1
|
Lam DV, Javadekar A, Patil N, Yu M, Li L, Menendez DM, Gupta AS, Capadona JR, Shoffstall AJ. Corrigendum to "Platelets and Hemostatic Proteins are Co-Localized with Chronic Neuroinflammation Surrounding Implanted Intracortical Microelectrodes" [Acta Biomaterialia. Volume 166, August 2023, Pages 278-290]. Acta Biomater 2024; 182:303-308. [PMID: 38845260 PMCID: PMC11295673 DOI: 10.1016/j.actbio.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Affiliation(s)
- Danny V Lam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anisha Javadekar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | | | - Marina Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Longshun Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Dhariyat M Menendez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
2
|
Akkipeddi SMK, Rahmani R, Ellens NR, Kohli GS, Houk C, Schartz DA, Chittaranjan S, Worley L, Gunturi A, Bhalla T, Mattingly TK, Welle K, Morrell CN, Bender MT. Histone content, and thus DNA content, is associated with differential in vitro lysis of acute ischemic stroke clots. J Thromb Haemost 2024; 22:1410-1420. [PMID: 38296159 DOI: 10.1016/j.jtha.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Fibrin, von Willebrand factor, and extracellular DNA from neutrophil extracellular traps all contribute to acute ischemic stroke thrombus integrity. OBJECTIVES In this study, we explored how the proteomic composition of retrieved thromboemboli relates to susceptibility to lysis with distinct thrombolytics. METHODS Twenty-six retrieved stroke thromboemboli were portioned into 4 segments, with each subjected to 1 hour of in vitro lysis at 37 °C in 1 of 4 solutions: tissue plasminogen activator (tPA), tPA + von Willebrand factor-cleaving ADAMTS-13, tPA + DNA-cleaving deoxyribonuclease (DNase) I, and all 3 enzymes. Lysis, characterized by the percent change in prelysis and postlysis weight, was compared across the solutions and related to the corresponding abundance of proteins identified on mass spectrometry for each of the thromboemboli used in lysis. RESULTS Solutions containing DNase resulted in approximately 3-fold greater thrombolysis than that with the standard-of-care tPA solution (post hoc Tukey, P < .01 for all). DNA content was directly related to lysis in solutions containing DNase (Spearman's ρ > 0.39 and P < .05 for all significant histones) and inversely related to lysis in solutions without DNase (Spearman's ρ < -0.40 and P < .05 for all significant histones). Functional analysis suggests distinct pathways associated with susceptibility to thrombolysis with tPA (platelet-mediated) or DNase (innate immune system-mediated). CONCLUSION This study demonstrates synergy of DNase and tPA in thrombolysis of stroke emboli and points to DNase as a potential adjunct to our currently limited selection of thrombolytics in treating acute ischemic stroke.
Collapse
Affiliation(s)
- Sajal Medha K Akkipeddi
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA. https://twitter.com/SajalAkkipeddi
| | - Redi Rahmani
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Nathaniel R Ellens
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Gurkirat S Kohli
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Clifton Houk
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Derrek A Schartz
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA. https://twitter.com/D_SchartzMD
| | - Siddharth Chittaranjan
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Logan Worley
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Aditya Gunturi
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Tarun Bhalla
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Thomas K Mattingly
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Kevin Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, New York, USA
| | - Craig N Morrell
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Matthew T Bender
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA.
| |
Collapse
|
3
|
Rachieru C, Luca CT, Văcărescu C, Petrescu L, Cirin L, Cozma D. Future Perspectives to Improve CHA 2DS 2VASc Score: The Role of Left Atrium Remodelling, Inflammation and Genetics in Anticoagulation of Atrial Fibrillation. Clin Interv Aging 2023; 18:1737-1748. [PMID: 37873054 PMCID: PMC10590594 DOI: 10.2147/cia.s427748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/07/2023] [Indexed: 10/25/2023] Open
Abstract
In 10% of ischemic strokes, non-valvular atrial fibrillation (NVAF) is detected retroactively. Milder, or even asymptomatic forms of NVAF have shown high mortality, thrombotic risk, and deterioration of cognitive function. The current guidelines for the diagnosis and treatment of AF contain "grey areas", such as the one related to anticoagulant treatment in men with CHA2DS2-VASc score 1 and women with score 2. Moreover, parameters such as renal function, patient weight or left atrium remodelling are missing from the recommended guidelines scores. Vulnerable categories of patients including the elderly population, high hemorrhagic risk patients or patients with newly diagnosed paroxysmal episodes of atrial high rate at device interrogation are at risk of underestimation of the thrombotic risk. This review presents a systematic exposure of the most important gaps in evaluation of thrombotic and hemorrhagic risk in patients with NVAF. The authors propose new algorithms and risk factors that should be taken into consideration for an accurate thrombotic and hemorrhagic risk estimation, especially in vulnerable categories of patients.
Collapse
Affiliation(s)
- Ciprian Rachieru
- Faculty of Medicine, Department of Internal Medicine I, Discipline of Medical Semiology I “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Internal Medicine Department, County Emergency Hospital, Timisoara, 300079, Romania
- Center for Advanced Research in Cardiovascular Pathology and Hemostaseology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Constantin-Tudor Luca
- Cardiology Department, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Institute of Cardiovascular Diseases Timisoara, Timisoara, 300310, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, Timisoara, 300310, Romania
| | - Cristina Văcărescu
- Cardiology Department, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Institute of Cardiovascular Diseases Timisoara, Timisoara, 300310, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, Timisoara, 300310, Romania
| | - Lucian Petrescu
- Cardiology Department, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Liviu Cirin
- Cardiology Department, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Dragos Cozma
- Cardiology Department, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Institute of Cardiovascular Diseases Timisoara, Timisoara, 300310, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, Timisoara, 300310, Romania
| |
Collapse
|
4
|
Lam DV, Javadekar A, Patil N, Yu M, Li L, Menendez DM, Gupta AS, Capadona JR, Shoffstall AJ. Platelets and hemostatic proteins are co-localized with chronic neuroinflammation surrounding implanted intracortical microelectrodes. Acta Biomater 2023; 166:278-290. [PMID: 37211307 PMCID: PMC10330779 DOI: 10.1016/j.actbio.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/13/2023] [Accepted: 05/02/2023] [Indexed: 05/23/2023]
Abstract
Intracortical microelectrodes induce vascular injury upon insertion into the cortex. As blood vessels rupture, blood proteins and blood-derived cells (including platelets) are introduced into the 'immune privileged' brain tissues at higher-than-normal levels, passing through the damaged blood-brain barrier. Blood proteins adhere to implant surfaces, increasing the likelihood of cellular recognition leading to activation of immune and inflammatory cells. Persistent neuroinflammation is a major contributing factor to declining microelectrode recording performance. We investigated the spatial and temporal relationship of blood proteins fibrinogen and von Willebrand Factor (vWF), platelets, and type IV collagen, in relation to glial scarring markers for microglia and astrocytes following implantation of non-functional multi-shank silicon microelectrode probes into rats. Together with type IV collagen, fibrinogen and vWF augment platelet recruitment, activation, and aggregation. Our main results indicate blood proteins participating in hemostasis (fibrinogen and vWF) persisted at the microelectrode interface for up to 8-weeks after implantation. Further, type IV collagen and platelets surrounded the probe interface with similar spatial and temporal trends as vWF and fibrinogen. In addition to prolonged blood-brain barrier instability, specific blood and extracellular matrix proteins may play a role in promoting the inflammatory activation of platelets and recruitment to the microelectrode interface. STATEMENT OF SIGNIFICANCE: Implanted microelectrodes have substantial potential for restoring function to people with paralysis and amputation by providing signals that feed into natural control algorithms that drive prosthetic devices. Unfortunately, these microelectrodes do not display robust performance over time. Persistent neuroinflammation is widely thought to be a primary contributor to the devices' progressive decline in performance. Our manuscript reports on the highly local and persistent accumulation of platelets and hemostatic blood proteins around the microelectrode interface of brain implants. To our knowledge neuroinflammation driven by cellular and non-cellular responses associated with hemostasis and coagulation has not been rigorously quantified elsewhere. Our findings identify potential targets for therapeutic intervention and a better understanding of the driving mechanisms to neuroinflammation in the brain.
