1
|
Ratna S, Pradhan L, Vasconcelos MP, Acharya A, Carnahan B, Wang A, Ghosh A, Bolt A, Ellis J, Hyland SN, Hillman AS, Fox JM, Kloxin A, Neunuebel MR, Grimes CL. The Legionella pneumophila peptidoglycan recycling kinase, AmgK, is essential for survival and replication inside host alveolar macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644609. [PMID: 40166355 PMCID: PMC11957156 DOI: 10.1101/2025.03.21.644609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Bacterial cells are surrounded by a dynamic cell wall which in part is made up of a mesh-like peptidoglycan (PG) layer that provides the cell with structural integrity and resilience. In Gram-positive bacteria, this layer is thick and robust, whereas in Gram-negative bacteria, it is thinner and flexible as the cell is supported by an additional outer membrane. PG undergoes continuous turnover, with degradation products being recycled to maintain cell wall homeostasis. Some Gram-negative species can bypass de novo PG biosynthesis, relying instead on PG recycling to sustain growth and division. Legionella pneumophila (hereafter Legionella), the causative agent of Legionnaires' disease, encodes such recycling machinery within its genome. This study investigates the biochemical, genetic, and pathogenic roles of PG recycling in Legionella. Previously, we have shown that PG can be visualized in both model and native systems using a combination of N-acetylmuramic acid (NAM) probes and PG recycling programs. Here, two PG recycling gene homologs in the Legionella genome lpg0296 (amgK) and lpg0295 (murU) were identified and characterized; chemical biology strategies were used to rigorously track the incorporation of "click"-PG-probes. Deletion of amgK abolished PG labeling, while genetic complementation restored labeling. Additionally, copper-free click chemistry with ultra-fast tetrazine-NAM probes enabled live-cell PG labeling. The data suggest that amgK contributes to the pathogenicity of the organism, as amgK deletion increased Legionella's susceptibility to antibiotics and significantly reduced Legionella's ability to replicate in host alveolar macrophages. An intracellular replication assay demonstrated that while PG recycling is not essential for internalization, successful replication of Legionella within MH-S murine alveolar macrophages requires functional amgK. These findings underscore the essential role of AmgK in Legionella's intracellular survival, emphasizing the importance of PG recycling in pathogenicity, and establish a foundation for developing novel Legionella-specific antibiotic strategies.
Collapse
Affiliation(s)
- Sushanta Ratna
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Lina Pradhan
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Marina P Vasconcelos
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Aastha Acharya
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Bella Carnahan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Alex Wang
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Arit Ghosh
- Delaware Biotechnology Institute, UD Flow Cytometry & Single Cell Core, University of Delaware, Newark, Delaware 19716, United States
| | - Abigail Bolt
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Jacob Ellis
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Stephen N Hyland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Ashlyn S Hillman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - April Kloxin
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - M Ramona Neunuebel
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Catherine Leimkuhler Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Vergara EJ, Tran AC, Paul MJ, Harrison T, Cooper A, Reljic R. A modified mycobacterial growth inhibition assay for the functional assessment of vaccine-mediated immunity. NPJ Vaccines 2024; 9:123. [PMID: 38956057 PMCID: PMC11219912 DOI: 10.1038/s41541-024-00906-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
The Mycobacterial growth inhibition assay (MGIA) is an ex-vivo assay used to measure the overall functional immune response elicited by infection or vaccination. In tuberculosis (TB) vaccine development, MGIA is a potentially important tool for preclinical evaluation of early-stage vaccine candidates to complement existing assays, and to potentially reduce the need for lengthy and costly pathogenic Mycobacterium tuberculosis (Mtb) animal challenge experiments. The conventional method of MGIA in mice entails directly infecting mixed cell cultures, most commonly splenocytes, from immunised mice with mycobacteria. However, this direct infection of mixed cell populations may yield unreliable results and lacks sufficient sensitivity to discriminate well between different vaccines due to the low number of mycobacteria-permissive cells. Here, we modified the assay by inclusion of mycobacteria-infected congenic murine macrophage cell lines as the target cells, and by measuring the total number of killed cells rather than the relative reduction between different groups. Thus, using splenocytes from Mycobacterium bovis BCG immunised mice, and J774 and MH-S (BALB/c background) or BL/6-M (C57Bl/6 background) macrophage cell lines, we demonstrated that the modified assay resulted in at least 26-fold greater mycobacterial killing per set quantity of splenocytes as compared to the conventional method. This increased sensitivity of measuring mycobacterial killing was confirmed using both the standard culture forming unit (CFU) assay and luminescence readings of luciferase-tagged virulent and avirulent mycobacteria. We propose that the modified MGIA can be used as a highly calibrated tool for quantitating the killing capacity of immune cells in preclinical evaluation of vaccine candidates for TB.
