1
|
Boah M, Cyuzuzo C, Uwinkindi F, Kalinda C, Yohannes T, Isano S, Greig C, Davies J, Hirschhorn LR, Amberbir A. Health and well-being of older adults in rural and urban Rwanda: epidemiological findings from a population based cross-sectional study. J Glob Health 2025; 15:04108. [PMID: 40319503 PMCID: PMC12050114 DOI: 10.7189/jogh.15.04108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Background Ageing often leads to multimorbidity, frailty, and disability; these interconnected conditions significantly impact quality of life (QoL) and strain healthcare systems through increased dependency and care needs. Despite their importance for health system planning, they remain understudied in Rwanda's older population. Here we describe the epidemiology of these outcomes in Rwanda's ageing population. Methods We conducted a cross-sectional, population-based study among Rwandan adults aged ≥40 years across urban and rural districts, whereby we used validated tools to assess multimorbidity (≥2 chronic conditions), frailty (Fried Frailty Score), disability (World Health Organization Disability Assessment Schedule (WHODAS) 2.0), and QoL (European Health Interview Survey - World Health Organization Quality of Life (EUROHIS-QoL)). We used multivariable analyses to examine associations between the outcomes and demographic and socioeconomic factors. Results Among 4369 adults, multimorbidity prevalence was 55.2% (95% confidence interval (CI) = 53.7, 56.6), with frailty affecting 14.5% (95% CI = 13.5, 15.6) of this population. Disability prevalence was relatively low, with a median score of 10.4% (interquartile range = 2.1-25.0), while the mean QoL score was 48.2% (standard deviation = 15.6). We observed impairment in activities of daily living (ADL) in 16.0% (95% CI = 14.9, 17.1) of the sample. Health outcomes worsened with age, particularly among those aged ≥70 years, and among females compared to males. Multivariable analyses showed that higher socioeconomic status and urban residence were significantly associated with lower frailty, disability, and ADL impairment, though urban residents had higher multimorbidity rates and poorer QoL. Higher educational status was associated with reduced disability and improved QoL. Conclusions Our findings show a substantial burden of multimorbidity and frailty among older adults in Rwanda, with significant gender, socioeconomic, and urban-rural disparities. Integrated care models that address both the physical and social determinants of health, with a focus on reducing gender, socioeconomic, and geographical disparities, are needed to improve the well-being of older adults in Rwanda.
Collapse
Affiliation(s)
- Michael Boah
- University of Global Health Equity, Centre for Population Health, Kigali, Rwanda
| | - Callixte Cyuzuzo
- University of Global Health Equity, Centre for Population Health, Kigali, Rwanda
| | | | - Chester Kalinda
- University of Global Health Equity, Bill and Joyce Cummings Institute of Global Health, Kigali, Rwanda
| | - Tsion Yohannes
- University of Global Health Equity, Centre for Gender Equity, Kigali, Rwanda
| | - Sandra Isano
- University of Global Health Equity, Department of Community Health and Social Medicine, Kigali, Rwanda
| | - Carolyn Greig
- University of Birmingham, School of Sport, Exercise and Rehabilitation Sciences, Birmingham, UK
| | - Justine Davies
- University of Birmingham, Institute of Applied Health Research, Birmingham, UK
| | - Lisa R Hirschhorn
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alemayehu Amberbir
- University of Global Health Equity, Centre for Population Health, Kigali, Rwanda
| |
Collapse
|
2
|
Anabuki D, Tahara S, Yano H, Nishiyama A, Wada K, Nishimura A, Ishimaru I. Emission Integral Effect on Non-Invasive Blood Glucose Measurements Made Using Mid-Infrared Passive Spectroscopic Imaging. SENSORS (BASEL, SWITZERLAND) 2025; 25:1674. [PMID: 40292789 PMCID: PMC11945277 DOI: 10.3390/s25061674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/08/2025] [Accepted: 03/06/2025] [Indexed: 04/30/2025]
Abstract
Living bodies emit mid-infrared light (wavelength band centered at approximately 10 µm) with a temperature-dependent intensity. Several studies have shown the possibility of measuring blood glucose levels using the mid-infrared emission of living bodies, and we have demonstrated non-invasive blood glucose measurements through distant wrist measurements (wavelength 8-14 µm) by mid-infrared passive spectroscopic imaging. However, it is not clear why blood glucose is detectable, as there is no formula that shows the effect of material thickness and concentration on emission intensity. In this study, we developed a principle for understanding glucose detection by proposing that an emission integral effect underpins the changes in emission intensity with substance thickness and absorption coefficient. We demonstrate the emission integral effect by measuring the spectral radiance of polypropylene with different thicknesses using mid-infrared passive spectroscopic imaging. The simulation results based on the emission integral effect indicate that in living bodies, dilute components such as glucose are easier to identify than components with high concentrations. Mid-infrared passive spectroscopic imaging offers potential innovative solutions for measuring various substances from a distance, with the emission integral effect acting as the basic working principle.
Collapse
Affiliation(s)
- Daichi Anabuki
- Graduate School of Science for Creative Emergence, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| | - Shiori Tahara
- Graduate School of Science for Creative Emergence, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| | - Hibiki Yano
- Graduate School of Science for Creative Emergence, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| | - Akira Nishiyama
- Faculty of Medicine, Kagawa University, 1750-1 Miki-cho, Kita, Kagawa 761-0793, Japan
| | - Kenji Wada
- Faculty of Medicine, Kagawa University, 1750-1 Miki-cho, Kita, Kagawa 761-0793, Japan
| | - Akiko Nishimura
- Faculty of Medicine, Kagawa University, 1750-1 Miki-cho, Kita, Kagawa 761-0793, Japan
| | - Ichiro Ishimaru
- Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| |
Collapse
|
3
|
Wang Y, Chen H. Clinical application of cluster analysis in patients with newly diagnosed type 2 diabetes. Hormones (Athens) 2025; 24:109-122. [PMID: 39230795 DOI: 10.1007/s42000-024-00593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024]
Abstract
AIMS Early prevention and treatment of type 2 diabetes mellitus (T2DM) is still a huge challenge for patients and clinicians. Recently, a novel cluster-based diabetes classification was proposed which may offer the possibility to solve this problem. In this study, we report our performance of cluster analysis of individuals newly diagnosed with T2DM, our exploration of each subtype's clinical characteristics and medication treatment, and the comparison carried out concerning the risk for diabetes complications and comorbidities among subtypes by adjusting for influencing factors. We hope to promote the further application of cluster analysis in individuals with early-stage T2DM. METHODS In this study, a k-means cluster algorithm was applied based on five indicators, namely, age, body mass index (BMI), glycosylated hemoglobin (HbA1c), homeostasis model assessment-2 insulin resistance (HOMA2-IR), and homeostasis model assessment-2 β-cell function (HOMA2-β), in order to perform the cluster analysis among 567 newly diagnosed participants with T2DM. The clinical characteristics and medication of each subtype were analyzed. The risk for diabetes complications and comorbidities in each subtype was compared by logistic regression analysis. RESULTS The 567 patients were clustered into four subtypes, as follows: severe insulin-deficient diabetes (SIDD, 24.46%), age-related diabetes (MARD, 30.86%), mild obesity-related diabetes (MOD, 25.57%), and severe insulin-resistant diabetes (SIRD, 20.11%). According to the results of the oral glucose tolerance test (OGTT) and biochemical indices, fasting blood glucose (FBG), 2-hour postprandial blood glucose (2hBG), HbA1c, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride-glucose index (TyG) were higher in SIDD and SIRD than in MARD and MOD. MOD had the highest fasting C-peptide (FCP), 2-hour postprandial C-peptide (2hCP), fasting insulin (FINS), 2-hour postprandial insulin (2hINS), serum creatinine (SCr), and uric acid (UA), while SIRD had the highest triglycerides (TGs) and TyG-BMI. Albumin transaminase (ALT) and albumin transaminase (AST) were higher in MOD and SIRD. As concerms medications, compared to the other subtypes, SIDD had a lower rate of metformin use (39.1%) and a higher rate of α-glucosidase inhibitor (AGI, 61.7%) and insulin (74.4%) use. SIRD showed the highest frequency of use of sodium-glucose cotransporter-2 inhibitors (SGLT-2i, 36.0%) and glucagon-like peptide-1 receptor agonists (GLP-1RA, 19.3%). Concerning diabetic complications and comorbidities, the prevalence of diabetic kidney disease (DKD), cardiovascular disease (CVD), non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and hypertension differed significantly among subtypes. Employing logistic regression analysis, after adjusting for unmodifiable (sex and age) and modifiable related influences (e.g., BMI, HbA1c, and smoking), it was found that SIRD had the highest risk of developing DKD (odds ratio, OR = 2.001, 95% confidence interval (CI): 1.125-3.559) and dyslipidemia (OR = 3.550, 95% CI: 1.534-8.215). MOD was more likely to suffer from NAFLD (OR = 3.301, 95%CI: 1.586-6.870). CONCLUSIONS Patients with newly diagnosed T2DM can be successfully clustered into four subtypes with different clinical characteristics, medication treatment, and risks for diabetes-related complications and comorbidities, the cluster-based diabetes classification possibly being beneficial both for prevention of secondary diabetes and for establishment of a theoretical basis for precision medicine.
Collapse
Affiliation(s)
- Yazhi Wang
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
- Department of Endocrinology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, China
| | - Hui Chen
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China.
- Department of Endocrinology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
4
|
Fuentes-Barría H, Aguilera-Eguía R, Flores-Fernández C, Angarita-Davila L, Rojas-Gómez D, Alarcón-Rivera M, López-Soto O, Maureira-Sánchez J. Vitamin D and Type 2 Diabetes Mellitus: Molecular Mechanisms and Clinical Implications-A Narrative Review. Int J Mol Sci 2025; 26:2153. [PMID: 40076782 PMCID: PMC11900948 DOI: 10.3390/ijms26052153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Vitamin D has been widely studied for its implications on type 2 diabetes mellitus, a chronic condition characterized by insulin resistance, inflammation, and metabolic dysfunction. This review explores the molecular mechanisms underpinning vitamin D's effects on glucose metabolism, inflammation, and adipogenesis, while assessing its potential clinical applications in type 2 diabetes. In its 1,25-dihydroxyvitamin D3 form, vitamin D modulates various metabolic processes, affecting proinflammatory cytokines and activating the AMPK pathway, inhibiting mTOR signaling, and promoting adipocyte differentiation. These effects enhance insulin sensitivity and reduce chronic inflammation, key contributors to metabolic dysfunction. In this context, the progression of prediabetes has been linked to vitamin D, which limits pathological progression and increases the likelihood of restoring a normal metabolic state, crucial in diabetes progression. Moreover, vitamin D has been reported to reduce the likelihood of developing diabetes by 15%, particularly in doses higher than the traditional recommendations for bone health. Despite promising evidence, discrepancies in study designs, serum vitamin D measurements, and population-specific factors highlight the need for standardized methodologies and personalized approaches. In conclusion, vitamin D has complementary therapeutic potential in treating type 2 diabetes, revealing gaps in research, such as optimal dosing and long-term effects across populations. Future studies should integrate molecular insights into clinical practice to optimize vitamin D's impact on metabolic health.