Collapse
Affiliation(s)
- Danny V Lam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anisha Javadekar
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | | | - Marina Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Longshun Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Dhariyat M Menendez
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
5
|
Jalal MM, Mir R, Hamadi A, Altayar MA, Elfaki I, Barnawi J, Alkayyal AA, Amr M, Hadeel J, Moawadh MS, Alsaedi BSO, Alhelali MH, Yousif A. Association of Genetic and Allelic Variants of Von Willebrand Factor (VWF), Glutathione S-Transferase and Tumor Necrosis Factor Alpha with Ischemic Stroke Susceptibility and Progression in the Saudi Population. Life (Basel) 2023; 13:life13051200. [PMID: 37240845 DOI: 10.3390/life13051200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Stroke is a key cerebrovascular disease and important cause of death and disability worldwide, including in the kingdom of Saudi Arabia (KSA). It has a large economic burden and serious socioeconomic impacts on patients, their families and the community. The incidence of ischemic stroke is probably increased by the interaction of GSTT1 and GSTM1 null genotypes with high blood pressure, diabetes and cigarette smoking. The roles of VWF, GSTs and TNF-alpha gene variations in the induction of stroke are still uncertain and require further examination. In the current study, we studied the associations of SNPs in the genes VWF, GSTs and TNF-alpha with stroke in the Saudi population. Genotyping was performed using the ARMS -PCR for TNF-alpha, AS-PCR for VWF and multiplex PCR for GSTs. The study included 210 study subjects: 100 stroke cases and 110 healthy controls. We obtained significant distributions of VWF rs61748511 T > C, TNF-alpha rs1800629 G > A and GST rs4025935 and rs71748309 genotypes between stroke cases and the healthy controls (p < 0.05). The results also indicated that the TNF-alpha A allele was associated with risk of stroke with odd ratio (OR) = 2.22 and risk ratio = RR 2.47, p < 0.05. Similarly, the VWF-TC genotype and C allele were strongly linked with stroke with OR = 8.12 and RR 4.7, p < 0.05. In addition, GSTT1 and GSTT1 null genotype was strongly associated with stroke predisposition with OR = 8.30 and RR = 2.25, p < 0.0001. We conclude that there is a possible strong association between the VWF-T > C, TNF-alpha G > A, GSTT1 gene variants and ischemic stroke susceptibility in the Saudi population. However, future well-designed and large-scale case-control studies on protein-protein interactions and protein functional studies are required to verify these findings and examine the effects of these SNPs on these proteins.
Collapse
Affiliation(s)
- Mohammed M Jalal
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
- Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Rashid Mir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
- Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdullah Hamadi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
- Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Malik A Altayar
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
- Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Jameel Barnawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
- Prince Fahad Bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mouminah Amr
- Neuroscience Center, King Abdullah Medical Complex, Jeddah 23816, Saudi Arabia
| | - Jabali Hadeel
- Department of Radiology, King Abdullah Medical Complex, Jeddah 23816, Saudi Arabia
| | - Mamdoh S Moawadh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Basim S O Alsaedi
- Department of Statistics, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Marwan H Alhelali
- Department of Statistics, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Aadil Yousif
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
6
|
Hirai H, Yamashita M, Matsumoto M, Nishiyama T, Wada D, Okabe N, Mizusawa Y, Jimura H, Ueda T, Ogata N. Alteration of plasma von Willebrand factor in the treatment of retinal vein occlusion with cystoid macular edema. PLoS One 2022; 17:e0264809. [PMID: 36137144 PMCID: PMC9499207 DOI: 10.1371/journal.pone.0264809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Retinal vein occlusion (RVO) is a major retinal disease caused by venous thrombosis. Although several studies have proposed an association between venous thrombosis and von Willebrand factor (VWF), the association between RVO and VWF remains unclear. We aimed to investigate the association between RVO and VWF and the alteration of VWF levels under anti-vascular endothelial growth factor (VEGF) treatment. We enrolled 55 patients with RVO involved cystoid macular edema. They received intravitreal injection of anti-VEGF drugs, either ranibizumab or aflibercept. We examined the clinical data and measured plasma VWF antigen and a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) activity to identify variabilities during treatment. At baseline, there was no significant difference between the RVO group and age-matched controls in both VWF antigen and ADAMTS13 activity levels, but ADAMTS13 activity was significantly lower in central RVO than in branch RVO (P = 0.015). In branch RVO, VWF antigen was negatively correlated with central choroidal thickness (r = −0.51, P < 0.001). In branch RVO after anti-VEGF treatment, VWF antigen levels decreased significantly from 134% at baseline to 109% at 1 day (P = 0.002) and 107% at 1 month (P = 0.030) after treatment. In contrast, ADAMTS13 activity showed no significant difference during this period. In branch RVO at 1 month after treatment, VWF antigen was negatively correlated with central choroidal thickness (r = −0.47, P = 0.001). Our findings suggest an association between VWF and central choroidal thickness in patients with branch RVO, thus the measurement of VWF may be useful for evaluating disease activity and prognosis.
Collapse
Affiliation(s)
- Hiromasa Hirai
- Department of Ophthalmology, Nara Medical University, Kashihara, Japan
| | | | - Masanori Matsumoto
- Department of Blood Transfusion Medicine, Nara Medical University, Kashihara, Japan
| | | | - Daishi Wada
- Department of Ophthalmology, Nara Medical University, Kashihara, Japan
| | - Naoko Okabe
- Department of Ophthalmology, Nara Medical University, Kashihara, Japan
| | - Yutaro Mizusawa
- Department of Ophthalmology, Nara Medical University, Kashihara, Japan
| | - Hironobu Jimura
- Department of Ophthalmology, Nara Medical University, Kashihara, Japan
| | - Tetsuo Ueda
- Department of Ophthalmology, Nara Medical University, Kashihara, Japan
| | - Nahoko Ogata
- Department of Ophthalmology, Nara Medical University, Kashihara, Japan
- * E-mail:
| |
Collapse
|
7
|
Albo Z, Mathew C, Catton R, Silver B, Moonis M. Thrombotic Thrombocytopenic Purpura (ADAMTS13 [a Disintegrin and Metalloproteinase With a Thrombospondin Type 1 Motif, Member 13] Deficiency) as Cause of Recurrent Multiterritory Ischemic Strokes. Stroke 2022; 53:e237-e240. [PMID: 35341321 DOI: 10.1161/strokeaha.121.034434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Zimbul Albo
- Department of Neurology (Z.A., R.C., B.S., M.M.), University of Massachusetts Medical School, Worcester
- Now with: Department of Neurology, Tufts University Medical School, MA (Z.A.)
| | - Carol Mathew
- Hematology and Oncology (C.M.), University of Massachusetts Medical School, Worcester
- Now with: Hematology and Oncology, University of Florida, Gainesville (C.M.)
| | - Raymond Catton
- Department of Neurology (Z.A., R.C., B.S., M.M.), University of Massachusetts Medical School, Worcester
| | - Brian Silver
- Department of Neurology (Z.A., R.C., B.S., M.M.), University of Massachusetts Medical School, Worcester
| | - Majaz Moonis
- Department of Neurology (Z.A., R.C., B.S., M.M.), University of Massachusetts Medical School, Worcester
| |
Collapse
|
8
|
Ansari J, Gavins FNE. Neutrophils and Platelets: Immune Soldiers Fighting Together in Stroke Pathophysiology. Biomedicines 2021; 9:biomedicines9121945. [PMID: 34944761 PMCID: PMC8698717 DOI: 10.3390/biomedicines9121945] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
Neutrophils and platelets exhibit a diverse repertoire of functions in thromboinflammatory conditions such as stroke. Most cerebral ischemic events result from longstanding chronic inflammation secondary to underlying pathogenic conditions, e.g., hypertension, diabetes mellitus, obstructive sleep apnea, coronary artery disease, atrial fibrillation, morbid obesity, dyslipidemia, and sickle cell disease. Neutrophils can enable, as well as resolve, cerebrovascular inflammation via many effector functions including neutrophil extracellular traps, serine proteases and reactive oxygen species, and pro-resolving endogenous molecules such as Annexin A1. Like neutrophils, platelets also engage in pro- as well as anti-inflammatory roles in regulating cerebrovascular inflammation. These anucleated cells are at the core of stroke pathogenesis and can trigger an ischemic event via adherence to the hypoxic cerebral endothelial cells culminating in aggregation and clot formation. In this article, we review and highlight the evolving role of neutrophils and platelets in ischemic stroke and discuss ongoing preclinical and clinical strategies that may produce viable therapeutics for prevention and management of stroke.
