLE, LOCKE SIMON, SMEATHERS JAMESE. The Acute Transverse Strain Response of the Patellar Tendon to Quadriceps Exercise. Med Sci Sports Exerc 2013; 45:772-7. [DOI: 10.1249/mss.0b013e318279a81a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Implications of obesity for tendon structure, ultrastructure and biochemistry: A study on Zucker rats. Micron 2012; 43:463-9. [DOI: 10.1016/j.micron.2011.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 11/10/2011] [Accepted: 11/10/2011] [Indexed: 01/28/2023]
|
14
|
Vieira CP, de Aro AA, de Almeida MDS, de Mello GC, Antunes E, Pimentel ER. Effects of acute inflammation induced in the rat paw on the deep digital flexor tendon. Connect Tissue Res 2011; 53:160-8. [PMID: 22141408 DOI: 10.3109/03008207.2011.620189] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The tendon is commonly affected by inflammation, and in such situations, the tissue undergoes a process of reorganization of the extracellular matrix to improve and regenerate the affected region. Little is known about the mechanisms that trigger inflammation in the tissues surrounding the affected area. The objective of this study was to biochemically and morphologically analyze the deep digital flexor tendon at the peak of acute inflammation in the rat paw. Wistar rats were divided into the following three groups: those that received injection of 1% carrageenan, those that received 0.9% NaCl, and those that received nothing. The deep digital flexor tendon was divided into the distal, proximal, and intermediate regions. For biochemical analysis, the tendons were treated with guanidine hydrochloride and analyzed by sodium dodecyl sulfate-polyacrilamide gel electrophoresis. Proteins, glycosaminoglycans (GAGs), and hydroxyproline were quantified, and metalloproteinases were analyzed. The GAGs were analyzed by agarose gel electrophoresis. Tissue sections were stained with hematoxylin-eosin, toluidine blue, and Ponceau SS. The content of proteins and GAGs was smaller in the group receiving the application of carrageenan. The concentration of hydroxyproline in the two tendon regions that respond to tension forces was higher in the inflammation group. The metalloproteinase-9 was detected in the distal region, and a thicker epitenon with cellular infiltrate was observed in the groups with inflamed paws. Meanwhile, a better organization of collagen bundles was observed in the two tension regions of that same group. Our results show that although the tendon was not directly inflamed, changes in the surrounding structural and biochemical parameters were observed.
Collapse
Affiliation(s)
- Cristiano Pedrozo Vieira
- Department of Anatomy, Cell Biology, Physiology and Biophysics, Institute of Biology, State University of Campinas-UNICAMP, Campinas, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
15
|
Silva JMND, Carvalho JPD, Moura Júnior MDJ. Estudo morfométrico da terapia LED de baixa potência em tendinite de ratos. FISIOTERAPIA E PESQUISA 2011. [DOI: 10.1590/s1809-29502011000400012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A terapia LED de baixa potência possui efeitos analgésico e antiinflamatório. O objetivo desse estudo foi analisar a ação da terapia com LED de baixa potência na reparação tendínea por meio de histologia e histomorfometria. Foram usados 25 ratos Wistar, de 220 a 250 g, divididos em três grupos experimentais avaliados no 7º e 14º dia: A, tendinite induzida sem tratamento; B, tendinite induzida tratada com LED de baixa potência, densidade de energia 4 J/cm² por 120 segundos; e C, sem indução de tendinite. A histomorfometria mostrou-se altamente significativa (p<0,001) na terapia com LED em contrarrelógio de 14 dias, comparada ao grupo saudável (C). Entretanto, não mostrou significância levando em conta o grupo tendinite (A14), em que valor p>0,05. As análises histológica e histomorfométrica demonstraram qualitativo e quantitativo aumento no número de fibroblastos aos sete dias de tratamento, e das fibras colágenas, aos 14 dias, para grupo tratado com LED de baixa potência em relação ao grupo sadio (C). O mesmo não foi percebido quando relacionado ao grupo tendinite (A14).