Collapse
Affiliation(s)
- Emil Joseph Vergara
- Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Andy Cano Tran
- Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Matthew J Paul
- Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Thomas Harrison
- Institute for Infection and Immunity, St. George's University of London, London, UK
| | - Andrea Cooper
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Rajko Reljic
- Institute for Infection and Immunity, St. George's University of London, London, UK.
| |
Collapse
|
3
|
Franko J, McCall JL, Barnett JB. Evaluating Macrophages in Immunotoxicity Testing. Methods Mol Biol 2018; 1803:255-296. [PMID: 29882145 DOI: 10.1007/978-1-4939-8549-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Macrophages are a heterogeneous group of cells that have a multitude of functions depending on their differentiation state. While classically known for their phagocytic and antigen presentation abilities, it is now evident that these cells fulfill homeostatic functions beyond the elimination of invading pathogens. In addition, macrophages have also been implicated in the downregulation of inflammatory responses following pathogen removal, tissue remodeling, repair, and angiogenesis. Alterations in macrophage differentiation and/or activity due to xenobiotic exposure can have grave consequences on organismal homeostasis, potentially contributing to disease due to immunosuppression or chronic inflammatory responses, depending upon the pathways affected. In this chapter, we provide an overview of the macrophages subtypes, their origin and a general discussion of several different assays used to assess their functional status.
Collapse
Affiliation(s)
- Jennifer Franko
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jamie L McCall
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - John B Barnett
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
4
|
Abstract
Tuberculosis is one of the most successful human diseases in our history due in large part to the multitude of virulence factors exhibited by the causative agent, Mycobacterium tuberculosis. Understanding the pathogenic nuances of this organism in the context of its human host is an ongoing topic of study facilitated by isolating cells from model organisms such as mice and non-human primates. However, M. tuberculosis is an obligate intracellular human pathogen, and disease progression and outcome in these model systems can differ from that of human disease. Current in vitro models of infection include primary macrophages and macrophage-like immortalized cell lines as well as the induced pluripotent stem cell-derived cell types. This article will discuss these in vitro model systems in general, what we have learned so far about utilizing them to answer questions about pathogenesis, the potential role of other cell types in innate control of M. tuberculosis infection, and the development of new coculture systems with multiple cell types. As we continue to expand current in vitro systems and institute new ones, the knowledge gained will improve our understanding of not only tuberculosis but all infectious diseases.
Collapse
|
5
|
Strains of Mycobacterium tuberculosis differ in affinity for human osteoblasts and alveolar cells in vitro. SPRINGERPLUS 2016; 5:163. [PMID: 27026860 PMCID: PMC4766163 DOI: 10.1186/s40064-016-1819-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/15/2016] [Indexed: 12/29/2022]
Abstract
Although the lung is the primary site of infection of tuberculosis, Mycobacterium tuberculosis is capable of causing infection at other sites. In 5–10 % such extra-pulmonary tuberculosis is located in bone tissue of the spine. It is unknown whether host or microbial factors are responsible for the site where extra-pulmonary tuberculosis manifests itself. One MDR isolate belonging to strain F28, one susceptible F11 and one isolate each of susceptible, MDR and XDR F15/LAM4/KZN were cultured in Middlebrook 7H9 media. Human osteoblasts (SaOS-2) and human alveolar epithelial cells (A549) were exposed to these different isolates of M. tuberculosis and invasion capacity and intra-cellular multiplication rates were established. Mouse macrophage (MHS) cells exposed to M. tuberculosis H37Rv served as control. The invasion capacity of F15/LAM4/KZN representatives increased with the level of resistance. The F28 MDR strain showed similar invasion capacity as the XDR F15/LAM4/KZN for pulmonary epthelial cells, whilst the fully susceptible F11 strain displayed a propensity for osteoblasts. The differences observed may in part explain why certain strains are able to cause infection at specific extra-pulmonary sites. We postulated that the development of extra-pulmonary tuberculosis depends on the ability of the microbe to pass effectively through the alveolar epithelial lining and its affinity for cells other than those in pulmonary tissue.