Collapse
Affiliation(s)
- Junaid Ansari
- Department of Neurology, Louisiana State University Health Shreveport, Shreveport, LA 71130, USA
- Correspondence: (J.A.); (F.N.E.G.); Tel.: +1-318-626-4282 (J.A.); Tel.: +44-(0)1895-267-151 (F.N.E.G.)
| | - Felicity N. E. Gavins
- The Centre for Inflammation Research and Translational Medicine (CIRTM), Department of Life Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
- Correspondence: (J.A.); (F.N.E.G.); Tel.: +1-318-626-4282 (J.A.); Tel.: +44-(0)1895-267-151 (F.N.E.G.)
| |
Collapse
|
9
|
New Drug Targets to Prevent Death Due to Stroke: A Review Based on Results of Protein-Protein Interaction Network, Enrichment, and Annotation Analyses. Int J Mol Sci 2021; 22:ijms222212108. [PMID: 34829993 PMCID: PMC8619767 DOI: 10.3390/ijms222212108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
This study used established biomarkers of death from ischemic stroke (IS) versus stroke survival to perform network, enrichment, and annotation analyses. Protein-protein interaction (PPI) network analysis revealed that the backbone of the highly connective network of IS death consisted of IL6, ALB, TNF, SERPINE1, VWF, VCAM1, TGFB1, and SELE. Cluster analysis revealed immune and hemostasis subnetworks, which were strongly interconnected through the major switches ALB and VWF. Enrichment analysis revealed that the PPI immune subnetwork of death due to IS was highly associated with TLR2/4, TNF, JAK-STAT, NOD, IL10, IL13, IL4, and TGF-β1/SMAD pathways. The top biological and molecular functions and pathways enriched in the hemostasis network of death due to IS were platelet degranulation and activation, the intrinsic pathway of fibrin clot formation, the urokinase-type plasminogen activator pathway, post-translational protein phosphorylation, integrin cell-surface interactions, and the proteoglycan-integrin extracellular matrix complex (ECM). Regulation Explorer analysis of transcriptional factors shows: (a) that NFKB1, RELA and SP1 were the major regulating actors of the PPI network; and (b) hsa-mir-26-5p and hsa-16-5p were the major regulating microRNA actors. In conclusion, prevention of death due to IS should consider that current IS treatments may be improved by targeting VWF, the proteoglycan-integrin-ECM complex, TGF-β1/SMAD, NF-κB/RELA and SP1.
Collapse
|
10
|
Gavriilaki E, Eftychidis I, Papassotiriou I. Update on endothelial dysfunction in COVID-19: severe disease, long COVID-19 and pediatric characteristics. J LAB MED 2021. [DOI: 10.1515/labmed-2021-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Objectives
To review current literature on the role of endothelial dysfunction in coronavirus disease-2019 (COVID-19) infection in terms of pathophysiology, laboratory features and markers, clinical phenotype in adults and children, as well as long COVID-19.
Content
We conducted a thorough assessment of the literature and critically analyzed current data, mostly utilizing the PubMed and Medline search engines to find original studies published in the previous decade.
Summary and Outlook
Accumulating evidence suggests that endothelial dysfunction may be a common denominator of severe COVID-19 in adults and children, as well as long COVID-19, implicating mutual pathophysiological pathways. This narrative review summarizes the up-to-date knowledge of endothelial dysfunction caused by COVID-19, including novel aspects of long COVID-19 and pediatric disease. This knowledge is important in order not only to understand the multisystemic attack of COVID-19, but also to improve patient management and prognosis.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- Hematology Department – BMT Unit , G. Papanikolaou Hospital , Thessaloniki , Greece
| | - Ioannis Eftychidis
- Hematology Department – BMT Unit , G. Papanikolaou Hospital , Thessaloniki , Greece
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry , “Aghia Sophia” Children’s Hospital , Athens , Greece
- IFCC Emerging Technologies Division , Emerging Technologies in Pediatric Laboratory Medicine (C-ETPLM) , Milan , Italy
| |
Collapse
|
11
|
Hirai H, Yamashita M, Matsumoto M, Hayakawa M, Sakai K, Ueda T, Ogata N. Analysis focusing on plasma von Willebrand factor in pachychoroid neovasculopathy and age-related macular degeneration. Sci Rep 2021; 11:19987. [PMID: 34620972 PMCID: PMC8497477 DOI: 10.1038/s41598-021-99557-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
Pachychoroid neovasculopathy (PNV) is a new concept of macular disorder. Some cases diagnosed as age-related macular degeneration (AMD) have been re-diagnosed as PNV. However, the biological features of PNV are still uncertain. The purpose of this study was to compare PNV and AMD by analyses focusing on von Willebrand factor (VWF) and complement factor H (CFH). Ninety-seven patients who were previously diagnosed with treatment naïve AMD were enrolled in this study. They were re-classified as either PNV or AMD based on the clinical criteria and 33 patients were classified as PNV and 64 patients as AMD. We examined the clinical data, analyzed VWF multimer and two genetic polymorphisms (I62V and Y402H) in the CFH. PNV group was significantly younger than AMD group (P = 0.001). In both I62V and Y402H, there were no significant differences between PNV and AMD while the recessive homozygous (AA) was found only in PNV group in I62V. The presence of unusually large VWF multimers (UL-VWFMs) and subretinal hemorrhages were significantly higher in PNV than in AMD (P = 0.045, P = 0.020, respectively). Thus, the residual UL-VWFMs may result in platelet thrombosis and hemorrhages in the choriocapillaris of PNV. In conclusion, our results suggest the biological differences between PNV and AMD.
Collapse
Affiliation(s)
- Hiromasa Hirai
- Department of Ophthalmology, Nara Medical University, 840 Shijo-Cho, Kashihara, Japan
| | - Mariko Yamashita
- Department of Ophthalmology, Nara City Hospital, 1-50-1 Higashikidera-cho, Nara, Japan
| | - Masanori Matsumoto
- Department of Blood Transfusion Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Japan
| | - Masaki Hayakawa
- Department of Blood Transfusion Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Japan
| | - Kazuya Sakai
- Department of Blood Transfusion Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Japan
| | - Tetsuo Ueda
- Department of Ophthalmology, Nara Medical University, 840 Shijo-Cho, Kashihara, Japan
| | - Nahoko Ogata
- Department of Ophthalmology, Nara Medical University, 840 Shijo-Cho, Kashihara, Japan.
