1
|
Hamour HM, Marangoz AH, Altun G, Kaplan S. Neuroprotective effects of Garcinia kolaand curcumin on diabetic transected sciatic nerve. Biomed Mater 2025; 20:035025. [PMID: 40267944 DOI: 10.1088/1748-605x/adcfe3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/23/2025] [Indexed: 04/25/2025]
Abstract
The growing interest in peripheral nerve regeneration and developing post-traumatic repair methods under diabetes was the impetus for this study, which aims to investigate the effect of curcumin andGarcinia kola(GK) on the transected and diabetic sciatic nerves. Thirty-five male Wistar albino rats were used. The animals were divided into five groups; each consisted of seven rats. The sciatic nerve was transected in all groups of rats except the control (Cont) group, which underwent no treatment. In the transected animals, a 10 mm nerve stump was removed from the 2 cm distal to the sciatic notch. The external jugular vein was used as a conduit to repair the gap between the two ends of the sciatic nerve. Diabetes was induced in the transected + diabetes mellitus (T + DM), the transected + diabetes mellitus + GK (T + DM + GK), and the transected + diabetes mellitus + Curcumin (T + DM + Cur) groups except for the sham group. A dose of 300 mg kg-1d-1of curcumin dissolved in olive oil was administered to the T + DM + Cur group (via oral gavage every day for 28 d) and 200 mg kg-1d-1of GK to the T + DM + GK group (via oral gavage every day for 7 d). All animals were sacrificed after three months. Stereological analysis and functional and microscopic evaluations were done to evaluate the sciatic nerve regeneration and function. In the T + DM + GK and the sham groups, the number of axons increased. A slight improvement in the axonal area in the T + DM + Cur and the sham groups was also observed, and an increase in the myelin sheath thickness was found in the T + DM + GK and the sham group. When the SFI test results were evaluated, it was seen that GK had a stronger effect than curcumin in terms of functional regeneration. Additionally, no significant difference was observed between T + DM and Cont groups when the electrophysiological results were examined. The study showed GK's efficiency in treating diabetic peripheral nerve regeneration.
Collapse
Affiliation(s)
- Hala Mahgoub Hamour
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Turkey
| | | | - Gamze Altun
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Turkey
| | - Süleyman Kaplan
- Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
2
|
Wong GC, Kotsis SV, Kim HM, Chung KC. Noninferiority Study Design: Application to Clinical Trials. Plast Reconstr Surg 2025; 155:834e-840e. [PMID: 39023532 DOI: 10.1097/prs.0000000000011633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
SUMMARY The noninferiority trial, a distinct category within randomized controlled trials, is garnering increased attention in medical research. Its unique and evolving role comes to the forefront in scenarios where new treatments, despite not surpassing the efficacy of an existing standard, bring additional benefits such as reduced side effects, enhanced compliance, or cost savings. As the field of surgery witnesses a growing number of published noninferiority trials, it becomes imperative for surgeons to grasp the intricacies of this trial type to accurately decipher and interpret their outcomes.
Collapse
Affiliation(s)
- Gordon C Wong
- From the Section of Plastic Surgery, Department of Surgery, University of Michigan Medical School
| | - Sandra V Kotsis
- From the Section of Plastic Surgery, Department of Surgery, University of Michigan Medical School
| | - H Myra Kim
- Consulting for Statistics, Computing and Analytics Research, University of Michigan
| | - Kevin C Chung
- From the Section of Plastic Surgery, Department of Surgery, University of Michigan Medical School
| |
Collapse
|
3
|
Su S, Wang J. A Comprehensive Review on Bioprinted Graphene-Based Material (GBM)-Enhanced Scaffolds for Nerve Guidance Conduits. Biomimetics (Basel) 2025; 10:213. [PMID: 40277612 PMCID: PMC12024949 DOI: 10.3390/biomimetics10040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025] Open
Abstract
Peripheral nerve injuries (PNIs) pose significant challenges to recovery, often resulting in impaired function and quality of life. To address these challenges, nerve guidance conduits (NGCs) are being developed as effective strategies to promote nerve regeneration by providing a supportive framework that guides axonal growth and facilitates reconnection of severed nerves. Among the materials being explored, graphene-based materials (GBMs) have emerged as promising candidates due to their unique properties. Their unique properties-such as high mechanical strength, excellent electrical conductivity, and favorable biocompatibility-make them ideal for applications in nerve repair. The integration of 3D printing technologies further enhances the development of GBM-based NGCs, enabling the creation of scaffolds with complex architectures and precise topographical cues that closely mimic the natural neural environment. This customization significantly increases the potential for successful nerve repair. This review offers a comprehensive overview of properties of GBMs, the principles of 3D printing, and key design strategies for 3D-printed NGCs. Additionally, it discusses future perspectives and research directions that could advance the application of 3D-printed GBMs in nerve regeneration therapies.
Collapse
Affiliation(s)
- Siheng Su
- Department of Mechanical Engineering, California State University, Fullerton, CA 92831, USA
| | - Jilong Wang
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, College of Textile and Garment, Shaoxing University, Shaoxing 312000, China
- Shaoxing Sub-Center of National Engineering Research Center for Fiber-Based Composites, Shaoxing University, Shaoxing 312000, China
- Shaoxing Key Laboratory of High Performance Fibers & Products, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
4
|
Mehta AS, Zhang SL, Xie X, Khanna S, Tropp J, Ji X, Daso RE, Franz CK, Jordan SW, Rivnay J. Decellularized Biohybrid Nerve Promotes Motor Axon Projections. Adv Healthc Mater 2024; 13:e2401875. [PMID: 39219219 PMCID: PMC11616264 DOI: 10.1002/adhm.202401875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Developing nerve grafts with intact mesostructures, superior conductivity, minimal immunogenicity, and improved tissue integration is essential for the treatment and restoration of neurological dysfunctions. A key factor is promoting directed axon growth into the grafts. To achieve this, biohybrid nerves are developed using decellularized rat sciatic nerve modified by in situ polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). Nine biohybrid nerves are compared with varying polymerization conditions and cycles, selecting the best candidate through material characterization. These results show that a 1:1 ratio of FeCl3 oxidant to ethylenedioxythiophene (EDOT) monomer, cycled twice, provides superior conductivity (>0.2 mS cm-1), mechanical alignment, intact mesostructures, and high compatibility with cells and blood. To test the biohybrid nerve's effectiveness in promoting motor axon growth, human Spinal Cord Spheroids (hSCSs) derived from HUES 3 Hb9:GFP cells are used, with motor axons labeled with green fluorescent protein (GFP). Seeding hSCS onto one end of the conduit allows motor axon outgrowth into the biohybrid nerve. The construct effectively promotes directed motor axon growth, which improves significantly after seeding the grafts with Schwann cells. This study presents a promising approach for reconstructing axonal tracts in humans.
Collapse
Affiliation(s)
- Abijeet Singh Mehta
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Sophia L. Zhang
- Biologics LaboratoryShirley Ryan Ability LabChicagoIL60611USA
- Division of Plastic SurgeryFeinberg School of MedicineNorthwestern University420 E Superior St.ChicagoIL60611USA
- Section for Injury Repair and Regeneration ResearchStanley Manne Children's Research InstituteAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIL60611USA
- Department of PediatricsDivision of Critical CareNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Xinran Xie
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Shreyaa Khanna
- Biologics LaboratoryShirley Ryan Ability LabChicagoIL60611USA
| | - Joshua Tropp
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Xudong Ji
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Rachel E. Daso
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Colin K. Franz
- Biologics LaboratoryShirley Ryan Ability LabChicagoIL60611USA
- Physical Medicine and RehabilitationNorthwestern University Feinberg School of MedicineChicagoIL60611USA
- Ken & Ruth Davee Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIL60611USA
| | - Sumannas W. Jordan
- Biologics LaboratoryShirley Ryan Ability LabChicagoIL60611USA
- Division of Plastic SurgeryFeinberg School of MedicineNorthwestern University420 E Superior St.ChicagoIL60611USA
| | - Jonathan Rivnay
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
| |
Collapse
|
5
|
Jacobs T, Patil D, Ziccardi VB. Both Type I Bovine Collagen Conduits and Porcine Small Intestine Submucosa Conduits Result in Functional Sensory Recovery Following Peripheral Nerve Microsurgery: A Systematic Review and Meta-Analysis. J Oral Maxillofac Surg 2024; 82:1559-1568. [PMID: 39216509 DOI: 10.1016/j.joms.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE The study purpose was to measure and compare the time to functional sensory recovery (FSR) and incidence of FSR by 6 and 12 months between type I bovine collagen conduits versus porcine small intestine submucosa (SIS) conduits with primary neurorrhaphy for peripheral nerve injury repair. METHODS A systematic review and meta-analysis following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were conducted. The predictor variable was the type of conduit-either bovine collagen or porcine SIS. The primary outcome variable was the number of months between surgery and the patient achieving FSR. The secondary outcome variable was the proportion of patients who achieved FSR that did so by 6 and 12 months. A log-rank test was performed to evaluate the statistical significance of the differences observed in the overall time-to-FSR data and by 6 and 12 months. RESULTS We screened 67 publications of which 8 were included. The sample sizes were 137 and 96 patients for the bovine collagen and porcine SIS groups, respectively. The median time to FSR for the bovine collagen conduit group was 9 months (interquartile range: 6); the median time to FSR for the porcine SIS conduit group 6 months (interquartile range: 3 months) (P = .50). Of the patients who achieved FSR, 42% of patients with bovine collagen conduits and 64% of patients with porcine SIS conduits did so within 6 months (P < .01). Of the patients who achieved FSR, 94% of patients with bovine collagen conduits and 82% of patients with porcine SIS conduits did so within 12 months (P < .01). CONCLUSION Although a significant difference was found in the incidence of FSR at 6 and 12 months, no significant difference was found in overall time to FSR, supporting the use of either conduit for peripheral nerve repair.