Collapse
|
16
|
de Aro AA, Vidal BDC, Biancalana A, Tolentino FT, Gomes L, Mattiello SM, Pimentel ER. Analysis of the deep digital flexor tendon in rats submitted to stretching after immobilization. Connect Tissue Res 2011; 53:29-38. [PMID: 21967646 DOI: 10.3109/03008207.2011.608868] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Few studies have analyzed the effect of stretching after immobilization on the structural and biochemical properties of tendons. Here, the effect of stretching and immobilization on the proximal (p), intermediate (i), and distal (d) regions of the deep digital flexor tendon in rats was analyzed. The d region was subjected to compression and tension forces, the i region was subjected to compressive forces and the p region received tension forces. Rats were separated into five groups: GI--control for GII; GII--immobilized rats; GIII--control for GIV and GV groups; GIV--immobilized and stretched rats; and GV--immobilized rats which were allowed free cage activity. GII showed a higher molecular organization in the d and p regions as detected by measuring optical retardation, a lower concentration of hydroxyproline in the i region and a significant decrease in noncollagenous proteins found in the three regions of the tendon. Regarding the glycosaminoglycans, diminishing dermatan sulfate and the absence of chondroitin sulfate in the i region were observed in GII when compared to GI. However, in the same region of GIV, higher concentrations of chondroitin and dermatan sulfate were observed along with a strong metachromasy. An increase in hydroxyproline content in the i region and a higher molecular organization in the d and p regions were observed in GIV. Apparently, the active isoforms of metalloproteinase-2 also increased after stretching in all regions. These results suggest that stretching after immobilization contributed to the increase in molecular organization and to the synthesis of extracellular matrix components.
Collapse
Affiliation(s)
- Andrea Aparecida de Aro
- Department of Anatomy, Cell Biology, Physiology and Biophysics, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
17
|
Gene expression in distinct regions of rat tendons in response to jump training combined with anabolic androgenic steroid administration. Eur J Appl Physiol 2011; 112:1505-15. [PMID: 21842416 DOI: 10.1007/s00421-011-2114-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 07/29/2011] [Indexed: 02/07/2023]
Abstract
The aim of this study was to evaluate the expression of key genes responsible for tendon remodeling of the proximal and distal regions of calcaneal tendon (CT), intermediate and distal region of superficial flexor tendon (SFT) and proximal, intermediate and distal region of deep flexor tendon (DFT) submitted to 7 weeks of jumping water load exercise in combination with AAS administration. Wistar male rats were grouped as follows: sedentary (S), trained (jumping water load exercise) (T), sedentary animals treated with AAS (5 mg/kg, twice a week) and animals treated with AAS and trained (AAST). mRNA levels of COL1A1, COL3A1, TIMP-1, TIMP-2, MMP-2, IGF-IEa, GAPDH, CTGF and TGF-β-1 were evaluated by quantitative PCR. Our main results indicated that mRNA levels alter in different regions in each tendon of sedentary animals. The training did not alter the expression of COL1A1, COL3A, IGF-IEa and MMP-2 genes, while AAS administration or its combination with training reduced their expression. This study indicated that exercise did not alter the expression of collagen and related growth factors in different regions of rat tendon. Moreover, the pattern of gene expression was distinct in the different tendon regions of sedentary animals. Although, the RNA yield levels of CT, SFT and DFT were not distinct in each region, these regions possess not only the structural and biochemical difference, but also divergence in the expression of key genes involved in tendon adaptation.
Collapse
|
18
|
Biochemical and anisotropical properties of tendons. Micron 2011; 43:205-14. [PMID: 21890364 DOI: 10.1016/j.micron.2011.07.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/26/2011] [Accepted: 07/26/2011] [Indexed: 01/30/2023]
Abstract
Tendons are formed by dense connective tissue composed of an abundant extracellular matrix (ECM) that is constituted mainly of collagen molecules, which are organized into fibrils, fibers, fiber bundles and fascicles helicoidally arranged along the largest axis of the tendon. The biomechanical properties of tendons are directly related to the organization of the collagen molecules that aggregate to become a super-twisted cord. In addition to collagen, the ECM of tendons is composed of non-fibrillar components, such as proteoglycans and non-collagenous glycoproteins. The capacity of tendons to resist mechanical stress is directly related to the structural organization of the ECM. Collagen is a biopolymer and presents optical anisotropies, such as birefringence and linear dichroism, that are important optical properties in the characterization of the supramolecular organization of the fibers. The objective of this study was to present a review of the composition and organization of the ECM of tendons and to highlight the importance of the anisotropic optical properties in the study of alterations in the ECM.