| |
Collapse
|
12
|
Nguyen AH, Kania S, Cheng X, Oztekin A, Zhang XF, Webb EB. Unraveling Kinetics of Collapsed Polymers in Extensional Flow. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anh H. Nguyen
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Sagar Kania
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Xuanhong Cheng
- Department of Material Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Alparslan Oztekin
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - X. Frank Zhang
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Edmund B. Webb
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
13
|
Baez SDLC, García del Barco D, Hardy-Sosa A, Guillen Nieto G, Bringas-Vega ML, Llibre-Guerra JJ, Valdes-Sosa P. Scalable Bio Marker Combinations for Early Stroke Diagnosis: A Systematic Review. Front Neurol 2021; 12:638693. [PMID: 34122297 PMCID: PMC8193128 DOI: 10.3389/fneur.2021.638693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Acute stroke treatment is a time-critical process in which every minute counts. Laboratory biomarkers are needed to aid clinical decisions in the diagnosis. Although imaging is critical for this process, these biomarkers may provide additional information to distinguish actual stroke from its mimics and monitor patient condition and the effect of potential neuroprotective strategies. For such biomarkers to be effectively scalable to public health in any economic setting, these must be cost-effective and non-invasive. We hypothesized that blood-based combinations (panels) of proteins might be the key to this approach and explored this possibility through a systematic review. Methods: We followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines for systematic review. Initially, the broader search for biomarkers for early stroke diagnosis yielded 704 hits, and five were added manually. We then narrowed the search to combinations (panels) of the protein markers obtained from the blood. Results: Twelve articles dealing with blood-based panels of protein biomarkers for stroke were included in the systematic review. We observed that NR2 peptide (antibody against the NR2 fragment) and glial fibrillary acidic protein (GFAP) are brain-specific markers related to stroke. Von Willebrand factor (vWF), matrix metalloproteinase 9 (MMP-9), and S100β have been widely used as biomarkers, whereas others such as the ischemia-modified albumin (IMA) index, antithrombin III (AT-III), and fibrinogen have not been evaluated in combination. We herein propose the following new combination of biomarkers for future validation: panel 1 (NR2 + GFAP + MMP-9 + vWF + S100β), panel 2 (NR2 + GFAP + MMP-9 + vWF + IMA index), and panel 3 (NR2 + GFAP + AT-III + fibrinogen). Conclusions: More research is needed to validate, identify, and introduce these panels of biomarkers into medical practice for stroke recurrence and diagnosis in a scalable manner. The evidence indicates that the most promising approach is to combine different blood-based proteins to provide diagnostic precision for health interventions. Through our systematic review, we suggest three novel biomarker panels based on the results in the literature and an interpretation based on stroke pathophysiology.
Collapse
Affiliation(s)
- Saiyet de la C. Baez
- The Clinical Hospital of Chengdu Brain Sciences Institute, University Electronic Sciences and Technology of China UESTC, Chengdu, China
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | - Anette Hardy-Sosa
- The Clinical Hospital of Chengdu Brain Sciences Institute, University Electronic Sciences and Technology of China UESTC, Chengdu, China
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gerardo Guillen Nieto
- The Clinical Hospital of Chengdu Brain Sciences Institute, University Electronic Sciences and Technology of China UESTC, Chengdu, China
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Maria Luisa Bringas-Vega
- The Clinical Hospital of Chengdu Brain Sciences Institute, University Electronic Sciences and Technology of China UESTC, Chengdu, China
- Cuban Neurosciences Center, Havana, Cuba
| | - Jorge J. Llibre-Guerra
- Department of Neurology, National Institute of Neurology and Neurosurgery of Cuba, Havana, Cuba
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Pedro Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Sciences Institute, University Electronic Sciences and Technology of China UESTC, Chengdu, China
- Cuban Neurosciences Center, Havana, Cuba
| |
Collapse
|
14
|
Atiq F, van de Wouw J, Sorop O, Heinonen I, de Maat MPM, Merkus D, Duncker DJ, Leebeek FWG. Endothelial Dysfunction, Atherosclerosis, and Increase of von Willebrand Factor and Factor VIII: A Randomized Controlled Trial in Swine. Thromb Haemost 2021; 121:676-686. [PMID: 33506473 DOI: 10.1055/s-0040-1722185] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is well known that high von Willebrand factor (VWF) and factor VIII (FVIII) levels are associated with an increased risk of cardiovascular disease. It is still debated whether VWF and FVIII are biomarkers of endothelial dysfunction and atherosclerosis or whether they have a direct causative role. Therefore, we aimed to unravel the pathophysiological pathways of increased VWF and FVIII levels associated with cardiovascular risk factors. First, we performed a randomized controlled trial in 34 Göttingen miniswine. Diabetes mellitus (DM) was induced with streptozotocin and hypercholesterolemia (HC) via a high-fat diet in 18 swine (DM + HC), while 16 healthy swine served as controls. After 5 months of follow-up, FVIII activity (FVIII:C) was significantly higher in DM + HC swine (5.85 IU/mL [5.00-6.81]) compared with controls (4.57 [3.76-5.40], p = 0.010), whereas VWF antigen (VWF:Ag) was similar (respectively 0.34 IU/mL [0.28-0.39] vs. 0.34 [0.31-0.38], p = 0.644). DM + HC swine had no endothelial dysfunction or atherosclerosis during this short-term follow-up. Subsequently, we performed a long-term (15 months) longitudinal cohort study in 10 Landrace-Yorkshire swine, in five of which HC and in five combined DM + HC were induced. VWF:Ag was higher at 15 months compared with 9 months in HC (0.37 [0.32-0.42] vs. 0.27 [0.23-0.40], p = 0.042) and DM + HC (0.33 [0.32-0.37] vs. 0.25 [0.24-0.33], p = 0.042). Both long-term groups had endothelial dysfunction compared with controls and atherosclerosis after 15 months. In conclusion, short-term hyperglycemia and dyslipidemia increase FVIII, independent of VWF. Long-term DM and HC increase VWF via endothelial dysfunction and atherosclerosis. Therefore, VWF seems to be a biomarker for advanced cardiovascular disease.
Collapse
Affiliation(s)
- Ferdows Atiq
- Department of Hematology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jens van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ilkka Heinonen
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- Rydberg Laboratory of Applied Sciences, University of Halmstad, Halmstad, Sweden
| | - Moniek P M de Maat
- Department of Hematology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Walter Brendel Center of Experimental Medicine (WBex), LMU Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Frank W G Leebeek
- Department of Hematology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Lelas A, Greinix HT, Wolff D, Eissner G, Pavletic SZ, Pulanic D. Von Willebrand Factor, Factor VIII, and Other Acute Phase Reactants as Biomarkers of Inflammation and Endothelial Dysfunction in Chronic Graft-Versus-Host Disease. Front Immunol 2021; 12:676756. [PMID: 33995421 PMCID: PMC8119744 DOI: 10.3389/fimmu.2021.676756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is an immune mediated late complication of allogeneic hematopoietic stem cell transplantation (alloHSCT). Discovery of adequate biomarkers could identify high-risk patients and provide an effective pre-emptive intervention or early modification of therapeutic strategy, thus reducing prevalence and severity of the disease among long-term survivors of alloHSCT. Inflammation, endothelial injury, and endothelial dysfunction are involved in cGvHD development. Altered levels of acute phase reactants have shown a strong correlation with the activity of several immune mediated disorders and are routinely used in clinical practice. Since elevated von Willebrand factor (VWF) and factor VIII (FVIII) levels have been described as acute phase reactants that may indicate endothelial dysfunction and inflammation in different settings, including chronic autoimmune diseases, they could serve as potential candidate biomarkers of cGvHD. In this review we focused on reported data regarding VWF and FVIII as well as other markers of inflammation and endothelial dysfunction, evaluating their potential role in cGvHD.