Collapse
|
6
|
Brenner TA, Rice TA, Anderson ED, Percopo CM, Rosenberg HF. Immortalized MH-S cells lack defining features of primary alveolar macrophages and do not support mouse pneumovirus replication. Immunol Lett 2016; 172:106-12. [PMID: 26916143 DOI: 10.1016/j.imlet.2016.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 12/15/2022]
Abstract
The SV-40-transformed MH-S cell line maintains some, but not all, features of primary alveolar macrophages (AMs) from BALB/c mice. We show here that MH-S cells produce inflammatory cytokines IL-6 and CXCL10 in response to challenge with Gram-positive Lactobacillus reuteri, and to TLR2 and NOD2 ligands Pam3CSK4 and MDP, respectively. In contrast, although wild-type AMs are infected in vivo by pneumonia virus of mice (PVM), no virus replication was detected in MH-S cells. Interestingly, the surface immunophenotype of MH-S cells (CD11c(+)Siglec F(-)) differs from that of wild-type AMs (CD11c(+) Siglec F(+)) and is similar to that of immature AMs isolated from granulocyte macrophage-colony stimulating factor (GM-CSF) gene-deleted mice; AMs from GM-CSF(-/-) mice also support PVM replication. However, MH-S cells do not express the GM-CSF receptor alpha chain (CD116) and do not respond to GM-CSF. Due to these unusual features, MH-S cells should be used with caution as experimental models of AMs.
Collapse
Affiliation(s)
- Todd A Brenner
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tyler A Rice
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Erik D Anderson
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Caroline M Percopo
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
7
|
Control of intracellular Francisella tularensis by different cell types and the role of nitric oxide. J Immunol Res 2014; 2014:694717. [PMID: 25170518 PMCID: PMC4129157 DOI: 10.1155/2014/694717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/14/2014] [Accepted: 06/10/2014] [Indexed: 12/27/2022] Open
Abstract
Reactive nitrogen is critical for the clearance of Francisella tularensis infections. Here we assess the role of nitric oxide in control of intracellular infections in two murine macrophage cell lines of different provenance: the alveolar macrophage cell line, MH-S, and the widely used peritoneal macrophage cell line, J774A.1. Cells were infected with the highly virulent Schu S4 strain or with the avirulent live vaccine strain (LVS) with and without stimuli. Compared to MH-S cells, J774A.1 cells were unresponsive to stimulation and were able to control the intracellular replication of LVS bacteria, but not of Schu S4. In MH-S cells, Schu S4 demonstrated control over cellular NO production. Despite this, MH-S cells stimulated with LPS or LPS and IFN-γ were able to control intracellular Schu S4 numbers. However, only stimulation with LPS induced significant cellular NO production. Combined stimulation with LPS and IFN-γ produced a significant reduction in intracellular bacteria that occurred whether high levels of NO were produced or not, indicating that NO secretion is not the only defensive cellular mechanism operating in virulent Francisella infections. Understanding how F. tularensis interacts with host macrophages will help in the rational design of new and effective therapies.