Collapse
|
19
|
Monteiro JC, Gomes MLM, Tomiosso TC, Nakagaki WR, Sbervelheri MM, Ferrucci DL, Pimentel ER, Dolder H. More resistant tendons obtained from the association of Heteropterys aphrodisiaca and endurance training. Altern Ther Health Med 2011; 11:51. [PMID: 21711561 PMCID: PMC3146459 DOI: 10.1186/1472-6882-11-51] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 06/28/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Popular Brazilian medicine uses Heteropterys aphrodisiaca infusion as a tonic or stimulant, for the treatment of nervous debility and breakdown and for muscle and bone weakness. This study investigated the effects of Heteropterys aphrodisiaca infusion on the tendon properties and extracellular matrix of rats under endurance training. METHODS Wistar rats were grouped as follows: CS- control sedentary, HS- H. aphrodisiaca sedentary, CT-control trained, HT- H. aphrodisiaca trained. The training protocol consisted in running on a motorized treadmill, five times a week, with weekly increase in treadmill speed and duration. Control groups received water while the HS and HT groups received H. aphrodisiaca infusion, daily, by gavage for the 8 weeks of training. Achilles tendons were frozen for biochemical and biomechanical analysis or preserved in Karnovsky's fixative, then processed for histomorphological analysis with light microscopy. RESULTS Biomechanical analysis showed significant increase in maximum load, maximum stress, modulus of elasticity and stiffness of the HT animals' tendons. The metalloproteinase-2 activity was reduced in the HT group. The compression region of HT animals' tendons had a stronger and more intense metachromasy, which suggests an increase in glycosaminoglycan concentration in this region of the tendon. The most intense birefringence was observed in both compression and tension regions of HT animals' tendons, which may indicate a higher organizational level of collagen bundles. The hydroxyproline content increased in the HT group. CONCLUSIONS The association of endurance training with H. aphrodisiaca resulted in more organized collagen bundles and more resistant tendons to support higher loads from intense muscle contraction. Despite the clear anabolic effects of Heteropterys aphrodisiaca and the endurance exercise association, no side effects were observed, such as those found for synthetic anabolic androgenic steroids.
Collapse
|
20
|
Pereira GB, Prestes J, Leite RD, Magosso RF, Peixoto FS, Marqueti RDC, Shiguemoto GE, Selistre-de-Araújo HS, Baldissera V, Perez SEDA. Effects of ovariectomy and resistance training on MMP-2 activity in rat calcaneal tendon. Connect Tissue Res 2010; 51:459-66. [PMID: 20388014 DOI: 10.3109/03008201003676330] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tendon remodeling relies on extracellular matrix (ECM) restructuring by the matrix metallopeptidases (MMPs). The aim of this study was to investigate MMP-2 activity in different regions of the calcaneal tendon (CT) after resistance training (RT) in ovariectomized rats. Wistar adult female rats were grouped into sedentary (Sed-Intact), ovariectomized sedentary (Sed-Ovx), acute exercise (AcuteEx-Intact), ovariectomized acute exercise (AcuteEx-Ovx), resistance trained (ChronicEx-Intact), and ovariectomized resistance trained (ChronicEx-Ovx) (n = 10 each group). The RT protocol required the animals to climb a 1.1-m vertical ladder with weights attached to their tail. The sessions were performed once every 3 days with 4-9 climbs and 8-12 dynamic movements per scaling. The acute groups performed one session and the chronic groups underwent 12 weeks of RT. There was an increase in total MMP-2 activity in Sed-Ovx, AcuteEx-Intact, and ChronicEx-Intact compared with that in Sed-Intact in the proximal region of CT. AcuteEx-Ovx exhibited higher total MMP-2 than Sed-Ovx and AcuteEx-Intact in the distal region of CT. Chronic-Ovx presented lower total MMP-2 activity than Sed-Ovx and Chronic-Intact in the distal region of tendon. The active MMP-2 was higher for the AcuteEx-Ovx than Sed-Ovx and AcuteEx-Intact in proximal region of tendon. There was higher active MMP-2 in the distal region of tendon in the Acute-Ovx than in the Sed-Ovx and AcuteEx-Intact. Ovariectomy and resistance exercise modulate MMP-2 activity according to specific tendon region, indicating a differentiated tissue remodeling.