Collapse
Affiliation(s)
- Héctor Fuentes-Barría
- Vicerrectoría de Investigación e Innovación, Universidad Arturo Prat, Iquique 1100000, Chile;
- Escuela de Ondontología, Facultad de Odontología, Universidad Andres Bello, Concepción 3349001, Chile
| | - Raúl Aguilera-Eguía
- Departamento de Salud Pública, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 3349001, Chile;
| | - Cherie Flores-Fernández
- Departamento de Gestión de la Información, Universidad Tecnológica Metropolitana, Santiago 7550000, Chile;
| | - Lissé Angarita-Davila
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Concepción 3349001, Chile
| | - Diana Rojas-Gómez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 7550000, Chile;
| | - Miguel Alarcón-Rivera
- Escuela de Ciencias del Deporte y Actividad Física, Facultad de Salud, Universidad Santo Tomás, Talca 3460000, Chile;
- Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile
| | - Olga López-Soto
- Facultad de Salud, Universidad Autónoma de Manizales, Manizales 170017, Colombia;
| | | |
Collapse
|
5
|
Hinad I, S'hih Y, Mesfioui A, Elhessni A, Ouahidi ML. The Anti-hyperglycemic and Anti-hyperlipidemic Effects of Trigonella foenum-graecum L. Seeds on Fructose-induced Diabetic Wistar Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 80:23. [PMID: 39739074 DOI: 10.1007/s11130-024-01276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2024] [Indexed: 01/02/2025]
Abstract
Trigonella foenum-graecum L. (fenugreek) seeds are widely used in the preparation of various meals and in traditional health care to treat various disorders and diseases, especially Diabetes mellitus. This study was conducted to investigate the antihyperglycemic and antihyperlipidemic effects of the fenugreek seed extract on fructose-induced diabetic wistar rats. Indeed, 5 groups of rats were formed; the first and second groups were composed of normal rats treated with distilled water and fenugreek seed extract, respectively. The third, fourth, and fifth groups composed of diabetic rats were administered distilled water, 500 mg/kg of fenugreek seed extract, and 25 µg/kg. bw of a standard antidiabetic drug consecutively for 28 days. The repeated ingestion of fenugreek seed generated a significant rise (p < 0.05) of food and water consumption in diabetic rats as compared to the rats treated with distilled water. Furthermore, fenugreek seed extract caused a remarkable elevation of the body weights of diabetic rats in comparison with other groups. Additionally, chronic treatment of rats with fenugreek seed extract improved fasting blood sugar, total cholesterol and triglycerides levels in diabetic rats. Fenugreek seed extract has significant anti-diabetic activity by reducing the fasting blood sugar and ameliorating the lipid parameters of diabetic rats. However, more studies are required to isolate the phytochemical constituents that possess these activities and elucidate their mechanisms of action.
Collapse
Affiliation(s)
- Ibrahim Hinad
- Laboratory of Biology and Health, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco.
| | - Youssef S'hih
- Laboratory of Biology and Health, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker Elhessni
- Laboratory of Biology and Health, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Moulay Laarbi Ouahidi
- Laboratory of Biology and Health, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
6
|
Ansari Z, Maleki MH, Roohy F, Ebrahimi Z, Shams M, Mokaram P, Zamanzadeh Z, Hosseinzadeh Z, Koohpeyma F, Dastghaib S. "Protective effects of artichoke extract and Bifidobacterium longum on male infertility in diabetic rats". Biochem Biophys Rep 2024; 40:101834. [PMID: 39386078 PMCID: PMC11462217 DOI: 10.1016/j.bbrep.2024.101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Background Diabetes is a major global health concern and plays a significant role in male infertility and hormonal abnormalities by altering the tissue structure of spermatogenic tubes and decreasing the number of spermatogonia. This study investigated the effect of artichoke (Cynara scolymus L) hydroalcoholic extract and Bifidobacterium longum probiotic on sexual hormones, oxidative stress, apoptosis pathway, and histopathological changes in testicular tissues of diabetic rats to find an adjuvant therapy to manage the infertility complications of diabetes. Methods In this experiment, 96 male-rats were randomly selected from eight groups. Control, Sham (normal saline), DM group (IP injected with 60 mg/kg STZ), Cynara (400 mg/kg hydroalcoholic extract of Cynara scolymus L), BBL (received 1 × 109 CFU/ml/day Bifidobacterium longum), DM + Cynara, DM + BBL, and DM + Cynara + BBL groups. After 48 days of orally gavage, serum level of FBS (fasting blood sugar), Malondi-aldehyde (MDA), Total-Anti-Oxidant Capacity (TAC), FSH (Follicle-stimulating hormone), LH (Luteinizing hormone), Testosterone, Testis mRNA-expressions of Protamin (prm1), BCL2, and Caspase-9 genes, as well as stereological changes were measured. Results In comparison to the diabetic group, the hydroalcoholic extract of Cynara scolymus L combined with the probiotic Bifidobacterium longum resulted in a substantial decrease in FBS (p < 0.001) and MDA(p < 0.05) concentrations, and the expression of the Caspase-9 gene (1.33-fold change). In addition, serum levels of TAC, LH, FSH, Testosterone were significantly increased (p < 0.05). mRNA expression of protamine (p = 0.016) and BCL2 (0.72-fold change) were detected. Furthermore, in comparison with diabetic rats, the Cynara scolymus L-and Bifidobacterium longum-treated groups showed a significant increase in the number of sexual lineage cells, total weight, sperm count, motility, normal morphology, volume of the testis, and volume and length of seminiferous tubules (p < 0.05). Conclusion The findings demonstrated that Cynara scolymus L extract and Bifidobacterium longum supplement had great therapeutic potential, including antioxidant, anti-apoptotic, anti-diabetic, fertility index improvement, and sex hormone modulators.
Collapse
Affiliation(s)
- Zahra Ansari
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Esfahan, Iran
| | - Mohammad Hasan Maleki
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Roohy
- Department of Genetics, Islamic Azad University, Kazerun, Iran
| | - Zahra Ebrahimi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mesbah Shams
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box, 71345-1744, Shiraz, Iran
| | - Pooneh Mokaram
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zamanzadeh
- Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Esfahan, Iran
| | - Zahra Hosseinzadeh
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box, 71345-1744, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box, 71345-1744, Shiraz, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box, 71345-1744, Shiraz, Iran
| |
Collapse
|
7
|
Gong Y, Wei M, Cao X, Xu C, Jin J, Pei L, Li Y, Xiao H, Wu L. Mbnl1-mediated alternative splicing of circMlxipl regulates Rbbp6-involved ChREBP turnover to inhibit lipotoxicity-induced β-cell damage. Mol Med 2024; 30:229. [PMID: 39580381 PMCID: PMC11585089 DOI: 10.1186/s10020-024-00991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Diabetes, a global epidemic, is the leading cause of mortality globally. The aim of this study is to get better understanding of pathophysiology of diabetes. METHODS Palmitic acid (PA)-treated β-cells, db/db mice and high fat diet (HFD)-fed mouse model of type 2 diabetes were established. H&E was used to assess the histological changes of pancreas. IHC, FISH, western blot or qRT-PCR was employed to detect the expression of key molecules in primary islets or lipotoxic β-cells. Cell behaviors were detected by MTT, EdU incorporation assay, TUNEL assay and glucose-induced insulin secretion (GSIS). The associations among circMlxipl, Mbnl1 and Rbbp6 were validated by RIP and RNA pull-down assays, and the direct binding between Hdac3 and Mbnl1 promoter was examined by ChIP and luciferase assays. Co-IP was employed to assess the interaction between ChREBP and Rbbp6, as well as the ubiquitination of ChREBP. RESULTS Hdac3 and ChREBP were upregulated, but Mbnl1 and circMlxipl were downregulated in islets from diabetic mice and lipotoxic β-cells. Mbnl1 overexpression protected against PA-induced impairments in lipotoxic β-cells through modulating back-splicing of circMlxipl and suppressing ChREBP. Hdac3 served as a transcriptional repressor of Mbnl1, and it was implicated in circMlxipl-mediated protection via regulating ChREBP expression in lipotoxic β-cells. Lack of circMlxipl inhibited Rbbp6-mediated ubiquitin-proteasomal degradation of ChREBP in lipotoxic β-cells. In vivo studies revealed that Hdac3 knockdown or Mbnl1 overexpression alleviated diabetes symptoms through circMlxipl-regulated ChREBP in diabetic mice. CONCLUSION Mbnl1-mediated alternative splicing of circMlxipl regulates Rbbp6-involved ChREBP turnover to inhibit lipotoxicity-induced β-cell damage.
Collapse
Affiliation(s)
- Yingying Gong
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Meilin Wei
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaopei Cao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Changliu Xu
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiewen Jin
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ling Pei
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Du Y, Chi X, Chen Q, Xiao Y, Ma Z, Wang Z, Guo Z, Chen P, Chen Z, Zhang M, Guo J, Zhou Y, Yang C. Investigating the Mechanism of Banxia Xiexin Decoction in Treating
Gastritis and Diabetes Mellitus through Network Pharmacology and
Molecular Docking Analysis. CURRENT DRUG THERAPY 2024; 19:878-897. [DOI: 10.2174/0115748855287070240409061220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 01/03/2025]
Abstract
Background:
Banxia Xiexin decoration (BXD), a complex prescription in Traditional Chinese
Medicine (TCM), clinically acts as a treatment for gastritis and diabetes while its mechanism of
treatment remains unknown.
Objection:
This study aimed to explore the common mechanism of BXD in treating gastritis and
diabetes based on network pharmacology and molecular docking technology.
Methods:
The seven Chinese herbal components and drug targets were collected from the Traditional
Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) for gastritis and
diabetes using GeneCards, DisGeNET, Comparative Toxicogenomics Database (CTD), and Online
Mendelian Inheritance in Man (OMIM) databases. Common drug and disease targets were imported
into the STRING data platform for protein-protein interaction (PPI) analysis, and Cytoscape 3.7.2
software for network topology analysis, and core targets were filtered.
Results:
There were 124 components, 249 targets, 449 targets for gastritis, and 4005 targets for diabetes.
After mapping, 83 BXD targets for gastritis and diabetes were obtained, and the targets with
high correlation were STAT 3, JUN, TNF, IL-6, etc. More relevant targets were involved in the cancer
pathway, AGE-RAGE signaling pathway of diabetic complications, fluid shear stress, and atherosclerosis
pathway.
Conclusion:
This study preliminarily reveals that BXD may play a role in the treatment of gastritis
and diabetes mellitus through multi-components, multi-targets, and multi-pathways, and proposes
some potential "component-target-pathway" hypotheses in light of previous reports.
Collapse
Affiliation(s)
- Yikuan Du
- Central Laboratory, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523059, People's Republic of China
| | - Xianhong Chi
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Qianwen Chen
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Yue Xiao
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Zhendong Ma
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Zhenjie Wang
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Zhuoming Guo
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Peng Chen
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Zilin Chen
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Mengting Zhang
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Jinyan Guo
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Yuqi Zhou
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| | - Chun Yang
- Dongguan Key Laboratory of Chronic lnflammatory Diseases, The First Dongguan Affiliated Hospital.