Collapse
Affiliation(s)
- Antonela Lelas
- Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Steven Zivko Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Drazen Pulanic
- Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
16
|
Liu CD, Liu NN, Zhang S, Ma GD, Yang HG, Kong LL, Du GH. Salvianolic acid A prevented cerebrovascular endothelial injury caused by acute ischemic stroke through inhibiting the Src signaling pathway. Acta Pharmacol Sin 2021; 42:370-381. [PMID: 33303991 PMCID: PMC8027612 DOI: 10.1038/s41401-020-00568-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/29/2020] [Indexed: 12/27/2022]
Abstract
Stroke is an acute cerebrovascular disease caused by ruptured or blocked blood vessels. For the prevention of ischemic stroke, the coagulation state of blood and cerebrovascular protection should be considered. Our previous study has shown that salvianolic acid A (SAA), which is a water-soluble component from the root of Salvia Miltiorrhiza Bge, prevents thrombosis with a mild inhibitory effect on platelet aggregation. In this study we investigated the preventive effects of SAA on cerebrovascular endothelial injury caused by ischemia in vivo and oxygen-glucose deprivation (OGD) in vitro, and explored the underlying mechanisms. An autologous thrombus stroke model was established in SD rats by electrocoagulation. SAA (10 mg/kg) was orally administered twice a day for 5 days before the operation. The rats were sacrificed at 24 h after the operation. We showed that pretreatment with SAA significantly improved the neurological deficits, intracerebral hemorrhage, BBB disruption, and vascular endothelial dysfunction as compared with model group. In human brain microvascular endothelial cells (HBMECs), pretreatment with SAA (10 μM) significantly inhibited OGD-induced cell viability reduction and degradation of tight junction proteins (ZO-1, occludin, claudin-5). Furthermore, we found that SAA inhibited the upregulation of Src signaling pathway in vivo and vitro and reversed the increased expression of matrix metalloproteinases (MMPs) after ischemic stroke. In conclusion, our results suggest that SAA protects cerebrovascular endothelial cells against ischemia and OGD injury via suppressing Src signaling pathway. These findings show that pretreatment with SAA is a potential therapeutic strategy for the prevention of ischemic stroke.
Collapse
Affiliation(s)
- Cheng-di Liu
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nan-Nan Liu
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Sen Zhang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Guo-Dong Ma
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hai-Guang Yang
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ling-Lei Kong
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
17
|
Malan L, Hamer M, von Känel R, van Wyk RD, Sumner AE, Nilsson PM, Lambert GW, Steyn HS, Badenhorst CJ, Malan NT. A Stress Syndrome Prototype Reflects Type 3 Diabetes and Ischemic Stroke Risk: The SABPA Study. BIOLOGY 2021; 10:162. [PMID: 33670473 PMCID: PMC7922484 DOI: 10.3390/biology10020162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
Type 3 diabetes (T3D) accurately reflects that dementia, e.g., Alzheimer's disease, represents insulin resistance and neurodegeneration in the brain. Similar retinal microvascular changes were observed in Alzheimer's and chronic stressed individuals. Hence, we aimed to show that chronic stress relates to T3D dementia signs and retinopathy, ultimately comprising a Stress syndrome prototype reflecting risk for T3D and stroke. A chronic stress and stroke risk phenotype (Stressed) score, independent of age, race or gender, was applied to stratify participants (N = 264; aged 44 ± 9 years) into high stress risk (Stressed, N = 159) and low stress risk (non-Stressed, N = 105) groups. We determined insulin resistance using the homeostatic model assessment (HOMA-IR), which is interchangeable with T3D, and dementia risk markers (cognitive executive functioning (cognitiveexe-func); telomere length; waist circumference (WC), neuronal glia injury; neuron-specific enolase/NSE, S100B). Retinopathy was determined in the mydriatic eye. The Stressed group had greater incidence of HOMA-IR in the upper quartile (≥5), larger WC, poorer cognitiveexe-func control, shorter telomeres, consistently raised neuronal glia injury, fewer retinal arteries, narrower arteries, wider veins and a larger optic cup/disc ratio (C/D) compared to the non-Stressed group. Furthermore, of the stroke risk markers, arterial narrowing was related to glaucoma risk with a greater C/D, whilst retinal vein widening was related to HOMA-IR, poor cognitiveexe-func control and neuronal glia injury (Adjusted R2 0.30; p ≤ 0.05). These associations were not evident in the non-Stressed group. Logistic regression associations between the Stressed phenotype and four dementia risk markers (cognitiveexe-func, telomere length, NSE and WC) comprised a Stress syndrome prototype (area under the curve 0.80; sensitivity/specificity 85%/58%; p ≤ 0.001). The Stress syndrome prototype reflected risk for HOMA-IR (odds ratio (OR) 7.72) and retinal glia ischemia (OR 1.27) and vein widening (OR 1.03). The Stressed phenotype was associated with neuronal glia injury and retinal ischemia, potentiating glaucoma risk. The detrimental effect of chronic stress exemplified a Stress syndrome prototype reflecting risk for type 3 diabetes, neurodegeneration and ischemic stroke.
Collapse
Affiliation(s)
- Leoné Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa; (R.v.K.); (N.T.M.)
| | - Mark Hamer
- Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, London WC1E 6BT, UK;
| | - Roland von Känel
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa; (R.v.K.); (N.T.M.)
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Roelof D. van Wyk
- Surgical Ophthalmologist, 85 Peter Mokaba Street, Potchefstroom 2531, South Africa;
| | - Anne E. Sumner
- Section on Ethnicity and Health, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
- National Institute of Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter M. Nilsson
- Department of Clinical Sciences, Lund University, SE-205 02 Malmö, Sweden;
| | - Gavin W. Lambert
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
- Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Hendrik S. Steyn
- Statistical Consultation Services, North-West University, Potchefstroom 2520, South Africa;
| | - Casper J. Badenhorst
- Anglo American Corporate Services, Sustainable Development Department, Johannesburg 2017, South Africa;
| | - Nico T. Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa; (R.v.K.); (N.T.M.)
| |
Collapse
|
18
|
Kovacevic KD, Greisenegger S, Langer A, Gelbenegger G, Buchtele N, Pabinger I, Petroczi K, Zhu S, Gilbert JC, Jilma B. The aptamer BT200 blocks von Willebrand factor and platelet function in blood of stroke patients. Sci Rep 2021; 11:3092. [PMID: 33542410 PMCID: PMC7862663 DOI: 10.1038/s41598-021-82747-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
The effect of conventional anti-platelet agents is limited in secondary stroke prevention, and their effects are blunted under high shear stress in the presence of increased levels of circulating von Willebrand factor (VWF). VWF is critically involved in thrombus formation at sites of stenotic extracranial/intracranial arteries. A third generation anti-VWF aptamer (BT200) has been generated which could be useful for secondary stroke prevention. To characterize the effects of BT200 in blood of patients with large artery atherosclerosis stroke (LAA). Blood samples were obtained from 33 patients with acute stroke or transient ischemic attack to measure inhibition of VWF activity and VWF-dependent platelet function. Patients who received clopidogrel or dual antiplatelet therapy did not differ in VWF dependent platelet function tests from aspirin treated patients. Of 18 patients receiving clopidogrel with or without aspirin, only 3 had a prolonged collagen adenosine diphosphate closure time, and none of the patients had ristocetin induced aggregation in the target range. BT200 concentration-dependently reduced median VWF activity from 178 to < 3%, ristocetin induced platelet aggregation from 40U to < 10U and prolonged collagen adenosine diphosphate closure times from 93 s to > 300 s. Baseline VWF activity correlated (r = 0.86, p < 0.001) with concentrations needed to reduce VWF activity to < 20% of normal, indicating that BT200 acts in a target concentration-dependent manner. Together with a long half-life supporting once weekly administration, the safety and tolerability observed in an ongoing phase I trial, and the existence of a reversal agent, BT200 is an interesting drug candidate.