Collapse
|
21
|
Molina FD, Santos FCA, Falleiros LR, Goloni-Bertollo EM, Felisbino SL, Justulin LA, Maniglia JV, Taboga SR. Microscopical evaluation of extracellular matrix and its relation to the palatopharyngeal muscle in obstructive sleep apnea. Microsc Res Tech 2010; 74:430-9. [PMID: 20836084 DOI: 10.1002/jemt.20927] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 07/23/2010] [Indexed: 11/07/2022]
Abstract
Obstructive sleep apnea hypopnea syndrome (SAHS) is a complex disease of the upper respiratory airways. SAHS physiopathology is multifactorial in which airway compliance is a very important component. To evaluate the tissue changes in the palatopharyngeal muscle by morphometric, histochemical, immunohistochemical, and stereological quantification, with special attention to extracellular matrix associated with this muscle at the structural and ultrastructural levels. Thirty patients with SAHS were divided into groups of 10 according to disease severity: mild, moderate, and severe SAHS. In addition, the control group consisted of 10 patients. Fragments of palatopharyngeal muscle removed from patients with SAHS and tonsillectomies from patients in the control group were histopathologically submitted to light microscopy and transmission electron microscopy. Histopathological evaluations by light and transmission electron microscopes showed differences in analyzed groups, such as reduction of the muscle fiber diameter in patients with SAHS, taking disease severity into consideration. In contrast, stereological analysis showed a gradual increase of the collagen and elastic system fibers relative frequencies, proportionally to SAHS seriousness. MMP-2 and MMP-9 immunostaining also showed an increased reaction in the muscle fiber cytoplasm and endomisium during SAHS progression. The ultrastructural analysis showed that palatopharyngeal muscle fibers presented cytoplasmic residual corpuscles, a sign of early cell aging. In conclusion, the increase of tissue compliance in individuals with SAHS can be, in addition to other factors, consequence of diminished contractile activity of the muscle fibers, which exhibited clear signs of early senescence. Moreover, extracellular matrix components changes may contribute to muscle myopathy during SAHS progression.
Collapse
Affiliation(s)
- Fernando D Molina
- Department of Otorhinolaryngology and Service for Head and Neck Surgery, School of Medicine at Sao Jose do Rio Preto-FAMERP, Sao Jose do Rio Preto, Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Effects of stretching on morphological and biochemical aspects of the extracellular matrix of the rat calcaneal tendon. Cell Tissue Res 2010; 342:97-105. [PMID: 20809413 DOI: 10.1007/s00441-010-1027-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
Abstract
Several studies have demonstrated the relationship between exercise and the extracellular matrix of muscle tendons, and have described alterations in their structural and biochemical properties when subjected to strenuous exercise. However, little is known about what happens to tendons when they are subjected to stretching. We evaluated the changes in the composition and structure of rat calcaneal tendons subjected to a stretching program. The animals had their muscles stretched for 30 s with 30 s of rest, with 10 repetitions, three and five times a week for 21 days. For morphological analysis, the sections were stained with hematoxylin-eosin and toluidine blue. For biochemical analysis, the tendons were treated with 4 M guanidine hydrochloride and analyzed in SDS-PAGE. The contents of total proteins and glycosaminoglycans were also measured. In the sections stained with toluidine blue, we could observe an increase of rounded cells, especially in the enthesis region. In the region next to the enthesis was a metachromatic region, which was more intensely stained in the stretched groups. In the tension regions, the cells appeared more aligned. Cellularity increased in both regions. The SDS-PAGE analysis showed a larger amount of collagen in the stretched groups and a polydispersed component of 65 kDa in all the groups. The amounts of proteins and glycosaminoglycans were also larger in the stretched tendons. The agarose-gel electrophoresis confirmed the presence of dermatan sulfate in the tension and compression regions, and of chondroitin sulfate only in the latter. Our results showed that the stretching stimulus changed the cellularity and the amount of the extracellular matrix compounds, confirming that tendons are dynamic structures with a capacity to detect alterations in their load.
Collapse
|
23
|
Marqueti RC, Prestes J, Wang CC, Ramos OHP, Perez SEA, Nakagaki WR, Carvalho HF, Selistre-de-Araujo HS. Biomechanical responses of different rat tendons to nandrolone decanoate and load exercise. Scand J Med Sci Sports 2010; 21:e91-9. [PMID: 20673248 DOI: 10.1111/j.1600-0838.2010.01162.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Androgenic-anabolic steroids (AAS) have been associated with an increased incidence of tendon rupture. The aim of this study was to compare the biomechanical properties of the rat calcaneal tendon (CT), superficial flexor tendon (SFT), and deep flexor tendon (DFT), and to determine the effect of jump training in association with AAS. Animals were separated into four groups: sedentary, trained, AAS-treated sedentary rats (AAS), and AAS-treated and trained animals. Mechanical testing showed that the CT differed from the DFT and SFT, which showed similar mechanical properties. Jump caused the CT to exhibit an extended toe region, an increased resistance to tensional load, and a decreased elastic modulus, characteristics of an elastic tendon capable of storing energy. AAS caused the tendons to be less compliant, and the effects were reinforced by simultaneous training. The DFT was the most affected by training, AAS, and the interaction of both, likely because of its involvement in the toe-off step of jumping, which we suggest is related to the rapid transmission of force as opposed to energy storage. In conclusion, tendons are differently adapted to exercise, but responded equally to AAS, showing reduced flexibility, which is suggested to increase the risk of tendon rupture in AAS consumers.