Collapse
|
8
|
Prozorov AA, Fedorova IA, Bekker OB, Danilenko VN. The virulence factors of Mycobacterium tuberculosis: Genetic control, new conceptions. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414080055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Aguilo JI, Alonso H, Uranga S, Marinova D, Arbués A, de Martino A, Anel A, Monzon M, Badiola J, Pardo J, Brosch R, Martin C. ESX-1-induced apoptosis is involved in cell-to-cell spread ofMycobacterium tuberculosis. Cell Microbiol 2013; 15:1994-2005. [DOI: 10.1111/cmi.12169] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/04/2013] [Accepted: 07/05/2013] [Indexed: 12/30/2022]
Affiliation(s)
- J. I. Aguilo
- Grupo de Genética de Micobacterias; Dpto. Microbiología, Medicina Preventiva y Salud Pública; Universidad de Zaragoza; C/ Domingo Miral s/n 50009 Zaragoza Spain
- CIBER Enfermedades Respiratorias; Instituto de Salud Carlos III; Madrid Spain
| | - H. Alonso
- Grupo de Genética de Micobacterias; Dpto. Microbiología, Medicina Preventiva y Salud Pública; Universidad de Zaragoza; C/ Domingo Miral s/n 50009 Zaragoza Spain
- CIBER Enfermedades Respiratorias; Instituto de Salud Carlos III; Madrid Spain
| | - S. Uranga
- Grupo de Genética de Micobacterias; Dpto. Microbiología, Medicina Preventiva y Salud Pública; Universidad de Zaragoza; C/ Domingo Miral s/n 50009 Zaragoza Spain
- CIBER Enfermedades Respiratorias; Instituto de Salud Carlos III; Madrid Spain
| | - D. Marinova
- Grupo de Genética de Micobacterias; Dpto. Microbiología, Medicina Preventiva y Salud Pública; Universidad de Zaragoza; C/ Domingo Miral s/n 50009 Zaragoza Spain
- CIBER Enfermedades Respiratorias; Instituto de Salud Carlos III; Madrid Spain
| | - A. Arbués
- Grupo de Genética de Micobacterias; Dpto. Microbiología, Medicina Preventiva y Salud Pública; Universidad de Zaragoza; C/ Domingo Miral s/n 50009 Zaragoza Spain
- CIBER Enfermedades Respiratorias; Instituto de Salud Carlos III; Madrid Spain
| | - A. de Martino
- Unidad Anatomía Patológica; IIS Aragón Zaragoza Spain
| | - A. Anel
- Grupo Apoptosis, Inmunidad y Cáncer; Dpto. Bioquímica y Biología Molecular y Celular; Fac. Ciencias; Universidad de Zaragoza; Zaragoza Spain
| | - M. Monzon
- Research Centre for Encephalopathies and Transmissible Emerging Diseases; Universidad de Zaragoza; Zaragoza Spain
| | - J. Badiola
- Research Centre for Encephalopathies and Transmissible Emerging Diseases; Universidad de Zaragoza; Zaragoza Spain
| | - J. Pardo
- Grupo Apoptosis, Inmunidad y Cáncer; Dpto. Bioquímica y Biología Molecular y Celular; Fac. Ciencias; Universidad de Zaragoza; Zaragoza Spain
- Fundación Aragón I+D (ARAID); Gobierno de Aragón; Zaragoza Spain
| | - Roland Brosch
- Institut Pasteur; Unit for Integrated Mycobacterial Pathogenomics; Paris France
| | - Carlos Martin
- Grupo de Genética de Micobacterias; Dpto. Microbiología, Medicina Preventiva y Salud Pública; Universidad de Zaragoza; C/ Domingo Miral s/n 50009 Zaragoza Spain
- CIBER Enfermedades Respiratorias; Instituto de Salud Carlos III; Madrid Spain
- Servicio de Microbiología; Hospital Universitario Miguel Servet; ISS Aragón, Paseo Isabel la Católica 1-3 50009 Zaragoza Spain
| |
Collapse
|
10
|
Wiersinga WJ, de Vos AF, de Beer R, Wieland CW, Roelofs JJTH, Woods DE, van der Poll T. Inflammation patterns induced by different Burkholderia species in mice. Cell Microbiol 2007; 10:81-7. [PMID: 17645551 DOI: 10.1111/j.1462-5822.2007.01016.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Burkholderia pseudomallei, which causes melioidosis, a severe, mainly pulmonary disease endemic in South-East Asia, is considered to be the most pathogenic of the Burkholderia genus. B. thailandensis, however, is considered avirulent. We determined differences in patterns of inflammation of B. pseudomallei 1026b (clinical virulent isolate), B. pseudomallei AJ1D8 (an in vitro invasion-deficient mutant generated from strain 1026b by Tn5-OT182 mutagenesis) and B. thailandensis by intranasally inoculating C57BL/6 mice with each strain. Mice infected with B. thailandensis showed a markedly decreased bacterial outgrowth from lungs, spleen and blood 24 h after inoculation, compared with infection with B. pseudomallei and the invasion mutant AJ1D8. Forty-eight hours after inoculation, B. thailandensis was no longer detectable. This was consistent with elevated pulmonary cytokine and chemokine concentrations after infection with B. pseudomallei 1026b and AJ1D8, and the absence of these mediators 48 h, but not 24 h, after inoculation with B. thailandensis. Histological examination, however, did show marked pulmonary inflammation in the mice infected with B. thailandensis, corresponding with substantial granulocyte influx and raised myeloperoxidase levels. Survival experiments showed that infection with 1 x 10(3) cfu B. thailandensis was not lethal, whereas inoculation with 1 x 10(6) cfu B. thailandensis was equally lethal as 1 x 10(3) cfu B. pseudomallei 1026b or AJ1D8. These data show that B. pseudomallei AJ1D8 is just as lethal as wild-type B. pseudomallei in an in vivo mouse model, and B. thailandensis is perhaps more virulent than is often recognized.