Guangdong Medical University, Dongguan, 523808, People's Republic of China
- Dongguan Key Laboratory of Stem
Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, People's Republic of
China
| |
Collapse
|
9
|
Zhang T, Jiang D, Zhang X, Chen L, Jiang J, Zhang C, Li S, Li Q. The role of nonmyocardial cells in the development of diabetic cardiomyopathy and the protective effects of FGF21: a current understanding. Cell Commun Signal 2024; 22:446. [PMID: 39327594 PMCID: PMC11426003 DOI: 10.1186/s12964-024-01842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) represents a unique myocardial disease originating from diabetic metabolic disturbances that is characterized by myocardial fibrosis and diastolic dysfunction. While recent research regarding the pathogenesis and treatment of DCM has focused primarily on myocardial cells, nonmyocardial cells-including fibroblasts, vascular smooth muscle cells (VSMCs), endothelial cells (ECs), and immune cells-also contribute significantly to the pathogenesis of DCM. Among various therapeutic targets, fibroblast growth factor 21 (FGF21) has been identified as a promising agent because of its cardioprotective effects that extend to nonmyocardial cells. In this review, we aim to elucidate the role of nonmyocardial cells in DCM and underscore the potential of FGF21 as a therapeutic strategy for these cells.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Donghui Jiang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiao Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Chunxiang Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Shengbiao Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Qiuhong Li
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
10
|
Iqbal S, Jayyab AA, Alrashdi AM, Shujauddin S, Clua-Espuny JL, Reverté-Villarroya S. The Predictive Potential of C-Peptide in Differentiating Type 1 Diabetes From Type 2 Diabetes in an Outpatient Population in Abu Dhabi. Clin Ther 2024; 46:696-701. [PMID: 39117487 DOI: 10.1016/j.clinthera.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024]
Abstract
PURPOSE We aimed to investigate the predictive potential of plasma connecting peptide (C-peptide) in differentiating type 1 diabetes (T1D) from type 2 diabetes (T2D) and to inform evidence-based diabetes classification criteria. METHODS A retrospective review was performed of all the patients with diabetes visiting an outpatient diabetology, endocrinology, general practice and family medicine tertiary health care center between January 2016 and December 2021. FINDINGS Two hundred twelve individuals with diabetes were included, 85 (44.8%) with T1D and 127 (55.2%) with T2D. Mean (SD) age at diagnosis was 35.9 (15.1) years, and 112 (52.8%) men. Median (interquartile range [IQR]) duration of diabetes was 3.8 (3.0-4.5) years (T1D, 3.9 [3.5-4.6]; T2D, 3.4 [2.4-4.4]; P = 0.001). Body mass index was <18.5 kg/m2 in 5 (2.5%) individuals (T1D, 5; T2D, none), 18.5 to <25 kg/m2 in 57 (28.5%) (T1D, 32; T2D, 25), 25 to <30 kg/m2 in 58 (29%) (T1D, 28; T2D, 30), and >30 kg/m2 in 80 (40.0%) (T1D, 20; T2D, 60). Median (IQR) glycosylated hemoglobin was 7.4% (6.7%-8.5%) (T1D, 8.3% [7.2%-9.9%]; T2D, 7% [6.3%-7.6%]; P = 0.0001). Median (IQR) C-peptide concentration was 0.59 nmol/L (0.01-1.14 nmol/L) (T1D, 0.01 nmol/L [0.003-0.05 nmol/L]; T2D, 1.03 nmol/L [0.70-1.44 nmol/L]; P = 0.0001). C-peptide concentration of ≤0.16 nmol/L showed 92.9% sensitivity, 1-specificity of 2.4%, and AUC of 97.2% (CI, 94.7%-99.6%; P = 0.0001) in differentiating T1D from T2D. IMPLICATIONS To our knowledge, this is the first study in the Middle East and North Africa region highlighting the role of C-peptide in diabetes classification. The estimated cutoff point for C-peptide concentration (≤0.16 nmol/L) will certainly help in accurately classifying the T1D and will rule out the routine clinical judgmental approaches in the region, especially in those scenarios and periods where it is always difficult to diagnose the diabetes type. Quantifying the cutoff for C-peptide is among the vital strengths of this study that will provide a better treatment plan in diabetes care management. Also, we evaluated concomitant glucose levels to rule out the phenomenon of falsely low C-peptide values in the setting of hypoglycemia or severe glucose toxicity. Based on our findings, C-peptide testing could be included in postulating an evidence-based guideline that differentiates T1D from T2D. Despite this, our study has some limitations, including the selection bias due to the retrospective design and low C-peptide levels could be indicative of low pancreatic reserves due to other causes or long-standing T2D, and quantifying these reasons requires additional resources and time.
Collapse
Affiliation(s)
- Sajid Iqbal
- Nursing Department, Universitat Rovira i Virgili, Campus Terres de l'Ebre, Tortosa, Tarragona, Spain; Faculty of Health and Medical Science, Liwa College of Technology, Abu Dhabi, United Arab Emirates.
| | - Abdulrahim Abu Jayyab
- Faculty of Health and Medical Science, Liwa College of Technology, Abu Dhabi, United Arab Emirates
| | - Ayah Mohammad Alrashdi
- Faculty of Health and Medical Science, Liwa College of Technology, Abu Dhabi, United Arab Emirates; Burjeel Hospital, Abu Dhabi, United Arab Emirates
| | | | - Josep Lluis Clua-Espuny
- Primary Health-Care Center EAP Tortosa Est, Institut Català de la Salut, CAP El Temple Plaça Carrilet, Tortosa, Spain; Research Support Unit Terres de l'Ebre, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAPJGol) (Barcelona), Ebrictus Research Group, Terres de l'Ebre, Tortosa, Spain
| | - Silvia Reverté-Villarroya
- Nursing Department, Universitat Rovira i Virgili, Campus Terres de l'Ebre, Tortosa, Tarragona, Spain; Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Pere Virgili Institute, Carretera Esplanetes, Tortosa, Tarragona, Spain
| |
Collapse
|
11
|
Hoffmann SW, Schierbauer J, Zimmermann P, Voit T, Grothoff A, Wachsmuth NB, Rössler A, Niedrist T, Lackner HK, Moser O. Effects of Interrupting Prolonged Sitting with Light-Intensity Physical Activity on Inflammatory and Cardiometabolic Risk Markers in Young Adults with Overweight and Obesity: Secondary Outcome Analyses of the SED-ACT Randomized Controlled Crossover Trial. Biomolecules 2024; 14:1029. [PMID: 39199416 PMCID: PMC11352707 DOI: 10.3390/biom14081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Sedentary behavior (SB) is an essential risk factor for obesity, cardiovascular disease, and type 2 diabetes. Though certain levels of physical activity (PA) may attenuate the detrimental effects of SB, the inflammatory and cardiometabolic responses involved are still not fully understood. The focus of this secondary outcome analysis was to describe how light-intensity PA snacks (LIPASs, alternate sitting and standing, walking or standing continuously) compared with uninterrupted prolonged sitting affect inflammatory and cardiometabolic risk markers. Seventeen young adults with overweight and obesity participated in this study (eight females, 23.4 ± 3.3 years, body mass index (BMI) 29.7 ± 3.8 kg/m2, glycated hemoglobin A1C (HbA1c) 5.4 ± 0.3%, body fat 31.8 ± 8.2%). Participants were randomly assigned to the following conditions which were tested during an 8 h simulated workday: uninterrupted prolonged sitting (SIT), alternate sitting and standing (SIT-STAND, 2.5 h total standing time), continuous standing (STAND), and continuous walking (1.6 km/h; WALK). Each condition also included a standardized non-relativized breakfast and lunch. Venous blood samples were obtained in a fasted state at baseline (T0), 1 h after lunch (T1) and 8 h after baseline (T2). Inflammatory and cardiometabolic risk markers included interleukin-6 (IL-6), c-reactive protein (CRP), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TGs), visceral fat area (VFA), triglyceride-glucose (TyG) index, two lipid ratio measures, TG/HDL-C and TC/HDL-C, albumin, amylase (pancreatic), total protein, uric acid, and urea. We found significant changes in a broad range of certain inflammatory and cardiometabolic risk markers during the intervention phase for IL-6 (p = 0.014), TG (p = 0.012), TC (p = 0.017), HDL-C (p = 0.020), LDL-C (p = 0.021), albumin (p = 0.003), total protein (p = 0.021), and uric acid (p = 0.040) in favor of light-intensity walking compared with uninterrupted prolonged sitting, alternate sitting and standing, and continuous standing. We found no significant changes in CRP (p = 0.529), creatinine (p = 0.199), TyG (p = 0.331), and the lipid ratios TG/HDL-C (p = 0.793) and TC/HDL-C (p = 0.221) in response to the PA snack. During a simulated 8 h work environment replacement and interruption of prolonged sitting with light-intensity walking, significant positive effects on certain inflammatory and cardiometabolic risk markers were found in young adults with overweight and obesity.
Collapse
Affiliation(s)
- Sascha W. Hoffmann
- Division of Theory and Practice of Sports and Fields of Physical Activity, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany
| | - Janis Schierbauer
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (J.S.); (P.Z.); (T.V.); (A.G.); (N.B.W.)
| | - Paul Zimmermann
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (J.S.); (P.Z.); (T.V.); (A.G.); (N.B.W.)
| | - Thomas Voit
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (J.S.); (P.Z.); (T.V.); (A.G.); (N.B.W.)
| | - Auguste Grothoff
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (J.S.); (P.Z.); (T.V.); (A.G.); (N.B.W.)
| | - Nadine B. Wachsmuth
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (J.S.); (P.Z.); (T.V.); (A.G.); (N.B.W.)
| | - Andreas Rössler
- Department of Physiology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria; (A.R.); (H.K.L.)
| | - Tobias Niedrist
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8010 Graz, Austria;
| | - Helmut K. Lackner
- Department of Physiology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria; (A.R.); (H.K.L.)
| | - Othmar Moser
- Division of Exercise Physiology and Metabolism, BaySpo—Bayreuth Center of Sport Science, University of Bayreuth, 95440 Bayreuth, Germany; (J.S.); (P.Z.); (T.V.); (A.G.); (N.B.W.)