Collapse
Affiliation(s)
- R C Marqueti
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Biancalana A, Veloso LA, Gomes L. Obesity affects collagen fibril diameter and mechanical properties of tendons in Zucker rats. Connect Tissue Res 2010; 51:171-8. [PMID: 20073987 DOI: 10.3109/03008200903191312] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Obesity is currently considered to be a world epidemic and one of the major public health problems in many countries, whose incidence is increasing at alarming rates. Genetically obese Zucker rats are used as a model of obesity and were employed in the present study. Tendons transmit contractile force from muscles to bone, thus permitting articular movement. The objective of our study was to analyze the ultrastructural, biochemical, and biomechanical alterations that occur in the deep digital flexor tendon of obese Zucker rats compared to lean animals. Ultrastructural analysis showed differences in collagen fibril diameter distribution and mass-average diameter between obese and lean animals. Regarding mechanical parameters, there was a significant difference in maximum displacement and strain. Hydroxyproline content was higher in obese animals. In view of the excess weight and peculiar conditions to which the tendon of obese animals is submitted, we concluded that obesity provokes alterations in the composition and organization of tendon extracellular matrix components. These alterations might be related to organizational and structural modifications in the collagen bundles, influencing the mechanical properties of the tendon and the progression to a pathological state.
Collapse
Affiliation(s)
- Adriano Biancalana
- Department of Anatomy, Cell Biology, Physiology and Biophysics, Institute of Biology, State University of Campinas, Campinas, Brazil
| | | | | |
Collapse
|
25
|
Hosaka YZ, Takahashi H, Uratsuji T, Tangkawattana P, Ueda H, Takehana K. Comparative study of the characteristics and properties of tendinocytes derived from three tendons in the equine forelimb. Tissue Cell 2010; 42:9-17. [DOI: 10.1016/j.tice.2009.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/26/2009] [Accepted: 06/06/2009] [Indexed: 11/27/2022]
|
26
|
De Mello Malheiro OC, Giacomini CT, Justulin LA, Delella FK, Dal-Pai-Silva M, Felisbino SL. Calcaneal Tendon Regions Exhibit Different MMP-2 Activation After Vertical Jumping and Treadmill Running. Anat Rec (Hoboken) 2009; 292:1656-62. [DOI: 10.1002/ar.20953] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Fung DT, Wang VM, Laudier DM, Shine JH, Basta-Pljakic J, Jepsen KJ, Schaffler MB, Flatow EL. Subrupture tendon fatigue damage. J Orthop Res 2009; 27:264-273. [PMID: 18683881 PMCID: PMC4786739 DOI: 10.1002/jor.20722] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanical and microstructural bases of tendon fatigue, by which damage accumulates and contributes to degradation, are poorly understood. To investigate the tendon fatigue process, rat flexor digitorum longus tendons were cyclically loaded (1-16 N) until reaching one of three levels of fatigue damage, defined as peak clamp-to-clamp strain magnitudes representing key intervals in the fatigue life: i) Low (6.0%-7.0%); ii) Moderate (8.5%-9.5%); and iii) High (11.0%-12.0%). Stiffness, hysteresis, and clamp-to-clamp strain were assessed diagnostically (by cyclic loading at 1-8 N) before and after fatigue loading and following an unloaded recovery period to identify mechanical parameters as measures of damage. Results showed that tendon clamp-to-clamp strain increased from pre- to post-fatigue loading significantly and progressively with the fatigue damage level (p <or= 0.010). In contrast, changes in both stiffness and hysteresis were significant only at the High fatigue level (p <or= 0.043). Correlative microstructural analyses showed that Low level of fatigue was characterized by isolated, transverse patterns of kinked fiber deformations. At higher fatigue levels, tendons exhibited fiber dissociation and localized ruptures of the fibers. Histomorphometric analysis showed that damage area fraction increased significantly with fatigue level (p <or= 0.048). The current findings characterized the sequential, microstructural events that underlie the tendon fatigue process and indicate that tendon deformation can be used to accurately assess the progression of damage accumulation in tendons.