Collapse
Affiliation(s)
- W Joost Wiersinga
- Center for Infection and Immunity Amsterdam (CINIMA), Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
11
|
Farberman MM, Demello DE, Hoffmann JW, Ryerse JS. Morphologic changes in alveolar macrophages in response to UVEC-activated pulmonary Type II epithelial cells. Tissue Cell 2006; 37:213-22. [PMID: 15885728 DOI: 10.1016/j.tice.2005.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 01/27/2005] [Accepted: 01/31/2005] [Indexed: 11/15/2022]
Abstract
We hypothesize that Type II epithelial cells, which line the distal airspaces of the lung, are early responders to invading pathogens and release a signal, which activates and alters the phenotype and phagocytosis properties of alveolar macrophages even at a distance. The T(7) cell line is a conditionally immortalized murine Type II epithelial cell line developed in our laboratory. Using an in vitro transwell model we have previously shown that UV-irradiated Escherichia coli (UVEC)-stimulated T(7) cells cultured in the lower transwell chamber, release a diffusible signal which activates MH-S cells (immortalized murine alveolar macrophages) cultured in the upper transwell chamber, to produce nitric oxide. Using scanning electron microscopy, we show that MH-S cells activated in this manner exhibit increased cell surface ruffling, numerous long filopodia, increased lamellipodia and cell flattening. DynaBead uptake studies show that these morphologic changes are accompanied by increased phagocytosis. These findings indicate that a diffusible signal released at a distance by UVEC-stimulated Type II epithelial cells initiates changes in morphology and phagocytosis reflective of macrophage activation concomitant with the functional activation we previously reported.
Collapse
Affiliation(s)
- M M Farberman
- Department of Pathology, Saint Louis University Health Sciences Center, 1402 South Grand Avenue, St. Louis, MO 63105, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Legionella pneumophila causes pneumonia by infecting alveolar macrophages. Although several model systems have been used for L. pneumophila virulence studies, no detailed comparisons have been made between them. An ideal in vitro virulence model should be cost-effective, easy to obtain in large amounts and as relevant as possible to the actual disease. We compared the MH-S cell line to human peripheral blood monocyte-derived macrophages and the J774A.1 cell line. We found that the interactions of L. pneumophila with MH-S at the cellular level resemble those of human primary monocyte-derived macrophages, suggesting that these cells provide a valuable model for this bacterial pathogen.
Collapse
Affiliation(s)
- Ling Yan
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln 68583, USA
| | | |
Collapse
|
13
|
Abstract
Tuberculosis (TB), one of the oldest known human diseases. is still is one of the major causes of mortality, since two million people die each year from this malady. TB has many manifestations, affecting bone, the central nervous system, and many other organ systems, but it is primarily a pulmonary disease that is initiated by the deposition of Mycobacterium tuberculosis, contained in aerosol droplets, onto lung alveolar surfaces. From this point, the progression of the disease can have several outcomes, determined largely by the response of the host immune system. The efficacy of this response is affected by intrinsic factors such as the genetics of the immune system as well as extrinsic factors, e.g., insults to the immune system and the nutritional and physiological state of the host. In addition, the pathogen may play a role in disease progression since some M. tuberculosis strains are reportedly more virulent than others, as defined by increased transmissibility as well as being associated with higher morbidity and mortality in infected individuals. Despite the widespread use of an attenuated live vaccine and several antibiotics, there is more TB than ever before, requiring new vaccines and drugs and more specific and rapid diagnostics. Researchers are utilizing information obtained from the complete sequence of the M. tuberculosis genome and from new genetic and physiological methods to identify targets in M. tuberculosis that will aid in the development of these sorely needed antitubercular agents.
Collapse
Affiliation(s)
- Issar Smith
- TB Center, Public Health Research Institute, International Center for Public Health, Newark, New Jersey 07103-3535, USA.
| |
Collapse
|