- Interdisciplinary Metabolic Medicine Trials Unit, Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
12
|
Palatini P, Virdis A, Masi S, Mengozzi A, Casiglia E, Tikhonoff V, Cicero AFG, Ungar A, Parati G, Rivasi G, Salvetti M, Barbagallo CM, Bombelli M, Dell’Oro R, Bruno B, Lippa L, D’Elia L, Masulli M, Verdecchia P, Reboldi G, Angeli F, Cianci R, Mallamaci F, Cirillo M, Rattazzi M, Cirillo P, Gesualdo L, Russo E, Mazza A, Giannattasio C, Maloberti A, Volpe M, Tocci G, Iaccarino G, Nazzaro P, Galletti F, Ferri C, Desideri G, Viazzi F, Pontremoli R, Muiesan ML, Grassi G, Borghi C. Risk of Cardiovascular Events in Metabolically Healthy Overweight or Obese Adults: Role of LDL-Cholesterol in the Stratification of Risk. Diagnostics (Basel) 2024; 14:1314. [PMID: 39001205 PMCID: PMC11240609 DOI: 10.3390/diagnostics14131314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
The objective of this study was to investigate the longitudinal association of metabolically healthy overweight/obese adults with major adverse cardiovascular events (MACE) and the effect of LDL-cholesterol levels on this association. This study was conducted with 15,904 participants from the URRAH study grouped according to BMI and metabolic status. Healthy metabolic status was identified with and without including LDL-cholesterol. The risk of MACE during 11.8 years of follow-up was evaluated with multivariable Cox regressions. Among the participants aged <70 years, high BMI was associated with an increased risk of MACE, whereas among the older subjects it was associated with lower risk. Compared to the group with normal weight/healthy metabolic status, the metabolically healthy participants aged <70 years who were overweight/obese had an increased risk of MACE with an adjusted hazard ratio of 3.81 (95% CI, 1.34-10.85, p = 0.012). However, when LDL-cholesterol < 130 mg/dL was included in the definition of healthy metabolic status, no increase in risk was found in the overweight/obese adults compared to the normal weight individuals (hazard ratio 0.70 (0.07-6.71, p = 0.75). The present data show that the risk of MACE is increased in metabolically healthy overweight/obese individuals identified according to standard criteria. However, when LDL-cholesterol is included in the definition, metabolically healthy individuals who are overweight/obese have no increase in risk.
Collapse
Affiliation(s)
- Paolo Palatini
- Department of Medicine, Studium Patavinum, University of Padova, 35128 Padua, Italy
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Edoardo Casiglia
- Department of Medicine, Studium Patavinum, University of Padova, 35128 Padua, Italy
| | | | | | - Andrea Ungar
- Department of Geriatric and Intensive Care Medicine, Careggi Hospital, University of Florence, 50121 Florence, Italy
| | - Gianfranco Parati
- Istituto Auxologico Italiano, S. Luca Hospital, University of Milan-Bicocca, 20126 Milan, Italy;
- Department of Medicine and Surgery, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo, 20126 Milan, Italy
| | - Giulia Rivasi
- Department of Geriatric and Intensive Care Medicine, Careggi Hospital, University of Florence, 50121 Florence, Italy
| | - Massimo Salvetti
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Carlo Maria Barbagallo
- Biomedical Department of Internal Medicine and Specialistics, University of Palermo, 90100 Palermo, Italy
| | - Michele Bombelli
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy (R.D.); (G.G.)
| | - Raffaella Dell’Oro
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy (R.D.); (G.G.)
| | - Berardino Bruno
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Luciano Lippa
- Italian Society of General Medicine (SIMG), 67051 Avezzano, Italy
| | - Lanfranco D’Elia
- Department of Clinical Medicine and Surgery, Medical School, “Federico II” University of Naples, 80133 Naples, Italy
| | - Maria Masulli
- Department of Clinical Medicine and Surgery, Medical School, “Federico II” University of Naples, 80133 Naples, Italy
| | | | - Gianpaolo Reboldi
- Department of Medical and Surgical Science, University of Perugia, 06100 Perugia, Italy;
| | - Fabio Angeli
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
- Department of Medicine and Cardiopulmonary Rehabilitation, Maugeri Care and Research Institutes, IRCCS, 21100 Varese, Italy
| | - Rosario Cianci
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Mallamaci
- CNR-IFC, Clinical Epidemiology of Renal Diseases and Hypertension, Reggio Cal Unit, 89124 Reggio Calabria, Italy
| | - Massimo Cirillo
- Department of Public Health, “Federico II” University of Naples, 80133 Naples, Italy;
| | - Marcello Rattazzi
- Department of Medicine, University of Padova, 35128 Padua, Italy
- Medicina Interna 1°, Ca’ Foncello University Hospital, 31100 Treviso, Italy
| | - Pietro Cirillo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, “Aldo Moro” University of Bari, 70122 Bari, Italy; (P.C.)
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, “Aldo Moro” University of Bari, 70122 Bari, Italy; (P.C.)
| | - Elisa Russo
- Department of Internal Medicine, University of Genoa, Policlinico San Martino, 16132 Genova, Italy (F.V.)
| | - Alberto Mazza
- Department of Internal Medicine, Hypertension Unit, General Hospital, 45100 Rovigo, Italy;
| | - Cristina Giannattasio
- Cardiology IV, ‘A. De Gasperis’ Department, Niguarda Ca’ Granda Hospital, 20162 Milano, Italy
| | - Alessandro Maloberti
- Cardiology IV, ‘A. De Gasperis’ Department, Niguarda Ca’ Granda Hospital, 20162 Milano, Italy
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, University of Rome Sapienza, 00161 Rome, Italy
- IRCCS San Raffaele, 00161 Rome, Italy
| | - Giuliano Tocci
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University of Rome Sapienza, Sant’Andrea Hospital, 00185 Rome, Italy;
| | - Guido Iaccarino
- Department of Advanced Biomedical Sciences, “Federico II” University of Naples, 80133 Naples, Italy
| | - Pietro Nazzaro
- Department of Medical Basic Sciences, Neurosciences and Sense Organs, Medical School, University of Bari, 70122 Bari, Italy;
| | - Ferruccio Galletti
- Department of Clinical Medicine and Surgery, Medical School, “Federico II” University of Naples, 80133 Naples, Italy
| | - Claudio Ferri
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Giovambattista Desideri
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genoa, Policlinico San Martino, 16132 Genova, Italy (F.V.)
| | - Roberto Pontremoli
- Department of Internal Medicine, University of Genoa, Policlinico San Martino, 16132 Genova, Italy (F.V.)
| | - Maria Lorenza Muiesan
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Guido Grassi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy (R.D.); (G.G.)
| | - Claudio Borghi
- Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
13
|
Cui L, Li Z, Yang X, Zhou H, Zhang Z, Gao Y, Ren L, Wang Y, Sun R, Ji L, Hua L. Mediating Effect of Insulin-Like Growth Factor-I Underlying the Link Between Vitamin D and Gestational Diabetes Mellitus. Reprod Sci 2024; 31:1541-1550. [PMID: 38347382 DOI: 10.1007/s43032-024-01468-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/19/2024] [Indexed: 05/24/2024]
Abstract
Vitamin D was well-known to be associated with gestational diabetes mellitus (GDM). Insulin-like growth factor-I (IGF-I) has been linked to vitamin D and GDM, respectively. We hypothesize that changes in IGF-I metabolism induced by 25(OH)D3 might contribute to GDM. Therefore, we investigated the independent and combined relationships of serum 25(OH)D3 and IGF-I concentrations with GDM risk, and the mediation effect of IGF-I on 25(OH)D3. A total of 278 pregnant women (including 125 cases and 153 controls) were recruited in our current study. Maternal serum 25(OH)D3 and IGF-I were measured in the second trimester. Logistic regression models were used to estimate the associations of 25(OH)D3 and IGF-I concentrations with the risk of GDM. Mediation analyses were used to explore the mediation effect of IGF-I on the association between 25(OH)D3 and the risk of GDM. After adjusted for the confounded factors, both the third and fourth quartile of 25(OH)D3 decreased the risk of GDM (OR = 0.226; 95% CI, 0.103-0.494; OR = 0.109; 95% CI, 0.045-0.265, respectively) compared to the first quartile of 25(OH)D3. However, the third and fourth quartile of serum IGF-I (OR = 5.174; 95% CI, 2.287-11.705; OR = 12.784; 95% CI, 5.292-30.879, respectively) increased the risk of GDM compared to the first quartile of serum IGF-I. Mediation analyses suggested that 19.62% of the associations between 25(OH)D3 and GDM might be mediated by IGF-I. The lower concentration of serum 25(OH)D3 or higher IGF-I in the second trimester was associated with an increased risk of GDM. The serum IGF-I level might be a potential mediator between 25(OH)D3 and GDM.
Collapse
Affiliation(s)
- Lingling Cui
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhiqian Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiaoli Yang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Huijun Zhou
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhengya Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yuting Gao
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lina Ren
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yibo Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ruijie Sun
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Linpu Ji
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Linlin Hua
- Department of Advanced Medical Research, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
14
|
Yu H, Ma J, Gu Y, Zou W, Zhao N. Serum cell division cycle 42 reflects the development and progression of diabetic nephropathy in patients with diabetes mellitus. Exp Ther Med 2024; 27:185. [PMID: 38533430 PMCID: PMC10964736 DOI: 10.3892/etm.2024.12473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/16/2023] [Indexed: 03/28/2024] Open
Abstract
Cell division cycle 42 (CDC42) regulates podocyte apoptosis to take part in the development and progression of diabetic nephropathy (DN), but currently the clinical evidence is limited. The aim of the present study was to investigate the capability of serum CDC42 expression level to estimate the development and progression of DN in patients with diabetes mellitus (DM). Patients with type 2 DM (n=306) were enrolled and divided into normoalbuminuria (n=185), microalbuminuria (n=72) and macroalbuminuria (n=49) groups based on the urinary albumin-to-creatinine ratio. Serum CDC42 was measured in all subjects using enzyme-linked immunosorbent assay. The median (interquartile range) CDC42 in patients with DM was 0.461 (0.314-0.690) ng/ml (range, 0.087-1.728 ng/ml). CDC42 was positively associated with the estimated glomerular filtration rate (P<0.001), but negatively correlated with body mass index, systolic blood pressure, hemoglobin A1c, serum creatine, serum uric acid and C reactive protein (all P<0.050). CDC42 levels were lowest in the macroalbuminuria group, followed by the microalbuminuria group, and were highest in the normoalbuminuria group (P<0.001). CDC42 indicated that it was a favorable estimator for the presence of albuminuria [area under the curve (AUC), 0.792; 95% confidence interval (CI), 0.736-0.848] and macroalbuminuria (AUC, 0.845; 95% CI, 0.775-0.915). By analyses in four different multivariate logistic regression models, increased CDC42 was independently associated with the presence of microalbuminuria (all P<0.001), macroalbuminuria (most P<0.001) and microalbuminuria + macroalbuminuria (all P<0.001). Serum CDC42 level negatively correlated with microalbuminuria and macroalbuminuria in patients with DM, suggesting its ability for estimating the development and progression of DN.
Collapse
Affiliation(s)
- Hongyu Yu
- Clinic of Integrated Traditional and Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Jian Ma
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Yueru Gu
- Department of Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Wei Zou
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Na Zhao
- Clinic of Integrated Traditional and Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- Department of Endocrinology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
- Department of Chinese Medicine Internal Medicine, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
15
|
Pleus S, Beil A, Baumstark A, Haug C, Freckmann G. Plasma Glucose Concentrations in Different Sampling Tubes Measured on Different Glucose Analysers. Exp Clin Endocrinol Diabetes 2024; 132:260-266. [PMID: 38307117 DOI: 10.1055/a-2260-3715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
INTRODUCTION The German Diabetes Association recommends using sampling tubes with citrate and fluoride additives to diagnose diabetes by oral glucose tolerance test to inhibit glycolysis. The effect of different tubes on measurement results was assessed. MATERIALS AND METHODS In a first study, an oral glucose tolerance test was performed on 41 participants without anamnestically known diabetes. Venous blood was sampled in two different tubes with citrate/fluoride additives from different manufacturers and one with only lithium-heparin additive. A second study with 42 participants was performed to verify the initial results with an adapted design, in which a third tube with citrate buffer was used, and glucose measurements were performed on two additional devices of another analyser model. Samples were centrifuged either immediately (<5 min incubation time) or after 20 min or 4 h. All glucose measurements were performed in plasma. Glucose concentrations in lithium-heparin tubes with<5 min incubation time served as baseline concentrations. RESULTS In the first study, glucose concentrations in one of the citrate/fluoride tubes were similar to the baseline. In the other citrate/fluoride tube, markedly lower concentrations (approximately - 5 mg/dL (- 0.28 mmol/L)) were measured. This was reproduced in the verification study for the same analyser, but not with the other analyser model. Lithium-heparin tubes centrifuged after 20 and 240 min showed systematically lower glucose concentrations. CONCLUSIONS The results confirm that glycolysis can be effectively inhibited in citrate/fluoride-containing sampling tubes. However, glucose measurement results of one analyser showed a relevant negative bias in tubes containing liquid citrate buffer.