Collapse
Affiliation(s)
- Katarina D Kovacevic
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | | | - Agnes Langer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Georg Gelbenegger
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Nina Buchtele
- Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ingrid Pabinger
- Division of Hematology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Karin Petroczi
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Shuhao Zhu
- Guardian Therapeutics, Lexington, MA, USA
| | | | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
19
|
Yang J, Wu Z, Long Q, Huang J, Hong T, Liu W, Lin J. Insights Into Immunothrombosis: The Interplay Among Neutrophil Extracellular Trap, von Willebrand Factor, and ADAMTS13. Front Immunol 2020; 11:610696. [PMID: 33343584 PMCID: PMC7738460 DOI: 10.3389/fimmu.2020.610696] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Both neutrophil extracellular traps (NETs) and von Willebrand factor (VWF) are essential for thrombosis and inflammation. During these processes, a complex series of events, including endothelial activation, NET formation, VWF secretion, and blood cell adhesion, aggregation and activation, occurs in an ordered manner in the vasculature. The adhesive activity of VWF multimers is regulated by a specific metalloprotease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13). Increasing evidence indicates that the interaction between NETs and VWF contributes to arterial and venous thrombosis as well as inflammation. Furthermore, contents released from activated neutrophils or NETs induce the reduction of ADAMTS13 activity, which may occur in both thrombotic microangiopathies (TMAs) and acute ischemic stroke (AIS). Recently, NET is considered as a driver of endothelial damage and immunothrombosis in COVID-19. In addition, the levels of VWF and ADAMTS13 can predict the mortality of COVID-19. In this review, we summarize the biological characteristics and interactions of NETs, VWF, and ADAMTS13, and discuss their roles in TMAs, AIS, and COVID-19. Targeting the NET-VWF axis may be a novel therapeutic strategy for inflammation-associated TMAs, AIS, and COVID-19.
Collapse
Affiliation(s)
- Junxian Yang
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Zhiwei Wu
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Quan Long
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiaqi Huang
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Tiantian Hong
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Wang Liu
- Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Institute of Biomechanics/School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
20
|
New stroke prognostic factors. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-00193-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Understanding ischemic stroke pathogenesis helps in prevention, prognosis, and treatment. Stroke is greatly related to inflammation and thrombo-genesis as inflammatory cells (as neutrophils-lymphocytes) and thrombo-genic agents as von Willebrand factor antigen (VWF: Ag) and epicardial fat.
Objectives of the study
Evaluation of epicardial fat thickness (EFT), neutrophil/lymphocytic ratio (NLR), and (VWF: Ag) levels as predisposing and prognostic factors of ischemic stroke.
Patients and methods
Sixty acute ischemic stroke patients were subjected to clinical assessment (Oxford stroke sheet), National Institute Health Stroke Scale: NIHSS), Modified Rankin Scale (MRS), NLR and VWF: Ag levels, transthoracic echo, duplex on carotid and vertebro-basilar arteries, and brain computed tomography (CT). Thirty-five healthy controls matched for age and sex were subjected to the same steps except NIHSS and MRS.
Results
EFT, NLR, and VWF among patients were significantly higher than control group. NLR ≥ 2 and VWF: Ag were significant risk factors among stroke patients with VWF: Ag had the higher risk than NLR ≥ 2. NLR was a high valid prognostic marker in predicting stroke outcome (MRS) with (optimal cutoff value 2.05) for prediction of primary unfavorable outcome. There was no statistical significance between (MRS) and EFT or VWF: Ag level.
Conclusion
EFT represents inexpensive and readily available clinical marker that may be useful in estimating risk of ischemic stroke. NLR is non-expensive easy marker for predicting stroke severity and primary unfavorable outcome. High VWF level increases ischemic stroke risk.
Collapse
|
21
|
Wang J, Zhang W, Ma B, Zhang H, Fan Z, Li M, Li X. A novel biscoumarin derivative dephosphorylates ERK and alleviates apoptosis induced by mitochondrial oxidative damage in ischemic stroke mice. Life Sci 2020; 264:118499. [PMID: 33141045 DOI: 10.1016/j.lfs.2020.118499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022]
Abstract
AIM We previously reported the protective effects of biscoumarin derivatives against oxidative stress, but effects of the derivative on mitochondrial oxidative damage induced apoptosis in ischemic stroke remains unknown. METHODS Primary neurons were subjected to oxygen and glucose deprivation (OGD) for the in vitro simulation of ischemic stroke, and an ischemic stroke model was established in mice by operation of middle cerebral artery occlusion (MCAO). RESULTS The results indicated that the nontoxic concentration range of biscoumarin derivative Comp. B in neurons was from 0 to 30 μg/ml and the optimal protective concentration was 20 μg/ml. Treatment with Comp. B increased the cell survival rate and alleviated mitochondrial oxidative damage and apoptosis in OGD-treated neurons. Comp. B reduced the ratio of Bax/Bcl-2, inhibited the phosphorylation of ERK, and thus alleviated apoptosis in OGD-treated neurons. Further research demonstrated that the dephosphorylation effect on ERK of Comp. B is a key factor in alleviating apoptosis in neurons induced by OGD injury. Furthermore, Comp. B reduced the infarct volume, improved neurobehavioural score, and alleviated morphological changes and brain apoptosis in MCAO mice. CONCLUSION The novel biscoumarin derivative Comp. B alleviates mitochondrial oxidative damage and apoptosis in ischemic stroke mice. These findings might provide new insights that will aid in elucidating the effect of biscoumarin derivative against cerebral ischemic reperfusion injury and support the new development of Comp. B as a potential treatment for ischemic stroke.
Collapse
Affiliation(s)
- Jun Wang
- Department of Digestive Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wentong Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Bo Ma
- Department of Pharmacology, The Fourth Military Medical University, Xi'an, China
| | - Hongchen Zhang
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhaoyang Fan
- Department of Pharmacology, The Fourth Military Medical University, Xi'an, China
| | - Mingkai Li
- Department of Pharmacology, The Fourth Military Medical University, Xi'an, China.
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
22
|
Grobler C, Maphumulo SC, Grobbelaar LM, Bredenkamp JC, Laubscher GJ, Lourens PJ, Steenkamp J, Kell DB, Pretorius E. Covid-19: The Rollercoaster of Fibrin(Ogen), D-Dimer, Von Willebrand Factor, P-Selectin and Their Interactions with Endothelial Cells, Platelets and Erythrocytes. Int J Mol Sci 2020; 21:ijms21145168. [PMID: 32708334 PMCID: PMC7403995 DOI: 10.3390/ijms21145168] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), also known as coronavirus disease 2019 (COVID-19)-induced infection, is strongly associated with various coagulopathies that may result in either bleeding and thrombocytopenia or hypercoagulation and thrombosis. Thrombotic and bleeding or thrombotic pathologies are significant accompaniments to acute respiratory syndrome and lung complications in COVID-19. Thrombotic events and bleeding often occur in subjects with weak constitutions, multiple risk factors and comorbidities. Of particular interest are the various circulating inflammatory coagulation biomarkers involved directly in clotting, with specific focus on fibrin(ogen), D-dimer, P-selectin and von Willebrand Factor (VWF). Central to the activity of these biomarkers are their receptors and signalling pathways on endothelial cells, platelets and erythrocytes. In this review, we discuss vascular implications of COVID-19 and relate this to circulating biomarker, endothelial, erythrocyte and platelet dysfunction. During the progression of the disease, these markers may either be within healthy levels, upregulated or eventually depleted. Most significant is that patients need to be treated early in the disease progression, when high levels of VWF, P-selectin and fibrinogen are present, with normal or slightly increased levels of D-dimer (however, D-dimer levels will rapidly increase as the disease progresses). Progression to VWF and fibrinogen depletion with high D-dimer levels and even higher P-selectin levels, followed by the cytokine storm, will be indicative of a poor prognosis. We conclude by looking at point-of-care devices and methodologies in COVID-19 management and suggest that a personalized medicine approach should be considered in the treatment of patients.
Collapse
Affiliation(s)
- Corlia Grobler
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - Siphosethu C. Maphumulo
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - L. Mireille Grobbelaar
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - Jhade C. Bredenkamp
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - Gert J. Laubscher
- Elsie du Toit Street, Stellenbosch MediClinic, Stellenbosch 7600, South Africa; (G.J.L.); (P.J.L.)
| | - Petrus J. Lourens
- Elsie du Toit Street, Stellenbosch MediClinic, Stellenbosch 7600, South Africa; (G.J.L.); (P.J.L.)
| | - Janami Steenkamp
- PathCare Laboratories, PathCare Business Centre, Neels Bothma Street, N1 City, Cape Town 7460, South Africa;
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Kemitorve Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence: (D.B.K.); (E.P.)