Collapse
Affiliation(s)
- David T Fung
- Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, 5 East 98th Street, 9th Floor, New York, New York 10029
| | - Vincent M Wang
- Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, 5 East 98th Street, 9th Floor, New York, New York 10029
| | - Damien M Laudier
- Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, 5 East 98th Street, 9th Floor, New York, New York 10029
| | - Jean H Shine
- Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, 5 East 98th Street, 9th Floor, New York, New York 10029
| | - Jelena Basta-Pljakic
- Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, 5 East 98th Street, 9th Floor, New York, New York 10029
| | - Karl J Jepsen
- Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, 5 East 98th Street, 9th Floor, New York, New York 10029
| | - Mitchell B Schaffler
- Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, 5 East 98th Street, 9th Floor, New York, New York 10029
| | - Evan L Flatow
- Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, 5 East 98th Street, 9th Floor, New York, New York 10029
| |
Collapse
|
28
|
Matrix metallopeptidase 2 activity in tendon regions: effects of mechanical loading exercise associated to anabolic-androgenic steroids. Eur J Appl Physiol 2008; 104:1087-93. [DOI: 10.1007/s00421-008-0867-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
|
29
|
Aro AA, Vidal BC, Tomiosso TC, Gomes L, Matiello-Rosa SMG, Pimentel ER. Structural and biochemical analysis of the effect of immobilization followed by stretching on the calcaneal tendon of rats. Connect Tissue Res 2008; 49:443-54. [PMID: 19085245 DOI: 10.1080/03008200802325250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Little is known about the stretching effects on the biochemical and morphological features of tendons submitted to a long period of immobilization. Our purpose was to evaluate the response of rat tendons to stretching procedures after immobilization. The animals were separated into five experimental groups: GI--control of immobilized and euthanized animals; GII--immobilized and euthanized animals; GIII--control of immobilized animals and afterward stretched or allowed free cage activity; GIV--immobilized and stretched animals; and GV--immobilized and allowed free cage activity. Analysis in SDS-PAGE showed no remarkable differences among the groups, but a prominent collagen band was observed in GV, as compared to GIV and the control group, both in the compression and tension regions. Hydroxyproline content was highest in the compression region of GII. No differences among the groups were observed in the tension region. In regard to the concentration of noncollagenous proteins, differences were detected only in the tension region, where larger concentrations were found in the GII. When GII and GIV were compared, highest values were found in the GII. A more abundant presence of sulfated glycosaminoglycans, especially chondroitin sulfate, was detected in GIV, at the compression region of tendons. The presence of dermatan sulfate was outstanding in the compression and tension regions of the GII and GV groups. In the Ponceau SS stained sections, analyzed under polarization microscopy, GII exhibited the highest disorganization of the collagen bundles, partially recovered after stretching or with only remobilization. Our results indicate that a revision in the stretching procedures, in terms of duration and periodicity of the sessions, could benefit the efficiency of the stretching in cases of previous immobilization of tendons.
Collapse
Affiliation(s)
- Andrea A Aro
- Department of Cell Biology, State University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
A novel method to obtain high-quality histologic sections of rat tendon for light microscopic study is presented. This approach utilizes non-deleterious dehydrating and clearing solvents and a hydrophobic acrylic (methyl methacrylate) resin. This methodology avoids processing and microtomy artifacts common with routine paraffin wax techniques and overcomes specimen size limitations associated with hydrophilic (e.g., glycol methacrylate) resin histologic methods. These novel histologic processing techniques facilitate the reliable assessment of tendons' cellular and matrix components and can be readily adapted to morphologic studies of damage, healing, and repair.
Collapse
Affiliation(s)
- Damien Laudier
- Leni & Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | |
Collapse
|
31
|
Feitosa VLC, Reis FP, Esquisatto MAM, Joazeiro PP, Vidal BC, Pimentel ER. Comparative ultrastructural analysis of different regions of two digital flexor tendons of pigs. Micron 2006; 37:518-25. [PMID: 16546397 DOI: 10.1016/j.micron.2006.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 01/17/2006] [Indexed: 10/25/2022]
Abstract
Tendons are parallel arrays of collagenous fibers which are specialized in resisting and transmitting tensile forces. In this work we examined the structure of the superficial digital flexor tendon (SDFT) and the deep digital flexor tendon (DDFT) of pigs, which are considered "wrap around" tendons and so receive compression and tension forces. In both tendons, fibrocartilaginous areas were observed in the regions subjected to compression plus frictional loading. Histological and ultrastructural analyses of the tensional region showed an extracellular matrix (ECM) rich in collagen bundles, that were all arranged in the same direction. Fibroblasts were seen closely associated with the collagen bundles. Chondrocyte-like cells and high levels of glycosaminoglycans (GAGs) were observed in the compressional regions. The collagen bundles in the compressional region were arranged in several directions and were associated with proteoglycans (PGs). The crimp pattern detected in the tensional region showed that the collagen fibrils were ordered aggregates which formed helical superstructures.