Collapse
Affiliation(s)
- Stefan Pleus
- Institut für Diabetes-Technologie, Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Lise-Meitner-Straße 8/2, D-89081 Ulm
| | - Alexandra Beil
- Institut für Diabetes-Technologie, Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Lise-Meitner-Straße 8/2, D-89081 Ulm
| | - Annette Baumstark
- Institut für Diabetes-Technologie, Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Lise-Meitner-Straße 8/2, D-89081 Ulm
| | - Cornelia Haug
- Institut für Diabetes-Technologie, Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Lise-Meitner-Straße 8/2, D-89081 Ulm
| | - Guido Freckmann
- Institut für Diabetes-Technologie, Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Lise-Meitner-Straße 8/2, D-89081 Ulm
| |
Collapse
|
16
|
Colloca A, Donisi I, Anastasio C, Balestrieri ML, D’Onofrio N. Metabolic Alteration Bridging the Prediabetic State and Colorectal Cancer. Cells 2024; 13:663. [PMID: 38667278 PMCID: PMC11049175 DOI: 10.3390/cells13080663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Prediabetes and colorectal cancer (CRC) represent compelling health burdens responsible for high mortality and morbidity rates, sharing several modifiable risk factors. It has been hypothesized that metabolic abnormalities linking prediabetes and CRC are hyperglycemia, hyperinsulinemia, and adipokines imbalance. The chronic stimulation related to these metabolic signatures can favor CRC onset and development, as well as negatively influence CRC prognosis. To date, the growing burden of prediabetes and CRC has generated a global interest in defining their epidemiological and molecular relationships. Therefore, a deeper knowledge of the metabolic impairment determinants is compelling to identify the pathological mechanisms promoting the onset of prediabetes and CRC. In this scenario, this review aims to provide a comprehensive overview on the metabolic alterations of prediabetes and CRC as well as an overview of recent preventive and therapeutic approaches for both diseases, focusing on the role of the metabolic state as a pivotal contributor to consider for the development of future preventive and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (A.C.); (I.D.); (C.A.); (M.L.B.)
| |
Collapse
|
17
|
Luppa PB, Zeller M, Pieper M, Kaiser P, Weiss N, Vierbaum L, Freckmann G. Quality assessment of glucose measurement with regard to epidemiology and clinical management of diabetes mellitus in Germany. Front Mol Biosci 2024; 11:1371426. [PMID: 38572446 PMCID: PMC10987728 DOI: 10.3389/fmolb.2024.1371426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Background During the last decade, Germany has seen an increased prevalence and a redistribution from undetected to diagnosed diabetes mellitus. Due to this substantial epidemiological development, the number of people with documented type 2 diabetes was 8.7 million in 2022. An estimated two million undiagnosed subjects are to be added. Beyond that, the life expectancy of diabetic subjects is increasing due to more responsive health systems in terms of care. Possible reasons include improved screening of at-risk individuals, the introduction of HbA1c for diagnosis in 2010, and the higher use of risk scores. Additionally, quality aspects of the laboratory methodology should be taken into consideration. Methods Epidemiology and clinical management of diabetes in Germany are presented in the light of publications retrieved by a selective search of the PubMed database. Additionally, the data from German external quality assessment (EQA) surveys for the measurands glucose in plasma and HbA1c in whole blood, reviewed from 2010 until 2022, were evaluated. Above this, data concerning the analytical performance of near-patient glucometer devices, according to the ISO norm 15197:2013, were analyzed. Results Two laboratory aspects are in good accordance with the observation of an increase in the diabetes mellitus prevalence when retrospectively reviewing the period 2010 to 2022: First, the analytical performance according to the ISO norm 15197:2013 of the glucometer devices widely used by patients with diabetes for the glucose self-testing, has improved during this period. Secondly, concerning the EQA program of INSTAND, the number of participating laboratories raised significantly in Germany. The spreads of variations of the specified results for plasma glucose remained unchanged between 2010 and 2022, whereas for HbA1c a significant decrease of the result scattering could be observed. Conclusion These retrospectively established findings testify to an excellent analytical quality of laboratory diagnostics for glucose and HbA1c throughout Germany which may be involved in a better diagnosis and therapy of previously undetected diabetes mellitus.
Collapse
Affiliation(s)
- Peter B. Luppa
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar der Technische Universität München, Munich, Germany
| | - Michael Zeller
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar der Technische Universität München, Munich, Germany
| | - Marija Pieper
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar der Technische Universität München, Munich, Germany
| | - Patricia Kaiser
- INSTAND e.V., Gesellschaft zur Förderung der Qualitätssicherung in Medizinischen Laboratorien e.V., Düsseldorf, Germany
| | - Nathalie Weiss
- INSTAND e.V., Gesellschaft zur Förderung der Qualitätssicherung in Medizinischen Laboratorien e.V., Düsseldorf, Germany
| | - Laura Vierbaum
- INSTAND e.V., Gesellschaft zur Förderung der Qualitätssicherung in Medizinischen Laboratorien e.V., Düsseldorf, Germany
| | - Guido Freckmann
- Institut für Diabetes-Technologie, Forschungs- und Entwicklungsgesellschaft mbH an der Universität Ulm, Ulm, Germany
| |
Collapse
|
18
|
Lin QR, Jia LQ, Lei M, Gao D, Zhang N, Sha L, Liu XH, Liu YD. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatment of diabetes and its complications: An update since 2010. Pharmacol Res 2024; 200:107054. [PMID: 38181858 DOI: 10.1016/j.phrs.2023.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
Diabetes, characterized as a well-known chronic metabolic syndrome, with its associated complications pose a substantial and escalating health and healthcare challenge on a global scale. Current strategies addressing diabetes are mainly symptomatic and there are fewer available curative pharmaceuticals for diabetic complications. Thus, there is an urgent need to identify novel pharmacological targets and agents. The impaired mitochondria have been associated with the etiology of diabetes and its complications, and the intervention of mitochondrial dysfunction represents an attractive breakthrough point for the treatments of diabetes and its complications. Natural products (NPs), with multicenter characteristics, multi-pharmacological activities and lower toxicity, have been caught attentions as the modulators of mitochondrial functions in the therapeutical filed of diabetes and its complications. This review mainly summarizes the recent progresses on the potential of 39 NPs and 2 plant-extracted mixtures to improve mitochondrial dysfunction against diabetes and its complications. It is expected that this work may be useful to accelerate the development of innovative drugs originated from NPs and improve upcoming therapeutics in diabetes and its complications.
Collapse
Affiliation(s)
- Qian-Ru Lin
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lian-Qun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 116600, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Di Gao
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xu-Han Liu
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China.
| | - Yu-Dan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
19
|
Eckert AJ, Zimny S, Altmeier M, Dugic A, Gillessen A, Bozkurt L, Götz G, Karges W, Wosch FJ, Kress S, Holl RW. Factors associated with diabetic foot ulcers and lower limb amputations in type 1 and type 2 diabetes supported by real-world data from the German/Austrian DPV registry. J Diabetes 2024; 16:e13531. [PMID: 38403299 PMCID: PMC10894714 DOI: 10.1111/1753-0407.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/09/2023] [Accepted: 12/27/2023] [Indexed: 02/27/2024] Open
Abstract
AIMS Diabetic foot ulcer (DFU) is a leading cause of lower limb amputations in people with diabetes. This study was aimed to retrospectively analyze factors affecting DFU using real-world data from a large, prospective central-European diabetes registry (DPV [Diabetes-Patienten-Verlaufsdokumentation]). MATERIALS AND METHODS We matched adults with type 1 (T1D) or type 2 diabetes (T2D) and DFU to controls without DFU by diabetes type, age, sex, diabetes duration, and treatment year to compare possible risk factors. Cox regression was used to calculate hazard ratios for amputation among those with DFU. RESULTS In our cohort (N = 63 464), male sex, taller height, and diabetes complications such as neuropathy, peripheral artery disease, nephropathy, and retinopathy were associated with DFU (all p < .001). Glycated hemoglobin (HbA1c) was related to DFU only in T1D (mean with 95% confidence interval [CI]: 7.8 [6.9-9.0] % vs 7.5 [6.8-8.5] %, p < .001). High triglycerides and worse low-density lipoprotein/high-density lipoprotein ratio were also associated with DFU in T1D, whereas smoking (14.7% vs 13.1%) and alcohol abuse (6.4% vs 3.8%, both p < .001) were associated with DFU in T2D. Male sex, higher Wagner grades, and high HbA1c in both diabetes types and insulin use in T2D were associated with increased hazard ratios for amputations. CONCLUSIONS Sex, body height, and diabetes complications were associated DFU risk in adults with T1D and T2D. Improvement in glycemic control and lipid levels in T1D and reduction of smoking and drinking in T2D may be appropriate interventions to reduce the risk for DFU or amputations.