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
- Correspondence: (D.B.K.); (E.P.)
| |
Collapse
|
23
|
Kovacevic KD, Jilma B, Zhu S, Gilbert JC, Winter MP, Toma A, Hengstenberg C, Lang I, Kubica J, Siller-Matula JM. von Willebrand Factor Predicts Mortality in ACS Patients Treated with Potent P2Y12 Antagonists and is Inhibited by Aptamer BT200 Ex Vivo. Thromb Haemost 2020; 120:1282-1290. [PMID: 32679592 DOI: 10.1055/s-0040-1713888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND von Willebrand factor (VWF) is crucial for arterial thrombosis and its plasma levels are increased in acute coronary syndromes (ACSs). The effects of conventional platelet inhibitors are compromised by elevated VWF under high shear rates. BT200 is a third-generation aptamer that binds and inhibits the A1 domain of human VWF. This article aims to study whether VWF is a predictor of mortality in ACS patients under potent P2Y12 blocker therapy and to examine the effects of a VWF inhibiting aptamer BT200 and its concentrations required to inhibit VWF in plasma samples of patients with ACS. METHODS VWF activity was measured in 320 patients with ACS, and concentration effect curves of BT200 were established in plasma pools containing different VWF concentrations. RESULTS Median VWF activity in patients was 170% (interquartile range % confidence interval [CI]: 85-255) and 44% of patients had elevated (> 180%) VWF activity. Plasma levels of VWF activity predicted 1-year (hazard ratio [HR]: 2.68; 95% CI: 1.14-6.31; p < 0.024) and long-term (HR: 2.59; 95% CI: 1.10-6.09) mortality despite treatment with potent platelet inhibitors (dual-antiplatelet therapy with aspirin and prasugrel or ticagrelor). Although half-maximal concentrations were 0.1 to 0.2 µg/mL irrespective of baseline VWF levels, increasing concentrations (0.42-2.13 µg/mL) of BT200 were needed to lower VWF activity to < 20% of normal in plasma pools containing increasing VWF activity (p < 0.001). CONCLUSION VWF is a predictor of all-cause mortality in ACS patients under contemporary potent P2Y12 inhibitor therapy. BT200 effectively inhibited VWF activity in a target concentration-dependent manner.
Collapse
Affiliation(s)
- Katarina D Kovacevic
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Shuhao Zhu
- Guardian Therapeutics, Lexington, Massachusetts, United States
| | - James C Gilbert
- Guardian Therapeutics, Lexington, Massachusetts, United States
| | - Max-Paul Winter
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Aurel Toma
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christian Hengstenberg
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Irene Lang
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jacek Kubica
- Department of Cardiology and Internal Medicine, Nicolaus Copernicus University, Toruń, Poland
| | - Jolanta M Siller-Matula
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.,Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
24
|
The aptamer BT200 effectively inhibits von Willebrand factor (VWF) dependent platelet function after stimulated VWF release by desmopressin or endotoxin. Sci Rep 2020; 10:11180. [PMID: 32636459 PMCID: PMC7341806 DOI: 10.1038/s41598-020-68125-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022] Open
Abstract
Von Willebrand factor (VWF) plays a major role in arterial thrombosis. Antiplatelet drugs induce only a moderate relative risk reduction after atherothrombosis, and their inhibitory effects are compromised under high shear rates when VWF levels are increased. Therefore, we investigated the ex vivo effects of a third-generation anti-VWF aptamer (BT200) before/after stimulated VWF release. We studied the concentration-effect curves BT200 had on VWF activity, platelet plug formation under high shear rates (PFA), and ristocetin-induced platelet aggregation (Multiplate) before and after desmopressin or endotoxin infusions in healthy volunteers. VWF levels increased > 2.5-fold after desmopressin or endotoxin infusion (p < 0.001) and both agents elevated circulating VWF activity. At baseline, 0.51 µg/ml BT200 reduced VWF activity to 20% of normal, but 2.5-fold higher BT200 levels were required after desmopressin administration (p < 0.001). Similarly, twofold higher BT200 concentrations were needed after endotoxin infusion compared to baseline (p < 0.011). BT200 levels of 0.49 µg/ml prolonged collagen-ADP closure times to > 300 s at baseline, whereas 1.35 µg/ml BT200 were needed 2 h after desmopressin infusion. Similarly, twofold higher BT200 concentrations were necessary to inhibit ristocetin induced aggregation after desmopressin infusion compared to baseline (p < 0.001). Both stimuli elevated plasma VWF levels in a manner representative of thrombotic or pro-inflammatory conditions such as arterial thrombosis. Even under these conditions, BT200 potently inhibited VWF activity and VWF-dependent platelet function, but higher BT200 concentrations were required for comparable effects relative to the unstimulated state.
Collapse
|
25
|
Zhu S, Gilbert JC, Liang Z, Kang D, Li M, Tarantino PM, Jilma B. Potent and rapid reversal of the von Willebrand factor inhibitor aptamer BT200. J Thromb Haemost 2020; 18:1695-1704. [PMID: 32275107 PMCID: PMC7384040 DOI: 10.1111/jth.14822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND BT200, a pegylated form of the aptamer BT100, inhibits binding of von Willebrand factor (VWF) to platelet glycoprotein GPIb, preventing arterial thrombosis in cynomolgus monkeys. It is being developed for secondary prevention of arterial thrombosis such as stroke or myocardial infarction. Inhibition of thrombogenesis by BT200 is expected to provide a therapeutic benefit. However, there may be unexpected bleeding (eg, incidental trauma) in which a reversal agent is required. To address this need, BT101, a complementary aptamer, has been developed to specifically inhibit BT100 and BT200 function. OBJECTIVES To characterize the effects of BT101 both in vitro and in vivo. METHODS The direct interaction between BT101 and the core aptamer BT100 was evaluated using polyacrylamide gel electrophoresis. The binding of BT200 to purified human VWF and inhibition of VWF activity was further characterized using enzyme-linked immunosorbent assay. VWF-dependent platelet function was measured by the platelet function analyzer and aggregometry in whole blood. In addition, both the in vivo pharmacokinetic profile of BT101 as well as its ability to reverse BT200 activity, were evaluated in cynomolgus monkeys. RESULTS BT101 bound to the core aptamer BT100 at a 1:1 ratio, inhibited BT200 binding to purified human VWF, and reversed BT200-induced inhibition of both VWF activity and VWF-dependent platelet function in vitro. After intravenous injection to monkeys, BT101 reversed BT200-induced effects on VWF activity and platelet function within minutes, without causing any adverse effects. CONCLUSIONS The results of this study demonstrate that BT101 is an effective reversal agent for BT200.
Collapse
Affiliation(s)
| | | | - Zicai Liang
- Suzhou Ribo Life Science Co., LtdKunshan CityChina
| | - Daiwu Kang
- Suzhou Ribo Life Science Co., LtdKunshan CityChina
| | - Ming Li
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | | | - Bernd Jilma
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
26
|
Zhu S, Gilbert JC, Hatala P, Harvey W, Liang Z, Gao S, Kang D, Jilma B. The development and characterization of a long acting anti-thrombotic von Willebrand factor (VWF) aptamer. J Thromb Haemost 2020; 18:1113-1123. [PMID: 32011054 PMCID: PMC7317574 DOI: 10.1111/jth.14755] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/16/2020] [Accepted: 01/29/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Thrombus formation involves coagulation proteins and platelets. The latter, referred to as platelet-mediated thrombogenesis, is predominant in arterial circulation. Platelet thrombogenesis follows vascular injury when extracellular von Willebrand factor (VWF) binds via its A3 domain to exposed collagen, and the free VWF A1 domain binds to platelet glycoprotein Ib (GPIb). OBJECTIVES To characterize the antiplatelet/antithrombotic activity of the pegylated VWF antagonist aptamer BT200 and identify the aptamer VWF binding site. METHODS BT100 is an optimized aptamer synthesized by solid-phase chemistry and pegylated (BT200) by standard conjugation chemistry. The affinity of BT200 for purified human VWF was evaluated as was VWF inhibition in monkey and human plasma. Efficacy of BT200 was assessed in the monkey FeCl3 femoral artery thrombosis model. RESULTS BT200 bound human VWF at an EC50 of 5.0 nmol/L and inhibited VWF A1 domain activity in monkey and human plasma with mean IC50 values of 183 and 70 nmol/L. BT200 administration to cynomolgus monkeys caused a time-dependent and dose-dependent effect on VWF A1 domain activity and inhibited platelet function as measured by collagen adenosine diphosphate closure time in the platelet function analyzer. BT200 demonstrated a bioavailability of ≥77% and exhibited a half-life of >100 hours after subcutaneous injection. The treatment effectively prevented arterial occlusion in an FeCl3 -induced thrombosis model in monkeys. CONCLUSIONS BT200 has shown promising inhibition of human VWF in vitro and prevented arterial occlusion in non-human primates. These data including a long half-life after subcutaneous injections provide a strong rationale for ongoing clinical development of BT200.