Collapse
Affiliation(s)
- V L C Feitosa
- Department of Morphology, Federal University of Sergipe, Aracaju, SE, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Arruda EM, Calve S, Dennis RG, Mundy K, Baar K. Regional variation of tibialis anterior tendon mechanics is lost following denervation. J Appl Physiol (1985) 2006; 101:1113-7. [PMID: 16728516 DOI: 10.1152/japplphysiol.00612.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Denervation or inactivity is known to decrease the mass and alter the phenotype of muscle. The mechanical response of tendon to inactivity that has been determined experimentally differs from what is reported by patients. We investigated the hypothesis that this difference was the result of artifacts of the testing process and did not represent what occurred in vivo. To test this hypothesis, a novel approach was used to determine the mechanical properties of the tibialis anterior (TA) tendon by optically measuring the end-to-end mechanical strains as well as the local strains at specific regions of excised TA tendon units. When the end-to-end strain of normal TA tendon is determined, stress-strain response curves show considerably more extensibility than when strain is measured across only the midsection of the tendon (mid-tendon). The strain experienced by the region close to the muscle (muscle tendon) is five times greater than the strain in either the mid-tendon or near the bone (bone-tendon). Five weeks of denervation decreased muscle mass by 67%; increased tendon mass by 10%; and changed the entire shape of the nonlinear response curve, including a loss in regional variation in strain, a 3.9-fold increase in end-to-end tangent modulus, and a 70% reduction in the toe region, as a result of a drastic reduction of the extensibility in the muscle-tendon region. The stress-strain response in the mid-tendon region of a normal TA tendon is therefore not indicative of its overall ability to deform in vivo as it transmits forces from muscle to bone.
Collapse
Affiliation(s)
- Ellen M Arruda
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, USA
| | | | | | | | | |
Collapse
|
33
|
Carvalho HF, Felisbino SL, Keene DR, Vogel KG. Identification, content, and distribution of type VI collagen in bovine tendons. Cell Tissue Res 2006; 325:315-24. [PMID: 16568302 DOI: 10.1007/s00441-006-0161-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 01/05/2006] [Indexed: 10/24/2022]
Abstract
Tendon composition changes according to differentiation, mechanical load, and aging. In this study, we attempted to identify, localize, and quantify type VI collagen in bovine tendons. Type VI collagen was identified by the electrophoretic behavior of the alpha chains and Western blotting, and by rotary shadowing. Type VI collagen was extracted from powdered tendon with three sequential 24-h extractions with 4 M guanidine-HCl. The amount of type VI collagen was determined by enzyme-linked immunosorbent assay for purely tensional areas and for the compressive fibrocartilage regions of the deep flexor tendon of the digits, for the corresponding fetal and calf tendons, and for the extensor digital tendon. The distal fibrocartilaginous region of the adult tendon was richer in type VI collagen than the tensional area, reaching as much as 3.3 mg/g (0.33%) of the wet weight. Calf tendons showed an accumulation of type VI at the fibrocartilage site. Immunocytochemistry demonstrated that type VI collagen was evenly distributed in the tensional areas of tendons but was highly concentrated around the fibrochondrocytes in the fibrocartilages. The results demonstrate that tendons are variable with regard to the presence and distribution of type VI collagen. The early accumulation of type VI collagen in the region of calf tendon that will become fibrocartilage in the adult suggests that it is a good marker of fibrocartilage differentiation. Furthermore, the distribution of type VI collagen in tendon fibrocartilage indicates that it organizes the pericellular environment and may represent a survival factor for these cells.
Collapse
Affiliation(s)
- Hernandes F Carvalho
- Department of Cell Biology, Institute of Biology, State University of Campinas, Campinas SP, Brazil.
| | | | | | | |
Collapse
|
34
|
Screen HRC, Shelton JC, Chhaya VH, Kayser MV, Bader DL, Lee DA. The Influence of Noncollagenous Matrix Components on the Micromechanical Environment of Tendon Fascicles. Ann Biomed Eng 2005; 33:1090-9. [PMID: 16133917 DOI: 10.1007/s10439-005-5777-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
Tendon is composed of type I collagen fibers, interspersed with proteoglycan matrix and cells. Glycosaminoglycans may play a role in maintaining the structural integrity of tendon, preventing excessive shearing between collagen components. This study tests the hypothesis that tendon extension mechanisms can be altered by modifying the composition of noncollagenous matrix. Tendon explants were treated with phosphate buffered saline (PBS) or PBS + 0.5 U ml(-1) chondroitinase ABC. Structural changes were examined using TEM and biochemical analysis, while strain response was examined using confocal microscopy and gross mechanical characterization. Chondroitinase ABC removed 90% of glycosaminoglycans from the matrix. Results demonstrated significant swelling of fibrils and surrounding matrix when incubated in either solution. In response to applied strain, PBS incubated samples demonstrated significantly less sliding between adjacent fibers than nonincubated, and a 33% reduction in maximum force. By contrast, fascicles incubated in chondroitinase ABC demonstrated a similar strain response to nonincubated. Data indicate that collagen-proteoglycan binding characteristics can be influenced by incubation and this, in turn, can influence the preferred extension mechanisms adopted by fascicles. This highlights the importance of maintaining fascicles within their natural environment to prevent structural or mechanical changes prior to subsequent analysis.