Collapse
Affiliation(s)
- Alexander J Eckert
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Stefan Zimny
- Department of General Internal Medicine, Endocrinology and Diabetology, Helios Clinic Schwerin, Schwerin, Germany
| | - Marcus Altmeier
- Klinik für Diabetologie, Klinikum Dortmund, Dortmund, Deutschland
| | - Ana Dugic
- Medical Clinic I, Klinikum Bayreuth Friedrich-Alexander-University Erlangen-Nürnberg, Bayreuth, Germany
| | - Anton Gillessen
- Department of Internal Medicine, Herz-Jesu-Hospital, Muenster, Germany
| | - Latife Bozkurt
- Department of Internal Medicine III and Karl Landsteiner Institute for Metabolic Disorders and Nephrology, Clinic Hietzing, Vienna Health Care Group, Vienna, Austria
| | - Gabriele Götz
- Department of Internal Medicine, Diabetes, Gastroenterology, Tumor Medicine, and Palliative Care, Academic Teaching Hospital Nürtingen, Tübingen, Germany
| | - Wolfram Karges
- Clinic for Gastroenterology, Metabolic Disorders and Internal Intensive Medicine (Medical Clinic III), Department of Endocrinology and Diabetology, University Hospital Aachen, Aachen, Germany
| | | | - Stephan Kress
- Diabetes, Sport and Physical Activity Working Group of the DDG, Unna, Germany
- Department of Internal Medicine I, Vinzentius Hospital Landau, Landau, Germany
| | - Reinhard W Holl
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| |
Collapse
|
20
|
Ruan S, Guo X, Ren Y, Cao G, Xing H, Zhang X. Nanomedicines based on trace elements for intervention of diabetes mellitus. Biomed Pharmacother 2023; 168:115684. [PMID: 37820567 DOI: 10.1016/j.biopha.2023.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
Epidemiology shows that the incidence of diabetes mellitus (DM) is increasing year by year globally. Proper interventions are highly aspired for diabetics to improve the quality of life and prevent development of chronic complications. Trace elements, also known as microelements, are chemical substances that are present in our body in minute amounts. They are necessitated by the body for growth, development and functional metabolism. For the past few years, trace element nanoparticles have aroused considerable interest as a burgeoning form of nanomedicines in antidiabetic applications. These microelement-based nanomedicines can regulate glucose metabolism in several ways, showing great potential for diabetes management. Starting from the pathophysiology of diabetes, the state-of-the-art of diabetes treatment, the physiological roles of trace elements, various emerging trace element nanoparticles specific for diabetes were comprehensively reviewed in this work. Our findings disclose that trace element nanoparticles can fight against diabetes by lowering blood glucose, promoting insulin secretion, alleviating glucose intolerance, improving insulin sensitivity, ameliorating lipid profile, anti-inflammation and anti-oxidant stress, and other mechanisms. In conclusion, trace element nanoparticles can be applied as nanomedicines or dietary modifiers for effective intervention for diabetes.
Collapse
Affiliation(s)
- Shuxian Ruan
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaolei Guo
- Office of Academic Research, Binzhou Polytechnic, Binzhou, China
| | - Yuehong Ren
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Guangshang Cao
- Department of Pharmaceutics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Huijie Xing
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, China.
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
21
|
Dong W, Peng Q, Liu Z, Xie Z, Guo X, Li Y, Chen C. Estrogen plays an important role by influencing the NLRP3 inflammasome. Biomed Pharmacother 2023; 167:115554. [PMID: 37738797 DOI: 10.1016/j.biopha.2023.115554] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is an important part of the natural immune system that plays an important role in many diseases. Estrogen is a sex hormone that plays an important role in controlling reproduction and regulates many physiological and pathological processes. Recent studies have indicated that estrogen is associated with disease progression. Estrogen can ameliorate some diseases (e. g, sepsis, mood disturbances, cerebral ischemia, some hepatopathy, Parkinson's disease, amyotrophic lateral sclerosis, inflammatory bowel disease, spinal cord injury, multiple sclerosis, myocardial ischemia/reperfusion injury, osteoarthritis, and renal fibrosis) by inhibiting the NLRP3 inflammasome. Estrogen can also promote the development of diseases (e.g., ovarian endometriosis, dry eye disease, and systemic lupus erythematosus) by upregulating the NLRP3 inflammasome. In addition, estrogen has a dual effect on the development of cancers and asthma. However, the mechanism of these effects is not summarized. This article reviewed the progress in understanding the effects of estrogen on the NLRP3 inflammasome and its mechanisms in recent years to provide a theoretical basis for an in-depth study.
Collapse
Affiliation(s)
- Wanglin Dong
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Qianwen Peng
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Zhuoxin Liu
- Clinical College of Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhenxing Xie
- School of Basic Medical Science, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China.
| | - Xiajun Guo
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Yuanyuan Li
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
22
|
Ko S, Oh H, Subramanian SV, Kim R. Small Area Geographic Estimates of Cardiovascular Disease Risk Factors in India. JAMA Netw Open 2023; 6:e2337171. [PMID: 37824144 PMCID: PMC10570875 DOI: 10.1001/jamanetworkopen.2023.37171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/29/2023] [Indexed: 10/13/2023] Open
Abstract
Importance With an aging population, India is facing a growing burden of cardiovascular diseases (CVDs). Existing programs on CVD risk factors are mostly based on state and district data, which overlook health disparities within macro units. Objective To quantify and geovisualize the extent of small area variability within districts in CVD risk factors (hypertension, diabetes, and obesity) in India. Design, Setting, and Participants This cross-sectional study analyzed nationally representative data from the National Family Health Survey 2019-2021, encompassing individuals aged 15 years or older, for hypertension (n = 1 715 895), diabetes (n = 1 807 566), and obesity (n = 776 023). Data analyses were conducted from July 1, 2022, through August 1, 2023. Exposures Geographic units consisting of more than 30 000 small areas, 707 districts, and 36 states or Union Territories across India. Main Outcomes and Measures For primary outcomes, CVD risk factors, including hypertension, diabetes, and obesity, were considered. Four-level logistic regression models were used to partition the geographic variability in each outcome by state or Union Territory (level 4), district (level 3), and small area (level 2) and compute precision-weighted small area estimates. Spatial distribution of district-wide means, within-district small area variability, and their correlation were estimated. Results The final analytic sample consisted of 1 715 895 individuals analyzed for hypertension (mean [SD] age, 39.8 [17.3] years; 921 779 [53.7%] female), 1 807 566 for diabetes (mean [SD] age, 39.5 [17.2] years; 961 977 [53.2%] female), and 776 023 for obesity (mean [SD] age, 30.9 [10.2] years; 678 782 [87.5%] women). Overall, 21.2% of female and 24.1% of male participants had hypertension, 5.0% of female and 5.4% of men had diabetes, and 6.3% of female and 4.0% of male participants had obesity. For female participants, small areas (32.0% for diabetes, 34.5% for obesity, and 56.2% for hypertension) and states (30.0% for hypertension, 46.6% for obesity, and 52.8% for diabetes) accounted for the majority of the total geographic variability, while districts accounted for the least (13.8% for hypertension, 15.2% for diabetes, and 18.9% for obesity). There were moderate to strong positive correlations between district-wide mean and within-district variability (r = 0.66 for hypertension, 0.94 for obesity, and 0.96 for diabetes). For hypertension, a significant discordance between district-wide mean and within-district small area variability was found. Results were largely similar for male participants across all categories. Conclusions and Relevance This cross-sectional study found a substantial small area variability, suggesting the necessity of precise policy attention specifically to small areas in program formulation and intervention to prevent and manage CVD risk factors. Targeted action on policy-priority districts with high prevalence and substantial inequality is required for accelerating India's efforts to reduce the burden of noncommunicable diseases.
Collapse
Affiliation(s)
- Soohyeon Ko
- Department of Public Health Sciences, Graduate School of Korea University, Seoul, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
| | - Hannah Oh
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
- Division of Health Policy and Management, College of Health Science, Korea University, Seoul, Republic of Korea
| | - S. V. Subramanian
- Harvard Center for Population and Development Studies, Cambridge, Massachusetts
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Rockli Kim
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, Republic of Korea
- Division of Health Policy and Management, College of Health Science, Korea University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Qian X, Ko A, Li H, Liao C. Saliva sampling strategies affecting the salivary glucose measurement. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4598-4605. [PMID: 37655760 DOI: 10.1039/d3ay01005h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Characterized by sustained elevated blood glucose levels, diabetes mellitus has become one of the largest global public health concerns by imposing a heavy global burden on socio-economic development. To date, regular blood glucose level check by performing a finger-prick test has been a routine strategy to monitor diabetes. However, the intrusive nature of finger blood prick tests makes it challenging for individuals to maintain consistent testing routines. Recently, salivary glucose measurement (SGM) has increasingly become a non-invasive alternative to traditional blood glucose testing for diabetes. Despite that, further research is needed to standardize the collection methods and address the issues of variability to ensure accurate and reliable SGM. To resolve possible remaining issues in SGM, we here thoroughly explored saliva sampling strategies that could impact the measurement results. Additionally, the effects of supplements taken, mouth washing, gum chewing, and smoking were collectively analyzed, followed by a continuous SGM over a long period, forming the stepping stone for the practical transitional development of SGM in non-invasive diabetes monitoring.
Collapse
Affiliation(s)
- Xia Qian
- Medical School, Sun Yat-Sen University, Guangzhou, China
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| | - Anthony Ko
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| | - Haifeng Li
- Shenzhen People's Hospital, Shenzhen, China
| | - Caizhi Liao
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| |
Collapse
|
24
|
Dönmez E, Özcan S, Şahin İ, Okuyan E. The association between hemogram parameters and the development of contrast-induced nephropathy in patients presenting with non-ST-elevation myocardial infarction. ADVANCES IN LABORATORY MEDICINE 2023; 4:308-313. [PMID: 38075170 PMCID: PMC10701494 DOI: 10.1515/almed-2023-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/22/2023] [Indexed: 10/16/2024]
Abstract
Objectives Hemogram parameters such as mean platelet volume (MPV), neutrophil/lymphocyte ratio (NLr), red cell distribution width and platelet distribution width are widely used inflammatory indicators to assess prognosis in various cardiovascular diseases. In this study, we aimed to investigate the role of hemogram parameters to predict the development of contrast-induced nephropathy (CIN) in patients presenting with non-ST segment elevation myocardial infarction (non-STEMI) and treated with percutaneous coronary intervention (PCI). Methods All pateints who underwent PCI with a diagnosis of non-STEMI between 2017 and 2020 in our center were included retrospectively in this study. Results A total of 387 patients were included in this retrospective study. Advanced age (p=0.001, β:0.005, OR [95 % CI]: 0.002-0.007), diabetes mellitus (p=0.013, β:0.205, OR [95 % CI]: 0.150-0.260), congestive heart failure (p=0.009, β:0.095, OR [95 % CI]: 0.024-0.166), volume of contrast medium (p=0.008, β:0.241, OR [95 % CI]: 0.184-0.392), MPV (p=0.02, β:0.047, OR [95 % CI]: 0.028-0.065) and NLr (p=0.001, β:0.052, OR [95 % CI]: 0.040-0.063) were found as independent risk factors associated with CIN development according to multivariate logistic regression analysis. A cut off value of 5.5 for NLr was associated with 79.6 % sensitivity and 79.5 % specificity and 9.05 for MPV was associated with 64.1 % sensitivity and 58.7 % specificity in prediction of CIN development. Conclusions Hematological parameters, assessed by routine blood count analysis may serve as a promising and useful marker for CIN especially when used in combination with traditional risk factors. MPV and NLr were demonstrated as predictors of CIN development in non-STEMI patients who were treated with PCI in our study.