Collapse
Affiliation(s)
- Tyler Jacobs
- Resident, Department of Oral and Maxillofacial Surgery, Rutgers School of Dental Medicine, Newark, NJ.
| | - Disha Patil
- M.D. Candidate, Rutgers New Jersey Medical School, Newark, NJ
| | - Vincent B Ziccardi
- Professor, Chair, and Associate Dean for Hospital Affairs, Department of Oral and Maxillofacial Surgery, Rutgers School of Dental Medicine, Newark, NJ
| |
Collapse
|
6
|
Obeng E, Shen B, Wang W, Xie Z, Zhang W, Li Z, Yao Q, Wu W. Engineered bio-functional material-based nerve guide conduits for optic nerve regeneration: a view from the cellular perspective, challenges and the future outlook. Regen Biomater 2024; 12:rbae133. [PMID: 39776856 PMCID: PMC11703557 DOI: 10.1093/rb/rbae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/16/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025] Open
Abstract
Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming. Currently, the use of nerve guide conduits (NGC) to some extent has proven reliable especially in rodents and among the peripheral nervous system, a promising ground for regeneration and functional recovery, however in the optic nerve, this NGC function seems quite unfamous. The insufficient NGC application and the unabridged regeneration of the optic nerve could be a result of the limited information on cellular and molecular activities. This review seeks to tackle two major factors (i) the cellular and molecular activity involved in traumatic optic neuropathy and (ii) the NGC application for the optic nerve regeneration. The understanding of cellular and molecular concepts encompassed, ocular inflammation, extrinsic signaling and intrinsic signaling for axon growth, mobile zinc role, Ca2+ factor associated with the optic nerve, alternative therapies from nanotechnology based on the molecular information and finally the nanotechnological outlook encompassing applicable biomaterials and the use of NGC for regeneration. The challenges and future outlook regarding optic nerve regenerations are also discussed. Upon the many approaches used, the comprehensive role of the cellular and molecular mechanism may set grounds for the efficient application of the NGC for optic nerve regeneration.
Collapse
Affiliation(s)
- Enoch Obeng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoguo Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenyuan Xie
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenyi Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhixing Li
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Qinqin Yao
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
| | - Wencan Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
7
|
Escandón JM, Mroueh J, Reid CM, Singh D, Sweitzer K, Ciudad P, Nazerali R, Forte AJ, Manrique OJ. Innervated breast reconstruction: a narrative review of neurotization techniques and outcomes. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:76. [PMID: 39118960 PMCID: PMC11304423 DOI: 10.21037/atm-23-504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/09/2023] [Indexed: 08/10/2024]
Abstract
Background and Objective While significant sensation recovery improvements in neurotized breasts following reconstruction have been reported, sensation testing methods and surgical techniques have been widely variable. This narrative review aims to summarize available literature on current neurotization practices and sensory recovery outcomes in patients undergoing innervated breast reconstruction. Methods A comprehensive literature search of PubMed Medline, Web of Science, and Embase was conducted to identify all studies reporting outcomes of neurotization in breast reconstruction surgeries. Data analyzed included operative times, neurotization techniques, sensory outcomes, and methods as well as patient reported outcomes. Key Content and Findings Despite the heterogeneity of various studies reviewed, all forms of neurotization achieved earlier and superior sensory recovery throughout the reconstructed breast skin compared to non-innervated breasts. In absence of randomized controlled trials or high-quality comparative studies, further evidence is required to objectively confirm this technique offers better sensory recovery. Conclusions Neurotization at the time of breast reconstruction may lead to improved sensation and patient reported outcomes delineating improved quality of life compared to non-innervated breasts. Future studies need to standardize the way that breast sensation is measured and determine pre-operative variables leading to expected changes in final sensation recovery to help manage surgical outcome expectations of both the surgeon and the patient.
Collapse
Affiliation(s)
- Joseph M. Escandón
- Division of Plastic and Reconstructive Surgery, Strong Memorial Hospital, University of Rochester Medical Center, Rochester, NY, USA
| | - Jessica Mroueh
- American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Christopher M. Reid
- Division of Plastic Surgery, Department of Surgery, University of California San Diego, San Diego, CA, USA
| | - Devinder Singh
- Division of Plastic and Reconstructive Surgery, University of Miami, Miami, FL, USA
| | - Keith Sweitzer
- Division of Plastic and Reconstructive Surgery, Strong Memorial Hospital, University of Rochester Medical Center, Rochester, NY, USA
| | - Pedro Ciudad
- Department of Plastic and Reconstructive, Arzobispo Loayza National Hospital, Lima, Peru
| | - Rahim Nazerali
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Oscar J. Manrique
- Division of Plastic and Reconstructive Surgery, Strong Memorial Hospital, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
8
|
Le LTT, Pham NC, Trinh XT, Nguyen NG, Nguyen VL, Nam SY, Heo CY. Supercritical Carbon Dioxide Decellularization of Porcine Nerve Matrix for Regenerative Medicine. Tissue Eng Part A 2024; 30:447-459. [PMID: 38205627 DOI: 10.1089/ten.tea.2023.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Tissue engineering scaffolds are often made from the decellularization of tissues. The decellularization of tissues caused by prolonged contact with aqueous detergents might harm the microstructure and leave cytotoxic residues. In this research, we developed a new technique to use supercritical carbon dioxide (Sc-CO2)-based decellularization for porcine nerve tissue. The effect of decellularization was analyzed by histological examination, including Hematoxylin and Eosin, Masson's Trichrome staining, and 4',6-diamidino-2-phenylindole staining. Moreover, biochemical analysis of the decellularized tissues was also performed by measuring DNA content, amount of collagen, and glycosaminoglycans (GAGs) after decellularization. The results showed that the tissue structure was preserved, cells were removed, and the essential components of extracellular matrix, such as collagen fibers, elastin fibers, and GAG fibers, remained after decellularization. In addition, the DNA content was decreased compared with native tissue, and the concentration of collagen and GAGs in the decellularized nerve tissue was the same as in native tissue. The in vivo experiment in the rat model showed that after 6 months of decellularized nerve implantation, the sciatic function index was confirmed to recover in decellularized nerve. Morphological analysis displayed a range of infiltrated cells in the decellularized nerve, similar to that in native tissue, and the number of Schwann cells that play essential for motor function and sensory in the decellularized nerve was confirmed. These findings indicate that tissue decellularization using Sc-CO2 has been successfully used in tissue engineering.
Collapse
Affiliation(s)
- Linh Thi Thuy Le
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ngoc Chien Pham
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Xuan-Tung Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ngan Giang Nguyen
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study Center, Seongnam, Republic of Korea
| | - Van Long Nguyen
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Chan-Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study Center, Seongnam, Republic of Korea
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Berry D, Ene J, Nathani A, Singh M, Li Y, Zeng C. Effects of Physical Cues on Stem Cell-Derived Extracellular Vesicles toward Neuropathy Applications. Biomedicines 2024; 12:489. [PMID: 38540102 PMCID: PMC10968089 DOI: 10.3390/biomedicines12030489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 11/28/2024] Open
Abstract
The peripheral nervous system undergoes sufficient stress when affected by diabetic conditions, chemotherapeutic drugs, and personal injury. Consequently, peripheral neuropathy arises as the most common complication, leading to debilitating symptoms that significantly alter the quality and way of life. The resulting chronic pain requires a treatment approach that does not simply mask the accompanying symptoms but provides the necessary external environment and neurotrophic factors that will effectively facilitate nerve regeneration. Under normal conditions, the peripheral nervous system self-regenerates very slowly. The rate of progression is further hindered by the development of fibrosis and scar tissue formation, which does not allow sufficient neurite outgrowth to the target site. By incorporating scaffolding supplemented with secretome derived from human mesenchymal stem cells, it is hypothesized that neurotrophic factors and cellular signaling can facilitate the optimal microenvironment for nerve reinnervation. However, conventional methods of secretory vesicle production are low yield, thus requiring improved methods to enhance paracrine secretions. This report highlights the state-of-the-art methods of neuropathy treatment as well as methods to optimize the clinical application of stem cells and derived secretory vesicles for nerve regeneration.
Collapse
Affiliation(s)
- Danyale Berry
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida Agricultural and Mechanical University, Tallahassee, FL 32310, USA;
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 23210, USA
| | - Justice Ene
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA; (A.N.); (M.S.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL 32307, USA; (A.N.); (M.S.)
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA;
| | - Changchun Zeng
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida Agricultural and Mechanical University, Tallahassee, FL 32310, USA;
- High Performance Materials Institute, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 23210, USA
| |
Collapse
|
10
|
Fellin CR, Steiner RC, Buchen JT, Anders JJ, Jariwala SH. Photobiomodulation and Vascularization in Conduit-Based Peripheral Nerve Repair: A Narrative Review. Photobiomodul Photomed Laser Surg 2024; 42:1-10. [PMID: 38109199 DOI: 10.1089/photob.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
Background: Peripheral nerve injuries pose a significant clinical issue for patients, especially in the most severe cases wherein complete transection (neurotmesis) results in total loss of sensory/motor function. Nerve guidance conduits (NGCs) are a common treatment option that protects and guides regenerating axons during recovery. However, treatment outcomes remain limited and often fail to achieve full reinnervation, especially in critically sized defects (>3 cm) where a lack of vascularization leads to neural necrosis. Conclusions: A multitreatment approach is, therefore, necessary to improve the efficacy of NGCs. Stimulating angiogenesis within NGCs can help alleviate oxygen deficiency through rapid inosculation with the host vasculature, whereas photobiomodulation therapy (PBMT) has demonstrated beneficial therapeutic effects on regenerating nerve cells and neovascularization. In this review, we discuss the current trends of NGCs, vascularization, and PBMT as treatments for peripheral nerve neurotmesis and highlight the need for a combinatorial approach to improve functional and clinical outcomes.