Collapse
Affiliation(s)
- Hazel R C Screen
- Medical Engineering Division and IRC in Biomedical Materials, Department of Engineering, Queen Mary, University of London, London, E1 4NS, United Kingdom.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Fibrocartilage is an avascular tissue that is best documented in menisci, intervertebral discs, tendons, ligaments, and the temporomandibular joint. Several of these sites are of particular interest to those in the emerging field of tissue engineering. Fibrocartilage cells frequently resemble chondrocytes in having prominent rough endoplasmic reticulum, many glycogen granules, and lipid droplets, and intermediate filaments together with and actin stress fibers that help to determine cell organization in the intervertebral disc. Fibrocartilage cells can synthesize a variety of matrix molecules including collagens, proteoglycans, and noncollagenous proteins. All the fibrillar collagens (types I, II, III, V, and XI) have been reported, together with FACIT (types IX and XII) and network-forming collagens (types VI and X). The proteoglycans include large, aggregating types (aggrecan and versican) and small, leucine-rich types (decorin, biglycan, lumican, and fibromodulin). Less attention has been paid to noncollagenous proteins, although tenascin-C expression may be modulated by mechanical strain. As in hyaline cartilage, matrix metalloproteinases are important in matrix turnover and fibrocartilage cells are capable of apoptosis.
Collapse
Affiliation(s)
- M Benjamin
- School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom
| | | |
Collapse
|
36
|
Benevides G, Pimentel E, Toyama M, Novello JC, Marangoni S, Gomes L. Biochemical and biomechanical analysis of tendons of caged and penned chickens. Connect Tissue Res 2004; 45:206-15. [PMID: 15763929 DOI: 10.1080/03008200490522997] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chickens were divided into two groups, one caged and the other penned. Superficial digital flexor tendons from penned chickens showed greater tensile strength, withstanding a greater strain before rupture than tendons from caged chickens. The tensile region of tendons from penned chickens showed more swelling in acetic acid and a higher hydroxyproline concentration compared with caged chickens, indicating the presence of large collagen amounts in the former. The tensile region of penned chickens presented higher glycosaminoglycan concentrations than the same region of caged chickens. For both groups, the predominant glycosaminoglycan in the compression regions was chondroitin sulfate, whereas dermatan sulfate was found in the tensile regions. N-terminal analysis identified the small proteoglycans fibromodulin and decorin. SDS-PAGE indicated that decorin was present in all regions and fibromodulin was mainly observed in the tensile region. These results indicate that an external condition, in this case the area available for locomotion, might influence the synthesis of extracellular matrix components and the mechanical properties of the tendon.
Collapse
Affiliation(s)
- Gustavo Benevides
- Department of Cell Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
37
|
Ker RF. The implications of the adaptable fatigue quality of tendons for their construction, repair and function. Comp Biochem Physiol A Mol Integr Physiol 2002; 133:987-1000. [PMID: 12485688 DOI: 10.1016/s1095-6433(02)00171-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Different tendons are (i) subject to very different stresses from their muscles and (ii) differ in their susceptibility to fatigue damage. The fatigue quality of each tendon is matched to the stress it experiences, so that, in life, all tendons are similarly prone to damage. On-going damage must be routinely repaired to maintain homeostasis and prevent damage from becoming symptomatic. The discovery of major differences in fatigue quality among tendons, which had previously seemed fairly similar in their mechanical properties, raises a wide range of new questions. (A) What structural and chemical differences underlie the variations in fatigue quality? (B) What molecular structure in the tendon is damaged and how is repair organised? (C) Is fatigue quality adaptable and if so what is the trigger for adaptation? Putting these questions into context leads to an integrated review of tendon, including structure and chemistry, the turnover of proteins, the cross-linking of collagen and the response of tenocytes to load on the tendon.
Collapse
Affiliation(s)
- Robert F Ker
- School of Biology, The University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|