Collapse
Affiliation(s)
- Esra Dönmez
- Department of Cardiology, Bağcılar Training and Research Hospital, Bağcılar, İstanbul, Türkiye
| | - Sevgi Özcan
- Department of Cardiology, Bağcılar Training and Research Hospital, Bağcılar, İstanbul, Türkiye
| | - İrfan Şahin
- Department of Cardiology, Bağcılar Training and Research Hospital, Bağcılar, İstanbul, Türkiye
| | - Ertuğrul Okuyan
- Department of Cardiology, Bağcılar Training and Research Hospital, Bağcılar, İstanbul, Türkiye
| |
Collapse
|
25
|
Laubner K. [From diabetes to sleep apnea: what obesity complications should we look for?]. Dtsch Med Wochenschr 2023; 148:949-956. [PMID: 37494560 DOI: 10.1055/a-1847-2632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The prevalence of obesity has increased worldwide. For Germany, according to the "Study on Adult Health in Germany" (DEGS1) of the Robert Koch Institute from the years 2008-2011, the prevalence of a BMI ≥25 kg/m² was 67,1% for men and 53,0% for women, whereby the proportion of obesity, i.e. a BMI ≥30 kg/m² is 23, 3% for men and 23,9% for women. Compared to 1998, the prevalence of obesity in the same group was 18, 8% for men and 21,7% for women. Because of the increasing prevalence of overweight and obesity, the number of patients with obesity-associated comorbidities is correspondingly increasing. There is a close association between obesity and an increased risk of metabolic diseases, cardiovascular diseases, but also musculoskeletal diseases, some types of cancer and mental comorbidities. In addition, obesity might also lead to restrictions in activities of daily living, reduced quality of life, unemployment and early retirement. A knowledge of obesity-associated sequelae is therefore essential in order to specifically look for them, treat them and thereby improve patient care and ultimately morbidity and mortality of patients with obesity.
Collapse
|
26
|
Leal-Cardoso JH, Ferreira-da-Silva FW, Coelho-de-Souza AN, da Silva-Alves KS. Diabetes-induced electrophysiological alterations on neurosomes in ganglia of peripheral nervous system. Biophys Rev 2023; 15:625-638. [PMID: 37681090 PMCID: PMC10480376 DOI: 10.1007/s12551-023-01094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/30/2023] [Indexed: 09/09/2023] Open
Abstract
Diabetes mellitus (DM) leads to medical complications, the epidemiologically most important of which is diabetic peripheral neuropathy (DPN). Electrophysiology is a major component of neural functioning and several studies have been undertaken to elucidate the neural electrophysiological alterations caused by DM and their mechanisms of action. Due to the importance of electrophysiology for neuronal function, the review of the studies dealing predominantly with electrophysiological parameters and mechanisms in the neuronal somata of peripheral neural ganglia of diabetic animals during the last 45 years is here undertaken. These studies, using predominantly techniques of electrophysiology, most frequently patch clamp for voltage clamp studies of transmembrane currents through ionic channels, have investigated the experimental DPN. They also have demonstrated that various cellular and molecular mechanisms of action of diabetic physiopathology at the level of biophysical electrical parameters are affected in DPN. Thus, they have demonstrated that several passive and active transmembrane voltage parameters, related to neuronal excitability and neuronal functions, are altered in diabetes. The majority of the studies agreed that DM produces depolarization of the resting membrane potential; alters excitability, increasing and decreasing it in dorsal root ganglia (DRG) and in nodose ganglion, respectively. They have tried to relate these changes to sensorial alterations of DPN. Concerning ionic currents, predominantly studied in DRG, the most frequent finding was increases in Na+, Ca2+, and TRPV1 cation current, and decreases in K+ current. This review concluded that additional studies are needed before an understanding of the hierarchized, time-dependent, and integrated picture of the contribution of neural electrophysiological alterations to the DPN could be reached. DM-induced electrophysiological neuronal alterations that so far have been demonstrated, most of them likely important, are either consistent with the DPN symptomatology or suggest important directions for improvement of the elucidation of DPN physiopathology, which the continuation seems to us very relevant.
Collapse
Affiliation(s)
- José Henrique Leal-Cardoso
- Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, 1700 Dr. Silas Munguba Avenue, Fortaleza, Ceará 60714-903 Brazil
| | - Francisco Walber Ferreira-da-Silva
- Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, 1700 Dr. Silas Munguba Avenue, Fortaleza, Ceará 60714-903 Brazil
- Civil Engineering Department, State University of Vale do Acaraú, Sobral, Ceará Brazil
| | - Andrelina Noronha Coelho-de-Souza
- Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, 1700 Dr. Silas Munguba Avenue, Fortaleza, Ceará 60714-903 Brazil
- Laboratory of Experimental Physiology, Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará Brazil
| | - Kerly Shamyra da Silva-Alves
- Laboratory of Electrophysiology, Superior Institute of Biomedical Sciences, State University of Ceará, 1700 Dr. Silas Munguba Avenue, Fortaleza, Ceará 60714-903 Brazil
| |
Collapse
|
27
|
Li Y, Guan L, Ning C, Zhang P, Zhao Y, Liu Q, Ping P, Fu S. Machine learning-based models to predict one-year mortality among Chinese older patients with coronary artery disease combined with impaired glucose tolerance or diabetes mellitus. Cardiovasc Diabetol 2023; 22:139. [PMID: 37316853 DOI: 10.1186/s12933-023-01854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
PURPOSE An accurate prediction of survival prognosis is beneficial to guide clinical decision-making. This prospective study aimed to develop a model to predict one-year mortality among older patients with coronary artery disease (CAD) combined with impaired glucose tolerance (IGT) or diabetes mellitus (DM) using machine learning techniques. METHODS A total of 451 patients with CAD combined with IGT and DM were finally enrolled, and those patients randomly split 70:30 into training cohort (n = 308) and validation cohort (n = 143). RESULTS The one-year mortality was 26.83%. The least absolute shrinkage and selection operator (LASSO) method and ten-fold cross-validation identified that seven characteristics were significantly associated with one-year mortality with creatine, N-terminal pro-B-type natriuretic peptide (NT-proBNP), and chronic heart failure being risk factors and hemoglobin, high density lipoprotein cholesterol, albumin, and statins being protective factors. The gradient boosting machine model outperformed other models in terms of Brier score (0.114) and area under the curve (0.836). The gradient boosting machine model also showed favorable calibration and clinical usefulness based on calibration curve and clinical decision curve. The Shapley Additive exPlanations (SHAP) found that the top three features associated with one-year mortality were NT-proBNP, albumin, and statins. The web-based application could be available at https://starxueshu-online-application1-year-mortality-main-49cye8.streamlitapp.com/ . CONCLUSIONS This study proposes an accurate model to stratify patients with a high risk of one-year mortality. The gradient boosting machine model demonstrates promising prediction performance. Some interventions to affect NT-proBNP and albumin levels, and statins, are beneficial to improve survival outcome among patients with CAD combined with IGT or DM.
Collapse
Affiliation(s)
- Yan Li
- Department of Endocrinology, People's Hospital of Macheng City, Hubei, China
| | - Lixun Guan
- Hematology Department, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China
| | - Chaoxue Ning
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China
| | - Pei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yali Zhao
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China.
| | - Qiong Liu
- Medical Care Center, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China.
| | - Ping Ping
- General Station for Drug and Instrument Supervision and Control, Joint Logistic Support Force of Chinese People's Liberation Army, Beijing, China.
| | - Shihui Fu
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China.
- Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
28
|
Costa J, Braga PC, Rebelo I, Oliveira PF, Alves MG. Mitochondria Quality Control and Male Fertility. BIOLOGY 2023; 12:827. [PMID: 37372112 DOI: 10.3390/biology12060827] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
Mitochondria are pivotal to cellular homeostasis, performing vital functions such as bioenergetics, biosynthesis, and cell signalling. Proper maintenance of these processes is crucial to prevent disease development and ensure optimal cell function. Mitochondrial dynamics, including fission, fusion, biogenesis, mitophagy, and apoptosis, maintain mitochondrial quality control, which is essential for overall cell health. In male reproduction, mitochondria play a pivotal role in germ cell development and any defects in mitochondrial quality can have serious consequences on male fertility. Reactive oxygen species (ROS) also play a crucial role in sperm capacitation, but excessive ROS levels can trigger oxidative damage. Any imbalance between ROS and sperm quality control, caused by non-communicable diseases or environmental factors, can lead to an increase in oxidative stress, cell damage, and apoptosis, which in turn affect sperm concentration, quality, and motility. Therefore, assessing mitochondrial functionality and quality control is essential to gain valuable insights into male infertility. In sum, proper mitochondrial functionality is essential for overall health, and particularly important for male fertility. The assessment of mitochondrial functionality and quality control can provide crucial information for the study and management of male infertility and may lead to the development of new strategies for its management.
Collapse
Affiliation(s)
- José Costa
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
| | - Patrícia C Braga
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
- Laboratory of Physiology, Department of Imuno-Physiology and Pharmacology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal
| | - Pedro F Oliveira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marco G Alves
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
- Laboratory of Physiology, Department of Imuno-Physiology and Pharmacology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
29
|
Şat S, Aydınkoç-Tuzcu K, Berger F, Barakat A, Danquah I, Schindler K, Fasching P. Diabetes and Migration. Exp Clin Endocrinol Diabetes 2023; 131:319-337. [PMID: 37315566 DOI: 10.1055/a-1946-3878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Sebahat Şat
- MVZ DaVita Rhine-Ruhr, Düsseldorf, Germany
- German Diabetes Association (DDG) Working Group on Diabetes and Migrants
| | - Kadriye Aydınkoç-Tuzcu
- German Diabetes Association (DDG) Working Group on Diabetes and Migrants
- Wilhelminenspital of the City of Vienna, 5th Medical Department of Endocrinology, Rheumatology and Acute Geriatrics, Vienna, Austria
- Austrian Diabetes Association (ÖGD) Working Group on Migration and Diabetes
| | - Faize Berger
- German Diabetes Association (DDG) Working Group on Diabetes and Migrants
| | - Alain Barakat
- German Diabetes Association (DDG) Working Group on Diabetes and Migrants
- Diabetes Center Duisburg-Mitte (DZDM), Duisburg, Germany
| | - Ina Danquah
- German Diabetes Association (DDG) Working Group on Diabetes and Migrants
- Heidelberg Institute of Global Health (HIGH), Medical Faculty and University Hospital Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Karin Schindler
- Austrian Diabetes Association (ÖGD) Working Group on Migration and Diabetes
- Medical University of Vienna, Department of Internal Medicine III, Clinical Department of Endocrinology and Metabolism, Vienna, Austria
| | - Peter Fasching
- Wilhelminenspital of the City of Vienna, 5th Medical Department of Endocrinology, Rheumatology and Acute Geriatrics, Vienna, Austria
- Austrian Diabetes Association (ÖGD) Working Group on Migration and Diabetes
| |
Collapse
|
30
|
Ungethüm K, Wiedmann S, Wagner M, Leyh R, Ertl G, Frantz S, Geisler T, Karmann W, Prondzinsky R, Herdeg C, Noutsias M, Ludwig T, Käs J, Klocke B, Krapp J, Wood D, Kotseva K, Störk S, Heuschmann PU. Secondary prevention in diabetic and nondiabetic coronary heart disease patients: Insights from the German subset of the hospital arm of the EUROASPIRE IV and V surveys. Clin Res Cardiol 2023; 112:285-298. [PMID: 36166067 PMCID: PMC9898414 DOI: 10.1007/s00392-022-02093-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/25/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Patients with coronary heart disease (CHD) with and without diabetes mellitus have an increased risk of recurrent events requiring multifactorial secondary prevention of cardiovascular risk factors. We compared prevalences of cardiovascular risk factors and its determinants including lifestyle, pharmacotherapy and diabetes mellitus among patients with chronic CHD examined within the fourth and fifth EUROASPIRE surveys (EA-IV, 2012-13; and EA-V, 2016-17) in Germany. METHODS The EA initiative iteratively conducts European-wide multicenter surveys investigating the quality of secondary prevention in chronic CHD patients aged 18 to 79 years. The data collection in Germany was performed during a comprehensive baseline visit at study centers in Würzburg (EA-IV, EA-V), Halle (EA-V), and Tübingen (EA-V). RESULTS 384 EA-V participants (median age 69.0 years, 81.3% male) and 536 EA-IV participants (median age 68.7 years, 82.3% male) were examined. Comparing EA-IV and EA-V, no relevant differences in risk factor prevalence and lifestyle changes were observed with the exception of lower LDL cholesterol levels in EA-V. Prevalence of unrecognized diabetes was significantly lower in EA-V as compared to EA-IV (11.8% vs. 19.6%) while the proportion of prediabetes was similarly high in the remaining population (62.1% vs. 61.0%). CONCLUSION Between 2012 and 2017, a modest decrease in LDL cholesterol levels was observed, while no differences in blood pressure control and body weight were apparent in chronic CHD patients in Germany. Although the prevalence of unrecognized diabetes decreased in the later study period, the proportion of normoglycemic patients was low. As pharmacotherapy appeared fairly well implemented, stronger efforts towards lifestyle interventions, mental health programs and cardiac rehabilitation might help to improve risk factor profiles in chronic CHD patients.