Collapse
Affiliation(s)
- Christopher R Fellin
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Richard C Steiner
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Jack T Buchen
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Juanita J Anders
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Shailly H Jariwala
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Convertino D, Trincavelli ML, Giacomelli C, Marchetti L, Coletti C. Graphene-based nanomaterials for peripheral nerve regeneration. Front Bioeng Biotechnol 2023; 11:1306184. [PMID: 38164403 PMCID: PMC10757979 DOI: 10.3389/fbioe.2023.1306184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Emerging nanotechnologies offer numerous opportunities in the field of regenerative medicine and have been widely explored to design novel scaffolds for the regeneration and stimulation of nerve tissue. In this review, we focus on peripheral nerve regeneration. First, we introduce the biomedical problem and the present status of nerve conduits that can be used to guide, fasten and enhance regeneration. Then, we thoroughly discuss graphene as an emerging candidate in nerve tissue engineering, in light of its chemical, tribological and electrical properties. We introduce the graphene forms commonly used as neural interfaces, briefly review their applications, and discuss their potential toxicity. We then focus on the adoption of graphene in peripheral nervous system applications, a research field that has gained in the last years ever-increasing attention. We discuss the potential integration of graphene in guidance conduits, and critically review graphene interaction not only with peripheral neurons, but also with non-neural cells involved in nerve regeneration; indeed, the latter have recently emerged as central players in modulating the immune and inflammatory response and accelerating the growth of new tissue.
Collapse
Affiliation(s)
- Domenica Convertino
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | | | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Camilla Coletti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| |
Collapse
|
12
|
Gontre G, Polmear M, Carter JT, Castagno C, Herrera FA. Primary Repair versus Reverse End-to-Side Coaptation by Anterior Interosseous Nerve Transfer in Proximal Ulnar Nerve Injuries. Plast Reconstr Surg 2023; 152:384-393. [PMID: 36912900 DOI: 10.1097/prs.0000000000010395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
BACKGROUND Proximal ulnar nerve lacerations are challenging to treat because of the complex integration of sensory and motor function in the hand. The purpose of this study was to compare primary repair and primary repair plus anterior interosseous nerve (AIN) reverse end-to-side (RETS) coaptation in the setting of proximal ulnar nerve injuries. METHODS A prospective cohort study was performed of all patients at a single, academic, level I trauma center from 2014 to 2018 presenting with isolated complete ulnar nerve lacerations. Patients underwent either primary repair (PR) only or primary repair and AIN RETS (PR + RETS). Data collected included demographic information; quick Disabilities of the Arm, Shoulder and Hand questionnaire score; Medical Research Council score; grip and pinch strength; and visual analogue scale pain scores at 6 and 12 months postoperatively. RESULTS Sixty patients were included in the study: 28 in the PR group and 32 in the RETS + PR group. There was no difference in demographic variables or location of injury between the two groups. Average quick Disabilities of the Arm, Shoulder and Hand questionnaire scores for the PR and PR + RETS groups were 65 ± 6 and 36 ± 4 at 6 months and 46 ± 4 and 24 ± 3 at 12 months postoperatively, respectively, and were significantly lower in the PR + RETS group at both points. Average grip and pinch strength were significantly greater for the PR + RETS group at 6 and 12 months. CONCLUSION This study demonstrated that primary repair of proximal ulnar nerve injuries plus AIN RETS coaptation yielded superior strength and improved upper extremity function when compared with PR alone. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, II.
Collapse
Affiliation(s)
- Gil Gontre
- From the Department of Orthopaedics, Texas Tech University Health Science Center
| | - Michael Polmear
- From the Department of Orthopaedics, Texas Tech University Health Science Center
| | - Jordan T Carter
- From the Department of Orthopaedics, Texas Tech University Health Science Center
| | - Christopher Castagno
- From the Department of Orthopaedics, Texas Tech University Health Science Center
| | | |
Collapse
|
13
|
Liu X, Zou D, Hu Y, He Y, Lu J. Research Progress of Low-Intensity Pulsed Ultrasound in the Repair of Peripheral Nerve Injury. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:414-428. [PMID: 36785967 DOI: 10.1089/ten.teb.2022.0194] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Peripheral nerve injury (PNI) is a common disease that has profound impact on the health of patients, but has poor prognosis. The gold standard for the treatment of peripheral nerve defects is autologous nerve grafting; notwithstanding, due to the extremely high requirement for surgeons and medical facilities, there is great interest in developing better treatment strategies for PNI. Low-intensity pulsed ultrasound (LIPUS) is a noninterventional stimulation method characterized by low-intensity pulsed waves. It has good therapeutic effect on fractures, inflammation, soft tissue regeneration, and nerve regulation, and can participate in PNI repair from multiple perspectives. This review concentrates on the effects and mechanisms of LIPUS in the repair of PNI from the perspective of LIPUS stimulation of neural cells and stem cells, modulation of neurotrophic factors, signaling pathways, proinflammatory cytokines, and nerve-related molecules. In addition, the effects of LIPUS on nerve conduits are reviewed, as nerve conduits are expected to be a successful alternative treatment for PNI with the development of tissue engineering. Overall, the application advantages and prospects of LIPUS in the repair of PNI are highlighted by summarizing the effects of LIPUS on seed cells, neurotrophic factors, and nerve conduits for neural tissue engineering.
Collapse
Affiliation(s)
- Xuling Liu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Derong Zou
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yinghan Hu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yushi He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jiayu Lu
- Department of Stomatology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Adhikari B, Stager MA, Krebs MD. Cell-instructive biomaterials in tissue engineering and regenerative medicine. J Biomed Mater Res A 2023; 111:660-681. [PMID: 36779265 DOI: 10.1002/jbm.a.37510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/14/2023]
Abstract
The field of biomaterials aims to improve regenerative outcomes or scientific understanding for a wide range of tissue types and ailments. Biomaterials can be fabricated from natural or synthetic sources and display a plethora of mechanical, electrical, and geometrical properties dependent on their desired application. To date, most biomaterial systems designed for eventual translation to the clinic rely on soluble signaling moieties, such as growth factors, to elicit a specific cellular response. However, these soluble factors are often limited by high cost, convoluted synthesis, low stability, and difficulty in regulation, making the translation of these biomaterials systems to clinical or commercial applications a long and arduous process. In response to this, significant effort has been dedicated to researching cell-directive biomaterials which can signal for specific cell behavior in the absence of soluble factors. Cells of all tissue types have been shown to be innately in tune with their microenvironment, which is a biological phenomenon that can be exploited by researchers to design materials that direct cell behavior based on their intrinsic characteristics. This review will focus on recent developments in biomaterials that direct cell behavior using biomaterial properties such as charge, peptide presentation, and micro- or nano-geometry. These next generation biomaterials could offer significant strides in the development of clinically relevant medical devices which improve our understanding of the cellular microenvironment and enhance patient care in a variety of ailments.
Collapse
Affiliation(s)
- Bikram Adhikari
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Michael A Stager
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Melissa D Krebs
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado, USA
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
15
|
Bogov (jr.) AA, Akhtyamov IF, Danilov VI, Starostina IG, Khannanova IG, Bogov AA. Results of clinical validation of a new method of brachial plexus trunk distraction after neuroraphy. BULLETIN OF THE MEDICAL INSTITUTE "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH) 2022. [DOI: 10.20340/vmi-rvz.2023.1.case.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The paper describes the results of clinical testing of an apparatus for dosed traction of brachial plexus trunks. It is shown that in the presence of a 5 cm diastasis, it is possible to connect the nerve fragments and perform neurorhaphy without tension by bringing the shoulder to the head and bring the shoulder to the physiological position two and a half months after the reconstructive surgery.
Collapse
Affiliation(s)
- A. A. Bogov (jr.)
- Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan
| | | | - V. I. Danilov
- Cazan State Medical University; Interregional Clinical Diagnostic Center
| | | | - I. G. Khannanova
- Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan
| | | |
Collapse
|
16
|
Raza A, Mumtaz M, Hayat U, Hussain N, Ghauri MA, Bilal M, Iqbal HM. Recent advancements in extrudable gel-based bioinks for biomedical settings. J Drug Deliv Sci Technol 2022; 75:103697. [DOI: 10.1016/j.jddst.2022.103697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Marin A, Plastic Surgery Department, Plastic, Reconstructive and Burn Hospital Bucharest, Savescu M, Marin G, Dricu A, Parasca S, Giuglea C, Faculty of Veterinary Medicine of Bucharest, Romania, Cardiology Department, Oncology Institute, Bucharest, Romania, Biochemistry Department, University of Medicine and Pharmacy of Craiova, Romania, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania, Plastic Surgery Department, St. John Hospital Bucharest. Evaluation of muscle atrophy after sciatic nerve defect repair – experimental model. ROMANIAN JOURNAL OF MILITARY MEDICINE 2022. [DOI: 10.55453/rjmm.2022.125.3.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Peripheral nerve injuries are one of the most important causes for disability generating considerable costs around the world. Appropriate assessment of the extent of peripheral nerve lesions and the choice of the right therapeutic protocol remain some of the biggest challenges. Non-invasive neuroimaging approaches are suitable in managing peripheral nerve repairs, providing in the same time accuracy details in structural neural detection, with minimal discomfort at a low cost. Medical imaging technology development has led to progress in examination of peripheral nervous system, using a series of tools and methods, such as: ultrasonography (US), positron emission tomography (PET), magnetic resonance imaging (MRI) and magnetic diffusion tensor imaging (DTI). In this study, we evaluated the regeneration process in Wistar rats after sciatic nerve defects repair with 4 different techniques (i.e. nerve graft, rat aorta used as a nerve conduit, rat aorta filled with platelet rich plasma (PRP) and rat aorta filled with stem cells) by using MRI investigation alongside the clinical evaluation. Our results showed that among the 4 batches, the PRP batch had the best results in muscle atrophy condition (both on MRI scan and on gastrocnemius index); on the second place the stem cell batch, then the nerve graft batch and finally the aortic conduit batch. MRI proved to be a reliable non-invasive monitoring method and showed good result in correlation with the footprint test (sciatic functional index) and the gastrocnemius index
Collapse
|
18
|
Targeted Nipple Areola Complex Reinnervation: Technical Considerations and Surgical Efficiency in Implant-based Breast Reconstruction. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2022; 10:e4420. [PMID: 35923997 PMCID: PMC9325332 DOI: 10.1097/gox.0000000000004420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
Abstract
Background: Despite promising pilot study results, adoption of neurotization of immediate implant-based reconstructions has not occurred. Methods: For surgeons interested in adopting breast reinnervation techniques, we present ways to overcome initial barriers by decreasing operative time and maximizing chances of sensory recovery. Results: We discuss the combined experience at two academic teaching hospitals, where neurotization of both immediate tissue expander cases and direct-to-implant reconstructions are performed through varying mastectomy incisions. Conclusion: Initial barriers can be overcome by shortening operative time and providing an individualized reinnervation approach that aims to increase the chance of meaningful sensation.