Collapse
Affiliation(s)
- Shuhao Zhu
- Guardian Therapeutics IncLexingtonMassachusettsUSA
| | | | | | | | - Zicai Liang
- Suzhou Ribo Life Science Co., LtdKunshan CityChina
| | - Shan Gao
- Suzhou Ribo Life Science Co., LtdKunshan CityChina
| | - Daiwu Kang
- Suzhou Ribo Life Science Co., LtdKunshan CityChina
| | - Bernd Jilma
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
27
|
Douglas A, Fitzgerald S, Mereuta OM, Rossi R, O'Leary S, Pandit A, McCarthy R, Gilvarry M, Holmegaard L, Abrahamsson M, Jerndal M, Dehlfors N, Brennan P, Power S, O'Hare A, Griffin E, Kallmes DF, Brinjikji W, Szikora I, Tatlisumak T, Rentzos A, Thornton J, Doyle K. Platelet-rich emboli are associated with von Willebrand factor levels and have poorer revascularization outcomes. J Neurointerv Surg 2019; 12:557-562. [DOI: 10.1136/neurintsurg-2019-015410] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 01/07/2023]
Abstract
Background and aimsPlatelets and von Willebrand factor (vWF) are key factors in thrombosis and thus are likely key components of acute ischemic stroke (AIS) emboli. We aimed to characterize platelet and vWF levels in AIS emboli and to assess associations between their expression levels and clinical and procedural information.Materials and methodHistopathological and immunohistochemical analysis of emboli collected as part of the multi-institutional RESTORE registry was performed. The composition of the emboli was quantified using Orbit Image Analysis machine learning software. Correlations between clot components and clinical and procedural information were assessed using the χ2 test.ResultsNinety-one emboli samples retrieved from 63 patients were analyzed in the study. The mean platelet (CD42b) content of the clots was 33.9% and the mean vWF content of the clots was 29.8%. There was a positive correlation between platelet and vWF levels (ρ=0.564, p<0.001*, n=91). There was an inverse correlation between both platelets and vWF levels and percentage of red blood cells (RBCs) in the emboli (CD42b vs RBC: ρ=−0.535, p<0.001*, n=91; vWF vs RBC: ρ=−0.366, p<0.001*, n=91). Eighty-one percent of patients in the low platelet group had a good revascularization outcome (Thrombolysis in Cerebral Infarction 2c/3) compared with 58% in the high platelet group (χ2=5.856, p=0.016).ConclusionPlatelet and vWF levels in AIS emboli correlate with each other and both have an inverse relationship with RBC composition. Patients with platelet-rich clots have poorer revascularization outcomes.
Collapse
|
28
|
Kovacevic KD, Mayer FJ, Jilma B, Buchtele N, Obermayer G, Binder CJ, Blann AD, Minar E, Schillinger M, Hoke M. Von Willebrand factor antigen levels predict major adverse cardiovascular events in patients with carotid stenosis of the ICARAS study. Atherosclerosis 2019; 290:31-36. [DOI: 10.1016/j.atherosclerosis.2019.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/26/2019] [Accepted: 09/12/2019] [Indexed: 12/28/2022]
|
29
|
Fasipe TA, Hong SH, Da Q, Valladolid C, Lahey MT, Richards LM, Dunn AK, Cruz MA, Marrelli SP. Extracellular Vimentin/VWF (von Willebrand Factor) Interaction Contributes to VWF String Formation and Stroke Pathology. Stroke 2019; 49:2536-2540. [PMID: 30355099 DOI: 10.1161/strokeaha.118.022888] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background and Purpose- VWF (von Willebrand factor) strings mediate spontaneous platelet adhesion in the vascular lumen, which may lead to microthrombi formation and contribute to stroke pathology. However, the mechanism of VWF string attachment at the endothelial surface is unknown. We tested the novel hypothesis that VWF strings are tethered to the endothelial surface through an interaction between extracellular vimentin and the A2 domain of VWF. We further explored the translational value of blocking this interaction in a model of ischemic stroke. Methods- Human endothelial cells and pressurized cerebral arteries were stimulated with histamine to elicit VWF string formation. Recombinant proteins and antibodies were used to block VWF string formation. Mice underwent transient middle cerebral artery occlusion with reperfusion. Just before recanalization, mice were given either vehicle or A2 protein (recombinant VWF A2 domain) to disrupt the vimentin/VWF interaction. Laser speckle contrast imaging was used to monitor cortical perfusion. Results- Pressurized cerebral arteries produced VWF strings following histamine stimulation, which were reduced in arteries from Vim KO (vimentin knockout) mice. VWF string formation was significantly reduced in endothelial cells incubated with A2 protein or antivimentin antibodies. Lastly, A2 protein treatment significantly improved cortical reperfusion after middle cerebral artery occlusion. Conclusions- We provide the first direct evidence of cerebral VWF strings and demonstrate that extracellular vimentin significantly contributes to VWF string formation via A2 domain binding. Lastly, we show that pharmacologically targeting the vimentin/VWF interaction through the A2 domain can promote improved reperfusion after ischemic stroke. Together, these studies demonstrate the critical role of VWF strings in stroke pathology and offer new therapeutic targets for treatment of ischemic stroke.
Collapse
Affiliation(s)
- Titilope A Fasipe
- From the Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine Houston, TX (T.A.F.).,Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (T.A.F., S.-H.H., Q.D., C.V., M.A.C., S.P.M.)
| | - Sung-Ha Hong
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (T.A.F., S.-H.H., Q.D., C.V., M.A.C., S.P.M.).,Department of Neurology, McGovern Medical School at UTHealth, Houston, TX (S.-H.H., M.T.L., S.P.M.)
| | - Qi Da
- Department of Medicine, Baylor College of Medicine Houston, TX (Q.D., M.A.C.).,Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (T.A.F., S.-H.H., Q.D., C.V., M.A.C., S.P.M.)
| | - Christian Valladolid
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine Houston, TX (C.V.).,Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (T.A.F., S.-H.H., Q.D., C.V., M.A.C., S.P.M.)
| | - Matthew T Lahey
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX (S.-H.H., M.T.L., S.P.M.)
| | - Lisa M Richards
- Department of Biomedical Engineering, University of Texas at Austin (L.M.R., A.K.D.)
| | - Andrew K Dunn
- Department of Biomedical Engineering, University of Texas at Austin (L.M.R., A.K.D.)
| | - Miguel A Cruz
- Department of Medicine, Baylor College of Medicine Houston, TX (Q.D., M.A.C.).,Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (T.A.F., S.-H.H., Q.D., C.V., M.A.C., S.P.M.)
| | - Sean P Marrelli
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (T.A.F., S.-H.H., Q.D., C.V., M.A.C., S.P.M.).,Department of Neurology, McGovern Medical School at UTHealth, Houston, TX (S.-H.H., M.T.L., S.P.M.)
| |
Collapse
|