Collapse
Affiliation(s)
- K Ungethüm
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Bavaria, Germany.
| | - S Wiedmann
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Bavaria, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Berlin, Germany
| | - M Wagner
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Bavaria, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Bavaria, Germany
- Kuratorium für Dialyse und Nierentransplantation E.V, Neu-Isenburg, Hesse, Germany
| | - R Leyh
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Bavaria, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - G Ertl
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Bavaria, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - S Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Bavaria, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Bavaria, Germany
- Department of Internal Medicine III, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Saxony-Anhalt, Halle (Saale), Germany
| | - T Geisler
- Department of Cardiology and Cardiovascular Disease, University Hospital Tübingen, Tübingen, Baden-Württemberg, Germany
| | - W Karmann
- Department of Medicine, Klinik Kitzinger Land, Kitzingen, Bavaria, Germany
| | - R Prondzinsky
- Cardiology/Intensive Care Medicine, Carl Von Basedow Klinikum Merseburg, Merseburg, Saxony-Anhalt, Germany
| | - C Herdeg
- Medius Klinik Ostfildern-Ruit, Klinik für Innere Medizin, Herz- und Kreislauferkrankungen, Ostfildern-Ruit, Baden-Württemberg, Germany
| | - M Noutsias
- Department of Internal Medicine III, University Hospital Halle, Martin-Luther-University Halle-Wittenberg, Saxony-Anhalt, Halle (Saale), Germany
- Department of Internal Medicine A, University Hospital Ruppin-Brandenburg (UKRB) of the Medical School of Brandenburg (MHB), Neuruppin, Brandenburg, Germany
| | - T Ludwig
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Bavaria, Germany
| | - J Käs
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Bavaria, Germany
| | - B Klocke
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Bavaria, Germany
| | - J Krapp
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Bavaria, Germany
| | - D Wood
- European Society of Cardiology, Sophia Antipolis, France
- Imperial College Healthcare NHS Trusts, London, UK
- National University of Ireland, Galway, Ireland
| | - K Kotseva
- European Society of Cardiology, Sophia Antipolis, France
- Imperial College Healthcare NHS Trusts, London, UK
- National University of Ireland, Galway, Ireland
| | - S Störk
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Bavaria, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Bavaria, Germany
| | - P U Heuschmann
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Bavaria, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Bavaria, Germany
- Clinical Trial Center, University Hospital Würzburg, Würzburg, Bavaria, Germany
| |
Collapse
|
31
|
Kender Z, Jende JME, Kurz FT, Tsilingiris D, Schimpfle L, Sulaj A, von Rauchhaupt E, Bartl H, Mooshage C, Göpfert J, Nawroth P, Herzig S, Szendroedi J, Bendszus M, Kopf S. Sciatic nerve fractional anisotropy and neurofilament light chain protein are related to sensorimotor deficit of the upper and lower limbs in patients with type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1046690. [PMID: 37008917 PMCID: PMC10053786 DOI: 10.3389/fendo.2023.1046690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Diabetic sensorimotor polyneuropathy (DSPN) is one of the most prevalent and poorly understood diabetic microvascular complications. Recent studies have found that fractional anisotropy (FA), a marker for microstructural nerve integrity, is a sensitive parameter for the structural and functional nerve damage in DSPN. The aim of this study was to investigate the significance of proximal sciatic nerve's FA on different distal nerve fiber deficits of the upper and lower limbs and its correlation with the neuroaxonal biomarker, neurofilament light chain protein (NfL). MATERIALS AND METHODS Sixty-nine patients with type 2 diabetes (T2DM) and 30 healthy controls underwent detailed clinical and electrophysiological assessments, complete quantitative sensory testing (QST), and diffusion-weighted magnetic resonance neurography of the sciatic nerve. NfL was measured in the serum of healthy controls and patients with T2DM. Multivariate models were used to adjust for confounders of microvascular damage. RESULTS Patients with DSPN showed a 17% lower sciatic microstructural integrity compared to healthy controls (p<0.001). FA correlated with tibial and peroneal motor nerve conduction velocity (NCV) (r=0.6; p<0.001 and r=0.6; p<0.001) and sural sensory NCV (r=0.50; p<0.001). Participants with reduced sciatic nerve´s FA showed a loss of function of mechanical and thermal sensation of upper (r=0.3; p<0.01 and r=0.3; p<0.01) and lower (r=0.5; p<0.001 and r=0.3; p=<0.01) limbs and reduced functional performance of upper limbs (Purdue Pegboard Test for dominant hand; r=0.4; p<0.001). Increased levels of NfL and urinary albumin-creatinine ratio (ACR) were associated with loss of sciatic nerve´s FA (r=-0.5; p<0.001 and r= -0.3, p= 0.001). Of note, there was no correlation between sciatic FA and neuropathic symptoms or pain. CONCLUSION This is the first study showing that microstructural nerve integrity is associated with damage of different nerve fiber types and a neuroaxonal biomarker in DSPN. Furthermore, these findings show that proximal nerve damage is related to distal nerve function even before clinical symptoms occur. The microstructure of the proximal sciatic nerve and is also associated with functional nerve fiber deficits of the upper and lower limbs, suggesting that diabetic neuropathy involves structural changes of peripheral nerves of upper limbs too.
Collapse
Affiliation(s)
- Zoltan Kender
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
- *Correspondence: Zoltan Kender,
| | - Johann M. E. Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix T. Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Dimitrios Tsilingiris
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
| | - Lukas Schimpfle
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Alba Sulaj
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
| | - Ekaterina von Rauchhaupt
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
| | - Hannelore Bartl
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph Mooshage
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jens Göpfert
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Peter Nawroth
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
- Joint-IDC Institute for Diabetes and Cancer, Heidelberg University, Heidelberg, Germany
| | - Stephan Herzig
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
- Joint-IDC Institute for Diabetes and Cancer, Heidelberg University, Heidelberg, Germany
- Joint-IDC Institute for Diabetes and Cancer, Helmholtz-Zentrum Munich, Munich, Germany
| | - Julia Szendroedi
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
- Joint-IDC Institute for Diabetes and Cancer, Heidelberg University, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kopf
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
| |
Collapse
|
32
|
Chen H, Deng L, Sun J, Li H, Zhu X, Wang T, Jiang Y. Dynamic Detection of HbA1c Using a Silicon Nanowire Field Effect Tube Biosensor. BIOSENSORS 2022; 12:916. [PMID: 36354424 PMCID: PMC9688244 DOI: 10.3390/bios12110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
As an emerging diabetes diagnostic indicator and a dynamic change index, HbA1c can not only reflect the average blood glucose level over a period of time but can also well predict the incidence of related microvascular complications. It is important to develop a detection method that can dynamically characterize HbA1c. Silicon nanowire (SiNW) devices were mass-produced using top-down sputtering technology, and a microdialyzer was installed in a SiNW field effect tube biosensor detection system. Finally, the detection system was used to detect HbA1c levels quantitatively and dynamically in experimental rabbits. Various measurements showed that mass-produced SiNW devices have ideal dimensions, stable structures, and good performance. A series of microscopy results showed that the SiNW surface can be functionalized for intermolecular interactions. The addition of a dialysis device can effectively overcome Debye shielding, making the blood test similar to the pure standard test. Finally, the dynamic detection of HbA1c within 40 h was realized. SiNW biosensors are capable of the dynamic detection of biomolecules, and dynamic observation of the interaction between blood glucose and HbA1c provides new ideas for the diagnosis and treatment of patients with diabetes. Therefore, the SiNW biosensor can reflect the dynamic changes in HbA1c in a shorter time, which has a certain potential value in the clinical treatment of diabetes.
Collapse
Affiliation(s)
- Hang Chen
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Lijuan Deng
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jialin Sun
- Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi 214043, China
| | - Hang Li
- Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi 214043, China
| | - Xiaoping Zhu
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Tong Wang
- Nanjing Medical University Affiliated Wuxi People’s Hospital, Wuxi 214043, China
| | - Yanfeng Jiang
- Internet of Things Institute, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
33
|
Kupai K, Várkonyi T, Török S, Gáti V, Czimmerer Z, Puskás LG, Szebeni GJ. Recent Progress in the Diagnosis and Management of Type 2 Diabetes Mellitus in the Era of COVID-19 and Single Cell Multi-Omics Technologies. Life (Basel) 2022; 12:1205. [PMID: 36013384 PMCID: PMC9409806 DOI: 10.3390/life12081205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the world's leading causes of death and life-threatening conditions. Therefore, we review the complex vicious circle of causes responsible for T2DM and risk factors such as the western diet, obesity, genetic predisposition, environmental factors, and SARS-CoV-2 infection. The prevalence and economic burden of T2DM on societal and healthcare systems are dissected. Recent progress on the diagnosis and clinical management of T2DM, including both non-pharmacological and latest pharmacological treatment regimens, are summarized. The treatment of T2DM is becoming more complex as new medications are approved. This review is focused on the non-insulin treatments of T2DM to reach optimal therapy beyond glycemic management. We review experimental and clinical findings of SARS-CoV-2 risks that are attributable to T2DM patients. Finally, we shed light on the recent single-cell-based technologies and multi-omics approaches that have reached breakthroughs in the understanding of the pathomechanism of T2DM.
Collapse
Affiliation(s)
- Krisztina Kupai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
- Department of Internal Medicine, University of Szeged, Korányi fasor 8, 6720 Szeged, Hungary
| | - Tamás Várkonyi
- Department of Internal Medicine, University of Szeged, Korányi fasor 8, 6720 Szeged, Hungary
| | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Viktória Gáti
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Zsolt Czimmerer
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Life Science Building, Egyetem tér 1, 4032 Debrecen, Hungary
| | - László G. Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
- Avidin Ltd., Alsó kikötő sor 11/D, 6726 Szeged, Hungary
| | - Gábor J. Szebeni
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
- Laboratory of Functional Genomics, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
- CS-Smartlab Devices Ltd., Ady E. u. 14, 7761 Kozármisleny, Hungary
| |
Collapse
|