Collapse
|
19
|
Cavanaugh M, Asheghali D, Motta CM, Silantyeva E, Nikam SP, Becker ML, Willits RK. Influence of Touch-Spun Nanofiber Diameter on Contact Guidance during Peripheral Nerve Repair. Biomacromolecules 2022; 23:2635-2646. [DOI: 10.1021/acs.biomac.2c00379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- McKay Cavanaugh
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Cecilia M. Motta
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Elena Silantyeva
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shantanu P. Nikam
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L. Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Rebecca K. Willits
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
20
|
Moosaipour M, Pakinia S, Izadi Z, Khalilzadeh B, Jaymand M, Samadian H. Nanofibrous electroconductive nerve guide conduits based on polyaniline‐co‐polydopamine random copolymer for peripheral nerve regeneration. J Appl Polym Sci 2022. [DOI: 10.1002/app.52365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Majid Moosaipour
- Student Research Committee Kermanshah University of Medical Sciences Kermanshah Iran
| | - Simin Pakinia
- Student Research Committee Kermanshah University of Medical Sciences Kermanshah Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute Kermanshah University of Medical Sciences Kermanshah Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| | - Hadi Samadian
- Pharmaceutical Sciences Research Center, Health Institute Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
21
|
Mathieu L, Goncalves M, Murison JC, Pfister G, Oberlin C, Belkheyar Z. Ballistic peripheral nerve injuries: basic concepts, controversies, and proposal for a management strategy. Eur J Trauma Emerg Surg 2022; 48:3529-3539. [PMID: 35262748 DOI: 10.1007/s00068-022-01929-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/20/2022] [Indexed: 01/24/2023]
Abstract
Ballistic injuries to peripheral nerves are devastating injuries frequently encountered in modern conflicts and civilian trauma centers. Such injuries often produce lifelong morbidity, mainly in the form of function loss and chronic pain. However, their surgical management still poses significant challenges concerning indication, timing, and type of repair, particularly when they are part of high-energy multi-tissue injuries. To help trauma surgeons, this article first presents basic ballistic concepts explaining different types of missile nerve lesions, described using the Sunderland classification, as well as their usual associated injuries. Current controversies regarding their surgical management are then described, including nerve exploration timing and neurolysis's relevance as a treatment option. Finally, based on anecdotal evidence and a literature review, a standardized management strategy for ballistic nerve injuries is proposed. This article emphasizes the importance of early nerve exploration and provides a detailed method for making a diagnosis in both acute and sub-acute periods. Direct suturing with joint flexion is strongly recommended for sciatic nerve defects and any nerve defect of limited size. Conversely, large defects require conventional nerve grafting, and proximal injuries may require nerve transfers, especially at the brachial plexus level. Additionally, combined or early secondary tendon transfers are helpful in certain injuries. Finally, ideal timing for nerve repair is proposed, based on the defect length, associated injuries, and risk of infection, which correlate intimately to the projectile velocity.
Collapse
Affiliation(s)
- Laurent Mathieu
- Department of Orthopedic, Trauma and Reconstructive Surgery, Percy Military Hospital, 101 avenue Henri Barbusse, 92140, Clamart, France. .,French Military Hand Surgery Center, Percy Military Hospital, 101 avenue Henri Barbusse, 92140, Clamart, France. .,Department of Surgery, French Military Health Service Academy, Ecole du Val-de-Grâce, 1 place Alphonse Laveran, 75005, Paris, France.
| | - Melody Goncalves
- Department of Orthopedic, Trauma and Reconstructive Surgery, Percy Military Hospital, 101 avenue Henri Barbusse, 92140, Clamart, France.,French Military Hand Surgery Center, Percy Military Hospital, 101 avenue Henri Barbusse, 92140, Clamart, France
| | - James Charles Murison
- Department of Orthopedic, Trauma and Reconstructive Surgery, Percy Military Hospital, 101 avenue Henri Barbusse, 92140, Clamart, France.,French Military Hand Surgery Center, Percy Military Hospital, 101 avenue Henri Barbusse, 92140, Clamart, France
| | - Georges Pfister
- Department of Orthopedic, Trauma and Reconstructive Surgery, Percy Military Hospital, 101 avenue Henri Barbusse, 92140, Clamart, France.,French Military Hand Surgery Center, Percy Military Hospital, 101 avenue Henri Barbusse, 92140, Clamart, France
| | - Christophe Oberlin
- Nerve and Brachial Plexus Surgery Unit, Mont-Louis Private Hospital, 8 rue de la Folie-Regnault, 75011, Paris, France
| | - Zoubir Belkheyar
- Nerve and Brachial Plexus Surgery Unit, Mont-Louis Private Hospital, 8 rue de la Folie-Regnault, 75011, Paris, France
| |
Collapse
|
22
|
Revision of Carpal Tunnel Surgery. J Clin Med 2022; 11:jcm11051386. [PMID: 35268477 PMCID: PMC8911490 DOI: 10.3390/jcm11051386] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
Carpal tunnel release is one of the most commonly performed upper extremity procedures. The majority of patients experience significant improvement or resolution of their symptoms. However, a small but important subset of patients will experience the failure of their initial surgery. These patients can be grouped into persistent, recurrent, and new symptom categories. The approach to these patients starts with a thorough clinical examination and is supplemented with electrodiagnostic studies. The step-wise surgical management of revision carpal tunnel surgery consists of the proximal exploration of the median nerve, Guyon’s release with neurolysis, the rerelease of the transverse retinaculum, evaluation of the nerve injury, treatment of secondary sites of compression, and potential ancillary procedures. The approach and management of failed carpal tunnel release are reviewed in this article.
Collapse
|
23
|
Wolfe EM, Mathis SA, Ovadia SA, Panthaki ZJ. Comparison of Collagen and Human Amniotic Membrane Nerve Wraps and Conduits for Peripheral Nerve Repair in Preclinical Models: A Systematic Review of the Literature. J Reconstr Microsurg 2022; 39:245-253. [PMID: 35008116 DOI: 10.1055/s-0041-1732432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Collagen and human amniotic membrane (hAM) are Food and Drug Administration (FDA)-approved biomaterials that can be used as nerve wraps or conduits for repair of peripheral nerve injuries. Both biomaterials have been shown to reduce scarring and fibrosis of injured peripheral nerves. However, comparative advantages and disadvantages have not been definitively shown in the literature. The purpose of this systematic review is to comprehensively evaluate the literature regarding the roles of hAM and collagen nerve wraps and conduits on peripheral nerve regeneration in preclinical models. METHODS The MEDLINE database was queried using the PubMed search engine on July 7, 2019, with the following search strategy: ("amniotic membrane" OR "amnion") OR ("collagen conduit" OR "nerve wrap")] AND "nerve." All resulting articles were screened by two independent reviewers. Nerve type, lesion type/injury model, repair type, treatment, and outcomes were assessed. RESULTS Two hundred and fifty-eight articles were identified, and 44 studies remained after application of inclusion and exclusion criteria. Seventeen studies utilized hAM, whereas 27 studies utilized collagen wraps or conduits. Twenty-three (85%) of the collagen studies utilized conduits, and four (15%) utilized wraps. Six (35%) of the hAM studies utilized conduits and 11 (65%) utilized wraps. Two (9%) collagen studies involving a conduit and one (25%) involving a wrap demonstrated at least one significant improvement in outcomes compared with a control. While none of the hAM conduit studies showed significant improvements, eight (73%) of the studies investigating hAM wraps showed at least one significant improvement in outcomes. CONCLUSION The majority of studies reported positive outcomes, indicating that collagen and hAM nerve wraps and conduits both have the potential to enhance peripheral nerve regeneration. However, relatively few studies reported significant findings, except for studies evaluating hAM wraps. Preclinical models may help guide clinical practice regarding applications of these biomaterials in peripheral nerve repair.
Collapse
Affiliation(s)
- Erin M Wolfe
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Sydney A Mathis
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Steven A Ovadia
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Zubin J Panthaki
- Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
24
|
Jerome JTJ. Selection in Scopus. J Hand Microsurg 2022; 14:1-2. [PMID: 35391897 PMCID: PMC8983153 DOI: 10.1055/s-0042-1743269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- J. Terrence Jose Jerome
- Department of Orthopedics, Hand, and Reconstructive Microsurgery, Olympia Hospital and Research Centre, Trichy, Tamil Nadu, India
| |
Collapse
|
25
|
Tamez-Mata Y, Pedroza-Montoya FE, Martínez-Rodríguez HG, García-Pérez MM, Ríos-Cantú AA, González-Flores JR, Soto-Domínguez A, Montes-de-Oca-Luna R, Simental-Mendía M, Peña-Martínez VM, Vílchez-Cavazos F. Nerve gaps repaired with acellular nerve allografts recellularized with Schwann-like cells: Preclinical trial. J Plast Reconstr Aesthet Surg 2022; 75:296-306. [PMID: 34257032 DOI: 10.1016/j.bjps.2021.05.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/03/2021] [Accepted: 05/27/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND Acellular nerve allografts (ANA) recellularized with mesenchymal stem cells (MSC) or Schwann cells (SC) are, at present, a therapeutic option for peripheral nerve injuries (PNI). This study aimed to evaluate the regenerative and functional capacity of a recellularized allograft (RA) compared with autograft nerve reconstruction in PNI. METHODS Fourteen ovines were randomly included in two groups (n=7). A peroneal nerve gap 30 mm in length was excised, and nerve repair was performed by the transplantation of either an autograft or a recellularized allograft with SC-like cells. Evaluations included a histomorphological analysis of the ANA, MSC pre differentiated into SC-like cells, at one year follow-up functional limb recovery (support and gait), and nerve regeneration using neurophysiological tests and histomorphometric analysis. All evaluations were compared with the contralateral hindlimb as the control. RESULTS The nerve allograft was successfully decellularized and more than 70% of MSC were pre differentiated into SC-like cells. Functional assessment in both treated groups improved similarly over time (p <0.05). Neurophysiological results (latency, amplitude, and conduction velocity) also improved in both treated groups at twelve months. Histological results demonstrated a less organized arrangement of nerve fibers (p <0.05) with an active remyelination process (p <0.05) in both treated groups compared with controls at twelve months. CONCLUSIONS ANA recellularized with SC-like cells proved to be a successful treatment for nerve gaps. Motor recovery and nerve regeneration were satisfactorily achieved in both graft groups compared with their contralateral nontreated nerves. This approach could be useful for the clinical therapy of PNI.
Collapse
Affiliation(s)
- Y Tamez-Mata
- Traumatology and Orthopedics, Bone and Tissue Bank Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - F E Pedroza-Montoya
- Biochemistry and Molecular Medicine Department, Cell Therapy Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - H G Martínez-Rodríguez
- Biochemistry and Molecular Medicine Department, Cell Therapy Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - M M García-Pérez
- Plastic Surgery Service, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - A A Ríos-Cantú
- Plastic Surgery Service, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - J R González-Flores
- Plastic Surgery Service, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - A Soto-Domínguez
- Histology Department, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - R Montes-de-Oca-Luna
- Histology Department, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - M Simental-Mendía
- Traumatology and Orthopedics, Bone and Tissue Bank Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - V M Peña-Martínez
- Traumatology and Orthopedics, Bone and Tissue Bank Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González"
| | - F Vílchez-Cavazos
- Traumatology and Orthopedics, Bone and Tissue Bank Division, Universidad Autonoma de Nuevo Leon, Facultad de Medicina y Hospital Universitario "Dr. José Eleuterio González".
| |
Collapse
|
26
|
Hung HS, Kao WC, Shen CC, Chang KB, Tang CM, Yang MY, Yang YC, Yeh CA, Li JJ, Hsieh HH. Inflammatory Modulation of Polyethylene Glycol-AuNP for Regulation of the Neural Differentiation Capacity of Mesenchymal Stem Cells. Cells 2021; 10:2854. [PMID: 34831077 PMCID: PMC8616252 DOI: 10.3390/cells10112854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
A nanocomposite composed of polyethylene glycol (PEG) incorporated with various concentrations (~17.4, ~43.5, ~174 ppm) of gold nanoparticles (Au) was created to investigate its biocompatibility and biological performance in vitro and in vivo. First, surface topography and chemical composition was determined through UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), free radical scavenging ability, and water contact angle measurement. Additionally, the diameters of the PEG-Au nanocomposites were also evaluated through dynamic light scattering (DLS) assay. According to the results, PEG containing 43.5 ppm of Au demonstrated superior biocompatibility and biological properties for mesenchymal stem cells (MSCs), as well as superior osteogenic differentiation, adipocyte differentiation, and, particularly, neuronal differentiation. Indeed, PEG-Au 43.5 ppm induced better cell adhesion, proliferation and migration in MSCs. The higher expression of the SDF-1α/CXCR4 axis may be associated with MMPs activation and may have also promoted the differentiation capacity of MSCs. Moreover, it also prevented MSCs from apoptosis and inhibited macrophage and platelet activation, as well as reactive oxygen species (ROS) generation. Furthermore, the anti-inflammatory, biocompatibility, and endothelialization capacity of PEG-Au was measured in a rat model. After implanting the nanocomposites into rats subcutaneously for 4 weeks, PEG-Au 43.5 ppm was able to enhance the anti-immune response through inhibiting CD86 expression (M1 polarization), while also reducing leukocyte infiltration (CD45). Moreover, PEG-Au 43.5 ppm facilitated CD31 expression and anti-fibrosis ability. Above all, the PEG-Au nanocomposite was evidenced to strengthen the differentiation of MSCs into various cells, including fat, vessel, and bone tissue and, particularly, nerve cells. This research has elucidated that PEG combined with the appropriate amount of Au nanoparticles could become a potential biomaterial able to cooperate with MSCs for tissue regeneration engineering.
Collapse
Affiliation(s)
- Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (W.-C.K.); (K.-B.C.); (C.-A.Y.); (J.-J.L.)
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Wei-Chien Kao
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (W.-C.K.); (K.-B.C.); (C.-A.Y.); (J.-J.L.)
| | - Chiung-Chyi Shen
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (C.-C.S.); (M.-Y.Y.); (Y.-C.Y.)
- Department of Physical Therapy, Hung Kuang University, Taichung 433304, Taiwan
- Basic Medical Education Center, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (W.-C.K.); (K.-B.C.); (C.-A.Y.); (J.-J.L.)
| | - Cheng-Ming Tang
- College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Blood Bank, Taichung Veterans General Hospital, Taichung 407204, Taiwan;
| | - Meng-Yin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (C.-C.S.); (M.-Y.Y.); (Y.-C.Y.)
| | - Yi-Chin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (C.-C.S.); (M.-Y.Y.); (Y.-C.Y.)
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (W.-C.K.); (K.-B.C.); (C.-A.Y.); (J.-J.L.)
| | - Jia-Jhan Li
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (W.-C.K.); (K.-B.C.); (C.-A.Y.); (J.-J.L.)
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung 407204, Taiwan;
| |
Collapse
|
27
|
Hazer Rosberg DB, Hazer B, Stenberg L, Dahlin LB. Gold and Cobalt Oxide Nanoparticles Modified Poly-Propylene Poly-Ethylene Glycol Membranes in Poly (ε-Caprolactone) Conduits Enhance Nerve Regeneration in the Sciatic Nerve of Healthy Rats. Int J Mol Sci 2021; 22:7146. [PMID: 34281198 PMCID: PMC8268459 DOI: 10.3390/ijms22137146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
Reconstruction of nerve defects is a clinical challenge. Autologous nerve grafts as the gold standard treatment may result in an incomplete restoration of extremity function. Biosynthetic nerve conduits are studied widely, but still have limitations. Here, we reconstructed a 10 mm sciatic nerve defect in healthy rats and analyzed nerve regeneration in poly (ε-caprolactone) (PCL) conduits longitudinally divided by gold (Au) and gold-cobalt oxide (AuCoO) nanoparticles embedded in poly-propylene poly-ethylene glycol (PPEG) membranes (AuPPEG or AuCoOPPEG) and compared it with unmodified PPEG-membrane and hollow PCL conduits. After 21 days, we detected significantly better axonal outgrowth, together with higher numbers of activated Schwann cells (ATF3-labelled) and higher HSP27 expression, in reconstructed sciatic nerve and in corresponding dorsal root ganglia (DRG) in the AuPPEG and AuCoOPPEG groups; whereas the number of apoptotic Schwann cells (cleaved caspase 3-labelled) was significantly lower. Furthermore, numbers of activated and apoptotic Schwann cells in the regenerative matrix correlated with axonal outgrowth, whereas HSP27 expression in the regenerative matrix and in DRGs did not show any correlation with axonal outgrowth. We conclude that gold and cobalt-oxide nanoparticle modified membranes in conduits improve axonal outgrowth and increase the regenerative performance of conduits after nerve reconstruction.
Collapse
Affiliation(s)
- Derya Burcu Hazer Rosberg
- Department of Hand Surgery, Skåne University Hospital, 205 02 Malmö, Sweden; (L.S.); (L.B.D.)
- Department of Translational Medicine—Hand Surgery, Lund University, 205 02 Malmö, Sweden
- Department of Neurosurgery, Mugla Sitki Kocman University, Mugla 48100, Turkey
| | - Baki Hazer
- Department of Aircraft Airflame Engine Maintenance, Kapadokya University, Ürgüp 50420, Turkey;
- Department of Chemistry, Zonguldak Bülent Ecevit University, Zonguldak 67100, Turkey
| | - Lena Stenberg
- Department of Hand Surgery, Skåne University Hospital, 205 02 Malmö, Sweden; (L.S.); (L.B.D.)
- Department of Translational Medicine—Hand Surgery, Lund University, 205 02 Malmö, Sweden
| | - Lars B. Dahlin
- Department of Hand Surgery, Skåne University Hospital, 205 02 Malmö, Sweden; (L.S.); (L.B.D.)
- Department of Translational Medicine—Hand Surgery, Lund University, 205 02 Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
28
|
Yildirim MEC, Dadaci M, Ince B, Uyar İ, Yarar S, Oltulu P, Aygul R. Evaluation of the effectiveness of the tuba uterina tubular flap in the peripheral nervous system regeneration in rats. J Plast Surg Hand Surg 2021; 56:103-110. [PMID: 34151711 DOI: 10.1080/2000656x.2021.1934844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nerve conduits could be used to provide a bridge between both nerve endings. In this study, the tuba uterina of female rats were prepared in a vascularized pedicled flap model and it used as a nerve conduit. The aim was to investigate the effectiveness of a vascularized pedicle nerve conduit and its ciliated epithelium in a sciatic nerve defect. The study was conducted between May and August 2018, and used a total of 60, 14-16-week-old female Wistar albino rats. Six groups were created; Cut and Unrepaired Group, Nerve Graft Group, Flap-Forward Group (Tuba uterina tubular flap, forward direction), Flap-Reversed Group (Tuba uterina tubular flap, reverse direction), Graft-Forward Group (Tuba uterina tubular graft, forward direction) and Graft-Reverse Group (Tuba uterina tubuler graft, reverse direction). Nerve regeneration was evaluated 3 months (90 days) after the surgery by the following methods: (1) Sciatic Functional Index (SFI) measurement, (2) Electromyographic (EMG) assessment, (3) Microscopic assessment with the light microscope and (4) Microscopic assessment with the electron microscope. According to the SFI, EMG and microscopic assessments with the light and electron microscope, it was observed that the transfer of tuba uterina tubular conduit as a graft was statistically better in its effect on nerve regeneration than flap transfer, but also indicated that the direction of the ciliated structures had no significant effect. We believe that as this model is improved with future studies, it will shed light on new models, ideas and innovations about nerve conduits.
Collapse
Affiliation(s)
- Mehmet Emin Cem Yildirim
- School of the Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Necmettin Erbakan University, Konya, Turkey.,Plastic Reconstructive and Aesthetic Surgery Department, Bilecik State Hospital, Bilecik, Turkey
| | - Mehmet Dadaci
- School of the Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Necmettin Erbakan University, Konya, Turkey
| | - Bilsev Ince
- School of the Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Necmettin Erbakan University, Konya, Turkey
| | - İlker Uyar
- School of the Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Necmettin Erbakan University, Konya, Turkey.,Plastic Reconstructive and Aesthetic Surgery Department, Tokat State Hospital, Konya, Turkey
| | - Serhat Yarar
- School of the Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Necmettin Erbakan University, Konya, Turkey.,Plastic Reconstructive and Aesthetic Surgery Department, Konya Numune Hospital, Konya, Turkey
| | - Pembe Oltulu
- School of the Medicine, Department of Pathology Konya, Necmettin Erbakan University, Konya, Turkey
| | - Recep Aygul
- School of the Medicine, Department of Neurology, Selcuk University, Konya, Turkey
| |
Collapse
|
29
|
Bioactive Nanofiber-Based Conduits in a Peripheral Nerve Gap Management-An Animal Model Study. Int J Mol Sci 2021; 22:ijms22115588. [PMID: 34070436 PMCID: PMC8197537 DOI: 10.3390/ijms22115588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/22/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
The aim was to examine the efficiency of a scaffold made of poly (L-lactic acid)-co-poly(ϵ-caprolactone), collagen (COL), polyaniline (PANI), and enriched with adipose-derived stem cells (ASCs) as a nerve conduit in a rat model. P(LLA-CL)-COL-PANI scaffold was optimized and electrospun into a tubular-shaped structure. Adipose tissue from 10 Lewis rats was harvested for ASCs culture. A total of 28 inbred male Lewis rats underwent sciatic nerve transection and excision of a 10 mm nerve trunk fragment. In Group A, the nerve gap remained untouched; in Group B, an excised trunk was used as an autograft; in Group C, nerve stumps were secured with P(LLA-CL)-COL-PANI conduit; in Group D, P(LLA-CL)-COL-PANI conduit was enriched with ASCs. After 6 months of observation, rats were sacrificed. Gastrocnemius muscles and sciatic nerves were harvested for weight, histology analysis, and nerve fiber count analyses. Group A showed advanced atrophy of the muscle, and each intervention (B, C, D) prevented muscle mass decrease (p < 0.0001); however, ASCs addition decreased efficiency vs. autograft (p < 0.05). Nerve fiber count revealed a superior effect in the nerve fiber density observed in the groups with the use of conduit (D vs. B p < 0.0001, C vs. B p < 0.001). P(LLA-CL)-COL-PANI conduits with ASCs showed promising results in managing nerve gap by decreasing muscle atrophy.
Collapse
|
30
|
Manto KM, Govindappa PK, Parisi D, Karuman Z, Martinazzi B, Hegarty JP, Talukder MAH, Elfar JC. (4-Aminopyridine)-PLGA-PEG as a Novel Thermosensitive and Locally Injectable Treatment for Acute Peripheral Nerve Injury. ACS APPLIED BIO MATERIALS 2021; 4:4140-4151. [PMID: 34142019 PMCID: PMC8206837 DOI: 10.1021/acsabm.0c01566] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Traumatic peripheral nerve injury (TPNI) represents a major medical problem that results in loss of motor and sensory function, and in severe cases, limb paralysis and amputation. To date, there are no effective treatments beyond surgery in selective cases. In repurposing studies, we found that daily systemic administration of the FDA-approved drug 4-aminopyridine (4-AP) enhanced functional recovery after acute peripheral nerve injury. This study was aimed at constructing a novel local delivery system of 4-AP using thermogelling polymers. We optimized a thermosensitive (4-AP)-poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) block copolymer formulation. (4-AP)-PLGA-PEG exhibited controlled release of 4-AP both in vitro and in vivo for approximately 3 weeks, with clinically relevant safe serum levels in animals. Rheological investigation showed that (4-AP)-PLGA-PEG underwent a solution to gel transition at 32 °C, a physiologically relevant temperature, allowing us to administer it to an injured limb while subsequently forming an in situ gel. A single local administration of (4-AP)-PLGA-PEG remarkably enhanced motor and sensory functional recovery on post-sciatic nerve crush injury days 1, 3, 7, 14, and 21. Moreover, immunohistochemical studies of injured nerves treated with (4-AP)-PLGA-PEG demonstrated an increased expression of neurofilament heavy chain (NF-H) and myelin protein zero (MPZ) proteins, two major markers of nerve regeneration. These findings demonstrate that (4-AP)-PLGA-PEG may be a promising long-acting local therapeutic agent in TPNI, for which no pharmacologic treatment exists.
Collapse
Affiliation(s)
- Kristen M Manto
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Prem Kumar Govindappa
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Daniele Parisi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zara Karuman
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - Brandon Martinazzi
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - John P Hegarty
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - M A Hassan Talukder
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, Center for Orthopaedic Research and Translational Science, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
31
|
D. Alvites R, V. Branquinho M, Sousa AC, Zen F, Maurina M, Raimondo S, Mendonça C, Atayde L, Geuna S, Varejão AS, Maurício AC. Establishment of a Sheep Model for Hind Limb Peripheral Nerve Injury: Common Peroneal Nerve. Int J Mol Sci 2021; 22:ijms22031401. [PMID: 33573310 PMCID: PMC7866789 DOI: 10.3390/ijms22031401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Thousands of people worldwide suffer from peripheral nerve injuries and must deal daily with the resulting physiological and functional deficits. Recent advances in this field are still insufficient to guarantee adequate outcomes, and the development of new and compelling therapeutic options require the use of valid preclinical models that effectively replicate the characteristics and challenges associated with these injuries in humans. In this study, we established a sheep model for common peroneal nerve injuries that can be applied in preclinical research with the advantages associated with the use of large animal models. The anatomy of the common peroneal nerve and topographically related nerves, the functional consequences of its injury and a neurological examination directed at this nerve have been described. Furthermore, the surgical protocol for accessing the common peroneal nerve, the induction of different types of nerve damage and the application of possible therapeutic options were described. Finally, a preliminary morphological and stereological study was carried out to establish control values for the healthy common peroneal nerves regarding this animal model and to identify preliminary differences between therapeutic methods. This study allowed to define the described lateral incision as the best to access the common peroneal nerve, besides establishing 12 and 24 weeks as the minimum periods to study lesions of axonotmesis and neurotmesis, respectively, in this specie. The post-mortem evaluation of the harvested nerves allowed to register stereological values for healthy common peroneal nerves to be used as controls in future studies, and to establish preliminary values associated with the therapeutic performance of the different applied options, although limited by a small sample size, thus requiring further validation studies. Finally, this study demonstrated that the sheep is a valid model of peripheral nerve injury to be used in pre-clinical and translational works and to evaluate the efficacy and safety of nerve injury therapeutic options before its clinical application in humans and veterinary patients.
Collapse
Affiliation(s)
- Rui D. Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (C.M.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Mariana V. Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (C.M.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana C. Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (C.M.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Federica Zen
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy; (F.Z.); (M.M.); (S.R.); (S.G.)
| | - Monica Maurina
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy; (F.Z.); (M.M.); (S.R.); (S.G.)
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy; (F.Z.); (M.M.); (S.R.); (S.G.)
| | - Carla Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (C.M.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (C.M.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, TO, Italy; (F.Z.); (M.M.); (S.R.); (S.G.)
| | - Artur S.P. Varejão
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal;
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana C. Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (C.M.); (L.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Correspondence: or
| |
Collapse
|
32
|
Biofabrication of aligned structures that guide cell orientation and applications in tissue engineering. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00104-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Li T, Javed R, Ao Q. Xenogeneic Decellularized Extracellular Matrix-based Biomaterials For Peripheral Nerve Repair and Regeneration. Curr Neuropharmacol 2021; 19:2152-2163. [PMID: 33176651 PMCID: PMC9185777 DOI: 10.2174/1570159x18666201111103815] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injury could lead to either impairment or a complete loss of function for affected patients, and a variety of nerve repair materials have been developed for surgical approaches to repair it. Although autologous or autologous tissue-derived biomaterials remain preferred treatment for peripheral nerve injury, the lack of donor sources has led biomedical researchers to explore more other biomaterials. As a reliable alternative, xenogeneic decellularized extracellular matrix (dECM)-based biomaterials have been widely employed for surgical nerve repair. The dECM derived from animal donors is an attractive and unlimited source for xenotransplantation. Meanwhile, as an increasingly popular technique, decellularization could retain a variety of bioactive components in native ECM, such as polysaccharides, proteins, and growth factors. The resulting dECM-based biomaterials preserve a tissue's native microenvironment, promote Schwann cells proliferation and differentiation, and provide cues for nerve regeneration. Although the potential of dECM-based biomaterials as a therapeutic agent is rising, there are many limitations of this material restricting its use. Herein, this review discusses the decellularization techniques that have been applied to create dECM-based biomaterials, the main components of nerve ECM, and the recent progress in the utilization of xenogeneic dECM-based biomaterials through applications as a hydrogel, wrap, and guidance conduit in nerve tissue engineering. In the end, the existing bottlenecks of xenogeneic dECM-based biomaterials and developing technologies that could be eliminated to be helpful for utilization in the future have been elaborated.
Collapse
Affiliation(s)
- Ting Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
| | - Rabia Javed
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
| | - Qiang Ao
- Department of Developmental Cell Biology, China Medical University, Shenyang, China
- Institute of Regulatory Science for Med-ical Devices, Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
34
|
Millán D, Jiménez RA, Nieto LE, Poveda IY, Torres MA, Silva AS, Ospina LF, Mano JF, Fontanilla MR. Adjustable conduits for guided peripheral nerve regeneration prepared from bi-zonal unidirectional and multidirectional laminar scaffold of type I collagen. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111838. [PMID: 33579476 DOI: 10.1016/j.msec.2020.111838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 11/24/2022]
Abstract
Shortness of donor nerves has led to the development of nerve conduits that connect sectioned peripheral nerve stumps and help to prevent the formation of neuromas. Often, the standard diameters of these devices cannot be adapted at the time of surgery to the diameter of the nerve injured. In this work, scaffolds were developed to form filled nerve conduits with an inner matrix with unidirectional channels covered by a multidirectional pore zone. Collagen type I dispersions (5 mg/g and 8 mg/g) were sequentially frozen using different methods to obtain six laminar scaffolds (P1 to P5) formed by a unidirectional (U) pore/channel zone adjacent to a multidirectional (M) pore zone. The physicochemical and microstructural properties of the scaffolds were determined and compared, as well as their biodegradability, residual glutaraldehyde and cytocompatibility. Also, the Young's modulus of the conduits made by rolling up the bizonal scaffolds from the unidirectional to the multidirectional zone was determined. Based on these comparisons, the proliferation and differentiation of hASC were assessed only in the P3 scaffolds. The cells adhered, aligned in the same direction as the unidirectional porous fibers, proliferated, and differentiated into Schwann-like cells. Adjustable conduits made with the P3 scaffold were implanted in rats 10 mm sciatic nerve lesions to compare their performance with that of autologous sciatic nerve grafted lesions. The in vivo results demonstrated that the tested conduit can be adapted to the diameter of the nerve stumps to guide their growth and promote their regeneration.
Collapse
Affiliation(s)
- Diana Millán
- Tissue Engineering Group, Department of Pharmacy, Universidad Nacional de Colombia, Av. Carrera 30 # 45-10, 111321 Bogotá, Colombia; Universidad El Bosque, Facultad de Medicina, Colombia.
| | - Ronald A Jiménez
- Tissue Engineering Group, Department of Pharmacy, Universidad Nacional de Colombia, Av. Carrera 30 # 45-10, 111321 Bogotá, Colombia; Universidad El Bosque, Facultad de Ciencias, Colombia.
| | - Luis E Nieto
- Facultad de Medicina, Pontificia Universidad Javeriana, Carrera 7 # 40-62 Of 726, Bogotá, Colombia.
| | - Ivan Y Poveda
- Tissue Engineering Group, Department of Pharmacy, Universidad Nacional de Colombia, Av. Carrera 30 # 45-10, 111321 Bogotá, Colombia.
| | - Maria A Torres
- Tissue Engineering Group, Department of Pharmacy, Universidad Nacional de Colombia, Av. Carrera 30 # 45-10, 111321 Bogotá, Colombia.
| | - Ana S Silva
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Luis F Ospina
- Department of Pharmacy, Universidad Nacional de Colombia, 111321, Av. Carrera 30 # 45-10, Bogotá, Colombia.
| | - João F Mano
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Marta R Fontanilla
- Tissue Engineering Group, Department of Pharmacy, Universidad Nacional de Colombia, Av. Carrera 30 # 45-10, 111321 Bogotá, Colombia.
| |
Collapse
|
35
|
Yuan Y, Li D, Yu F, Kang X, Xu H, Zhang P. Effects of Akt/mTOR/p70S6K Signaling Pathway Regulation on Neuron Remodeling Caused by Translocation Repair. Front Neurosci 2020; 14:565870. [PMID: 33132828 PMCID: PMC7550644 DOI: 10.3389/fnins.2020.565870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
Peripheral nerve injury repair has been considered a difficult problem in the field of trauma for a long time. Conventional surgical methods are not applicable in some special types of nerve injury, prompting scholars to seek to develop more effective nerve translocation repair technologies. The purpose of this study was to explore the functional state of neurons in injured lower limbs after translocation repair, with a view to preliminarily clarify the molecular mechanisms underlying this process. Eighteen Sprague–Dawley rats were divided into the normal, tibial nerve in situ repair, and common peroneal nerve transposition repair tibial nerve groups. Nerve function assessment and immunohistochemical staining of neurofilament 200 (NF-200), protein kinase B (Akt), mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase (p70S6K) in the dorsal root ganglia were performed at 12 weeks after surgery. Tibial nerve function and neuroelectrophysiological analysis, osmic acid staining, muscle strength testing, and muscle fiber staining showed that the nerve translocation repair could restore the function of the recipient nerve to a certain extent; however, the repair was not as efficient as the in situ repair. Immunohistochemical staining showed that the translocation repair resulted in changes in the microstructure of neuronal cell bodies, and the expressions of Akt, mTOR, and p70S6K in the three dorsal root ganglia groups were significantly different (p < 0.05). This study demonstrates that the nerve translocation repair technology sets up a new reflex loop, with the corresponding neuroskeletal adjustments, in which, donor neurons dominate the recipient nerves. This indicates that nerve translocation repair technology can lead to neuronal remodeling and is important as a supplementary treatment for a peripheral nerve injury. Furthermore, the Akt/mTOR/p70S6K signaling pathway may be involved in the formation of the new neural reflex loop created as a result of the translocation repair.
Collapse
Affiliation(s)
- Yusong Yuan
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Dongdong Li
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,Department of Orthopedics, PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Fei Yu
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Xuejing Kang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| | - Hailin Xu
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China.,Diabetic Foot Treatment Center, Peking University People's Hospital, Peking University, Beijing, China
| | - Peixun Zhang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Peking University, Beijing, China.,Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, China.,National Center for Trauma Medicine, Beijing, China
| |
Collapse
|
36
|
Luo L, He Y, Jin L, Zhang Y, Guastaldi FP, Albashari AA, Hu F, Wang X, Wang L, Xiao J, Li L, Wang J, Higuchi A, Ye Q. Application of bioactive hydrogels combined with dental pulp stem cells for the repair of large gap peripheral nerve injuries. Bioact Mater 2020; 6:638-654. [PMID: 33005828 PMCID: PMC7509005 DOI: 10.1016/j.bioactmat.2020.08.028] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 02/09/2023] Open
Abstract
Due to the limitations in autogenous nerve grafting or Schwann cell transplantation, large gap peripheral nerve injuries require a bridging strategy supported by nerve conduit. Cell based therapies provide a novel treatment for peripheral nerve injuries. In this study, we first experimented an optimal scaffold material synthesis protocol, from where we selected the 10% GFD formula (10% GelMA hydrogel, recombinant human basic fibroblast growth factor and dental pulp stem cells (DPSCs)) to fill a cellulose/soy protein isolate composite membrane (CSM) tube to construct a third generation of nerve regeneration conduit, CSM-GFD. Then this CSM-GFD conduit was applied to repair a 15-mm long defect of sciatic nerve in a rat model. After 12 week post implant surgery, at histologic level, we found CSM-GFD conduit could regenerate nerve tissue like neuron and Schwann like nerve cells and myelinated nerve fibers. At physical level, CSM-GFD achieved functional recovery assessed by a sciatic functional index study. In both levels, CSM-GFD performed like what gold standard, the nerve autograft, could do. Further, we unveiled that almost all newly formed nerve tissue at defect site was originated from the direct differentiation of exogeneous DPSCs in CSM-GFD. In conclusion, we claimed that this third-generation nerve regeneration conduit, CSM-GFD, could be a promising tissue engineering approach to replace the conventional nerve autograft to treat the large gap defect in peripheral nerve injuries. A novel 3rd generation nerve conduit was successfully constructed and applied for repairing peripheral nerve injuries (PNI). Dental pulp stem cells (DPSCs) was optimized as an ideal seeding cells for nerve regeneration. A bioactive system combining GelMA with human bFGF and DPSCs could reconstruct the long gap PNI within 12 weeks in vivo. Our system could achieve the same outcome in nerve repair as that of autografting, a routine treatment for PNI. The proposed bioactive system may trigger an evolutional change into the current clinical practice in managing PNI. The majority of the regenerated nerve tissue was originated from the donor’s dental pulp stem cells.
Collapse
Affiliation(s)
- Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan He
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China.,Skeletal Biology Research Center, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA, 02114, USA
| | - Ling Jin
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanni Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fernando P Guastaldi
- Skeletal Biology Research Center, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA, 02114, USA
| | | | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyan Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Wang
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang Province, 325000, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lingli Li
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou, Zhejiang Province, 325000, China.,School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianming Wang
- Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, China.,Department of Biliary and Pancreatic Surgery/Cancer Research Center, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Akon Higuchi
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Skeletal Biology Research Center, Massachusetts General Hospital and Harvard School of Dental Medicine, Boston, MA, 02114, USA.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
37
|
A Retrospective Case Series Reporting the Outcomes of Avance Nerve Allografts in the Treatment of Peripheral Nerve Injuries. Plast Reconstr Surg 2020; 145:368e-381e. [PMID: 31985643 DOI: 10.1097/prs.0000000000006485] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Acellular nerve allografts are a viable treatment modality for bridging nerve gaps. Several small studies have demonstrated results equal to those of autologous grafts; however, there is information lacking with regard to outcomes for wider indications. The authors evaluated the outcomes of patients treated with a nerve allograft in a variety of clinical situations. METHODS A retrospective chart analysis was completed between April of 2009 and October of 2017. Inclusion criteria were age 18 years or older at the time of surgery and treatment with a nerve allograft. Patients were excluded if they had not been followed up for a minimum of 6 months. The modified Medical Research Council Classification was used to monitor motor and sensory changes in the postoperative period. RESULTS Two hundred seven nerve allografts were used in 156 patients; of these, 129 patients with 171 nerve allografts fulfilled the inclusion criteria. Seventy-seven percent of patients achieved a sensory outcome score of S3 or above and 36 percent achieved a motor score of M3 or above. All patients with chronic pain had improvement of their symptoms. Graft length and diameter were negatively correlated with reported outcomes. One patient elected to undergo revision surgery, and the original graft was shown histologically to have extensive central necrosis. Anatomically, allografts used for lower limb reconstruction yielded the poorest results. All chronic patients had a significantly lower postoperative requirement for analgesia, and allografts were effective in not only reducing pain but also restoring a functional level of sensation. CONCLUSIONS This study supports the wider application of allografts in managing nerve problems. However, caution must be applied to the use of long grafts with larger diameters. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, IV.
Collapse
|
38
|
De Masi A, Tonazzini I, Masciullo C, Mezzena R, Chiellini F, Puppi D, Cecchini M. Chitosan films for regenerative medicine: fabrication methods and mechanical characterization of nanostructured chitosan films. Biophys Rev 2019; 11:807-815. [PMID: 31529358 PMCID: PMC6815298 DOI: 10.1007/s12551-019-00591-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022] Open
Abstract
Regenerative medicine is continuously facing new challenges and it is searching for new biocompatible, green/natural polymer materials, possibly biodegradable and non-immunogenic. Moreover, the critical importance of the nano/microstructuring of surfaces is overall accepted for their full biocompatibility and in vitro/in vivo performances. Chitosan is emerging as a promising biopolymer for tissue engineering and its application can be further improved by exploiting its nano/microstructuration. Here, we report the state of the art of chitosan films and scaffolds nano/micro-structuration. We show that it is possible to obtain, by solvent casting, chitosan thin films with good mechanical properties and to structure them at the microscale and even nanoscale level, with resolutions down to 100 nm.
Collapse
Affiliation(s)
- Alessia De Masi
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Ilaria Tonazzini
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy.
| | - Cecilia Masciullo
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Roberta Mezzena
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM PISA, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Dario Puppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM PISA, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Marco Cecchini
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy
| |
Collapse
|
39
|
Idini M, Wieringa P, Rocchiccioli S, Nieddu G, Ucciferri N, Formato M, Lepedda A, Moroni L. Glycosaminoglycan functionalization of electrospun scaffolds enhances Schwann cell activity. Acta Biomater 2019; 96:188-202. [PMID: 31265920 DOI: 10.1016/j.actbio.2019.06.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/06/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
Nerve fibers of the peripheral nervous system (PNS) have a remarkable ability to regenerate up to an almost complete recovery of normal function following a crush or a Sunderland Type II injury. This process is governed by glial cells, known as Schwann cells, through their unique capacity to dedifferentiate into cells that drive the healing process. Despite that many progresses have occurred in restorative medicine and microsurgery, the regenerative process after a severe lesion of a major nerve trunk (e.g., Sunderland Types III-V) is often incomplete and functional recovery is unsatisfactory. In this aspect, it is known that glycosaminoglycans (GAGs) of the extracellular matrix are involved in proliferation, synaptogenesis, neural plasticity, and regeneration of the PNS. Here, we developed poly(caprolactone) (PCL) fibrous scaffolds functionalized with GAGs, which allowed us to assess their influence on the adhesion, proliferation, and differentiation of Schwann cells. We found that both aligned and random fiber scaffolds functionalized with GAGs resulted in increased cell proliferation on day 1. In addition, aligned functionalized scaffolds also resulted in increased GAG presence on day 1, probably because of cell extracellular matrix (ECM) formation and an increased syndecan-4 expression on day 7. A different modification and activation of Schwann cells in the presence of GAG versus no-GAG scaffolds was underlined by proteomic comparative analysis, where a general downregulation of the expression of intracellular/structural and synthetic proteins was shown on day 7 for GAG-functionalized scaffolds with regard to the nonfunctionalized ones. In conclusion, we have shown that GAG-functionalized scaffolds are effective in modulating Schwann cell behavior in terms of adhesion, proliferation, and differentiation and should be considered in strategies to improve PNS repair. STATEMENT OF SIGNIFICANCE: Nerve fibers functional recovery following a severe trauma of the Peripheral Nervous System (PNS) still represents a huge challenge for neurosurgery nowadays. In this respect, tissue engineering is committed to develop new constructs able to guide Schwann cells by mimicking the natural extracellular matrix environment. To this purpose, we successfully fabricated polycaprolactone (PCL) scaffolds with two well-defined fiber deposition patterns, functionalized with glycosaminoglycans (GAGs) and assessed for their potential as support for Schwann cells adhesion, growth and differentiation, by both classical biochemistry and LC-MS-based proteomic profiling. By this way, we showed that PCL-GAGs scaffolds could represent a promising artificial substrate that closely mimics the recently established pattern of Schwann cells migration into the regenerating nerve and, therefore, it should be considered in strategies to improve PNS repair.
Collapse
Affiliation(s)
- Michela Idini
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Paul Wieringa
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER Maastricht, The Netherlands
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Gabriele Nieddu
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Nadia Ucciferri
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Marilena Formato
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Antonio Lepedda
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Lorenzo Moroni
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy; Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER Maastricht, The Netherlands.
| |
Collapse
|
40
|
Wolkow N, Habib LA, Yoon MK, Freitag SK. Corneal Neurotization: Review of a New Surgical Approach and Its Developments. Semin Ophthalmol 2019; 34:473-487. [DOI: 10.1080/08820538.2019.1648692] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Natalie Wolkow
- Ophthalmic Plastic Surgery Service, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Larissa A. Habib
- Ophthalmic Plastic Surgery Service, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Michael K. Yoon
- Ophthalmic Plastic Surgery Service, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Suzanne K. Freitag
- Ophthalmic Plastic Surgery Service, Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Yuan YS, Niu SP, Yu YL, Zhang PX, Yin XF, Han N, Zhang YJ, Zhang DY, Xu HL, Kou YH, Jiang BG. Reinnervation of spinal cord anterior horn cells after median nerve repair using transposition with other nerves. Neural Regen Res 2019; 14:699-705. [PMID: 30632511 PMCID: PMC6352579 DOI: 10.4103/1673-5374.247474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Our previous studies have confirmed that during nerve transposition repair to injured peripheral nerves, the regenerated nerve fibers of motor neurons in the anterior horn of the spinal cord can effectively repair distal nerve and target muscle tissue and restore muscle motor function. To observe the effect of nerve regeneration and motor function recovery after several types of nerve transposition for median nerve defect (2 mm), 30 Sprague-Dawley rats were randomly divided into sham operation group, epineurial neurorrhaphy group, musculocutaneous nerve transposition group, medial pectoral nerve transposition group, and radial nerve muscular branch transposition group. Three months after nerve repair, the wrist flexion test was used to evaluate the recovery of wrist flexion after regeneration of median nerve in the affected limbs of rats. The number of myelinated nerve fibers, the thickness of myelin sheath, the diameter of axons and the cross-sectional area of axons in the proximal and distal segments of the repaired nerves were measured by osmic acid staining. The ratio of newly produced distal myelinated nerve fibers to the number of proximal myelinated nerve fibers was calculated. Wet weights of the flexor digitorum superficialis muscles were measured. Muscle fiber morphology was detected using hematoxylin-eosin staining. The cross-sectional area of muscle fibers was calculated to assess the recovery of muscles. Results showed that wrist flexion function was restored, and the nerve grew into the distal effector in all three nerve transposition groups and the epineurial neurorrhaphy group. There were differences in the number of myelinated nerve fibers in each group. The magnification of proximal to distal nerves was 1.80, 3.00, 2.50, and 3.12 in epineurial neurorrhaphy group, musculocutaneous nerve transposition group, medial pectoral nerve transposition group, and radial nerve muscular branch transposition group, respectively. Nevertheless, axon diameters of new nerve fibers, cross-sectional areas of axons, thicknesses of myelin sheath, wet weights of flexor digitorum superficialis muscle and cross-sectional areas of muscle fibers of all three groups of donor nerves from different anterior horn motor neurons after nerve transposition were similar to those in the epineurial neurorrhaphy group. Our findings indicate that donor nerve translocation from different anterior horn motor neurons can effectively repair the target organs innervated by the median nerve. The corresponding spinal anterior horn motor neurons obtain functional reinnervation and achieve some degree of motor function in the affected limbs.
Collapse
Affiliation(s)
- Yu-Song Yuan
- Peking University People's Hospital, Beijing, China
| | - Su-Ping Niu
- Peking University People's Hospital, Beijing, China
| | - You-Lai Yu
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | | | | | - Na Han
- Peking University People's Hospital, Beijing, China
| | - Ya-Jun Zhang
- Peking University People's Hospital, Beijing, China
| | | | - Hai-Lin Xu
- Peking University People's Hospital, Beijing, China
| | - Yu-Hui Kou
- Peking University People's Hospital, Beijing, China
| | | |
Collapse
|
42
|
Han GH, Peng J, Liu P, Ding X, Wei S, Lu S, Wang Y. Therapeutic strategies for peripheral nerve injury: decellularized nerve conduits and Schwann cell transplantation. Neural Regen Res 2019; 14:1343-1351. [PMID: 30964052 PMCID: PMC6524503 DOI: 10.4103/1673-5374.253511] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In recent years, the use of Schwann cell transplantation to repair peripheral nerve injury has attracted much attention. Animal-based studies show that the transplantation of Schwann cells in combination with nerve scaffolds promotes the repair of injured peripheral nerves. Autologous Schwann cell transplantation in humans has been reported recently. This article reviews current methods for removing the extracellular matrix and analyzes its composition and function. The development and secretory products of Schwann cells are also reviewed. The methods for the repair of peripheral nerve injuries that use myelin and Schwann cell transplantation are assessed. This survey of the literature data shows that using a decellularized nerve conduit combined with Schwann cells represents an effective strategy for the treatment of peripheral nerve injury. This analysis provides a comprehensive basis on which to make clinical decisions for the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Gong-Hai Han
- Kunming Medical University, Kunming, Yunnan Province; Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Ping Liu
- Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Xiao Ding
- Shihezi University Medical College, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Shuai Wei
- Shihezi University Medical College, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Sheng Lu
- 920th Hospital of Joint Service Support Force, Kunming, Yunnan Province, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
43
|
Zhang PX, Han N, Kou YH, Zhu QT, Liu XL, Quan DP, Chen JG, Jiang BG. Tissue engineering for the repair of peripheral nerve injury. Neural Regen Res 2019; 14:51-58. [PMID: 30531070 PMCID: PMC6263012 DOI: 10.4103/1673-5374.243701] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injury is a common clinical problem and affects the quality of life of patients. Traditional restoration methods are not satisfactory. Researchers increasingly focus on the field of tissue engineering. The three key points in establishing a tissue engineering material are the biological scaffold material, the seed cells and various growth factors. Understanding the type of nerve injury, the construction of scaffold and the process of repair are necessary to solve peripheral nerve injury and promote its regeneration. This review describes the categories of peripheral nerve injury, fundamental research of peripheral nervous tissue engineering and clinical research on peripheral nerve scaffold material, and paves a way for related research and the use of conduits in clinical practice.
Collapse
Affiliation(s)
| | - Na Han
- Peking University People's Hospital, Beijing, China
| | - Yu-Hui Kou
- Peking University People's Hospital, Beijing, China
| | - Qing-Tang Zhu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao-Lin Liu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Da-Ping Quan
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jian-Guo Chen
- School of Life Science, Peking University, Beijing, China
| | | |
Collapse
|